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Abstract

Model reference adaptive controllers designed via the Minimal Control Syn-
thesis (MCS) approach are a viable solution to control plants affected by parame-
ter uncertainty, unmodelled dynamics, and disturbances. Despite its effectiveness
to impose the required reference dynamics, an apparent drift of the adaptive gains,
which can eventually lead to closed-loop instability or alter tracking performance,
may occasionally be induced by external disturbances. Thisproblem has been
recently addressed for this class of adaptive algorithms inthe discrete-time case
and for square-integrable perturbations by using a parameter projection strategy
[1]. In this paper we tackle systematically this issue for MCS continuous-time
adaptive systems with integral action by enhancing the adaptive mechanism not
only with a parameter projection method, but also embeddinga σ-modification
strategy. The former is used to preserve convergence to zeroof the tracking error
when the disturbance is bounded andL2, while the latter guarantees global uni-
form ultimate boundedness under continuousL∞ disturbances. In both cases, the
proposed control schemes ensure boundedness of all the closed-loop signals. The
strategies are numerically validated by considering systems subject to different
kinds of disturbances. In addition, an electrical power circuit is used to show the
applicability of the algorithms to engineering problems requiring a precise track-
ing of a reference profile over a long time range despite disturbances, unmodelled
dynamics, and parameter uncertainty.
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projection, Switchingσ-modification

1. Introduction

Adaptive control was introduced in the early 1950’s to deal with sys-
tems that exhibit high levels of parametric uncertainty andvariability [2].
Nowadays it is a subject of active research, with improvements of the origi-
nal algorithms and combinations with other control techniques such as slid-
ing modes, neural networks, iterative learning control, orfuzzy controllers
(see for example [3, 4, 5, 6, 7, 8, 9] and references therein) being periodically
reported.

Model Reference Adaptive Control (MRAC) schemes with Minimal Con-
troller Synthesis (MCS) [10, 11] are effective strategies to impose the dynamics
of a certain reference model to linear plants in control canonical form affected by
unknown, uncertain or time-varying parameters, unmodelled nonlinear dynamics,
and disturbances. Examples of applications where the MCS has been successfully
used include electronic throttle valves [12, 13], common rail systems [14, 15],
electromechanical valve actuators for future camless engines [16], synchroniza-
tion of chaotic systems [17], shaking tables in civil engineering [18], active engine
mounts [19], hydraulic test rigs [20], and cantilever beams[21].

Since its formulation in [10, 11], different enhancements of the original MCS
algorithm have been proposed to tackle analytically both specific problems and
tracking performance improvement. For example, multi-input continuous-time
systems can be controlled via the decentralized MCS [22]; rapidly time-varying
disturbances can be suppressed by the Extended MCS (EMCS), which embeds
an additional switching action [23]; the Integral MCS (MCSI) [24] includes an
integral control action where the integral gainis adaptive itself, and it is used to
further improve tracking performance. Recently, MCS control schemes for piece-
wise affine systems have been proposed in [25, 26, 27]. The MCSalgorithm for
discrete-time systems has been presented in [28, 29], and extended to piecewise
linear systems in [30]. In the discrete-time setting, integral and switching control
actions have been proposed in [14] and [31], respectively.

However, in spite of the proved effectiveness of the MCS in a number of cases,
an apparently unbounded drift of the adaptive gains has beenoccasionally ob-
served (see, for example, [29, 14]), which may eventually yield to loss of tracking
performance or even closed-loop instability. This phenomenon, also common to
other MRAC schemes [32, 2], is due to the fact that, from a theoretical point
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of view, asymptotically zero tracking error plus closed-loop stability can be rig-
orously proved only for uncertain, Linear Time-Invariant (LTI) systems, while
unmodelled dynamics and disturbances are tackled under rather tight assumptions
[11] not always satisfied in practice. This issue cannot be fully addressed neither
with the integral action of the MCSI, nor with the method introduced in [33], and
represents a serious drawback of the MCS.

Recently, a parameter projection-based [2] scheme embedded in a discrete-
time MCS algorithm was capable of providing asymptotic tracking of the ref-
erence model and boundedness of the adaptive gains in the face of L2 distur-
bances for uncertain discrete-time linear systems [1].In this paper we present
a continuous-time counterpart of this algorithm, and we also propose an al-
ternative strategy to deal with generic bounded disturbances, guaranteeing in
both cases boundedness of all the closed-loop signals, including the adaptive
gains.Specifically, we first introduce parameter projection to cope withL2 ∩ L∞
disturbances. This locking method allows to confine the adaptive gains to a pre-
assigned set while ensuring asymptotically zero tracking error and closed-loop
stability for square integrable disturbances. The resulting control algorithm is de-
noted in the paper as MCSI-PP (MCS with Integral control action and Parameter
Projection). In turn, when the goal is to tame bounded disturbances, we pro-
pose to replace the parameter projection law by aσ-modification strategy [2].
In this case asymptotic stability can be no longer ensured, but the closed loop sys-
tem is proven to be globally uniformly ultimately bounded whenL∞ disturbances
persistently act on the plant dynamics, and a ultimate boundis also computed by
using Lyapunov techniques. In the paper we denoted this algorithm asσ-MCSI
(MCS with Integral control action andσ-modification).

We remark that the closed-loop stability shown here for the proposed
adaptive algorithms allows also to prove systematically the boundedness of
the integral action of the MCSI and of its associated adaptive gains.Further-
more, even though the main results are initially proven in detail for LTI systems,
we show that they can be extended to time-varying linear systems when the dy-
namics of the plant parameters are slower than those of the adaptive gains [10, 11].

The proposed controllers are numerically validated by using two repre-
sentative sets of examples in which the classical MCS and MCSI algorithms
show unbounded adaptive gains.Firstly, we illustrate the main features of the al-
gorithms by considering a continuous-time plant with parameter uncertainty and
affected by time-varying disturbances. These disturbances are chosen in accor-
dance with the algorithm to be tested, i.e., they are square integrable for the MCSI-
PP case, and bounded for theσ-MCSI algorithm. In the latter case, we show that
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the adaptive gains of the original MCS [10, 11] grow unbounded. Moreover, for
the σ-MCSI we study the closed-loop system response, both in terms of resid-
ual tracking error and adaptive gains, when the disturbanceis a sinusoidal func-
tion with different amplitudes and frequencies. For all cases, boundedness of the
closed-loop state is achived as predicted by the theoretical analysis. In the second
part, we consider instead an engineering case study, namely, the control of a full-
bridge buck DC-AC power converter. The complexity here is due to unmodelled
dynamics induced by a discretization of the adaptive laws, the Pulse Width Mod-
ulation (PWM) based actuator, and a nonlinear load acting asa disturbance. The
tracking performances of the proposed algorithms are compared to those provided
by pre-existing MCS solutions whose adaptive gains become unbounded also in
this relevant case after a long, but realistic, time interval of interest for the control.

The paper is outlined as follows. The adjusted MCSI adaptivealgorithms
are introduced in Section 2, while the main theoretical results established therein
are proved in Section 3. Simulation results using a numerical example and an
engineering-based case study are presented in Sections 4 and 5, respectively. Fi-
nally, conclusions are drawn in Section 6.

