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Abstract

Model reference adaptive controllers designed via the idahiControl Syn-
thesis (MCS) approach are a viable solution to control glaffected by parame-
ter uncertainty, unmodelled dynamics, and disturbancesplie its effectiveness
to impose the required reference dynamics, an apparenotitife adaptive gains,
which can eventually lead to closed-loop instability oeattacking performance,
may occasionally be induced by external disturbances. pitublem has been
recently addressed for this class of adaptive algorithnteerdiscrete-time case
and for square-integrable perturbations by using a paempebjection strategy
[1]. In this paper we tackle systematically this issue for M€ontinuous-time
adaptive systems with integral action by enhancing the tagamechanism not
only with a parameter projection method, but also embeddingmodification
strategy. The former is used to preserve convergence tootéhe tracking error
when the disturbance is bounded ahgd while the latter guarantees global uni-
form ultimate boundedness under continudusdisturbances. In both cases, the
proposed control schemes ensure boundedness of all treldimsp signals. The
strategies are numerically validated by considering systsubject to different
kinds of disturbances. In addition, an electrical powecuiris used to show the
applicability of the algorithms to engineering problemguiging a precise track-
ing of a reference profile over a long time range despite thainces, unmodelled
dynamics, and parameter uncertainty.
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projection, Switchingr-modification

1. Introduction

Adaptive control was introduced in the early 1950’s to deal wth sys-
tems that exhibit high levels of parametric uncertainty and variability [2].
Nowadays it is a subject of active research, with improvemes of the origi-
nal algorithms and combinations with other control techniques such as slid-
ing modes, neural networks, iterative learning control, orfuzzy controllers
(see for example [3, 4, 5, 6, 7, 8, 9] and references thereingibg periodically
reported.

Model Reference Adaptive Control (MRAC) schemes with Mialn€on-
troller Synthesis (MCS) [10, 11] are effective strategesnmpose the dynamics
of a certain reference model to linear plants in control céced form affected by
unknown, uncertain or time-varying parameters, unmodeltnlinear dynamics,
and disturbances. Examples of applications where the MG ®&@n successfully
used include electronic throttle valves [12, 13], commahsgstems [14, 15],
electromechanical valve actuators for future camlessnesgil6], synchroniza-
tion of chaotic systems [17], shaking tables in civil enginieg [18], active engine
mounts [19], hydraulic test rigs [20], and cantilever be§ig.

Since its formulation in [10, 11], different enhancemerftthe original MCS
algorithm have been proposed to tackle analytically bo#teie problems and
tracking performance improvement. For example, multuingontinuous-time
systems can be controlled via the decentralized MCS [2Rjdhatime-varying
disturbances can be suppressed by the Extended MCS (EM®&), embeds
an additional switching action [23]; the Integral MCS (MG$24] includes an
integral control action where the integral garadaptive itself, and it is used to
further improve tracking performance. Recently, MCS colrdchemes for piece-
wise affine systems have been proposed in [25, 26, 27]. The M@8ithm for
discrete-time systems has been presented in [28, 29], dadded to piecewise
linear systems in [30]. In the discrete-time setting, inéé@nd switching control
actions have been proposed in [14] and [31], respectively.

However, in spite of the proved effectiveness of the MCS inmaber of cases,
an apparently unbounded drift of the adaptive gains has beeasionally ob-
served (see, for example, [29, 14]), which may eventualydyio loss of tracking
performance or even closed-loop instability. This phenoome also common to
other MRAC schemes [32, 2], is due to the fact that, from a ridszal point



of view, asymptotically zero tracking error plus closedgcstability can be rig-

orously proved only for uncertain, Linear Time-InvariahfT[) systems, while

unmodelled dynamics and disturbances are tackled undrtaght assumptions
[11] not always satisfied in practice. This issue cannot lig addressed neither
with the integral action of the MCSI, nor with the method ottuced in [33], and

represents a serious drawback of the MCS.

Recently, a parameter projection-based [2] scheme embddde discrete-
time MCS algorithm was capable of providing asymptotic kiag of the ref-
erence model and boundedness of the adaptive gains in theofac, distur-
bances for uncertain discrete-time linear systems [[h|this paper we present
a continuous-time counterpart of this algorithm, and we al® propose an al-
ternative strategy to deal with generic bounded disturbanes, guaranteeing in
both cases boundedness of all the closed-loop signals, umdihg the adaptive
gains. Specifically, we first introduce parameter projection toewith L, N L,
disturbances. This locking method allows to confine the adagains to a pre-
assigned set while ensuring asymptotically zero trackimgreand closed-loop
stability for square integrable disturbances. The rasgiitiontrol algorithm is de-
noted in the paper as MCSI-PP (MCS with Integral controlaacind Parameter
Projection). In turn, when the goal is to tame bounded disturbances, we pro
pose to replace the parameter projection law by a-modification strategy [2].

In this case asymptotic stability can be no longer ensunetthie closed loop sys-
tem is proven to be globally uniformly ultimately boundedest ., disturbances
persistently act on the plant dynamics, and a ultimate bagiatbo computed by
using Lyapunov techniques. In the paper we denoted thigidigopass-MCSI
(MCS with Integral control action ang-modification).

We remark that the closed-loop stability shown here for the poposed
adaptive algorithms allows also to prove systematically th boundedness of
the integral action of the MCSI and of its associated adaptie gains.Further-
more, even though the main results are initially proven iraidiér LTI systems,
we show that they can be extended to time-varying lineaegsystwhen the dy-
namics of the plant parameters are slower than those of dpiad gains [10, 11].

The proposed controllers are numerically validated by usiig two repre-
sentative sets of examples in which the classical MCS and MCS&lgorithms
show unbounded adaptive gainsFirstly, we illustrate the main features of the al-
gorithms by considering a continuous-time plant with pag@nuncertainty and
affected by time-varying disturbances. These disturbaiace chosen in accor-
dance with the algorithm to be tested, i.e., they are squ#zgiable for the MCSI-
PP case, and bounded for iheMCSI algorithm. In the latter case, we show that
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the adaptive gains of the original MCS [10, 11] grow unbouhddoreover, for
the o-MCSI we study the closed-loop system response, both insterinmesid-
ual tracking error and adaptive gains, when the disturb@&naesinusoidal func-
tion with different amplitudes and frequencies. For allesgdboundedness of the
closed-loop state is achived as predicted by the theolaiedysis. In the second
part, we consider instead an engineering case study, natinelgontrol of a full-
bridge buck DC-AC power converter. The complexity here is tuunmodelled
dynamics induced by a discretization of the adaptive lalaesRulse Width Mod-
ulation (PWM) based actuator, and a nonlinear load actirgdisturbance. The
tracking performances of the proposed algorithms are cosdgda those provided
by pre-existing MCS solutions whose adaptive gains becomb@wnded also in
this relevant case after a long, but realistic, time inteobanterest for the control.

