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Abstract

This paper is concerned with the boundedness, exponential stability and

almost sure asymptotic stability of stochastic functional differential equations

(SFDEs) with Markovian switching. The key technique used is the method of

multiple Lyapunov functions. We use two auxiliary functions to dominate the

corresponding different Lyapunov function in different mode while the diffusion

operator in different model is controlled by other multiple auxiliary functions.

Our conditions on the diffusion operator are weaker than those in the related

existing works.

Keywords and phrases: stochastic functional differential equations; Marko-

vian switching; asymptotic stability; boundedness; generalized Itô’s formula.

1 Introduction

Dynamic systems in many branches of science and industry do not only depend on the present

states but also the past states. Stochastic functional differential equations (SFDEs), including

stochastic delay differential equations (SDDEs), are often used to model these systems. The

stability theory of SFDEs has received lots of attentions over past twenty years. A large

number of stability results have been established (e.g. [2], [5], [6], [8], [17], [18]). In particular,

many important works have been developed systematically in book [14]. On the other hand,

these systems may experience abrupt changes in their structure and parameters caused by

phenomena such as component failures or repairs, changing subsystem interconnections, and

abrupt environmental disturbances. Continuous time Markovian chains have been used to

∗Corresponding author.
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model these abrupt changes. Consequently, the SFDEs with Markovian switching, including

SDDEs with Markovian switching, have been used to model many complicated systems.

In general, an n-dimensional SDDE with Markovian switching has the form

dx(t) = f1(x(t),x(t− τ), t, r(t))dt+ g1(x(t),x(t− τ), t, r(t))dB(t) (1.1)

on t ≥ 0, where τ > 0, r(t) is a right-continuous Markovian chain with a finite state space

S = {1, 2, . . . , N} and B(t) is an m-dimensional Brownian motion. In the system, x(t)

stands for the state while r(t) for the mode. The stability problem of SDDEs with Markovian

switching under different settings has been discussed, for example, in [10]-[13], [20]. Recently,

Hu, Mao and Shen [3] established some new generalized theorems on the asymptotic stability

and boundedness of SDDEs with Markovian switching using different types of Lyapunov

functions (e.g. polynomials with different degrees) for different modes. More precisely, they

assumed that there exist functions V ∈ C2,1(Rn×R+×S;R+), U1, U2 ∈ C(Rn×[−τ,∞);R+)

such that

lim inf
|x|→∞,0≤t<∞

U1(x, t) =∞,

U1(x, t) ≤ V (x, t, i) ≤ U2(x, t),

L V (x, y, t, i) ≤ c1 − c2U2(x, t) + c3U2(y, t− τ) (1.2)

for all (x, y, t, i) ∈ Rn ×Rn ×R+ × S, where cj ≥ 0, j = 1, 2, 3, with c2 > c3.

It is noted that the future state of system (1.1) is not only dependent on the present state

x(t) but also the past state x(t−τ). However, there are many practical systems whose future

state depends on the state over the whole time interval [t−τ, t] rather than at times t−τ and

t. SFDEs with Markovian switching have therefore been developed to describe such systems.

Generally speaking, an n-dimensional SFDE with Markovian switching has the form

dx(t) = f(xt, t, r(t))dt+ g(xt, t, r(t))dB(t), (1.3)

on t ≥ 0, where xt = {x(t + u) : u ∈ [−τ, 0]}. In particular, if define f(xt, t, r(t)) =

f1(x(t),x(t − τ), t, r(t)) and g(xt, t, r(t)) = g1(x(t),x(t − τ), t, r(t)), the SFDE (1.3) be-

comes the SDDE (1.1). For SFDEs with Markovian switching (1.3), Mao [9] investigated

the existence, uniqueness and the Razumikhin-type theorem on exponential stability of the

global solution (also see Chapter 8 in book [13]); Peng and Zhang [15] discussed some new

Razumikhin-type theorems on pth moment stability; Hu and Wu [4] examined asymptotic

boundedness of the global solution.

The aims of this paper are to examine the existence and uniqueness of the global solution of

the SFDE (1.3) and to establish more general results on the asymptotic stability and bound-

edness of the solution under much weaker conditions than those imposed in the references

mentioned above. To do so, we will use the idea in [3] to apply different types of Lyapunov
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functions for different modes of the underlying SFDE. It is observed that the diffusion oper-

ators (1.2) in all modes, for the SDDE (1.1), are controlled by the values of U2(x(s), s) at

times s = t − τ and s = t. When dealing with the SFDE (1.3), it is natural that the diffu-

sion operators in all modes will be influenced by the historical states on the whole interval

[t− τ, t]. In this paper, we will use multiple auxiliary functions to describe this complicated

situation. More precisely speaking, the diffusion operators will be controlled by multiple

auxiliary functions Wj (j = 1, 2, · · · , L) with constant coefficients αj , βj(j = 1, 2, · · · , L) (see

(3.3) in Assumptions 3.2 of Section 3) or time-varying coefficients bj(t)(j = 1, 2, · · · , L)(see

(4.3) in Assumptions 4.1 of Section 4). As far as we know, it is first time that such general

conditions are imposed to study the asymptotic boundedness and stability of SFDEs with

Markovian switching.

This paper does not only present more general results on the boundedness and exponential

stability of SFDEs with Markovian switching using the multiple auxiliary functions with

constant coefficients but also discuss the almost sure asymptotic stability. Our results imply

Theorem 3.1 in [3] and Theorem 8.4 in [13]. This paper also gives some further new results

for SFDEs with Markovian switching using multiple auxiliary functions with time-varying

coefficients.

The rest of this paper is organized as follows. In Section 2, we give some necessary

notations. In Section 3, we discuss the asymptotic stability and boundedness of SFDEs with

Markovian switching. Some further new results for SFDEs with Markovian switching using

multiple auxiliary functions with time-varying coefficients are given in Section 4. We will

finally conclude our paper in Section 5.

2 Preliminaries

Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtra-

tion {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous while

F0 contains all P-null sets). If A is a matrix or vector, its transpose is denoted by AT ,

and the trace norm of matrix A is denoted by |A| =
√
trace(ATA). Let B(t) be an m-

dimensional Brownian motion defined on the probability space. Let τ > 0 and C([−τ, 0];Rn)

denote the family of all continuous Rn-valued functions ϕ on [−τ, 0] with the norm ||ϕ|| =

sup−τ≤θ≤0 |ϕ(θ)|. Let C = CbF0
([−τ, 0];Rn) be the family of all bounded, F0-measurable,

C([−τ, 0];Rn)-valued, Ft−adapted stochastic processes. Let ηj be probability measures on

[−τ, 0], which satisfy
∫ 0
−τ dηj(θ) = 1 (j = 1, 2, · · · , L). Let L1(R+;R+) be the family of all

Borel measurable functions ξ : R+ → R+ such that
∫∞
0 ξ(t)dt < ∞, and Ψ(R+;R+) the

family of all continuous functions ψ : R+ → R+ such that lim inf
t→∞

∫ t+ε
t ψ(t)dt > 0, for any

ε > 0. A continuous function Q : Rn → R+ is said to be positive definite if Q(x) = 0

iff x = 0. x(t) is a continuous R-valued stochastic process on t ∈ [−τ,∞). We assume
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xt = {x(t + θ) : −τ 6 θ 6 0} for all t ≥ 0, which is regarded as a C([−τ, 0];Rn)-valued

stochastic process.

Let r(t), t ≥ 0, be a right-continuous Markovian chain on the probability space taking

values in a finite state space S = {1, 2, . . . , N}, with generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

 γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0, γij is the transition rate from i to j, if i 6= j, while γii = −
∑
j 6=i

γij .

Assume that Markovian chain r(t) is independent of Brownian motion B(t). It is well

known that almost every sample path of r(t) is a right-continuous step function.