2. MCSI algorithms with adjusted adaptive mechanisms

Consider a plant of the form

ẋ = Ax+Bu+Beδ, x(t0) ∈ R
n, (1)

wherex ∈ R
n andu ∈ R are the state and the input of the system, respectively,

with n ∈ N andt0 ∈ R being the dimension of the state space and the initial time
instant, respectively. The scalar disturbanceδ = δ(t) acting on the plant dynamics
belongs either toL2 ∩ L∞ or C ∩ L∞, with C being the set of continuous scalar
functions. In addition, the system matricesA ∈ R

n×n, B ∈ R
n are in control
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canonical form, i.e.

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
a1 a2 . . . . . . an



, (2a)

B =
[
0 0 . . . 0 b

]T
= bBe, (2b)

Be =
[
0 0 . . . 0 1

]T
. (2c)

The plant parameters in (2a) and (2b) are assumed to be constant and unknown, but
belonging to known bounded sets, i.e.,ai ∈

[
ali, a

u
i

]
, whereaui > ali, i = 1, . . . , n,

andb ∈
[
bl, bu

]
, wherebu > bl > 0, with known upper and lower bounds.

This is not as restrictive as it might appear at first. Indeed,nominal values
for the plant parameters, as well as their range of variation, are often available
in engineering problems. In addition, there is no loss of generality in assuming
bu > bl > 0 because if0 > bl > bu then the sign of the adaptive gain weights
defined further on should be accordingly selected. Hence, the requirement is, in
fact, thatb has definite sign.

The control objective for the MCSI algorithm is to impose to system (1) the
dynamics of a given reference model while keeping all the closed-loop signals
bounded.

More in detail, the reference model is an asymptotically stable LTI system of
the form

ẋm = Amxm +Bmr, xm(t0) ∈ R
n, (3)

wherexm ∈ R
n andr = r(t) ∈ R are the reference model state and a bounded

reference input, respectively, andAm ∈ R
n, Bm ∈ R

n are the reference model
matrices given in the same canonical form as those of the plant , i.e.

Am =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
am,1 am,2 . . . . . . am,n



, (4a)

Bm =
[
0 0 . . . 0 bm

]T
= bmBe, (4b)
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with Am Hurwitz.
The control action provided by both the MCSI-PP and theσ-MCSI control

algorithms can be written as

u(t) = uMCS(t) + uI(t), (5)

with

uMCS(t) = KX(t)x(t) +KR(t)r(t), (6a)

uI(t) = KI(t)xI(t), (6b)

where
ẋI = xe + fe and xe = xm − x; (7)

the adaptive gains are computed as

KX = φT
X + βXyex

T and φ̇T
X = αXyex

T + fT
X , (8a)

KR = φR + βRyer and φ̇R = αRyer + fR, (8b)

KI = φT
I + βIyex

T
I and φ̇T

I = αIyex
T
I + fT

I , (8c)

αX , αR, αI , βX , βR andβI being positive adaptive weights, while

ye = Cexe, with Ce = BT
e P, and PAm + AT

mP = −Q, Q = QT > 0. (9)

Notice that the solution of the Lyapunov equation,P , exists because of the Hur-
witz assumption for the reference model matrixAm.

The functionsfe, fX , fR andfI , which do not appear in classical MCS al-
gorithms, depend on the strategy exploited to bound the evolution of both the
integral variable,xI , and the adaptive gains, namely, parameter projection orσ-
modification, and will be described in detail in the following subsections.

We remark that, to derive these terms, the only extra assumption that is re-
quired with respect to the MCS algorithms available in the technical literature is
that some bounds for the plant parameters are known.

Through the rest of the paper, we denote the diagonal matrices that gather the
adaptive gain weights as

Γα = diag(α̂1, α̂2, . . . , α̂2n+1) , Γβ = diag
(
β̂1, β̂2, . . . , β̂2n+1

)
, (10)
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with
(
α̂i, β̂i

)
= (αX , βX), i = 1, . . . , n,

(
α̂n+1, β̂n+1

)
= (αR, βR),

(
α̂i, β̂i

)
=

(αI , βI), i = n+2, . . . , 2n+1. In addition, we denote asφ the stack of the integral
part of the adaptive gains, i.e.,

φT =
[
φ1 φ2 . . . φ2n+1

]
=
[
φT
X

... φR

... φT
I

]
. (11)

Moreover, the vectorφ⋆ ∈ R
2n+1 is defined as

φ⋆T =
[
φ⋆
1 φ⋆

2 . . . φ⋆
2n+1

]
=
[
φ⋆T
X

... φ⋆
R

... φ⋆T
I

]

=
[
b−1BT

e (Am − A)
... b−1bm

... OT
n

]
, (12)

with On being the null vector inRn, andφ⋆
Xj

= b−1(am,j − aj), j = 1, . . . , n.
Notice that, as the range of variation of the plant parameters is know, it is possible
to find two vectorsφu, φl ∈ R

2n+1, defined as

φuT =
[
φu
1 φu

2 . . . φu
2n+1

]
=
[
φuT
X

... φu
R

... φuT
I

]
, (13)

φlT =
[
φl
1 φl

2 . . . φl
2n+1

]
=
[
φlT
X

... φl
R

... φlT
I

]
, (14)

and a positive constantM so that

‖φ⋆‖ ≤ M, φ⋆ ∈ Λφ :=
[
φl
1, φ

u
1

]
× · · · ×

[
φl
2n+1, φ

u
2n+1

]
, (15)

with ‖·‖ denoting the 2-norm of a vector. Furthermore, let the difference between
φ∗ andφ be denoted as

φe = φ∗ − φ. (16)

Finally, the elements of the integral adaptive gains evolution fX , fR andfI are
collected in a vector defined as:

fT =
[
f1 f2 . . . f2n+1

]
=
[
fT
X

... fR
... fT

I

]
. (17)
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2.1. MCSI with parameter projection

Parameter projection proposes a design forf in (17) that keeps the evolution
of φ within Λφ. This is achieved componentwise as follows:

fXj
(t) =





0 if φXj
∈
(
φl
Xj
, φu

Xj

)
, or φXj

= φl
Xj

and hXj
≥ 0,

or φXj
= φu

Xj
and hXj

≤ 0,

−hXj
(t) otherwise,

(18a)

fR(t) =





0 if φR ∈
(
φl
R, φ

u
R

)
, or φR = φl

R and hR ≥ 0,
or φR = φu

R and hR ≤ 0,
−hR(t) otherwise,

(18b)

fIj(t) =





0 if φIj ∈
(
φl
Ij
, φu

Ij

)
, or φIj = φl

Ij
and hIj ≥ 0,

or φIj = φu
Ij

and hIj ≤ 0,

−hIj (t) otherwise,

(18c)

with hXj
= αXyexj , j = 1 . . . n, hR = αRyer, andhIj = αIyexIj , j = 1 . . . n.