The paper is outlined as follows. The adjusted MCSI adaplgerithms
are introduced in Section 2, while the main theoretical ltesstablished therein
are proved in Section 3. Simulation results using a numieexample and an
engineering-based case study are presented in Sectiork5} egspectively. Fi-
nally, conclusions are drawn in Section 6.

2. MCSI algorithms with adjusted adaptive mechanisms

Consider a plant of the form
&= Az + Bu+ B.d, xz(ty) € R", (1)

wherez € R” andu € R are the state and the input of the system, respectively,
with n € N and¢, € R being the dimension of the state space and the initial time
instant, respectively. The scalar disturbafiee §(¢) acting on the plant dynamics
belongs either td., N L., or C N L., with C being the set of continuous scalar
functions. In addition, the system matricdse R"*", B € R" are in control



canonical form, i.e.

0 1 0 0
0 1 ... 0
0 0 0 1
_a1 a9 . an_
B =1[00..00b]" =B, (2b)
B. = [00 ...0 1], (2c)

The plant parameters in (2a) and (2b) are assumed to be nbasthunknown, but
belonging to known bounded sets, i®.£ [a!, a!], wherea! > al,i =1,...,n,
andb € [bl, b“] , whereb®* > b > 0, with known upper and lower bounds.

This is not as restrictive as it might appear at first. Indewminal values
for the plant parameters, as well as their range of variatoe often available
in engineering problems. In addition, there is no loss ofegality in assuming
b* > b > 0 because if) > b > b* then the sign of the adaptive gain weights
defined further on should be accordingly selected. Heneergquirement is, in
fact, thath has definite sign.

The control objective for the MCSI algorithm is to impose ystem (1) the
dynamics of a given reference model while keeping all thsedbloop signals
bounded.

More in detalil, the reference model is an asymptoticallplstad Tl system of
the form

T = AmTm + Bnr,  Tp,(ty) € R, (3)

wherez,, € R" andr = r(t) € R are the reference model state and a bounded
reference input, respectively, ang, € R", B,, € R" are the reference model
matrices given in the same canonical form as those of the piam

[0 1 o0 0 |
0 1 ... 0
Ap = : AT I (4a)
o 0 0 ... 1
Gm1  Gm2 Am,n
By = [0 0 ... 0 by ] =buB, (4b)



with A,, Hurwitz.
The control action provided by both the MCSI-PP and #iRICSI control
algorithms can be written as

u(t) = UMCS(t) + U[(t), (5)
with
upmcs(t) = Kx(t)z(t) + Kr(t)r(t), (6a)
U[(t) = K[(t)l’[(t), (6b)
where
ilzxe+fe and Te = Tm — T (7)

the adaptive gains are computed as

Kx = ¢%+Bxyer’ and ¢k = axyer” + f%, (8a)
Kr = ¢r+ Pryer and o¢r = apyer + fr, (8b)
K; = ¢] 4+ Bryer; and ¢ = ayer] + f], (8c)

ax, ag, ar, Bx, fr andg; being positive adaptive weights, while
Yo = Cor., With C, = BT'P, and PA,, + ALP=-Q, Q=Q" >0. (9)

Notice that the solution of the Lyapunov equatidh,exists because of the Hur-
witz assumption for the reference model matdiy.

The functionsf., fx, fr and f;, which do not appear in classical MCS al-
gorithms, depend on the strategy exploited to bound theugwal of both the
integral variable;;, and the adaptive gains, namely, parameter projectian or
modification, and will be described in detail in the followiaubsections.

We remark that, to derive these terms, the only extra assaomtitat is re-
quired with respect to the MCS algorithms available in trehiecal literature is
that some bounds for the plant parameters are known.

Through the rest of the paper, we denote the diagonal mattee gather the
adaptive gain weights as

Fa = diag(al,ag,...,a2n+1) , FB = diag(gl,gg,...,ggn_i_l) , (10)



Wlth <aZ7B\Z> = (aX7ﬁX)1 1= 17 s N, <&n+17an+1> = (aR7ﬁR)a <&za /B\Z> =
(ar, Br), i =n+2,...,2n+1. In addition, we denote asthe stack of the integral
part of the adaptive gains, i.e.,

o= ¢ ... ¢zn+1}=[¢§ L on Qg]. (11)
Moreover, the vectop* € R*"*! is defined as
o7 = [61 @ o G )= | of oo i oo |
= [ bIBT (A —A) 1 b7b, P O ] : (12)
with O,, being the null vector iR", and¢% = b Ham; —aj), j =1,...,n.

Notice that, as the range of variation of the plant paramsesdtnow, it is possible
to find two vectorsy®, ¢! € R?"*!, defined as

O = [6F O G )= e P er @t ] (@3

e I N SR SR e I R N N P €T
and a positive constari! so that

lo*ll < M, ¢" € A= [, 1] X -+ X [Dh1s By ] (15)

with ||-|| denoting the 2-norm of a vector. Furthermore, let the diffiee between
¢* and¢ be denoted as

be =" — 9. (16)

Finally, the elements of the integral adaptive gains evatufy, fr and f; are
collected in a vector defined as:

f=0h f fznﬂ}:[f; Lo ST (17)



2.1. MCSI with parameter projection

Parameter projection proposes a designffam (17) that keeps the evolution
of ¢ within A,4. This is achieved componentwise as follows:

0 if ox, € (¢, 0%,), or ox, = ok, and hy, >0,

fx; () = or ¢x, = ¢% and hy, <0, (18a)
—hx,(t) otherwise
0 if gbR S (gblRagb}L{) , or ¢R = ¢ZR and hR Z 07

fr(t) = or ¢p=¢% and hr <0, (18b)
—hg(t) otherwise

0 if (blj € <¢l[]7¢1;]> , or ¢Ij = QﬁlIJ and th > 07
fr;(t) = or ¢;, = ¢} and h;, <0, (18c)
—hy,(t) otherwise

with hy, = axyer;, j =1...n, hg = agy.r, andh;, = ayyerr, j=1...n.