It is useful to recall that a continuous-time Markovian chain r(t) with generator Γ =

(γij)N×N can be represented as a stochastic integral with respect to a Poisson random measure

dr(t) =

∫
R
h(r(t−), y)ν(dt,dy), t ≥ 0

with initial value r(0) = i0 ∈ S, where ν(dt,dy) is a Poisson random measure with intensity

dt × m(dy) in which m is the Lebesgue measure on R, while the explicit definition of h :

S ×R→ R can be found in [1].

Consider an n-dimensional SFDE with Markovian switching of the form

dx(t) = f(xt, t, r(t))dt+ g(xt, t, r(t))dB(t), (2.1)

on t ≥ 0 with initial data {x(θ) : −τ ≤ θ ≤ 0} = ζ ∈ CbF0
([−τ, 0];Rn), i0 ∈ S, where

f : C([−τ, 0];Rn)×R+ × S → Rn, g : C([−τ, 0];Rn)×R+ × S → Rn×m.

Let C(Rn× [−τ,∞);R+) denote the family of all continuous functions from Rn× [−τ,+∞)

to R+, and C2,1(Rn × [−τ,+∞)× S;R+) the family of all continuous nonnegative functions

V (x, t, i) on Rn × [−τ,+∞) × S which are continuously twice differentiable in x and once

differentiable in t. For each V ∈ C2,1(Rn× [−τ,+∞)×S;R+), denote an operator L V from

C([−τ, 0];Rn)×R+ × S to R by

L V (ϕ, t, i) =

N∑
j=1

γijV (ϕ(0), t, j) + Vt(ϕ(0), t, i) + Vx(ϕ(0), t, i)f(ϕ, t, i)

+
1

2
trace[gT (ϕ, t, i)Vxx(ϕ(0), t, i)g(ϕ, t, i)], (2.2)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vxx(x, t, i) = (

∂2V (x, t, i)

∂xixj
)n×n, Vx(x, t, i) = (

∂V (x, t, i)

∂x1
, ···, ∂V (x, t, i)

∂xn
).
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For the convenience of readers we cite the generalized Itô’s formula (see [13]): if V ∈
C2,1(Rn × [−τ,+∞)× S;R+), then for any t ≥ 0,

V (x(t), t, r(t)) = V (x(0), 0, r(0)) +

∫ t

0
L V (xs, s, r(s))ds+

∫ t

0
Vx(x(s), s, r(s))g(xs, s, r(s))dB(s)

+

∫ t

0

∫
R
V (x(s), s, i0 + h(r(s−), l))− V (x(s), s, r(s))µ(ds, dl), (2.3)

where µ(ds, dl) = ν(ds, dl)−m(dl) is a martingale measure. Please note that this martingale

measure is related to the Markov chain but not the Brownian motion (which forms another

independent martingale in the formula above). The key benefit of this formula will allow

us to apply the non-negative semi-martingale convergence theorem (see [7]) cited below as a

lemma.

Lemma 2.1. Let A1(t) and A2(t) be two continuous adapted increasing processes on t ≥ 0

with A1(0) = A2(0) = 0 a.s., M(t) a real-valued continuous local martingale with M(0) = 0

a.s., ζ a nonnegative F0-measurable random variable such that Eζ < ∞. Define X(t) =

ζ +A1(t)−A2(t) +M(t) for t ≥ 0. If X(t) is nonnegative, then

{ lim
t→∞

A1(t) <∞} ⊂ { lim
t→∞

X(t) <∞} ∩ { lim
t→∞

A2(t) <∞} a.s.,

where C ⊂ D a.s. means P(C ∩ Dc) = 0. In particular, if lim
t→∞

A1(t) < ∞ a.s., then, with

probability one,

lim
t→∞

X(t) <∞, lim
t→∞

A2(t) <∞, −∞ < lim
t→∞

M(t) <∞.

For the stability purpose, we furthermore assume that f(0, t, i) = 0 and g(0, t, i) = 0 for

all t ∈ R+, i ∈ S, so that system (2.1) admits a trivial solution x(t) = 0.

3 General Asymptotic Stability and Boundedness of SFDEs

with Markovian switching

In this section, we give the results for the existence and uniqueness, general asymptotic

stability and general boundedness of the global solutions of SFDEs with Markovian switching

using multiple auxiliary functions with constant coefficients.

To get our main results, we firstly put forward the following assumptions.

Assumption 3.1. Both f and g satisfy the local Lipschitz condition. That is, for each

k = 1, 2, · · · , there is a ck > 0 such that

|f(ϕ, t, i)− f(ψ, t, i)| ∨ |g(ϕ, t, i)− g(ψ, t, i)| ≤ ck||ϕ−ψ||,

for all t ∈ R+, i ∈ S and ϕ,ψ ∈ C([−τ, 0];Rn) with ||ϕ|| ∨ ||ψ|| ≤ k.
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Assumption 3.2. There exist functions V ∈ C2,1(Rn× [−τ,∞)×S;R+), W0,Wj ∈ C(Rn×
[−τ,∞);R+) and probability measures ηj on [−τ, 0] satisfying

∫ 0
−τ dηj(θ) = 1, as well as

nonnegative numbers α0, αj , βj satisfying αj > βj(j = 1, 2, · · · , L), such that

lim inf
|x|→∞,0≤t<∞

W0(x, t) =∞, (3.1)

W0(x, t) ≤ V (x, t, i) ≤W1(x, t), ∀(x, t, i) ∈ C([−τ, 0];Rn)×R+ × S, (3.2)

L V (ϕ, t, i) ≤ α0 +
L∑
j=1

[
− αjWj(ϕ(0), t) + βj

∫ 0

−τ
Wj(ϕ(θ), t+ θ)dηj(θ)

]
, (3.3)

for all i ∈ S and ϕ ∈ C([−τ, 0];Rn), t ∈ R+.

Remark 1. Assumption 3.2 is a generalization of Assumption 2.2 of [3] (condition (1.2) in

this paper). The generalization mainly shows in the following two aspects:

1) Assumption 3.2 introduces multiple auxiliary functions Wj(j = 0, 1, · · · , L) instead of

two functions in Assumption 2.2 of [3];

2) When the probability measure η1(θ) is a point probability measure at −τ , Assumption

3.2 with αj = βj = 0(j = 2, 3, · · · , L) reduces to Assumption 2.2 of [3].

Since the coefficients of Wj(j = 1, · · · , L) in (3.3) are constants, it is said to be the case

of multiple auxiliary functions with constant coefficients for convenience. Now, we state our

main results of SFDEs with Markovian switching in this case.

Theorem 3.1. Under Assumptions 3.1 and 3.2, we have the following assertions:

1) For any given initial data ζ ∈ C and i0 ∈ S, there is a unique global solution x(t, ζ, i0)

of system (2.1) on t ≥ −τ , which satisfies the following moment properties

lim sup
t→∞

EW0(x(t, ζ, i0), t) ≤
α0

ε0
, (3.4)

lim sup
t→∞

1

t

∫ t

0
EWj(x(s, ζ, i0), s)ds ≤

α0

αj − βj
, j = 1, 2, · · · , L (3.5)

where ε0 = sup

{
ε > 0 : ε+ β1e

ετ − α1 ≤ 0, ε ≤ 1
τ min
j≥2
{log

αj
βj
}
}

.

2) Moreover, if α0 = 0, the global solution x(t, ζ, i0) has the following moment properties

lim sup
t→∞

1

t
log(EW0(x(t, ζ, i0), t)) ≤ −ε0, (3.6)

∫ ∞
0

EWj(x(s, ζ, i0), s)ds <∞, j = 1, 2, · · · , L (3.7)
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and the following sample properties

sup
−τ≤t<∞

x(t, ζ, i0) <∞, a.s. (3.8)

lim sup
t→∞

1

t
log(W0(x(t, ζ, i0), t)) ≤ −ε0, a.s. (3.9)

∫ ∞
0

Wj(x(s, ζ, i0), s)ds <∞. a.s. j = 1, 2, · · · , L (3.10)

3) In the case α0 = 0, and there furthermore exists a continuous positive definite function

Q ∈ C(Rn;R+) such that Q(x) ≤
∑L

j=1Wj(x, t) for all (x, t) ∈ Rn × [−τ,∞), then

lim
t→∞

x(t, ζ, i0) = 0. a.s. (3.11)

Proof. 1) By Assumption 3.1, for any given initial data ζ ∈ C and i0 ∈ S, there is a unique

maximal local solution x(t, ζ, i0) on t ∈ [−τ, σ∞), where σ∞ is the explosion time. Let k0 > 0

be sufficiently large satisfying ||ζ|| < k0. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, σ∞) : |x(t)| ≥ k}.