Notice that, in this way,fj is zero while the corresponding integral gainφj is
within boundaries, and it is activated whenφj reaches any of its boundaries with
a tendency to leave the region. In this case the parameter projection term freezes
φj at the corresponding lower or upper admissible interval value.

In turn, a parameter-projection based locking strategy forthe integral variable
xI is proposed to keep its evolution constrained in a pre-determined region of the
phase plane. Let this domain be defined as

ΛI :=
[
xlI1 , x

u
I1

]
× · · · ×

[
xlIn , x

u
In

]
, (19)

with xlIj < 0 andxuIj > 0, for all j = 1, . . . , n. Recalling the definition ofxI in
(7), its confinement withinΛI is achieved through the following scheme:

fej(t) =





0 if xIj ∈
(
xlIj , x

u
Ij

)
, or xIj = xlIj and xej ≥ 0,

or xIj = xuIj and xej ≤ 0,

−xej (t) otherwise.

(20)

Theorem 1. Consider system(1) with δ ∈ L2 ∩ L∞ and the reference model
(3). Let the adaptive control action be given by(5)-(9), with the integral part
of the adaptive gains in(8) completed with thef -term in (17) computed in ac-
cordance with the parameter projection law in(18) and so thatφ(t0) ∈ Λφ,
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while the dynamics ofxI in (7) are completed with the locking strategy(20) and
xI(t0) ∈ ΛI . Then, all the closed-loop signals are bounded and, in particular,
(φ, xI) ∈ Λφ × ΛI , andxe → 0 ast→ +∞.

Theorem 1 holds for LTV plants as well under the assumption ofslow variation
of the plant parameters with respect to that of the integral part of the adaptive gains
according to the following corollary. It is worth remarkingthat this is a standard
assumption in the MCS literature [11, 28].

Corollary 1. Let the dynamic matrix of the plant given in(2) be time-varying, i.e.
A = A(t) with aj = aj(t) in the last row ofA(t). If, for all j = 1, . . . , n,

ȧj(t)

b
+ αye(t)xj(t) ≈ αye(t)xj(t), (21)

then Theorem 1 is still verified.

2.2. MCSI withσ-modification

With σ-modification, the MCSI gains in (8) are computed definingf as:

fT
X = −ρXσφ(‖φ‖)φT

X, fR = −ρRσφ(‖φ‖)φR, fT
I = −ρIσφ(‖φ‖)φT

I , (22)

whereρX , ρR, andρI are positive constants. Theσ-function is defined as

σφ (‖φ‖) =





0 if ‖φ‖ ≤ M̂φ,

ηφ

(
‖φ‖
M̂φ

− 1
)

if M̂φ < ‖φ‖ ≤ 2M̂φ,

ηφ if ‖φ‖ > 2M̂φ,

(23)

where

M̂φ =

√
λmax (Γ−1

α Γρ)

λmin (Γ−1
α Γρ)

M, (24)

with λmin (H) andλmax (H) denoting the minimum and maximum eigenvalue of
matrixH, respectively, while

Γρ = diag(ρ̂1, ρ̂2, . . . , ρ̂2n+1) , (25)
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with ρ̂i = ρX , i = 1, . . . , n, ρ̂i+1 = ρR, ρ̂i = ρI , i = n + 2, . . . , 2n+ 1, andηφ is
a positive constant satisfying

bηφλmin

(
Γ−1

α Γρ

)
>

3

4
λmin(Q). (26)

Notice thatσφ is a continuous, non-negative function that becomes activated
when the 2-norm of the integral part of the adaptive gains, i.e. ‖φ‖, exceeds a
certain threshold.

In turn, the locking strategy forxI is now devised in the followingσ-modifi-
cation fashion

fT
e = −ρeσI (‖xI‖)xTI , (27)

whereρe is a positive constant, andσI (·) is defined as

σI (‖xI‖) =





0 if ‖xI‖ ≤ M̂I ,

ηI

(
‖xI‖
M̂I

− 1
)

if M̂I < ‖xI‖ ≤ 2M̂I ,

ηI if ‖xI‖ > 2M̂I ,

(28)

with ηI andM̂I being positive constants.
Let us now define the following vectors and constants

x̃Te =
[
xTe φe

T
]
, P̃ =

[
P On,2n+1

O2n+1,n bΓ−1
α

]
, (29)

whereOι,κ is the null matrix inRι×κ, and

µ1 =
3

4
λmin(Q), (30a)

µ2 =
3‖BT

e P‖2∆2
∞

µ1

+ µ1

(
2M̂φ + ‖φ⋆‖

)2
, (30b)

µ =

√
µ2

µ1 (1− θ)
, θ ∈ (0, 1) , (30c)

with ∆∞ denoting theL∞ norm ofδ(t).

Theorem 2. Consider system(1) with δ ∈ C∩L∞ and the reference model(3). Let
the adaptive control action be given by(5)-(9), with the integral part of the adap-
tive gains in(8) completed with thef -term in (17) computed in accordance with
theσ-modification strategy(22), while the dynamics ofxI in (7) are completed
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with the locking strategy(27). Then, all the closed-loop signals are bounded and,
in particular, x̃e is globally uniformly ultimately bounded, i.e., there existsT (de-
pendent oñxe(t0) and µ) and aKL-class functionξ : R

+ × R
+ → R

+ such
that

‖x̃e(t)‖ ≤ ξ (‖x̃e(t0)‖, t− t0) , ∀ t ∈ [t0, t0 + T ) (31)

‖x̃e(t)‖ ≤

√√√√√
λmax

(
P̃
)

λmin

(
P̃
)µ, ∀ t ∈ [t0 + T, +∞) . (32)

Remark 1. Notice that the ultimate bound depends on the magnitude of the dis-
turbance, parameter uncertainty, and design parameters. Moreover, it allows to
obtain an upper bound of both the steady-state tracking error and adaptive gains.
Indeed, it follows from(29), (15)and (16) that

‖xe‖ ≤ ‖x̃e‖, ‖φ‖ ≤ ‖x̃e‖+ M̂φ.

In addition, it also follows from(29)and (10) that

λmax

(
P̃
)
≤ max

{
λmax (P ) , max

i=1,...,2n+1
{α̂i} bu

}
, (33a)

λmin

(
P̃
)
≥ min

{
λmin (P ) , min

i=1,...,2n+1
{α̂i} bl

}
. (33b)

Finally, according to(12), (15), and(24)one can select

M =
1

bl
max

{
max

i=1,...,n

{∣∣am,i − ali
∣∣ , |am,i − aui |

}
, |bm|

}
, (34a)

M̂φ =

√
max

i=1,...,2n+1

{
ρ̂i
α̂i

}(
min

i=1,...,2n+1

{
ρ̂i
α̂i

})−1

M. (34b)

As in the parameter projection case, Theorem 2 is also verified for LTV plants
under the assumption made in Corollary 1:

Corollary 2. Let the dynamic matrix of the plant given in(2) be time-varying, i.e.
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A = A(t) with aj = aj(t) in the last row ofA(t). If, for all j = 1, . . . , n,

ȧj(t)

b
+ αye(t)xj(t) ≈ αye(t)xj(t), (35)

then Theorem 2 is still verified.