Notice that, in this wayf; is zero while the corresponding integral gainis
within boundaries, and it is activated whenreaches any of its boundaries with
a tendency to leave the region. In this case the parametgcton term freezes
¢; at the corresponding lower or upper admissible intervaleal

In turn, a parameter-projection based locking strategytferntegral variable
x7 IS proposed to keep its evolution constrained in a pre-geted region of the
phase plane. Let this domain be defined as

Apo=[2h, 2] <o x [2f 2t ], (19)

with 27, < 0 andz}; > 0, forall j = 1,...,n. Recalling the definition of; in
(7), its confinement within\ ; is achieved through the following scheme:

0if 27, € (xljj,x?j), or rj, = xllj and z., > 0,
fe; (1) = or z; =% and 2. <0, (20)
J J . J
—x.,(t) otherwise

Theorem 1. Consider systenil) with 6 € L, N L., and the reference model
(3). Let the adaptive control action be given (B)-(9), with the integral part

of the adaptive gains i8) completed with thef-term in (17) computed in ac-

cordance with the parameter projection law (&8) and so thatp(ty) € Ay,



while the dynamics of; in (7) are completed with the locking strate(®0) and
xr(tg) € A;. Then, all the closed-loop signals are bounded and, in paldr,
(¢, x1) € Ay x A7, andz, — 0 ast — +o0. O

Theorem 1 holds for LTV plants as well under the assumptichaf variation
of the plant parameters with respect to that of the integaelqf the adaptive gains
according to the following corollary. It is worth remarkitigat this is a standard
assumption in the MCS literature [11, 28].

Corollary 1. Let the dynamic matrix of the plant given(®) be time-varying, i.e.
A = A(t) with a; = a;(t) in the last row ofA(¢). If, forall j =1,...,n,

a;(t
# + aye(t); (1) = aye(t)a;(t), (21)
then Theorem 1 is still verified. O

2.2. MCSI witho-modification
With o-modification, the MCSI gains in (8) are computed definfnas:

Ix = —rxoslol)ex, fr=—pros(6l)er, f1 =—pios(lol)or. (22)

wherepx, pr, andp; are positive constants. Thefunction is defined as

0 it o] < M,
osllol) =4 me (M =1) it M, <ol <2M,  (@3)
ne i oll > 2M,,

where
Amax (I'5'T,)

A (T 1T,) 0 (24)

M, =

with Apin (H) and A\ .x (H) denoting the minimum and maximum eigenvalue of
matrix 7, respectively, while

FP - diag(ﬁlv 527 s 7527’&4-1) ) (25)



withp, = px,i=1,...,n pix1 = pro i = pr, i =n+2,...,2n+ 1, andn, is
a positive constant satisfying

_ 3
b Amin (05'T,) > ZAmin(Q). (26)

Notice thato, is a continuous, non-negative function that becomes detiva
when the 2-norm of the integral part of the adaptive gaims, |j¢||, exceeds a
certain threshold.

In turn, the locking strategy for; is now devised in the following-modifi-
cation fashion

7= —peoy (|1l 27, 27)

wherep, is a positive constant, ang (-) is defined as

0 if || < M,
or(lal) = m (Mgl 1) it Mi< o <2Mi, (28)

nr if ||l’[” > QM[,

with n; and M ; being positive constants.
Let us now define the following vectors and constants

~ P @
=T __ T T _ n,2n+1
T, = [ T ¢e ] ) P = [ 02n+1,n bl‘;l } ) (29)

whereQ, . is the null matrix inR***, and

3
1 = Z)\mzn(Q)7 (30&)
3| BT P||2A2, N2
= MBS s (20, + o) (30b)

_ | M
= =0 0 € (0,1), (30c)

with A, denoting thel,, norm of §(¢).

Theorem 2. Consider systerfl) withé € CN L., and the reference mod@). Let
the adaptive control action be given [B)-(9), with the integral part of the adap-
tive gains in(8) completed with thg'-term in(17) computed in accordance with
the o-modification strategy22), while the dynamics of; in (7) are completed
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with the locking strategy27). Then, all the closed-loop signals are bounded and,
in particular, z,. is globally uniformly ultimately bounded, i.e., there ¢xi5 (de-
pendent onz,.(ty) and i) and akL-class functiorf : R x Rt — R such
that

[z < &[], t —to), VEEto, lo+T) (31)
|Z.(t)] < Vite[to+T, +00). (32)
O

Remark 1. Notice that the ultimate bound depends on the magnitudeeadith

turbance, parameter uncertainty, and design parametersrebVer, it allows to
obtain an upper bound of both the steady-state trackingremnal adaptive gains.
Indeed, it follows fronf29), (15) and (16) that

[zell < lZell, Mol < [[Zell + M.

In addition, it also follows fron{29) and (10) that

Ao (P) < max{)\max (P), _max  {a}b } (33a)
- P) > mi . ; a1 p
Amin <P> > min {Amm (P), o {ai}b } : (33b)

Finally, according to(12), (15), and(24) one can select

1
M= ymax{irqa%fn{\am,i — i, la, —aﬂ},\bm\}, (34a)

~ ~ —1
MJ g {2V (L {2)) (3ab)
i=1,..., 2n+1 [e%} i=1,..., 2n+1 Q;

As in the parameter projection case, Theorem 2 is also veftieL TV plants
under the assumption made in Corollary 1:

Corollary 2. Let the dynamic matrix of the plant given(®) be time-varying, i.e.
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A = A(t) with a; = a;(¢) in the last row ofA(¢). If, forall j =1,...,n,

GO ¢ ape(t)es (1) ~ oD, 1) (35)

then Theorem 2 is still verified. O

3. Proof of the main results

The stability analysis of the closed-loop system when theSM&nbeds either
parameter projection (i.e., MCSI-PP) ermodification terms (i.e.g-MCSI) is
carried out via Lyapunov theory. Hence, in the following wstfderive for the
closed-loop dynamics a quadratic auxiliary, Lyapunoe-liknction that will be
subsequently used to prove both Theorem 1, in Section 3d;Tarorem 2, in
Section 3.3.