Obviously, τk is increasing as k → ∞. Let τ∞ = lim
t→∞

τk, so τ∞ ≤ σ∞ a.s.. If we can obtain

that τ∞ = ∞ a.s., then σ∞ = ∞ a.s.. For the sake of simplicity, write x(t) = x(t, ζ, i0).

Using the generalized Itô’s formula and then taking the expectation, we have

EV (x(t ∧ τk), t ∧ τk, r(t ∧ τk)) = EV (x(0), 0, r(0)) + E

∫ t∧τk

0
L V (xs, s, r(s))ds

≤ EV (x(0), 0, r(0)) + E

∫ t∧τk

0

[
α0 +

L∑
j=1

[−αjWj(x(s), s) + βj

∫ 0

−τ
Wj(x(s+ θ), s+ θ)dηj(θ)]

]
ds

≤ EV (x(0), 0, r(0)) + E

∫ t∧τk

0

[
α0 +

L∑
j=1

[−(αj − βj)Wj(x(s), s) + βjJj ]

]
ds, (3.12)

where Jj =
∫ 0
−τ Wj(x(s+ θ), s+ θ)dηj(θ)−Wj(x(s), s), j = 1, 2, · · · , L.

By virtue of the fact that∫ t∧τk

0
Jjds =

∫ t∧τk

0
[

∫ 0

−τ
Wj(x(s+ θ), s+ θ)dηj(θ)−Wj(x(s), s)]ds

=

∫ 0

−τ

∫ (t∧τk)+θ

θ
Wj(x(s), s)dsdηj(θ)−

∫ t∧τk

0
Wj(x(s), s)ds

≤
∫ 0

−τ

∫ t∧τk

−τ
Wj(x(s), s)dsdηj(θ)−

∫ t∧τk

0
Wj(x(s), s)ds

≤
∫ t∧τk

−τ
Wj(x(s), s)ds−

∫ t∧τk

0
Wj(x(s), s)ds
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≤
∫ 0

−τ
Wj(x(s), s)ds, (3.13)

for j = 1, 2, · · · , L, (3.12) can be rewritten as

EV (x(t ∧ τk), t ∧ τk, r(t ∧ τk)) ≤ a0E(t ∧ τk)−
L∑
j=1

(αj − βj)E
∫ t∧τk

0
Wj(x(s), s)ds

+EV (x(0), 0, r(0)) +
L∑
j=1

βjE

∫ 0

−τ
Wj(x(s), s)ds

≤ c0 + a0t−
L∑
j=1

(αj − βj)E
∫ t∧τk

0
Wj(x(s), s)ds, (3.14)

where c0 = EV (x(0), 0, r(0)) +
∑L

j=1 βjE
∫ 0
−τ Wj(x(s), s)ds.

From condition (3.2) and αj > βj(j = 1, 2, · · · , L), we get that

EW0(x(t ∧ τk), t ∧ τk) ≤ c0 + a0t. (3.15)

Let νk = inf
|x|≥k,0≤t<∞

W0(x(t), t), for k ≥ k0, then we have that

EW0(x(t ∧ τk), t ∧ τk) ≥ E(W0(τk), τk)I{τk≤t}) ≥ νkP (τk ≤ t).

Letting k →∞ in the inequality above, we have that

P (τ∞ ≤ t) = lim
k→∞

P (τk ≤ t) ≤ lim
k→∞

EW0(x(t ∧ τk), t ∧ τk)
νk

= lim
k→∞

c0 + a0t

νk
= 0.

Since t > 0 is arbitrary, we must have that τ∞ = ∞ a.s.. Hence σ∞ = ∞ a.s., which

implies that the unique maximal local solution x(t) on t ∈ [−τ, σ∞) becomes the unique

global solution on t ∈ [−τ,∞).

Using the generalized Itô’s formula to eεtV (x(t), t, r(t)), ε ∈ (0, ε0], and from condition

(3.2), we get that, for any t ≥ 0,

eε(t∧τk)V (x(t ∧ τk), t ∧ τk, r(t ∧ τk))

= V (x(0), 0, r(0)) +

∫ t∧τk

0
eεs(εV (x(s), s, r(s)) + L V (xs, s, r(s)))ds+M(t ∧ τk)

≤W1(x(0), 0) +

∫ t∧τk

0
eεs
[
α0 − (α1 − ε)W1(x(s), s) + β1

∫ 0

−τ
W1(x(s+ θ), s+ θ)dη1(θ)

+

L∑
j=2

[−αjWj(x(s), s) + βj

∫ 0

−τ
Wj(x(s+ θ), s+ θ)dηj(θ)]

]
ds+M(t ∧ τk)

≤W1(x(0), 0) +

∫ t∧τk

0
eεs
[
α0 − (α1 − ε− β1eετ )W1(x(s), s) + β1J

′
1
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+
L∑
j=2

[−(αj − βjeετ )Wj(x(s), s) + βjJ
′
j ]

]
ds+M(t ∧ τk), (3.16)

where M(t ∧ τk) is a local martingale with the initial value M(0) = 0, J ′j =
∫ 0
−τ Wj(x(s +

θ), s+ θ)dηj(θ)− eετWj(x(s), s), j = 1, 2, · · ·L.

By virtue of the fact that∫ t∧τk

0
eεsJ ′jds =

∫ t∧τk

0
eεs[

∫ 0

−τ
Wj(x(s+ θ), s+ θ)dηj(θ)− eετWj(x(s), s)]ds

=

∫ 0

−τ

∫ (t∧τk)+θ

θ
eε(s−θ)Wj(x(s), s)dsdηj(θ)− eετ

∫ t∧τk

0
eεsWj(x(s), s)ds

≤
∫ 0

−τ

∫ t∧τk

−τ
eε(s+τ)Wj(x(s), s)dsdηj(θ)− eετ

∫ t∧τk

0
eεsWj(x(s), s)ds

≤ eετ
∫ t∧τk

−τ
eεsWj(x(s), s)ds− eετ

∫ t∧τk

0
eεsWj(x(s), s)ds

≤ eετ
∫ 0

−τ
Wj(x(s), s)ds, (3.17)

for j = 1, 2, · · · , L, (3.16) can be rewritten as

eε(t∧τk)V (x(t ∧ τk), t ∧ τk, r(t ∧ τk))

≤W1(x(0), 0) +
α0

ε
(eε(t∧τk) − 1)− (α1 − ε− β1eετ )

∫ t∧τk

0
eεsW1(x(s), s)ds

−
L∑
j=2

(αj − βjeετ )

∫ t∧τk

0
eεsWj(x(s), s)ds+

L∑
j=1

βje
ετ

∫ 0

−τ
Wj(x(s), s)ds+M(t ∧ τk)

≤ c1 +
α0

ε
eε(t∧τk) − (α1 − ε− β1eετ )

∫ t∧τk

0
eεsW1(x(s), s)ds

−
L∑
j=2

(αj − βjeετ )

∫ t∧τk

0
eεsWj(x(s), s)ds+M(t ∧ τk), (3.18)

where c1 = W1(x(0), 0) +
∑L

j=1 βje
ετ
∫ 0
−τ Wj(x(s), s)ds.

Letting k →∞ and then taking the expectation on both side of (3.18), we get

E(eεtW0(x(t), t)) ≤ c1 +
α0

ε
eεt, (3.19)

from the definition of ε0 and condition (3.2). So letting ε→ ε0, we have the assertion (3.4).