3. Proof of the main results

The stability analysis of the closed-loop system when the MCSI embeds either
parameter projection (i.e., MCSI-PP) orσ-modification terms (i.e.,σ-MCSI) is
carried out via Lyapunov theory. Hence, in the following we first derive for the
closed-loop dynamics a quadratic auxiliary, Lyapunov-like function that will be
subsequently used to prove both Theorem 1, in Section 3.2, and Theorem 2, in
Section 3.3.

3.1. Closed-loop Dynamics

The closed-loop system can be written in terms of the tracking error and the
integral part of the adaptive gains as:

ẋe = Amxe +Be

(
bφT

e w − byew
TΓβw − δ

)
, (36a)

φ̇e = −yeΓαw − f, (36b)

with
wT =

[
xT r xTI

]
. (37)

Recalling (29), let us consider the following quadratic auxiliary function:

V (x̃e) = x̃Te P̃ x̃e. (38)

The derivative of this function along the closed-loop system trajectories (36) is:

V̇ = −xTe Qxe + 2xTe PBe

(
bφT

e w − byew
TΓβw − δ

)
+

+2bφT
e Γ

−1

α (−yeΓαw − f) =

= −xTe Qxe − 2bye
2wTΓβw − 2bφT

e Γ
−1

α f − 2yeδ. (39)

After simple algebraic manipulations, and taking into account that bothb and all
the non-null matrix elements ofΓβ are positive by hypothesis, the derivative of
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the auxiliary functionV can be upper bounded as

V̇ ≤ −3

4
λmin(Q)‖xe‖2 − λmin(Q)

[‖xe‖
2

− 2‖BT
e P‖|δ|

λmin(Q)

]2
+

+
4‖BT

e P‖2
λmin(Q)

|δ|2 − 2bφT
e Γ

−1

α f ≤

≤ −3

4
λmin(Q)‖xe‖2 +

4‖BT
e P‖2

λmin(Q)
|δ|2 − 2bφT

e Γ
−1

α f. (40)

3.2. Proof of Theorem 1

Theorem 1 requires the following lemma. The proof is available in Appendix
A.

Lemma 1. If φ(t0) ∈ Λφ, then the parameter projection algorithm(18) guaran-
tees

φT
e Γ

−1

α f ≥ 0, ∀ t ≥ 0. (41)

Hence, recalling thatb > 0, (40) becomes

V̇ ≤ −3

4
λmin(Q)‖xe‖2 +

4‖BT
e P‖2

λmin(Q)
|δ|2. (42)

Integrating both sides and after some algebraic manipulations, we have

V (x̃e(t)) +
3

4
λmin(Q)

∫ t

t0

‖xe(τ)‖2dτ ≤ V (x̃e(t0)) +
4‖BT

e P‖2
λmin(Q)

∫ t

t0

|δ(τ)|2dτ

≤ V (x̃e(t0)) +
4‖BT

e P‖2∆2
2

λmin(Q)
< +∞,

(43)

with ∆2 denoting theL2 norm ofδ(t).
As (43) holds fort → +∞ as well, we deduce thatxe ∈ L2 andV (x̃e) is

bounded. These imply thatxe ∈ L2∩L∞ and, consequently,ye ∈ L2∩L∞. Asr ∈
L∞ andAm is Hurwitz by hypothesis we have thatxm ∈ L∞, this guaranteeing
that x ∈ L∞, while xI ∈ ΛI is ensured by the locking strategy (20) and the
fact thatxI(0) ∈ ΛI by assumption. In turn, asφ(t0) ∈ Λφ by hypothesis, the
parameter projection algorithm (18) ensuresφ ∈ Λφ. Therefore, the control gains
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KX , KR, andKI are also bounded, which allows to conclude that all the closed-
loop signals are bounded, includingẋe, i.e., ẋe ∈ L∞.

The boundedness of the closed-loop signals implies that

d

dt

(
‖xe‖2

)
= 2xTe ẋe ∈ L∞.

Hence, from Barbalat’s Lemma [2] we have that‖xe‖2 → 0 as t → +∞,
which impliesxe → 0.

3.3. Proof of Theorem 2

Theorem 2 requires the following lemma. The proof is in Appendix B.

Lemma 2. Theσ-modification algorithm(22)-(23)guarantees

φT
e Γ

−1

α f ≥ 0, ∀ φ ∈ R
2n+1, and φT

e Γ
−1

α f > 0, ∀φ; ‖φ‖ ≥ M̂φ. (44)

Moreover,
φT
e Γ

−1

α f >
ηφ
2
φT
e Γ

−1

α Γρφe, ∀ ‖φ‖ > 2M̂φ. (45)

Now, following Theorem 5.1 in [34], we first note that the auxiliary function
(38) is continuously differentiable because all the closed-loop signals appearing
in ˙̃xe (see (36)), includingδ, xI , andf , are continuous. Moreover,V is bounded
by two classK∞ functionsW1(x̃e),W2(x̃e) defined as

W1 (x̃e) ≤ V (x̃e) ≤W2 (x̃e) , (46)

whereW1 (x̃e) = λmin(P̃ ) ‖x̃e‖2, andW2 (x̃e) = λmax(P̃ ) ‖x̃e‖2.
In what follows we prove that

V̇ (x̃e, t) ≤ −W̃3 (x̃e) , where W̃3 (x̃e) := µ1 ‖x̃e‖2 − µ2, (47)

with µ1, µ2 defined in (30).
To show (47), we consider two cases:(i) ‖φe‖ ≤ 2M̂φ+‖φ⋆‖ and(ii) ‖φe‖ >

2M̂φ + ‖φ⋆‖.

Case (i).When‖φe‖ ≤ 2M̂φ + ‖φ⋆‖, Lemma 2 andb > 0 allow to boundV̇
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in (40) as

V̇ ≤− 3

4
λmin(Q)‖xe‖2 +

4‖BT
e P‖2

λmin(Q)
∆2

∞ +
3

4
λmin(Q)

((
2M̂φ + ‖φ⋆‖

)2
− ‖φe‖2

)
=

=−
(
µ1 ‖x̃e‖2 − µ2

)
= −W̃3 (x̃e) . (48)

Case (ii).When‖φe‖ > 2M̂φ+‖φ⋆‖, which guarantees‖φ‖ > 2M̂φ, Lemma
2, b > 0 and (26) allowV̇ in (40) to be bounded as

V̇ ≤− 3

4
λmin(Q)‖xe‖2 +

4‖BT
e P‖2

λmin(Q)
|δ|2 − bηφφ

T
e Γ

−1

α Γρφe ≤ −3

4
λmin(Q)‖xe‖2+

+
4‖BT

e P‖2
λmin(Q)

|∆2

∞ − 3

4
λmin(Q)‖φe‖2 +

3

4
λmin(Q)

(
2M̂φ + ‖φ⋆‖

)2
=

=−
(
µ1 ‖x̃e‖2 − µ2

)
= −W̃3 (x̃e) . (49)

Furthermore, defining

W3 (x̃e) := αθ ‖x̃e‖2 , θ ∈ (0, 1),

it is immediate that

W̃3 (x̃e) ≥W3 (x̃e) , ∀x̃e; ‖x̃e‖ ≥ µ, θ ∈ (0, 1),

with µ defined in (30). Hence, it follows from (48) and (49) that

V̇ (x̃e, t) ≤ −W3 (x̃e) , ∀x̃e; ‖x̃e‖ ≥ µ > 0,

with W3 being a continuous, positive definite function.
Finally, taking into account that

W−1

1 (W2 (µ)) =

√√√√√
λmax

(
P̃
)

λmin

(
P̃
)µ,

the global uniform ultimate boundedness ofx̃e follows immediately from Theo-
rem 5.1 in [34].