3.1. Closed-loop Dynamics

The closed-loop system can be written in terms of the trackimor and the
integral part of the adaptive gains as:

ie = Apze+ Be (bprw — byow Tagw —6), (36a)
ée = _yeraw - fa (36b)

with
wh=[a" r a2l ]. (37)

Recalling (29), let us consider the following quadraticiiary function:
V (z.) = @ PZ,. (38)

The derivative of this function along the closed-loop sgsteajectories (36) is:

V = —27Qux, +22TPB, (bpfw — byw Taw — 6) +
+200; T3 (—yeLaw — f) =
= —27'Qx, — 2by W' Tsw — 2007 T f — 2y.6. (39)

After simple algebraic manipulations, and taking into asgahat bothb and all
the non-null matrix elements dfs are positive by hypothesis, the derivative of
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the auxiliary function// can be upper bounded as

- 3 ||| 2| BLP|5]]*
< = 2\ — €
VoS = Pan@ll - (@) |5 - T
ABIP|? T
S R |6 — 2097, f <
)‘min(Q) | |
3 4|| BT P|? _
< _Z ) 2 e 2 T 1 )
— 4)\m1n(Q)erH + )\mm(Q) |5‘ 2b¢e Fa f (40)

3.2. Proof of Theorem 1

Theorem 1 requires the following lemma. The proof is avadab Appendix
A.

Lemma 1. If ¢(ty) € Ay, then the parameter projection algorith{h8) guaran-
tees
OIT M f >0, V>0 (41)

O
Hence, recalling thdt > 0, (40) becomes

3

. 4||BT p||?
V< Ina@ g+ AP

Amin(@)

Integrating both sides and after some algebraic manipugtiwve have

|6°. (42)

~ 3 ! - 4|BIP|* [
V (Z(t) + mem(Q)/t e (7)[PdT < V (Fe(to)) + % | 16(r)Pdr
<V (Ze(to)) + % < +o0,

(43)

with A, denoting thel, norm of(¢).

As (43) holds fort — +oo as well, we deduce that. € L, andV (z.) is
bounded. These imply that € L,N L., and, consequently, € LoNL.. ASr €
L., and A,, is Hurwitz by hypothesis we have thaf, € L., this guaranteeing
thatz € L., while x; € A; is ensured by the locking strategy (20) and the
fact thatz;(0) € A; by assumption. In turn, ag(ty) € A, by hypothesis, the
parameter projection algorithm (18) ensuges A,. Therefore, the control gains

13



Kx, K, andK; are also bounded, which allows to conclude that all the dose
loop signals are bounded, includirig, i.e.,z. € L.
The boundedness of the closed-loop signals implies that

d .
pm (erﬂz) = 2xeTxe € L.

Hence, from Barbalat's Lemma [2] we have thiat.|> — 0 ast — +oo,
which impliesz, — 0.

3.3. Proof of Theorem 2
Theorem 2 requires the following lemma. The proof is in ApgignB.

Lemma 2. Theo-modification algorithn(22)-(23) guarantees
OIT. >0, Vo e R and o[T.'f >0, Vo; ol > My (44)

Moreover,

e

TS f > ROITI T 60 Y 6]l > 2M. (45)
U

Now, following Theorem 5.1 in [34], we first note that the diatly function
(38) is continuously differentiable because all the clele signals appearing
in z. (see (36)), including, x;, and f, are continuous. Moreove¥; is bounded
by two classC,, functionsW,(z.), Ws(z.) defined as

Wl (56) S V (56) S W2 (Ee) ) (46)

whereW, (7.) = Auin(P) |72, andWs (7.) = Amax(P) [|7.]|°.
In what follows we prove that

V (T, 1) < —W5 (Z.), where Wy (Z,) = p1 ||Ze]|*> — o, (47)

with 11, po defined in (30). .
To show (47), we consider two caséB:||¢.| < 2M,,+ ||¢*|| and(ii) ||¢| >
2M + [l

Case (i).When||¢.|| < 2/\7¢ + ||¢*||, Lemma 2 and > 0 allow to boundV’
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in (40) as

’ 3 2 4HBZP”2 2 3 A )2 2\ _
vs—zxmmwmu|+7§R@7Aw+iam«w(@wu+u¢m —wmu)—
= — (|7 ]* = ) = =V (3.) (48)

Case (ii). When||¢.|| > 2 M+ ||¢*||, which guarantees|| > 2M,, Lemma
2,b > 0and (26) allowV" in (40) to be bounded as

‘ 3 4| B P|? _ 3
< — = Ay 2 FPet M g512 Tr—1 < 5
V < = P @llaell” + =m0 —bg¢e T e < —Phan (@) el
4BrP|? ., 3 , 3 - N
+ mmm = (@)l @ell” + 7 Amin(Q) (2M¢ + ¢ H) _
= — (p JTel|” = p2) = —W3 (3e) - (49)

Furthermore, defining
Wi (7,) = af |7, 0 € (0,1),
it is immediate that
Wy (Te) 2 Wy (7)), Vi [Tl = p, 0 €(0,1),
with 1 defined in (30). Hence, it follows from (48) and (49) that
V (e t) < =Ws (Te), Ve |Te] = p >0,

with W3 being a continuous, positive definite function.
Finally, taking into account that

Wit (Wa (1) =

the global uniform ultimate boundednessagffollows immediately from Theo-
rem 5.1 in [34].

Once the boundedness of bathand¢ are established, that of the remaining
closed-loop signals but; follow equivalently from the proof of Theorem 1. As

15



regardse;, its dynamics are

ar = —peor(||zrl])rr + 9, (50)

wherey = x., which has been previously proven to be bounded; hepog)| <
¥, with ¥ being a positive constant.

By selecting ad/;(z;) = Wii(xr) = Wie(zr) = ||z7]||?/2 it is evident that
for all 27, Wpi(x;) < Vi(z;) < Wie(zg). In addition, after a simple algebraic
manipulation we have

Vi

IN

e (L= 02112 = peniby | + s @
s

} (51)
peT/IeI

with Wi3(zr) = pens(1 — 61)||z7]|? andd; being a positive constant chosen in the
open interval0, 1).