From (3.14), letting k →∞, we get that

L∑
j=1

(αj − βj)E
∫ t

0
Wj(x(s), s)ds ≤ c0 + a0t. (3.20)

Letting t→∞ and using the Fubini theorem, we have the assertion (3.5).
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2) Next, we prove the results in the case of α0 = 0. From (3.19) we get that

EW0(x(t), t) ≤ c1e−εt.

So letting ε→ ε0, we get the assertion (3.6).

Moreover, (3.20) becomes

L∑
j=1

(αj − βj)E
∫ t

0
Wj(x(s), s)ds ≤ c0.

So letting t→∞, we get the assertion (3.7).

In the same way as (3.16), we get that

eεtW0(x(t), t) ≤ c1 +M(t),

where c1 has been defined above. By virtue of Lemma 2.1, we obtain that

lim sup
t→∞

eεtW0(x(t), t) <∞. a.s. (3.21)

Hence, there exists a finite positive random variable ζ such that

sup
0≤t<∞

eεtW0(x(t), t) < ζ. a.s. (3.22)

So as ε→ ε0, we claim the assertion (3.9).

Using the generalized Itô’s formula to V (x(t), t, r(t)), we obtain

V (x(t), t, r(t)) = V (x(0), 0, r(0)) +

∫ t

0
L V (xs, s, r(s))ds+M ′(t)

≤W1(x(0), 0) +

∫ t

0

L∑
j=1

[−αjWj(x(s), s) + βj

∫ 0

−τ
Wj(x(s+ θ), s+ θ)dηj(θ)]ds+M ′(t)

≤W1(x(0), 0) +

L∑
j=1

βj

∫ 0

−τ
Wj(x(s), s)ds−

L∑
j=1

(αj − βj)
∫ t

0
Wj(x(s), s)ds+M ′(t)

where M ′(t) is a local martingale with the initial value M ′(0) = 0. Due to Lemma 2.1, we

obtain the assertions (3.10) and sup−τ≤t<∞W0(x(t), t) <∞, a.s.. From the radial unbound-

edness of W0(x, t) (see (3.1)), we directly get the assertion (3.8).

3) Finally, we prove the result (3.11). Because of the positive definiteness of Q(x), the

assertion (3.11) is equivalent to the following assertion

lim
t→∞

Q(x(t)) = 0. a.s. (3.23)

Further, the assertion (3.23) is equivalent to the following assertion

lim sup
t→∞

Q(x(t)) = 0. a.s. (3.24)
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Now we claim that the assertion (3.24) holds. If (3.24) is false, we must have that

P

{
lim sup
t→∞

Q(x(t)) > 0

}
> 0. (3.25)

Then there exists a constant δ such that P (A) > 3δ, where A =

{
ω : lim sup

t→∞
Q(x(t)) > 2δ

}
.

From the assertion (3.8), we can see that there exists a sufficiently large positive constant

h = h(δ) such that P (A1) > 1− δ, where A1 =

{
ω : sup
−τ≤t<∞

|x(t)| < h

}
. So we easily obtain

that P (A ∩A1) > 2δ.

Define a sequence of stopping times by

µ1 = inf{t ≥ 0 : Q(x(t)) ≥ 2δ},

µ2l = inf{t ≥ µ2l−1 : Q(x(t)) ≤ δ}, l = 1, 2, . . .

µ2l+1 = inf{t ≥ µ2l : Q(x(t)) ≥ 2δ}. l = 1, 2, . . .

Obviously, when ω ∈ A ∩A1, then µl <∞, l = 1, 2, . . ., i.e.

A ∩A1 ⊂ {µl <∞, l = 1, 2, . . .}.

From Assumptions 3.1, f(0, t, i) = 0 and g(0, t, i) = 0, we get that there exists a constant

Hh > 0 such that |f(ϕ, t, i)| ∨ |g(ϕ, t, i)| ≤ Hh, for all t ∈ R+, i ∈ S and ϕ ∈ C([−τ, 0];Rn)

with ||ϕ|| ≤ h. Using Hölder’s inequality and Burkholder-Davis-Gundy inequality, we obtain

that, for any T1 > 0,

E

(
IA∩A1 sup

0≤t≤T1
|x(µ2l−1 + t)− x(µ2l−1)|2

)
≤ 2E

(
IA∩A1 sup

0≤t≤T1
|
∫ µ2l−1+t

µ2l−1

f(xs, s, r(s))ds|2
)

+ 2E

(
IA∩A1 sup

0≤t≤T1
|
∫ µ2l−1+t

µ2l−1

g(xs, s, r(s))dB(s)|2
)

≤ 2T1H
2
h(T1 + 4)

Since Q(x) is continuous in Rn, it is uniformly continuous in the closed ball B̄h = {x ∈ Rn :

|x| ≤ h}. Hence, we can choose a sufficiently small δ′ = δ′(δ) > 0 such that |Q(x)−Q(y)| < δ,

when |x| ∨ |y| ≤ h and |x− y| ≤ δ′.
By using Chebyshev’s inequality, we get that

P

(
A ∩A1 ∩

{
sup

0≤t≤T1
|x(µ2l−1 + t)− x(µ2l−1)| < δ′

})
= P (A ∩A1)− E

(
IA∩A1 sup

0≤t≤T1
|x(µ2l−1 + t)− x(µ2l−1)| ≥ δ′

)
≥ 2δ −

2T1H
2
h(T1 + 4)

δ′2
.

Noting that

{
sup

0≤t≤T1
|x(µ2l−1+t)−x(µ2l−1)| ≤ δ′

}
⊂
{

sup
0≤t≤T1

|Q(x(µ2l−1+t))−Q(x(µ2l−1))| <

δ

}
⊂
{
µ2l − µ2l−1 ≥ T1

}
, we choose a sufficiently small T1 > 0 such that

2T1H2
h(T1+4)

δ′2 < δ.

So we compute that P

(
A ∩A1 ∩

{
sup

0≤t≤T1
|x(µ2l−1 + t)− x(µ2l−1)| < δ′

})
> δ.
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On the other hand, from the assertion (3.7) and the relation of Q(x) and
∑L

j=1Wj(x, t),

we easily get that

E

∫ ∞
0

Q(x(s))ds ≤
L∑
j=1

E

∫ ∞
0

Wj(x(s, ζ, i0), s)ds <∞. (3.26)

For any ω ∈ A ∩A1 ∩
{

sup
0≤t≤T1

|x(µ2l−1 + t)− x(µ2l−1)| < δ′
}

, we have

E

∫ ∞
0

Q(x(s))ds ≥
∞∑
l=1

E

(
I{µl<∞}

∫ µ2l

µ2l−1

Q(x(s))ds

)

≥ δ
∞∑
l=1

E

(
IA∩A1∩{ sup

0≤t≤T1
|x(µ2l−1+t)−x(µ2l−1)|<δ′}(µ2l − µ2l−1)

)

≥ δT1
∞∑
l=1

E

(
IA∩A1∩{ sup

0≤t≤T1
|x(µ2l−1+t)−x(µ2l−1)|<δ′}

)

≥ δT1
∞∑
l=1

δ

=∞,

which implies a contradiction with (3.26). So we finish the proof of (3.11).