Once the boundedness of bothxe andφ are established, that of the remaining
closed-loop signals butxI follow equivalently from the proof of Theorem 1. As
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regardsxI , its dynamics are

ẋI = −ρeσI(‖xI‖)xI + ψ, (50)

whereψ = xe, which has been previously proven to be bounded; hence,‖ψ(t)‖ ≤
Ψ, with Ψ being a positive constant.

By selecting asVI(xI) = WI1(xI) = WI2(xI) = ‖xI‖2/2 it is evident that
for all xI , WI1(xI) ≤ VI(xI) ≤ WI2(xI). In addition, after a simple algebraic
manipulation we have

V̇I ≤ −ρeηI(1− θI)‖xI‖2 − ρeηIθI‖xI‖2 + ‖xI‖Ψ

≤ −WI3(xI), if ‖xI‖ ≥ µI , max

{
2M̂I ,

Ψ

ρeηIθI

}
(51)

with WI3(xI) = ρeηI(1− θI)‖xI‖2 andθI being a positive constant chosen in the
open interval(0, 1).

Consequently, according to Theorem 5.1 in [34], also system(50) is globally
uniformly ultimately bounded and there exists some constant TI so that‖xI‖ ≤ µI

for t ≥ TI . Hence, also the boundedness ofxI remains proven.

3.4. Proof of Corollaries 1 and 2

When the plant matrixA is constant, thenφ⋆ defined in (12) is constant as
well. Hence,φ̇e = −φ̇ in (39). WhenA = A(t) this is no longer true for the first
n components ofφ⋆:

φ̇ej = φ̇∗
j − φ̇j = − ȧj

b
− αyexj − fj , j = 1, . . . , n.

However, the approximations in (21) and (35) yield

φ̇ej ≈ αyexj − fj = −φ̇j, j = 1, . . . , n.

Consequently, (39) remains invariant and the proofs of Theorems 1 and 2 follow
identically.

4. Numerical validation

To prove the effectiveness of the MCSI-PP and theσ-MCSI algorithms pre-
sented in Sections 2.1 and 2.2, respectively, here we consider a plant of the form
(1) where the matrices in (2) are chosen as
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A =




0 1 0
0 0 1
−6 −11 −6


 , b = 6, x(0) =




1.65
1.23
0.94


 . (52)

The reference model is an LTI system of the form (3) with

Am =




0 1 0
0 0 1

−120 −74 −15


 , bm = 240, xm(0) =




−1.4
5.23
−5.06


 , (53)

while the input reference signal is a sinusoidal wave with amplitude 5 and fre-
quency0.25 (rad/s). The disturbanceδ(t) in (1) is either anL2 ∩ L∞ or aC ∩ L∞
signal, and it is chosen so that the hypothesis required by the gain-locking strat-
egy, i.e., parameter projection orσ-modification, are satisfied. In both cases, it is
activated for the first time at150 s.

The range of variation assumed for the plant parameters are:a1 ∈ [−125, 50],
a2 ∈ [−96, 22], a3 ∈ [−43, 25], b ∈ [6, 8]. Moreover, in order to further test
the effectiveness of the proposed adaptive algorithms to parameter variation, it is
assumed that a sudden change of the plant parameters with respect to their nominal
values occur atτ = 300 s. In particular, after the switcha2 becomes4.4, while
the remaining parameter values undergo a35% change. In so doing, the plant to
be controlled becomes suddenly unstable.

The adaptive weights are selected as a trade-off between convergence time and
reactivity of the control actions. Specifically, we have setαX = αR = 10, αI = 1,
βX = βR = αX/10 andβI = αI/10.

4.1. Results with the MCSI-PP

According to the possible plant parameter variation and in order to satisfy
(15), when the MCSI-PP is adopted we have chosen to limit the integral part of
the adaptive gains as follows:φX1

∈ [−20, 1], φX2
∈ [−12, 4], φX3

∈ [−5, 5],
φI1 ∈ [−0.4, 0.5], φI2 ∈ [−1.2, 1.2], φI3 ∈ [−1.5, 1.5], andφR ∈ [30, 42].

Figure 1 shows the profile of theL2 ∩ L∞ disturbance,δ(t), acting on the
plant dynamics.In particular it is composed by two pulses with height125,
width 50s, and starting at 150s and 300s, respectively. Notice that the plant
parameters change jointly with the second activation of thedisturbance. Hence,
in what follows we also study the effect of a double perturbation on the closed
loop dynamics occurring at the same time.
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Figure 1: Square-integrable disturbance used in the MCSI-PP case.

Figure 2 shows the effectiveness of the proposed algorithm to impose the
model reference dynamics to the plant (1) with uncertain parametersbefore and
after the activation of the disturbance in Figure 1. Precisely, Figure 2a shows
that the adaptive strategy makes the closed-loop state trajectory (blue line)
converge to the steady-state periodic solution of the reference model (red line)
before the activation of the disturbance. This is confirmed by Figure 2b,
which shows the precise matching of each state variable of the plant with the
corresponding state variable of the reference model in the steady-state regime
also before the activation of the disturbance, and by the corresponding track-
ing errors converging to zero depicted in Figure 2c.Finally, Figure 2d portrays
the effect of both the disturbance in Figure 1 and the previously described para-
metric variations on the tracking error. It is interesting to note that, despite the
presence of disturbances and variation of the plant parameters, the tracking error
remains bounded and converges to zero after a transient -dueto the disturbance
activation/deactivation- in accordance with Theorem 1.

The evolution of the integral part of the adaptive gains (8) is reported in Figure
3. As clearly shown, and according to Theorem 1, these gains are always bounded
in the preassigned set. In addition, during the activation of the disturbance some
adaptive gains are locked,thus preventing a possible drift. Specifically, at the
activation of the disturbance in Figure 1, during some time intervalsφX1

, φX2

(see Figure 3a),φR (see Figure 3b),φI1 (see Figure 3c) are saturated both at
their upper and lower bounds, while φI2 and φI3 are locked at their lower
bound and upper bound, respectively (see Figure 3c). Notice that upper and/or
lower gain bounds are indicated in Figure 3 for those adaptive gains which are
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Figure 2: Tracking performance of the MCSI-PP algorithm. (a) Phase portrait of
the plant trajectory (blue line) converging to the steady-state periodic solution of
the reference model (red line) before the activation of the disturbance; (b) closed-
loop plant trajectory (blue solid line) and reference modeldynamics (red dashed
line) in steady state regime before the activation of the disturbance; tracking error
before (c) and after (d) the activation of the disturbance:xe1 (blue line),xe2 (red
line),xe3 (black line).
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locked. These limits are depicted as dotted lines with the color of the correspond-
ing adaptive gain.In addition, Figures 2d and 3a-3c clearly indicate that the
adaptive gains reenter the non-locking region when the tracking error con-
verges to zero.