Consequently, according to Theorem 5.1 in [34], also syg&Onis globally
uniformly ultimately bounded and there exists some congtaso that|z;|| < u;
fort > T;. Hence, also the boundedness:pfemains proven.

<—%Mm,wummmémwpm,

3.4. Proof of Corollaries 1 and 2

When the plant matrixd is constant, the* defined in (12) is constant as
well. Hencep. = —¢ in (39). WhenA = A() this is no longer true for the first
n components oH*:

a;

éequgﬁ—ﬁ'bj:—?—aye%—fj, J=1...,n

However, the approximations in (21) and (35) yield

(ﬁej Rayer; — fi=—¢;, j=1,...,n
Consequently, (39) remains invariant and the proofs of Téras 1 and 2 follow
identically.
4. Numerical validation

To prove the effectiveness of the MCSI-PP and 4REICSI algorithms pre-
sented in Sections 2.1 and 2.2, respectively, here we canaigdlant of the form
(1) where the matrices in (2) are chosen as
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0O 1 0 1.65
A= 0 0 1 |, b=6 x0)=]123]. (52)
—6 —11 —6 0.94

The reference model is an LTI system of the form (3) with

0 1 0 14
An=1 0 0 1 |, b,=240, z,(0)=| 523 |, (53)
~120 —74 —15 —5.06

while the input reference signal is a sinusoidal wave wittplktode 5 and fre-
quency0.25 (rad/s). The disturbanc#t) in (1) is either anl, N L., or aC N Ly,
signal, and it is chosen so that the hypothesis required dgam-locking strat-
egy, i.e., parameter projection ermodification, are satisfied. In both cases, it is
activated for the first time ats0 s.

The range of variation assumed for the plant parameters.are]—125, 50,
as € [—96, 22|, a3 € [—43, 25], b € [6, 8]. Moreover, in order to further test
the effectiveness of the proposed adaptive algorithmsranpeter variation, it is
assumed that a sudden change of the plant parameters vpéttés their nominal
values occur at = 300 s. In particular, after the switcl, becomest.4, while
the remaining parameter values undergdb# change. In so doing, the plant to
be controlled becomes suddenly unstable.

The adaptive weights are selected as a trade-off betweeeigmnce time and
reactivity of the control actions. Specifically, we haveset= ar = 10, a; = 1,

Bx = Br = ax/10andB; = a;/10.

4.1. Results with the MCSI-PP

According to the possible plant parameter variation andraeoto satisfy
(15), when the MCSI-PP is adopted we have chosen to limitritegral part of
the adaptive gains as followsy, € [—20, 1], ¢x, € [-12, 4], ¢x, € [-5, 5],
é1, € [-0.4, 0.5],¢5, € [-1.2, 1.2], ¢;, € [-1.5, 1.5], and¢pp € [30, 42].

Figure 1 shows the profile of the, N L., disturbancey(¢), acting on the
plant dynamics.In particular it is composed by two pulses with height125,
width 50s, and starting at 150s and 300s, respectively. Notice that the plant
parameters change jointly with the second activation ofdiseurbance. Hence,
in what follows we also study the effect of a double pertudrabn the closed
loop dynamics occurring at the same time.
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Figure 1. Square-integrable disturbance used in the MEStd3e.

Figure 2 shows the effectiveness of the proposed algorithimpose the
model reference dynamics to the plant (1) with uncertaimupatersefore and
after the activation of the disturbance in Figure 1. Preciséy, Figure 2a shows
that the adaptive strategy makes the closed-loop state tragtory (blue line)
converge to the steady-state periodic solution of the refence model (red line)
before the activation of the disturbance. This is confirmed l Figure 2b,
which shows the precise matching of each state variable of éhplant with the
corresponding state variable of the reference model in thetsady-state regime
also before the activation of the disturbance, and by the caesponding track-
ing errors converging to zero depicted in Figure 2cFinally, Figure 2d portrays
the effect of both the disturbance in Figure 1 and the preshjodescribed para-
metric variations on the tracking error. It is interestimgniote that, despite the
presence of disturbances and variation of the plant pams)ahe tracking error
remains bounded and converges to zero after a transientedhe disturbance
activation/deactivation- in accordance with Theorem 1.

The evolution of the integral part of the adaptive gains¢8gported in Figure
3. As clearly shown, and according to Theorem 1, these gagnal@ays bounded
in the preassigned set. In addition, during the activatiothe disturbance some
adaptive gains are lockethus preventing a possible drift Specifically, at the
activation of the disturbance in Figure 1, during some time ntervals ¢ x,, ¢x,
(see Figure 3a)pr (see Figure 3b),p;, (see Figure 3c) are saturated both at
their upper and lower bounds, while ¢;, and ¢,, are locked at their lower
bound and upper bound, respectively (see Figure 3c)Notice that upper and/or
lower gain bounds are indicated in Figure 3 for those adagiains which are
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Figure 2: Tracking performance of the MCSI-PP algorithn).Hhase portrait of
the plant trajectory (blue line) converging to the steatdtesperiodic solution of
the reference model (red line) before the activation of ikaudbance; (b) closed-
loop plant trajectory (blue solid line) and reference matiglamics (red dashed
line) in steady state regime before the activation of theudisnce; tracking error
before (c) and after (d) the activation of the disturbange:(blue line),z., (red
line), z., (black line).
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locked. These limits are depicted as dotted lines with theraj the correspond-
ing adaptive gainln addition, Figures 2d and 3a-3c clearly indicate that the
adaptive gains reenter the non-locking region when the traking error con-
verges to zero.

Furthermore, as shown in Figure 3d the control gajrsaturates during the
initial transient, but all its components enter into the #acking region as the
tracking error goes to zero. Similarly, also the gaifis locked for some time
intervals before the activation of the disturbance, althoazoom of its dynamics
are not shown for the sake of brevity.

Finally, we remark that, as the tracking error and the irgegart of the adap-
tive gains are bounded (see Figures 2 and 3, respectiviedy),the control action
in (5), the proportional part of the adaptive gains, and eqagntly those in (8),
remain bounded. Nevertheless, the time evolution of thieseed-loop variables
is not reported here again for the sake brevity.