Remark 2. 1) The results obtained in Theorem 3.1 are in terms of functions Wj (j =

0, 1, · · · , L), that are more general boundedness, general exponential stability and general

H∞ stability than usual senses. If we impose some simple conditions for these functions, we

can get the usual boundedness, exponential stability and H∞ stability of the solution. For

example, if conditions

c|x|p ≤W0(x, t), c̄|x|q ≤W1(x, t), (3.27)

hold for some positive constants c, p, c̄, q, then we have

lim sup
t→∞

E|x(t, ζ, i0)|p ≤
α0

cε0
, (3.28)

lim sup
t→∞

1

t

∫ t

0
E|x(s, ζ, i0)|qds ≤

α0

c̄(α1 − β1)
, (3.29)

Further, let α0 = 0 and (3.27) hold, we obtain

lim sup
t→∞

1

t
log(E|x(t, ζ, i0)|p) ≤ −ε0, (3.30)

∫ ∞
0

E|x(s, ζ, i0)|qds <∞, (3.31)
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lim sup
t→∞

1

t
log(|x(t, ζ, i0)|) ≤ −

ε0
p
, a.s. (3.32)∫ ∞

0
|x(s, ζ, i0)|qds <∞. a.s. (3.33)

Obviously, assertion (3.28) is the usual pth moment asymptotic boundedness of the solution

(see [13], [14]), assertions (3.30) and (3.32) are the usual pth moment exponential stability and

almost sure exponential stability of the solution respectively (see [13], [14]), and assertions

(3.31) and (3.33) show the usual H∞ stability of the solution (see [19]).

2) From Remark 1, the results 1) and 2) of Theorem 3.1 imply that of Theorem 3.1 in

[3], and the analysis methods are similar. The main differences are that we have to deal

with the terms of
∫ 0
−τ Wj(ϕ(θ), t + θ)dηj(θ) (j = 1, 2, · · · , L) in our case. We mainly use

integral inequalities (3.13) and (3.17). We also prove the almost sure asymptotic stability of

the solution, which did not be studied for SDDEs case in [3].

3) When W0(x, t) = c|x|p,W1(x, t) = c̄|x|p, αj = βj = 0, j = 2, 3, · · · , L, the result 1) of

Theorem 3.1 in this paper becomes that of Theorem 8.4 on asymptotic boundedness in [13].

Hu, Mao and Shen [3] introduce two auxiliary functions U1, U2 to dominate different Lya-

punov functions for different modes, and assume that the diffusion operators in all modes

are controlled by function U2. When considering different Lyapunov functions for different

modes of SFDEs with Markovian switching, we may design two auxiliary functions W0,W1

to dominate all Lyapunov functions, and we relax one function W1 to the multiple auxiliary

functions Wj(j = 1, 2, · · · , L) to dominate the diffusion operators in all modes.

Next, we give an example to illustrate our theorem.

Example 3.1. Let us consider a scalar SFDE with Markovian switching

dx(t) = f(xt, t, r(t))dt+ g(xt, t, r(t))dB(t), (3.34)

where B(t) is a scalar Brownian motion, r(t) is a right-continuous Markovian chain on the

state space S = {1, 2} with generator

Γ =

 −1 1

6 −6

 , (3.35)

and

f(xt, t, 1) = −4(x(t) + x3(t) + x5(t)), f(xt, t, 2) =
1

4
x(t)− x3(t),

g(xt, t, 1) =

∫ 0

−1
|x(t+ θ)|3dη(θ) +

∫ 0

−1
|x(t+ θ)|2dη(θ), g(xt, t, 2) =

1

2

∫ 0

−1
|x(t+ θ)|dη(θ),

where η is a probability measure on [−1, 0], which satisfies
∫ 0
−1 dη(θ) = 1.
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As to system (3.34), take different Lyapunov functions for the two modes

V (x, t, i) =

 x2, i = 1

2(x2 + x6), i = 2
, (3.36)

for all (x, t) ∈ R× [−τ,+∞), and we compute that

L V (xt, t, 1) = 2xTf(xt, t, 1) + g2(xt, t, 1) +
2∑
j=1

γ1jV (x(t), t, j)

≤ −6(x2 + x6) + 2

∫ 0

−1
(|x(t+ θ)|2 + |x(t+ θ)|6)dη(θ)− 8x4 + 2

∫ 0

−1
|x(t+ θ)|4dη(θ),

L V (xt, t, 2) = 2(2x+ 6x5)Tf(xt, t, 2) +
1

2
gT (xt, t, 2)(4 + 60x4)g(xt, t, 2) +

2∑
j=1

γ2jV (x(t), t, j)

≤ −4(x2 + x6) +
5

2

∫ 0

−1
(|x(t+ θ)|2 + |x(t+ θ)|6)dη(θ)− 4x4 − 12x8.

That is, for i = 1, 2,

L V (xt, t, i) ≤ −4(x2 + x6) +
5

2

∫ 0

−1
(|x(t+ θ)|2 + |x(t+ θ)|6)dη(θ)− 4x4 + 2

∫ 0

−1
|x(t+ θ)|4dη(θ).

Define W0(x, t) = x2, W1(x, t) = 2(x2 + x6) and W2(x, t) = x4, then

W0(x, t) ≤ V (x, t, i) ≤W1(x, t),

L V (xt, t, i) ≤ −2W1(x, t) +
5

4

∫ 0

−1
W1(x(t+ θ), t+ θ)dη(θ)− 4W2(x, t)

+2

∫ 0

−1
W2(x(t+ θ), t+ θ)dη(θ),

for all x, xt ∈ R, t ≥ −1 and i ∈ S. So we get the parameters in Assumption 3.2 as follows:

α0 = 0, α1 = 2, β1 =
5

4
, α2 = 4, β2 = 2.

And we compute that ε0 = sup{ε > 0 : ε + 5
4e
ε − 2 ≤ 0, ε ≤ log 2} = 0.3047. Hence, set

positive definite function Q(x) = x2 ≤W1(x, t)+W2(x, t), by Theorem 3.1 we get that there

is a unique global solution x(t) of system (3.34), and that the global solution x(t) has the

following moment properties

lim sup
t→∞

log(Ex2(t))

t
≤ −0.3047, (3.37)

∫ ∞
0

E(x2(t))dt <∞,
∫ ∞
0

E(x4(t))dt <∞,
∫ ∞
0

E(x6(t))dt <∞, (3.38)
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and the following sample properties

lim sup
t→∞

log(|x(t)|)
t

≤ −0.1524, a.s. (3.39)∫ ∞
0
x2(t)dt <∞,

∫ ∞
0
x4(t)dt <∞,

∫ ∞
0
x6(t)dt <∞, a.s. (3.40)

lim
t→∞

x(t) = 0. a.s. (3.41)

0 2 4 6 8 10

−
2

−
1

0
1

2

t

x(
t)

Figure 1: Simulation of the trajectory of the solution x(t) of system (3.34) on [0,10].

For system (3.34), take probability measure η(θ) = eθ

1−e−1 and initial data ζ = {θ+2 : −1 ≤
θ ≤ 0}, i0 = 1. Based on the Euler-Maruyama scheme with step size 10−3, we give a sequence

of computer simulations for system (3.34) as follows. Figure 1 illustrates the assertion (3.41)

by the simulation of the trajectory of the solution x(t) of system (3.34). Figure 2 illustrates

the assertions (3.37) and (3.38) by the simulations of log(Ex2(t))
t ,

∫ t
0 E(x2(t))dt,

∫ t
0 E(x4(t))dt

and
∫ t
0 E(x6(t))dt for the solution x(t) of system (3.34). Figure 3 illustrates the assertions

(3.39) and (3.40) by the simulations of the trajectories of log(|x(t)|)
t ,

∫ t
0 x

2(t)dt,
∫ t
0 x

4(t)dt and∫ t
0 x

6(t)dt for the solution x(t) of system (3.34).