Furthermore, as shown in Figure 3d the control gainφI saturates during the
initial transient, but all its components enter into the non-locking region as the
tracking error goes to zero. Similarly, also the gainφR is locked for some time
intervals before the activation of the disturbance, although a zoom of its dynamics
are not shown for the sake of brevity.

Finally, we remark that, as the tracking error and the integral part of the adap-
tive gains are bounded (see Figures 2 and 3, respectively), then the control action
in (5), the proportional part of the adaptive gains, and consequently those in (8),
remain bounded. Nevertheless, the time evolution of these closed-loop variables
is not reported here again for the sake brevity.

4.2. Results with theσ-MCSI
In order to show the effectiveness of theσ-MCSI to reject persistent distur-

bances, we analyze the case when the disturbanceδ, acting on the plant (1) with
matrices in (52), is a signal of the formδ(τ) = 8 · 102 sin(πt/10) that becomes
active atτ = 150 s. Notice that the reference model matrices and the reference
input signalr are those used in Section 4.1. Furthermore we setηφ = 5 · 10−4 in
(23),Γρ in (25) is chosen asΓρ = Γα andM = 46 so that (15) holds.

Figure 4 shows the tracking performance over a long control horizon. Specifi-
cally, Figure 4a confirms that the tracking error before the disturbance activation is
similar to that obtained when the MCSI-PP is used (see Figure2c). The presence
of the sinusoidal disturbance induces a residual tracking error which is shown in
Figure 4b. However, this tracking error is small when compared to the ampli-
tude of the reference model variables (see Figure 2b).Precisely, this residual
tracking error of each state variable is more than50 times smaller than the
corresponding component of the reference model vector.

We remark that, despite the disturbance acts persistently on the closed-
loop dynamics, the integral parts of the adaptive control gains, i.e.,φX , φR

and φI , are kept bounded as clearly shown in Figures 5a, 5b and 5c, respec-
tively. From the evolution of‖φ‖, depicted in Figure (5d) together with the
thresholdsM̂φ and 2M̂φ used in the definition of theσ-modification strategy
in (22)-(23), additional insights into closed-loop behavior can be drawn. Indeed,
at the activation of the disturbance, this norm rapidly increases and crosses the
threshold2M̂φ. Consequently, a constant leakage factor, i.e.,ηφ, is used to bound
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Figure 3: Integral part of the adaptive gains with the MCSI-PP algorithm. (a)φX :
φX1

(blue solid line),φX2
(red dashed line) andφX3

(black dashed-dotted line) (b)
φR, (c)φI : φI1 (blue solid line),φI2 (red dashed line) andφI3 (black dashed-dotted
line) (d)φI at the beginning of the simulation.
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Figure 4: Tracking performance of theσ-MCSI algorithm. Tracking error before
(b) and after (c) the activation of the disturbance:xe1 (blue line),xe2 (red line),
xe3 (black line).

the growth of the integral part of the adaptive gains. After that, we haveM̂φ ≤
‖φ‖ ≤ 2M̂φ, and according to (23) the integral part of the adaptive gains further
decreases with a leakage factor which scales on the basis‖φ‖. Finally, when time
goes to infinity, these gains enter in the non-locking region(‖φ‖ ≤ M̂φ). At first
there is still the need of the additional term (22) in (8) to prevent gain drifting as
‖φ‖ periodically crosses thêMφ-value,i.e.,τ ∈ [1500, 2200]s,but at the end the
re-entry into the non-locking region is permanent.

Similar to the case reported in Section 4.1, as the integral part of the adaptive
gains and the tracking error are bounded then the control action in (5), the propor-
tional part of the adaptive gains, and consequently those in(8), remain bounded.
The time evolution of these closed-loop variables is not portrayed here for the sake
of brevity.

It is important to point out that the boundedness of the MCSI adaptive gains
when time goes to infinity is guaranteed by theσ-modification strategy. Indeed,
under the same working conditions, the adaptive gains of theclassical MCS di-
verge as depicted in Figures 6a and 6b.Consequently, the norm of the integral
part of the control gains grows unbounded as shown in 6c.

We conclude the analysis of theσ-MCSI by considering the closed-loop re-
sponse for several disturbances of the formδ(τ) = Q sin(ωτ), withQ ∈ [100, 1500],
ω ∈ [0.1, 1.5] andτ ∈ T = [0, 3 ·103]. Figure 7 shows the maximum value of the
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Figure 5: Integral part of the adaptive gains with theσ-MCSI algorithm. (a)φX :
φX1

(blue solid line),φX2
(red dashed line) andφX3

(black dashed-dotted line) (b)
φR, (c)φI : φI1 (blue solid line),φI2 (red dashed line) andφI3 (black dashed-dotted
line) (d) bounded evolution of‖φ‖.
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Figure 6: Evolution of the integral part of the MCS adaptive gains without any
locking strategy in the face of a persistent sinusoidal disturbance: (a)φX : φX1

(blue solid line),φX2
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(c) diverging evolution of‖φ‖.
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norm of the residual error‖xe‖ (Figure 7a) and the maximum value of the norm of
the integral part of the adaptive gains‖φ‖ (Figure 7b) computed overT for each
pair (Q, ω) in steady-state condition. We remark that not only the control strat-
egy provides a bounded tracking error and bounded adaptive gains in any working
condition, but also a small residual error.Indeed, the norm of the steady-state
tracking error in the worst case (upper right corner in Figur e 7a) is more
than 30 times smaller than the norm of the reference model vector.This con-
firms the effectiveness of the approach to limit the growth ofthe adaptive gains
without altering tracking performance.
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Figure 7: Tracking performance for different sinusoidal disturbances of the form
Q sin(ωτ): (a) maximum norm of the residual tracking error,xe, after transient,
and (b) maximum norm of the integral part of the adaptive gains,φ, after transient.

5. Engineering case study

To further confirm the effectiveness of the proposed improvements to the pre-
existing MCS and MCSI algorithms, we consider here the control of a full bridge
buck inverter with a nonlinear load, see Figure 8a. The challenge is to impose a
periodic behavior to the system response with a limited knowledge of the plant pa-
rameters, and in the face of unknown nonlinear disturbancesand unmodelled dy-
namics (e.g., digital implementation of continuous-time control laws) over a long
time interval. Indeed, for practical applications, such asuninterruptible power sys-
tems, these kind of devices must provide a periodic stable voltage to loads over
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many cycles [35]. In this work we assume that the nonlinear currentiN is periodic
and takes the shape depicted in Figure 8b, while as physical parameters we select
E = 220V, C = 40µF, andL = 6mH with a parasitic resistance ofr = 0.2Ω.