4.2. Results with the-MCSI

In order to show the effectiveness of theMCSI to reject persistent distur-
bances, we analyze the case when the disturb&naeting on the plant (1) with
matrices in (52), is a signal of the forfifr) = 8 - 10?sin(7t/10) that becomes
active atr = 150 s. Notice that the reference model matrices and the referenc
input signal- are those used in Section 4.1. Furthermore weyset 5- 10~*in
(23),I', in (25) is chosen aB, = I', and M = 46 so that (15) holds.

Figure 4 shows the tracking performance over a long controkbn. Specifi-
cally, Figure 4a confirms that the tracking error before tiseudbance activation is
similar to that obtained when the MCSI-PP is used (see FigcyeThe presence
of the sinusoidal disturbance induces a residual trackirgy ghich is shown in
Figure 4b. However, this tracking error is small when coregatio the ampli-
tude of the reference model variables (see Figure Brgcisely, this residual
tracking error of each state variable is more than50 times smaller than the
corresponding component of the reference model vector.

We remark that, despite the disturbance acts persistently o the closed-
loop dynamics, the integral parts of the adaptive control gans, i.e.,¢x, ¢r
and ¢;, are kept bounded as clearly shown in Figures 5a, 5b and 5c, spec-
tively. From the evolution of|¢||, depicted in Figure (5d) together with the
thresholdsﬁl} and 2/\7¢ used in the definition of thes-modification strategy
in (22)(23), additional insights into closed-loop behavior can be dralmdeed,
at the activation of the disturbance, this norm rapidly @ases and crosses the
threshoIdZ/\//\l¢. Consequently, a constant leakage factor, #£.is used to bound
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Figure 3: Integral part of the adaptive gains with the MC8ldgorithm. (a)x:
¢x, (blue solid line) ¢ x, (red dashed line) andy, (black dashed-dotted line) (b)
®r, (C) ¢r: @5, (blue solid line)p;, (red dashed line) angl;, (black dashed-dotted
line) (d) ¢, at the beginning of the simulation.
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Figure 4: Tracking performance of tkeMCSI algorithm. Tracking error before
(b) and after (c) the activation of the disturbanee; (blue line),z., (red line),
z., (black line).

the growth of the integral part of the adaptive gains. Aftettwe haveﬁ/l\qﬁ <

ol < 2/T/l\¢, and according to (23) the integral part of the adaptivegairther
decreases with a leakage factor which scales on the fpalsid=inally, when time
goes to infinity, these gains enter in the non-locking regjla| < M\¢). At first
there is still the need of the additional term (22) in (8) tey@nt gain drifting as
||| periodically crosses thﬁ/vl\¢-value,i.e.,7 € [1500, 2200]s, but at the end the
re-entry into the non-locking region is permanent.

Similar to the case reported in Section 4.1, as the integualgd the adaptive
gains and the tracking error are bounded then the contrioleict (5), the propor-
tional part of the adaptive gains, and consequently tho§@)jmemain bounded.
The time evolution of these closed-loop variables is notrpged here for the sake
of brevity.

It is important to point out that the boundedness of the MGflpdive gains
when time goes to infinity is guaranteed by thenodification strategy. Indeed,
under the same working conditions, the adaptive gains otldesical MCS di-
verge as depicted in Figures 6a and Glonsequently, the norm of the integral
part of the control gains grows unbounded as shown in 6c¢.

We conclude the analysis of tkeMCSI by considering the closed-loop re-
sponse for several disturbances of the fofm) = @ sin(wT), with@ € [100, 1500},
w € [0.1, 1.5] andT € T = [0, 3-10%]. Figure 7 shows the maximum value of the

22



150 ‘ ‘ : : : 100

-100f

- i i i i i -50 i i 1 ; ;
1500 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

(@) (b)

40

— )‘//\Z¢
>
K/l\¢
7400 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
T T
(©) (d)

Figure 5: Integral part of the adaptive gains with thé1CSl algorithm. (a)px:
¢x, (blue solid line)px, (red dashed line) angly, (black dashed-dotted line) (b)
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line) (d) bounded evolution dfe||.
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Figure 6: Evolution of the integral part of the MCS adaptiang without any
locking strategy in the face of a persistent sinusoidaludisince: (a)px: ¢x,
(blue solid line) ¢ x, (red dashed line) andy, (black dashed-dotted line) (B),

(c) diverging evolution of|¢||.
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norm of the residual errdfz. || (Figure 7a) and the maximum value of the norm of
the integral part of the adaptive gails|| (Figure 7b) computed ovéF for each
pair (@, w) in steady-state condition. We remark that not only the cdrstirat-
egy provides a bounded tracking error and bounded adagtive @ any working
condition, but also a small residual errdndeed, the norm of the steady-state
tracking error in the worst case (upper right corner in Figur e 7a) is more
than 30 times smaller than the norm of the reference model vectorThis con-
firms the effectiveness of the approach to limit the growthhef adaptive gains
without altering tracking performance.
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Q
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Figure 7: Tracking performance for different sinusoidatdrbances of the form
@ sin(wT): (@) maximum norm of the residual tracking errog, after transient,
and (b) maximum norm of the integral part of the adaptive gjainafter transient.

5. Engineering case study

To further confirm the effectiveness of the proposed impmoeets to the pre-
existing MCS and MCSI algorithms, we consider here the abofra full bridge
buck inverter with a nonlinear load, see Figure 8a. The ehgk is to impose a
periodic behavior to the system response with a limited kedge of the plant pa-
rameters, and in the face of unknown nonlinear disturbaacdsinmodelled dy-
namics (e.g., digital implementation of continuous-timeattol laws) over a long
time interval. Indeed, for practical applications, suchmisiterruptible power sys-
tems, these kind of devices must provide a periodic stallag® to loads over
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many cycles [35]. In this work we assume that the nonlineeetitii ; is periodic
and takes the shape depicted in Figure 8b, while as physacahpeters we select
E =220V, C' = 40uF, andL = 6mH with a parasitic resistance of= 0.21).

The control objective is to impose to the output voltage, a sinusoidal ref-
erence profileos(t) = M sin(2rvt) = M sin(@t), with M = E andv = 50
Hz.

u(k) e «—c
PWM |« Digital || ¢/, o
Controller v,
v L 25
. .