4 Further Results

Assumption 3.2 in Section 3 requires that α0, αj , βj(j = 1, 2, · · · , L) be constants. However,

many SFDEs with Markovian switching do not satisfy these conditions. Let us see an example

dx(t) = f(xt, t, r(t))dt+ g(xt, t, r(t))dB(t), (4.1)
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Figure 2: Simulations of log(Ex2(t))/t,
∫ t
0 E(x2(t))dt,

∫ t
0 E(x4(t))dt and

∫ t
0 E(x6(t))dt for

the solution x(t) of system (3.34) on [0, 10] and sample size 200.
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Figure 3: Simulations of the trajectories of log(|x(t)|)/t,
∫ t
0 x

2(t)dt,
∫ t
0 x

4(t)dt and
∫ t
0 x

6(t)dt

for the solution x(t) of system (3.34) on [0, 10].
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where B(t), r(t) are the same as defined in system (3.34), and the coefficients are time-varying

as follows:

f(xt, t, 1) = −4(1 +
1

1 + t
)(x(t) + x3(t) + x5(t)), f(xt, t, 2) = (

1

4
− 1

1 + t
)x(t)− 1

1 + t
x3(t),

g(xt, t, 1) =

√
1

1 + t
(2e−t

∫ 0

−τ
|x(t+ θ)|

1
2 dη(θ) +

∫ 0

−τ
|x(t+ θ)|3dη(θ)),

g(xt, t, 2) =
1

2

√
1

1 + t

∫ 0

−τ
|x(t+ θ)|dη(θ),

where η is a probability measure on [−τ, 0], which satisfies
∫ 0
−τ dη(θ) = 1.

We easily see that all existing results and Theorem 3.1 in Section 3 can not be directly

used to system (4.1) for the existence of time-varying coefficients.

As to system (4.1), using the same definition of V (x, t, i) as (3.36), we compute that

L V (xt, t, 1) = 2xTf(xt, t, 1) + g2(xt, t, 1) +

2∑
j=1

γ1jV (x(t), t, j)

≤ −8
1

1 + t
(x2 + x6) + 3

1

1 + t

∫ 0

−τ
(|x(t+ θ)|2 + |x(t+ θ)|6)dη(θ)− 8

1

1 + t
x4 + 3e−4t,

L V (xt, t, 2) = 2(2x+ 6x5)Tf(xt, t, 2) +
1

2
gT (xt, t, 2)(4 + 60x4)g(xt, t, 2) +

2∑
j=1

γ2jV (x(t), t, j)

≤ −4
1

1 + t
(x2 + x6) +

5

2

1

1 + t

∫ 0

−τ
(|x(t+ θ)|2 + |x(t+ θ)|6)dη(θ)− 4

1

1 + t
x4 − 12

1

1 + t
x8.

That is, for i = 1, 2,

L V (xt, t, i) ≤ −4
1

1 + t
(x2 + x6) + 3

1

1 + t

∫ 0

−τ
(|x(t+ θ)|2 + |x(t+ θ)|6)dη(θ)− 4

1

1 + t
x4 + 3e−4t.

Hence, define W0(x, t) = x2, W1(x, t) = 2(x2 + x6) and W2(x, t) = x4, then

W0(x, t) ≤ V (x, t, i) ≤W1(x, t),

L V (xt, t, i) ≤ 3e−4t − 2
1

1 + t
W1(x, t) +

3

2

1

1 + t

∫ 0

−τ
W1(x(t+ θ), t+ θ)dη(θ)

− 4
1

1 + t
W2(x, t) +

1

1 + t

∫ 0

−τ
W2(x(t+ θ), t+ θ)dη(θ), (4.2)

for all x, xt ∈ R, t ≥ −τ and i ∈ S.

Then it is natural to ask the following questions: Is there a unique global solution if a SFDE

with Markovian switching obeys some conditions similar to (4.2)? If yes, whether the SFDE

with Markovian switching has the properties of the asymptotic stability and boundedness?

So, another aim of this paper is to answer these questions above. To do these, we extend

the idea of the diffusion operators dominated by multiple auxiliary functions with constant

coefficients in Theorem 3.1 to that in the case of time-varying coefficients.

Motivated by system (4.1) discussed above, we propose another new assumption.
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Assumption 4.1. Let b0(t), bj(t)(j = 1, 2, · · · , L) be continuous functions from [−τ,∞) to

R+ satisfying the following conditions:
∫∞
0 b0(t)dt <∞,

∫∞
0 b1(t)dt =∞, functions bj(t)(j =

1, 2, · · · , L) are monotonically non-increasing and bounded by 1. And let all conditions in

Assumption 3.2 hold except (3.3) is replaced by

L V (ϕ, t, i) ≤ b0(t) +
L∑
j=1

[
− αjbj(t)Wj(ϕ(0), t) + βjbj(t)

∫ 0

−τ
Wj(ϕ(θ), t+ θ)dηj(θ)

]
, (4.3)

for all i ∈ S and ϕ ∈ C([−τ, 0];Rn), t ∈ R+.

Remark 3. Note Assumption 4.1 is different from Assumption 3.2. The difference looks

”small”, but it’s significant in the two following aspects:

1) Because of the existence of bj(t)(j = 0, 1, · · · , L), Assumption 4.1 is more adapt to

non-autonomous systems;

2) The requirement of α0 in Assumption 3.2 is different from that of b0(t) in Assumption

4.1. Of course, Assumption 4.1 with b0(t) = 0 and bj(t) = 1(j = 1, 2, · · · , L), reduces to the

case of Assumption 3.2 with α0 = 0, namely, Assumption 3.2 with α0 = 0 is only a special

case of Assumption 4.1.

Since the coefficients of Wj(j = 1, · · · , L) in (4.3) are time-varying, it is said to be the case

of multiple auxiliary functions with time-varying coefficients for convenience. Next, we state

our main results of SFDEs with Markovian switching in this case.

Theorem 4.1. Under Assumptions 3.1 and 4.1, we have the following assertions:

1) For any given initial data ζ ∈ C and i0 ∈ S, there is a unique global solution x(t, ζ, i0)

of system (2.1) on t ≥ −τ , which satisfies the following moment properties

sup
−τ≤t<∞

EW0(x(t, ζ, i0), t) <∞, (4.4)

∫ ∞
0

bj(s)EWj(x(s, ζ, i0), s)ds <∞, j = 1, 2, · · · , L (4.5)

EW0(x(t, ζ, i0), t) ≤ c2e−ε0
∫ t
0 b1(h)dh +

∫ t

0
e−ε0

∫ t
s b1(h)dhb0(s)ds, (4.6)

lim
t→∞

EW0(x(t, ζ, i0), t) = 0. (4.7)

and the following sample properties

sup
−τ≤t<∞

x(t, ζ, i0) <∞, a.s. (4.8)

∫ ∞
0

bj(s)Wj(x(s, ζ, i0), s)ds <∞, a.s. j = 1, 2, · · · , L (4.9)
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where c2 is a finite positive constant, ε0 is the same as defined in Theorem 3.1.

2) Moreover, if b0(t) = 0, the global solution x(t, ζ, i0) has the following moment property

lim sup
t→∞

1

t
log(EW0(x(t, ζ, i0), t)) ≤ −ε0 lim inf

t→∞

∫ t
0 b1(h)dh

t
, (4.10)

and the following sample property

lim sup
t→∞

1

t
log(W0(x(t, ζ, i0), t)) ≤ −ε0 lim inf

t→∞

∫ t
0 b1(h)dh

t
. a.s. (4.11)

3) If furthermore there exists a continuous positive definite function G ∈ C(Rn;R+) and

a continuous function ψ(·) ∈ Ψ(R+;R+) such that ψ(t)G(x) ≤
∑L

j=1 bj(t)Wj(x, t) for all

(x, t) ∈ Rn × [−τ,∞), then

lim
t→∞

x(t, ζ, i0) = 0. a.s. (4.12)

Proof. 1) The proof of the existence and uniqueness of the global solution x(t, ζ, i0) of system

(2.1) is essentially similar to that of Theorem 3.1, so we omit it. For the sake of simplicity,

write x(t) = x(t, ζ, i0). Using the generalized Itô’s formula to eε
∫ t
0 b1(h)dhV (x(t), t, r(t)), ε ∈

[0, ε0], and from condition (3.2), we get that, for any t ≥ 0,

eε
∫ t
0 b1(h)dhV (x(t), t, r(t))

= V (x(0), 0, r(0)) +

∫ t

0
eε

∫ s
0 b1(h)dh(εb1(s)V (x(s), s, r(s)) + L V (xs, s, r(s)))ds+M1(t)

≤W1(x(0), 0) +

∫ t

0
eε

∫ s
0 b1(h)dh

[
b0(s)− (α1 − ε)b1(s)W1(x(s), s)

+ β1b1(s)

∫ 0

−τ
W1(x(s+ θ), s+ θ)dη1(θ) +

L∑
j=2

[−αjbj(s)Wj(x(s), s)

+ βjbj(s)

∫ 0

−τ
Wj(x(s+ θ), s+ θ)dηj(θ)]

]
ds+M1(t)

≤W1(x(0), 0) +

∫ t

0
eε

∫ s
0 b1(h)dh

[
b0(s)− (α1 − ε− β1eετ )b1(s)W1(x(s), s) + β1b1(s)J

′
1

+

L∑
j=2

[−(αj − βjeετ )bj(s)Wj(x(s), s) + βjbj(s)J
′
j ]

]
ds+M1(t), (4.13)

where M1(t) is a local martingale with the initial value M1(0) = 0, J ′j =
∫ 0
−τ Wj(x(s+ θ), s+

θ)dηj(θ)− eετWj(x(s), s), j = 1, 2, · · ·L.