The control objective is to impose to the output voltage,vC , a sinusoidal ref-
erence profilêvC(t) = M sin(2πνt) = M sin(ω̂t), with M = E andν = 50
Hz.

(a)
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−25
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i N
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)
(b)

Figure 8: (a) Schematic of the full bridge buck inverter, and(b) time history of the
periodic nonlinear load current that acts as a disturbance.

By defining as state vectorz =
[
vC iC

]T
, from Kirchhoff’s laws the system

dynamics are

ż = Âz +
E

LC
Bu+

1

LC
Bd̂, d̂ = −

(
riN + L

diN
dt

)
, (54)

whereu ∈ [−1, +1] is the PWM duty cycle, and̂d is the disturbance due to the
nonlinear load, while the system matrices are

Â =

[
0 1

− 1

LC
− r

L

]
, B =

[
0
1

]
. (55)

Let us define the reference model

żm = Âmzm +Br̂, r̂(t) =
2Mqω̂√
LC

cos(ω̂t), zm(t0) =
[
0 Mω̂2

]T
, (56)

where t0 is the initial time instant, q is a positive constant, and the dynamic

26



matrix Â is given by

Âm =

[
0 1

−ω̂2 − 2q√
LC

]
. (57)

One can easily check, for example by substitution or by resorting to the
Laplace domain, that zm1

(t) = M sin(ω̂t). Hence, the control aim of impos-
ing the required sinusoidal shape,̂vC(t), to the voltage across the capacitor
C can be reformulated as a model following problem of the state, zm, of the
reference model(56), by the state,z, of the plant (54).

The entries of the matrices in (54) and (57) can be very large.Hence, for
control purposes and in order to avoid numerical problems itis advisable to make
them dimensionless. This can be achieved with the followingchange of coordi-
nates and time scaling

x1 =
z1
E
, x2 =

√
LC

E
z2, τ =

t√
LC

. (58)

Notice that the transformation which mapsz ontox is linear and therefore it can
be also expressed asx = Wz, whereW is defined as

W =
1

E

[
1 0

0
√
LC

]
. (59)

After some algebraic manipulations it is possible to show that, in the new
variables, the plant dynamics answers to:

dx

dτ
= Ax+Bu+Bd(τ), (60)

with

A =

[
0 1

−1 −r
√

L
C

]
, and d(τ) =

1

E

(
riN (τ) +

√
L

C

diN
dτ

(τ)

)
. (61)

In turn, the reference model dynamics are

dxm
dτ

= Amxm +Br(τ), (62)
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Figure 9: Control scheme.

with

Am =

[
0 1

−ω2
0 −2q

]
, and r(τ) = 2qω0 cos(ω0τ), (63)

wherexm = Wzm, with W being the matrix in (59), andω0 = ω̂
√
LC.

In the following subsection we test the tracking performance of a set of MCS
algorithms. Specifically, we consider the MCS presented in [36], the MCSI with-
out any locking method introduced in [37], and finally the MCSI-PP and theσ-
MCSI presented in Section 2. These controllers have been discretized by means
of the Tustin discretization method and used within the control scheme depicted
in Figure 9. Notice that this control architecture includesthe PWM actuator, a
saturation, sample and hold (S/H) and zero-order hold (ZOH)blocks, which are
commonly used to operate power converters. Hence, we test robustness not only
with respect to discretization, but also with respect to additional nonlinearities
that have not been taken into account during the design of thecontrollers, i.e.,
additional unmodelled nonlinear dynamics. A discrete timeadaptive controller
without locking strategies for a full bridge buck inverter operating with a linear
load has been presented in [38].

Taking into account the frequency response of system (54), the PWM fre-
quency has been set to20kHz, while the controllers have been discretized with a
sampling frequency of15ωT , with ωT being the cut-off frequency of the circuit.

All the adaptive strategies have been tuned with the same adaptive weights,
which have been chosen again as a trade-off between convergence time and re-
activity of the control actions. Precisely, we have setαX = 10−2, αR = 10−3,
αI = 5 · 10−3, βX = αX/10,βR = αR/10 andβI = αI/10, and the locking
strategies in Section 2 have been tuned so that (15) is fulfilled. In addition, in the
case ofσ-modification, we have setΓρ = diag(0.01, 0.01, 0.01, 0.5, 0.5).

Finally, with the aim of investigating the evolution of the adaptive gains over
a long manoeuvre, the time interval of interest for the control has been set to
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T = [0, 2 · 104].

5.1. Numerical analysis

For the working conditions described above, the control gains of the MCS
solutions available in the literature diverge over time dueto the presence of
the disturbance caused by the nonlinear load. This is shown in Figure 10a,
which depicts the norm of the adaptive gains of both the MCS strategy (black
line) and the pre-existing MCSI algorithm (green line) overthe entire control
horizon. Specifically, Figure 10b reveals that the MCS adaptive gainsdiverge
from τ > 103, while in the case of the pure MCSI strategy there is at first a slow
gain drifting till τ = 9 · 103, but then the adaptive gains increase unbounded. This
unwanted phenomena is suppressed when either the MCSI-PP (red line) or theσ-
MCSI (blue line) are used, and the adaptive gains remain bounded over the entire
manoeuvre in accordance with the theoretical predictions.
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Figure 10: Evolution of‖φ‖ for different MCS strategies. (a) MCS (black line)
and MCSI (green line); (b) MCS (black line), MCSI (green line), MCSI-PP (red
line) andσ-MCS (blue line).

We point out that the divergence of the adaptive gains altersclosed-loop track-
ing performance. In particular, in the case of the MCS strategy it is possible to
observe in Figure 11a a loss of tracking performance during the onset of the con-
trol gains instability aroundτ = 103. Here, as depicted in Figure 11b, the MCS
tracking error(black line) increases from less than a2% up to a15%, which is
not admissible for this specific engineering application. Furthermore, the tracking
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error keeps growing with time till tracking is completely lost aroundτ = 2.3 ·103,
as apparent in Figures 11c and 11d.

A similar phenomena also occurs when the MCSI algorithm is exploited to
tackle the dynamics of the buck inverter, see Figure 12. Eventhough in this case
the classical MCSI tracking error does not exceed30% (see green line in Figure
12d), such a value is not acceptable in the context of power electronic engineer-
ing as alternative solutions in the technical literature provide better closed-loop
responses, see for example [39].Instead the MCSI-PP andσ-MCSI provide
low tracking error over the entire manoeuvre.

We remark that both gain divergence and loss of tracking performanceare the
result of unmodeled dynamics due to control discretizationand hard nonlineari-
ties, e.g., saturations [40].

Figures 11 and 12 also illustrate the excellent and robust closed-loop tracking
performance obtained when both the MCSI-PP(red line) and theσ-MCSI (blue
line) are inserted in the control loop displayed in Figure 9. To better appreciate this
crucial feature, the residual tracking errors provided by these control algorithms
are also depicted in Figure 13:both of them are very small when compared to
the amplitude of the reference signal, which is unitary.