E Full-Bridge
Switch Vo | =

L 0 0.05 t()(ls)
(a) (b)
Figure 8: (a) Schematic of the full bridge buck inverter, &mdime history of the
periodic nonlinear load current that acts as a disturbance.

0.15 0.2

By defining as state vector= [ ve o ]T, from Kirchhoff’s laws the system
dynamics are

o~ E 1~ =~ . din
3= Az + EBU + EBd, d=— (mN + L—) , (54)

whereu € [—1, +1]is the PWM duty cycle, and is the disturbance due to the
nonlinear load, while the system matrices are

21:[ " 1’“}’ Bz{o}. (55)
~ic I 1
Let us define the reference model

. ~ PN 2M g - T

Sm = Amzm + BT, T(t) = cos(@t), zm(te)=|0 Ma*]", (56

where ¢ is the initial time instant, ¢ is a positive constant, and the dynamic
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matrix A is given by

~ 0 1
VLC

One can easily check, for example by substitution or by resaing to the
Laplace domain, that z,,, () = M sin(&t). Hence, the control aim of impos-
ing the required sinusoidal shapeuc(t), to the voltage across the capacitor
C can be reformulated as a model following problem of the statez,,, of the
reference model(56), by the state,z, of the plant (54).

The entries of the matrices in (54) and (57) can be very latgence, for
control purposes and in order to avoid numerical problenssatvisable to make
them dimensionless. This can be achieved with the folloveimgnge of coordi-
nates and time scaling

T S L S P S S (58)

VLC

Notice that the transformation which mapsntoz is linear and therefore it can
be also expressed as= Wz, where)V is defined as

w30 e

After some algebraic manipulations it is possible to shoat,tin the new
variables, the plant dynamics answers to:

Z—”T”:Ax+3u+3d(¢), (60)

with
A= ! : nd d(r) = ~ [ ri \/fdiN 61
=1 _\/% ; a <T)_E rin(7) + 5E(7) . (61)

In turn, the reference model dynamics are

d
% = Aty + Br(7), (62)
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Figure 9: Control scheme.

with
A, = { _2’8 —12q } , and r(7) = 2qwg cos(woT), (63)
wherez,, = Wz,,, with W being the matrix in (59), and, = 5/ LC.

In the following subsection we test the tracking perforneanta set of MCS
algorithms. Specifically, we consider the MCS presente®@j, the MCSI with-
out any locking method introduced in [37], and finally the M&% and thes-
MCSI presented in Section 2. These controllers have beenetized by means
of the Tustin discretization method and used within the mdrs#icheme depicted
in Figure 9. Notice that this control architecture includes PWM actuator, a
saturation, sample and hold (S/H) and zero-order hold (ZRlbYks, which are
commonly used to operate power converters. Hence, we tesstreess not only
with respect to discretization, but also with respect toitaithl nonlinearities
that have not been taken into account during the design ofdh&ollers, i.e.,
additional unmodelled nonlinear dynamics. A discrete tedaptive controller
without locking strategies for a full bridge buck invertgrevating with a linear
load has been presented in [38].

Taking into account the frequency response of system (54)PWM fre-
guency has been set20k H z, while the controllers have been discretized with a
sampling frequency of5wr, with wy being the cut-off frequency of the circuit.

All the adaptive strategies have been tuned with the samgtisdaveights,
which have been chosen again as a trade-off between coneergene and re-
activity of the control actions. Precisely, we have sgt = 1072, ap = 1073,

=5-1073 Bx = ax/10,8r = ar/10 andB; = «;/10, and the locking
strategies in Section 2 have been tuned so that (15) is édfilin addition, in the
case ofr-modification, we have sét, = diag(0.01, 0.01, 0.01, 0.5, 0.5).

Finally, with the aim of investigating the evolution of thdaptive gains over
a long manoeuvre, the time interval of interest for the aantias been set to
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T =10, 2-107.

5.1. Numerical analysis

For the working conditions described above, the control gais of the MCS
solutions available in the literature diverge over time dueto the presence of
the disturbance caused by the nonlinear load. This is showmiFigure 10a,
which depicts the norm of the adaptive gains of both the MCS sategy (black
line) and the pre-existing MCSI algorithm (green line) overthe entire control
horizon. Specifically, Figure 10b reveals that the MCS adaptive gdinsrge
from 7 > 103, while in the case of the pure MCSI strategy there is at firdow s
gain drifting till - = 9 - 103, but then the adaptive gains increase unbounded. This
unwanted phenomena is suppressed when either the MCSe@kn@) or ther-
MCSI (blue line) are used, and the adaptive gains remaindeaiover the entire
manoeuvre in accordance with the theoretical predictions.
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Figure 10: Evolution of|¢|| for different MCS strategies. (a) MCS (black line)
and MCSI (green line); (b) MCS (black line), MCSI (green In®ICSI-PP (red
line) ando-MCS (blue line).

We point out that the divergence of the adaptive gains attesed-loop track-
ing performance. In particular, in the case of the MCS sfpaieis possible to
observe in Figure 11a a loss of tracking performance duhiegnset of the con-
trol gains instability around = 103. Here, as depicted in Figure 11b, the MCS
tracking error(black line) increases from less than2& up to al5%, which is
not admissible for this specific engineering applicatiomtirermore, the tracking

29



error keeps growing with time till tracking is completelst@roundr = 2.3- 103,
as apparent in Figures 11c and 11d.

A similar phenomena also occurs when the MCSI algorithm @ated to
tackle the dynamics of the buck inverter, see Figure 12. Eweugh in this case
the classical MCSI tracking error does not excefh (see green line in Figure
12d), such a value is not acceptable in the context of power eleictengineer-
ing as alternative solutions in the technical literaturevpie better closed-loop
responses, see for example [39hstead the MCSI-PP ando-MCSI provide
low tracking error over the entire manoeuvre.

We remark that both gain divergence and loss of trackingopesdinceare the
result of unmodeled dynamics due to control discretizaéind hard nonlineari-
ties, e.g., saturations [40].