By virtue of the fact that∫ t

0
eε

∫ s
0 b1(h)dhbj(s)J

′
jds
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≤
∫ 0

−τ

∫ t

−τ
eε

∫ r−θ
0 b1(h)dhbj(r − θ)Wj(x(r), r)drdηj(θ)− eετ

∫ t

0
eε

∫ s
0 b1(h)dhbj(s)Wj(x(s), s)ds

≤
∫ 0

−τ

∫ t

−τ
eε(

∫ r
0 b1(h)dh+

∫ r−θ
r b1(h)dh)bj(r)Wj(x(r), r)drdηj(θ)− eετ

∫ t

0
eε

∫ s
0 b1(h)dhbj(s)Wj(x(s), s)ds

≤ eετ
∫ 0

−τ
eε

∫ s
0 b1(h)dhbj(s)Wj(x(s), s)ds, (4.14)

for j = 1, 2, · · · , L, (4.13) can be rewritten as

eε
∫ t
0 b1(h)dhV (x(t), t, r(t))

≤W1(x(0), 0) +

∫ t

0
eε

∫ s
0 b1(h)dhb0(s)ds− (α1 − ε− β1eετ )

∫ t

0
eε

∫ s
0 b1(h)dhb1(s)W1(x(s), s)ds

−
L∑
j=2

(αj − βjeετ )

∫ t

0
eε

∫ s
0 b1(h)dhbj(s)Wj(x(s), s)ds

+
L∑
j=1

βje
ετ

∫ 0

−τ
eε

∫ s
0 b1(h)dhbj(s)Wj(x(s), s)ds+M1(t)

≤ c2 +

∫ t

0
eε

∫ s
0 b1(h)dhb0(s)ds− (α1 − ε− β1eετ )

∫ t

0
eε

∫ s
0 b1(h)dhb1(s)W1(x(s), s)ds

−
L∑
j=2

(αj − βjeετ )

∫ t

0
eε

∫ s
0 b1(h)dhbj(s)Wj(x(s), s)ds+M1(t), (4.15)

where c2 = W1(x(0), 0)+
∑L

j=1 βje
ετ
∫ 0
−τ e

ε
∫ s
0 b1(h)dhbj(s)Wj(x(s), s)ds. Take the expectation

on both side of (4.15), and let ε→ ε0, we get the assertion (4.6)

EW0(x(t), t) ≤ c2e−ε0
∫ t
0 b1(h)dh +

∫ t

0
e−ε0

∫ t
s b1(h)dhb0(s)ds, (4.16)

from the definition of ε0 and condition (3.2).

From condition
∫∞
0 b1(t)dt =∞, it is obvious that, as t→∞,

e−ε0
∫ t
0 b1(h)dh → 0.

On the other hand, we have that∫ t

0
e−ε0

∫ t
s b1(h)dhb0(s)ds =

∫ T

0
e−ε0

∫ t
s b1(h)dhb0(s)ds+

∫ t

T
e−ε0

∫ t
s b1(h)dhb0(s)ds

≤ e−ε0
∫ t
T b1(h)dh

∫ ∞
0

b0(s)ds+

∫ ∞
T

b0(s)ds

For fixed T, e−ε0
∫ t
T b1(h)dh → 0 holds, as t→∞. Then letting T →∞, we have

∫∞
T b0(s)ds→

0. So ∫ t

0
e−ε0

∫ t
s b1(h)dhb0(s)ds→ 0 (4.17)
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holds, as t→∞. Therefore, we get the result (4.7)

lim
t→∞

EW0(x(t), t) = 0.

Letting ε→ 0 in (4.15), taking the expectation and then using Fubini theorem, we have

EW0(x(t), t) ≤ c′2 +

∫ t

0
b0(s)ds−

L∑
j=1

(αj − βj)
∫ t

0
bj(s)EWj(x(s), s)ds, (4.18)

where c′2 = EW1(x(0), 0) +
∑L

j=1 βjE
∫ 0
−τ bj(s)Wj(x(s), s)ds. From condition

∫∞
0 b0(t)dt <

∞, we get the assertions (4.4) and (4.5)

sup
−τ≤t<∞

EW0(x(t), t) ≤ c′2 +

∫ ∞
0

b0(s)ds <∞,∫ ∞
0

bj(s)EWj(x(s), s)ds ≤
c′2 +

∫∞
0 b0(s)ds

αj − βj
<∞. j = 1, 2, · · · , L

Letting ε→ 0, (4.15) becomes

V (x(t), t, r(t)) ≤ c3 +

∫ t

0
b0(s)ds−

L∑
j=1

(αj − βj)
∫ t

0
bj(s)Wj(x(s), s)ds+M2(t), (4.19)

where c3 = W1(x(0), 0)+
∑L

j=1 βj
∫ 0
−τ bj(s)Wj(x(s), s)ds, M2(t) is a local martingale with the

initial valueM2(0) = 0. From Lemma 2.1, we obtain the assertions (4.9) and sup−τ≤t<∞W0(x(t), t) <

∞, a.s.. From the radial unboundedness of W0(x, t) (see (3.1)), we directly get the assertion

(4.8).

2) Next, we prove the results in the case of b0(t) = 0. (4.15) becomes

eε
∫ t
0 b1(h)dhV (x(t), t, r(t)) ≤ c2 +M1(t), (4.20)

where c2 has been defined above. Taking the expectation on both side of (4.20), we have

eε
∫ t
0 b1(h)dhEW0(x(t), t, r(t)) ≤ c2. (4.21)

So as ε→ ε0, we get the result (4.10)

lim sup
t→∞

log(EW0(x(t), t))

t
≤ −ε0 lim inf

t→∞

∫ t
0 b1(h)dh

t
.

Applying Lemma 2.1 to (4.20), we obtain that

lim sup
t→∞

eε
∫ t
0 b1(h)dhW0(x(t), t) <∞. a.s. (4.22)

Hence, there exists a finite positive random variable ζ̄ such that

sup
0≤t<∞

eε
∫ t
0 b1(h)dhW0(x(t), t) < ζ̄. a.s. (4.23)
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So as ε→ ε0, we get the result (4.11)

lim sup
t→∞

log(W0(x(t), t))

t
≤ −ε0 lim inf

t→∞

∫ t
0 b1(h)dh

t
. a.s.

3) Finally, we prove the result (4.12). Similar to the proof of (3.11), the assertion (4.12)

is equivalent to the assertion

lim sup
t→∞

G(x(t)) = 0. a.s.

If this is false, then there exists a constant δ1 such that P (B) > 3δ1, where B =

{
ω :

lim sup
t→∞

G(x(t)) > 2δ1

}
. From the assertion (4.8), we can see that there exists a sufficiently

large positive constant h = h(δ1) such that P (D) > 1− δ1, where D =

{
ω : sup
−τ≤t<∞

|x(t)| <

h

}
. So we easily obtain that P (B ∩D) > 2δ1.