Finally, we point out that, although the control action applied to the plant
cannot diverge because of the saturation block in the control architecture in Figure
9, the resulting input of the PWM actuator can be highly nonsmooth when gain
instability is induced. This additional unwanted effect isclear in Figure 14 for
the MCS(black line) and MCSI (green line) algorithms. Instead, smooth control
actions that are always within the possible range of variation (i.e., [−1, 1]), are
provided by the MCSI-PP(red line) and theσ-MCSI (blue line) strategies.

6. Conclusions

Model reference adaptive controllers belonging to the class of minimal control
synthesis algorithms are an effective solution to steer thedynamics of plants with
uncertain parameters and affected by unmodelled nonlineardynamics and distur-
bances. Nonetheless, such disturbances can induce an unbounded growth of the
adaptive gains that eventually jeopardizes both tracking performance and stability.
In this paper we have proposed continuous-time MCSI algorithms which include
either parameter projection orσ-modification strategies to prevent the onset of
such undesirable dynamics.

The former allows to preserve convergence to zero of the tracking error with
respect to boundedL2-disturbances while keeping the adaptive gains within a
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Figure 11: Tracking performance of the classical MCS and those of the MCSI-PP
and theσ-MCSI. MCS (black line); MCSI-PP (red line) andσ-MCSI (blue line),
reference trajectory (orange line). (a) Tracking performance of all the controllers
during the onset of instability with the MCS and (b) related tracking errors. (c)
Tracking performance of all the controllers when the classical MCS shows lack of
robustness, and (d) related tracking errors.
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Figure 12: Tracking performance of the classical MCSI and those of the MCSI-PP
and theσ-MCSI. MCSI (green line); MCSI-PP (red line) andσ-MCSI (blue line),
reference trajectory (orange line). (a) Tracking performance of all the controllers
during the onset of instability with the MCSI and (b) relatedtracking errors. (c)
Tracking performance of all the controllers when the classical MCSI shows lack
of robustness, and (d) related tracking errors.
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Figure 14: Adaptive control actions (a) MCS (black line), MCSI-PP (red line) and
σ-MCS (blue line); (b) MCSI (green line), MCSI-PP (red line) andσ-MCS (blue
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preassigned set, thus extending to the continuous-time case the results recently
presented for discrete-time systems in [1]. Instead, the latter approach allows to
bound the drift of the MCS gains while ensuring global uniform ultimate bound-
edness in the face of persistentL∞ disturbances. In addition, whenσ-modification
is adopted, a bound for the closed-loop tracking error is explicitly computed as a
function of theL∞-norm of the disturbance. We note that for the novel MCSI
strategies not only methods for locking adaptive gains havebeen designed, but
the same strategies have been applied for also to guarantee boundedness of the
integral control when there exists a residual tracking error.

The effectiveness of the control schemes to limit the magnitude of the adaptive
gains and, at the same time, guarantee tracking performanceof the reference dy-
namics was shown both analytically, by using a Lyapunov approach, and numeri-
cally, by means of a set of representative examples which included the control of
a power electronics converter as an engineering case study.Finally, closed-loop
performance of the control schemes embedding locking strategies were compared
to those provided by the classical MCS algorithms to furtherconfirm that bounded
adaptive gains can be achieved without a loss of tracking performance.

As future work, the approaches here presented to avoid unbounded drifts
of the control gains will be extended to the novel adaptive control schemes for
the control of piecewise affine systems with unknown parameters recently
proposed in the literature [26, 41]. In so doing, the robustness of the pro-
posed adaptive methods for this class of discontinuous systems in the face of
bounded disturbances will be systematically studied.

Appendix A. Proof of Lemma 1

The proof follows similarly to that given in [2].
Let us first recall the scalar functionshXj

, hIj , j = 1, . . . , n, andhR, defined
in (18), and consider the vector function

hT =
[
h1 h2 . . . h2n+1

]
=
[
−hTX

... −hR
... hTI

]
. (A.1)

Notice that

φT
e Γ

−1

α f = (φ⋆ − φ)TΓ−1

α f =
2n+1∑

j=1

1

α̂ j

(
φ⋆
j − φj

)
fj .

As α̂j > 0, j = 1, . . . , 2n + 1, it suffices to see that
(
φ⋆
j − φj

)
fj ≥ 0, j =
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1, . . . , 2n + 1, for any possible situation. This has to take into account that
φ(t0) ∈ Λφ, which guaranteesφ ∈ Λφ as well because of the parameter projection
algorithm (18).

i) If φj ∈
(
φl
j, φ

l
j

)
, or φj = φl

j andhj ≥ 0, or φj = φu
j andhj ≤ 0, then

fj = 0; therefore,
(
φ⋆
j − φj

)
fj = 0.

ii) If φj = φl
j andhj < 0, thenφ⋆

j − φj > 0 andfj = −hj > 0; therefore,(
φ⋆
j − φj

)
fj > 0.

iii) If φj = φu
j andhj > 0, thenφ⋆

j − φj < 0 andfj = −hj < 0; therefore,(
φ⋆
j − φj

)
fj > 0.

Appendix B. Proof of Lemma 2

The proof extends the one presented in [2], as in this case we take into account
the presence of the matrixΓ−1

α Γρ.
Using (17) and (22) one has that

φT
e Γ

−1

α f = −σφ (‖φ‖)φT
e Γ

−1

α Γρφ.

From the definition ofσφ (‖φ‖) in (23) it isσφ (‖φ‖) = 0 for ‖φ‖ ≤ M̂φ, so the
Lemma is trivially fulfilled in this case. Moreover, one can easily check that

−σφ (‖φ‖)φT
e Γ

−1

α Γρφ = σφ (‖φ‖) (φ− φ⋆)T Γ−1

α Γρφ =

=
1

2
σφ (‖φ‖)

(
φTΓ−1

α Γρφ− φ⋆TΓ−1

α Γρφ
⋆ + φT

e Γ
−1

α Γρφe

)
,

i.e.

φT
e Γ

−1

α f =
1

2
σφ (‖φ‖) (A1 +A2) , (B.1)

A1 = φTΓ−1

α Γρφ− φ⋆TΓ−1

α Γρφ
⋆, (B.2)

A2 = φT
e Γ

−1

α Γρφe. (B.3)

The termA2 is non-negative by construction for allφ, φ⋆. In turn, forA1 we have
that

A1 = φTΓ−1

α Γρφ− φ⋆TΓ−1

α Γρφ
⋆ ≥ λmin

(
Γ−1

α Γρ

)
‖φ‖2 − λmax

(
Γ−1

α Γρ

)
‖φ⋆‖2.

(B.4)
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Recalling now the definition of̂M in (24), it is immediate thatA1 > 0 for all
φ > M̂. As alsoσφ (‖φ‖) > 0 for all φ > M̂, it results thatφT

e Γ
−1
α f > 0 for all

φ > M̂.
Finally, whenφ ≥ 2M̂φ, (23), (B.1) and (B.2) yield

φT
e Γ

−1

α f =
ηφ
2
(A1 +A2) >

ηφ
2
A2 =

ηφ
2
φT
e ΓρΓ

−1

α φe.

Hence, (45) is verified as well.
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