Figures 11 and 12 also illustrate the excellent and robosed-loop tracking
performance obtained when both the MCSI{R& line) and thes-MCSI (blue
line) are inserted in the control loop displayed in Figure 9. Tidse@ppreciate this
crucial feature, the residual tracking errors providedhmse control algorithms
are also depicted in Figure 1Both of them are very small when compared to
the amplitude of the reference signal, which is unitary.

Finally, we point out that, although the control action agglto the plant
cannot diverge because of the saturation block in the clantrhitecture in Figure
9, the resulting input of the PWM actuator can be highly noostin when gain
instability is induced. This additional unwanted effectlear in Figure 14 for
the MCS(black line) and MCSI (green line) algorithms. Instead, smooth control
actions that are always within the possible range of vama(i.e.,[—1, 1]), are
provided by the MCSI-PRred line) and thes-MCSI (blue line) strategies.

6. Conclusions

Model reference adaptive controllers belonging to thesatdisninimal control
synthesis algorithms are an effective solution to steedsimamics of plants with
uncertain parameters and affected by unmodelled nonlohgemics and distur-
bances. Nonetheless, such disturbances can induce anngdabgrowth of the
adaptive gains that eventually jeopardizes both trackeréppmance and stability.

In this paper we have proposed continuous-time MCSI algmistwhich include
either parameter projection ermodification strategies to prevent the onset of
such undesirable dynamics.

The former allows to preserve convergence to zero of thé&itrgerror with
respect to bounded,-disturbances while keeping the adaptive gains within a
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Figure 11: Tracking performance of the classical MCS andéhad the MCSI-PP
and thes-MCSI. MCS (black line); MCSI-PP (red line) ardMCSI (blue line),
reference trajectory (orange line). (a) Tracking perfanoeaof all the controllers
during the onset of instability with the MCS and (b) relateatking errors. (c)
Tracking performance of all the controllers when the clzaVICS shows lack of
robustness, and (d) related tracking errors.
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Figure 12: Tracking performance of the classical MCSI andé&of the MCSI-PP
and thes-MCSI. MCSI (green line); MCSI-PP (red line) andMCSI (blue line),
reference trajectory (orange line). (a) Tracking perfanoeaof all the controllers
during the onset of instability with the MCSI and (b) relateaicking errors. (c)
Tracking performance of all the controllers when the cleeddMCSI shows lack
of robustness, and (d) related tracking errors.
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preassigned set, thus extending to the continuous-tine ttasresults recently
presented for discrete-time systems in [1]. Instead, ttierlapproach allows to
bound the drift of the MCS gains while ensuring global umfiaultimate bound-
edness in the face of persistdnt disturbances. In addition, whenmodification

is adopted, a bound for the closed-loop tracking error idieily computed as a
function of theL_-norm of the disturbance. We note that for the novel MCSI
strategies not only methods for locking adaptive gains hmeen designed, but
the same strategies have been applied for also to guaranteelddness of the
integral control when there exists a residual trackingrerro

The effectiveness of the control schemes to limit the magieiof the adaptive
gains and, at the same time, guarantee tracking perforntdribe reference dy-
namics was shown both analytically, by using a Lyapunov aggr, and numeri-
cally, by means of a set of representative examples whidbhded the control of
a power electronics converter as an engineering case skuaigily, closed-loop
performance of the control schemes embedding lockingesfies were compared
to those provided by the classical MCS algorithms to furtiwerfirm that bounded
adaptive gains can be achieved without a loss of trackinippeance.

As future work, the approaches here presented to avoid unbauwded drifts
of the control gains will be extended to the novel adaptive agrol schemes for
the control of piecewise affine systems with unknown paramets recently
proposed in the literature [26, 41]. In so doing, the robustess of the pro-
posed adaptive methods for this class of discontinuous sgshs in the face of
bounded disturbances will be systematically studied.

Appendix A. Proof of Lemma 1

The proof follows similarly to that given in [2].
Let us first recall the scalar functiohs;;, h;,, j = 1,...,n, andhg, defined
in (18), and consider the vector function

e TR S AT S R N (A1)
Notice that
2n+1
Il f = (0" — ) T f = Z o5 — ;) f

Asa; > 0,j = 1,...,2n + 1, it suffices to see thafgs — ¢;) f; > 0, j =
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1,...,2n + 1, for any possible situation. This has to take into accouat th
#(to) € Ay, which guarantees € A, as well because of the parameter projection
algorithm (18).

i) If ¢; € (¢,0), org; = ¢, andh; > 0, or¢; = ¢ andh; < 0, then
f; = 0; therefore,(¢5 — ¢;) f; = 0.

i) If ¢; = ¢! andh; < 0, theng’ — ¢; > 0 and f; = —h; > 0; therefore,
(&5 —@5) ;> 0.

i) If ¢; = ¢} andh; > 0, theng; — ¢; < 0 and f; = —h; < 0; therefore,
((b; — Q%) fj > 0.
Appendix B. Proof of Lemma 2

The proof extends the one presented in [2], as in this casakedrto account
the presence of the matrix,'T,.
Using (17) and (22) one has that

S Ta'f =0 ([0ll) be Lo T 0.

From the definition ob,, (||¢||) in (23) itiso, (||¢]]) = 0 for ||¢|| < A//\l¢, so the
Lemma is trivially fulfilled in this case. Moreover, one caasdy check that

—05 (I9) 6T Tp = 05 (6] (6 — &) T5'T,6 =
= 20 (I61) (6"T3 Ty — 67T, T,0° + 61T, 'T,00)

i.e.
1
oiT M f = §U¢(||¢||)(A1+-A2), (B.1)
A = ¢TP;1FP¢_¢*TP;1FP¢*> (B-Z)
Ay = ¢IT'T,o.. (B.3)

The termA; is non-negative by construction for all ¢*. In turn, for.4; we have
that

Ar = ¢TI 6 — 9T 00" > Anin (T2 ') 19117 = Amax (T21T) (10717,
(B.4)
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Recalling now the definition oM in (24), it is immediate thatd; > 0 for all
¢ > M. As alsooy (||¢]|) > 0 for all ¢ > M, it results thap! T, f > 0 for all

o > M. -
Finally, wheng > 2M,, (23), (B.1) and (B.2) yield

OITLN = 2 (A + o) > 2ty = oIT, g
Hence, (45) is verified as well.
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