For any fixed θ̄ > 0, define a sequence of stopping times by

σ1 = inf{t ≥ 0 : G(x(t)) ≥ 2δ1}, σ2 = inf{t ≥ σ1 : G(x(t)) ≤ δ1},

σ2l+1 = inf{t ≥ σ2l + θ̄ : G(x(t)) ≥ 2δ1}, l = 1, 2, . . .

σ2l+2 = inf{t ≥ σ2l+1 : G(x(t)) ≤ δ1}. l = 1, 2, . . .

Similarly, we obtain B ∩D ⊂ {σl <∞, l = 1, 2, . . .} and that, for any T2 > 0,

E

(
IB∩D sup

0≤t≤T2
|x(σ2l−1 + t)− x(σ2l−1)|2

)
≤ 2T2H

2
h(T2 + 4),

and that there exists a sufficiently small δ2 = δ2(δ1) > 0 such that |G(x)−G(y)| < δ1, when

|x| ∨ |y| ≤ h and |x− y| ≤ δ2.

Noting that

{
sup

0≤t≤T2
|x(σ2l−1+t)−x(σ2l−1)| ≤ δ2

}
⊂
{

sup
0≤t≤T2

|G(x(σ2l−1+t))−G(x(σ2l−1))| <

δ1

}
⊂
{
σ2l − σ2l−1 ≥ T2

}
, we similarly choose a sufficiently small T2 > 0 such that

P

(
B ∩D ∩

{
sup

0≤t≤T2
|x(σ2l−1 + t)− x(σ2l−1)| < δ2

})
> δ1.

Since ψ(t) ∈ Ψ(R+;R+), then for the chosen T2 > 0 there exist constants ρ = ρ(T2), T3 =

T3(ρ, T2) such that
∫ t+T2
t ψ(s)ds ≥ ρ, when t ≥ T3. From the definition of σl, there exists a

positive integer Q1 = [T3/θ̄] + 2 such that, for any ω ∈ B ∩ D, σ2l−1 > T3, when l ≥ Q1.

Hence, for any ω ∈ B ∩D, we have
∫ σ2l−1+T2
σ2l−1

ψ(s)ds ≥ ρ, l ≥ Q1.

On the other hand, from the assertion (4.5) and the relation of ψ(t)G(x) and
∑L

j=1 bj(t)Wj(x, t),

we easily get that

E

∫ ∞
0

ψ(s)G(x(s))ds ≤
L∑
j=1

E

∫ ∞
0

bj(s)Wj(x(s, ζ, i0), s)ds <∞. (4.24)
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For any ω ∈ B ∩D ∩
{

sup
0≤t≤T2

|x(σ2l−1 + t)− x(σ2l−1)| < δ2

}
, we have

E

∫ ∞
0

ψ(s)G(x(s))ds ≥ E
( ∞∑
l=1

I{σl<∞}

∫ σ2l

σ2l−1

ψ(s)G(x(s))ds

)

≥ δ1E
( ∞∑
l=Q1

IB∩D∩{ sup
0≤t≤T2

|x(σ2l−1+t)−x(σ2l−1)|<δ2}

∫ σ2l

σ2l−1

ψ(s)ds

)

≥ δ1E
( ∞∑
l=Q1

IB∩D∩{ sup
0≤t≤T2

|x(σ2l−1+t)−x(σ2l−1)|<δ2}

∫ σ2l−1+T2

σ2l−1

ψ(s)ds

)

≥ δ1ρ
∞∑

l=Q1

δ1

=∞,

which implies a contradiction with (4.24). So we get the assertion (4.12).

Remark 4. The results of Theorem 4.1 look similar to that of Theorem 3.1, but they are

in fact significantly different. The contribution of Theorem 4.1 is significant in at least the

following three aspects:

1) When the system is non-autonomous, it is natural to resort to Theorem 4.1 rather than

Theorem 3.1;

2) Since Ψ(R+;R+) contains many functions (see [6]), the results of Theorem 4.1 can be

used to much greater fields than that of Theorem 3.1 with α0 = 0;

3) Because of the properties of Ψ(R+;R+), the techniques used in Theorem 3.1 can not be

used to Theorem 4.1 directly. So we introduce some new techniques to cope with the function

in Ψ(R+;R+).

Proposition 4.1. Let Assumptions 3.1, 4.1 hold except (4.3) is replaced by

L V (ϕ, t, i) ≤ b0(t) +
L∑
j=1

[
− αjbj(t)Wj(ϕ(0), t) + βjb

′
j(t)

∫ 0

−τ
W ′j(ϕ(θ), t+ θ)dηj(θ)

]
,

bj(t) ≥ b′j(t), Wj(ϕ, t) ≥W ′j(ϕ, t), j = 1, 2, · · · , L

for all i ∈ S and ϕ ∈ C([−τ, 0];Rn), t ∈ R+, where b′j(t) ∈ C([−τ,∞), R+),W ′j ∈ C(Rn ×
[−τ,∞);R+). Then all results of Theorem 4.1 hold.

Finally, we give the following example to illustrate our theorem.

Example 4.1. Let us continue to use the notations of system (4.1). Further we set τ = 0.2.

By (4.2) and W0(x, t) = x2, W1(x, t) = 2(x2 + x6), W2(x, t) = x4, we note that W0(x, t)

satisfies (3.1), and get the parameters in Assumption 4.1 as follows:

b0(t) = 3e−4t, b1(t) = b2(t) =
1

1 + t
, α1 = 2, β1 =

3

2
, α2 = 4, β2 = 1.
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And we compute that ε0 = sup{ε > 0 : ε + 3
2e

0.2ε − 2 ≤ 0, ε ≤ 10 log 2} = 0.3812. Hence,

from Theorem 4.1 there is a unique global solution x(t) of system (4.1). And we get that the

global solution x(t) of system (4.1) has the following moment properties

sup
−0.2≤t<∞

E(x2(t)) <∞,

∫ ∞
0

1

1 + t
E(x2(t))dt <∞,

∫ ∞
0

1

1 + t
E(x4(t))dt <∞,

∫ ∞
0

1

1 + t
E(x6(t))dt <∞, (4.25)

E(x2(t)) ≤ c2e−0.3812 log(1+t) + 3e−0.3812 log(1+t)
∫ t

0
e0.3812 log(1+s)−2sds,

lim
t→∞

E(x2(t)) = 0, (4.26)

and the following sample properties

sup
−0.2≤t<∞

|x(t)| <∞,

∫ ∞
0

1

1 + t
x2(t)dt <∞,

∫ ∞
0

1

1 + t
x4(t)dt <∞,

∫ ∞
0

1

1 + t
x6(t)dt <∞, a.s. (4.27)

where c2 is a finite positive constant.

Set positive definite function G(x) = x2 and ψ(t) = 1
1+t ∈ Ψ(R+;R+), then ψ(t)G(x) ≤

b1(t)W1(x, t) + b2(t)W2(x, t), and from Theorem 4.1 we get that

lim
t→∞

x(t, ζ, i0) = 0. a.s. (4.28)

For system (4.1), take probability measure η(θ) = eθ−e−0.2

1−e−0.2 and initial data ζ = {θ + 2 :

−0.2 ≤ θ ≤ 0}, i0 = 1. Based on the Euler-Maruyama scheme with step size 10−3, we give

a sequence of computer simulations for system (4.1) as follows. Figure 4 illustrates the as-

sertions (4.25) and (4.26) by the simulations of E(x2(t)),
∫ t
0

1
1+tE(x2(t))dt,

∫ t
0

1
1+tE(x4(t))dt

and
∫ t
0

1
1+tE(x6(t))dt for the solution x(t) of system (4.1). Figure 5 illustrates the assertions

(4.27) and (4.28) by the simulations of the trajectories of the solution x(t) of system (4.1),∫ t
0

1
1+tx

2(t)dt,
∫ t
0

1
1+tx

4(t)dt and
∫ t
0

1
1+tx

6(t)dt.

5 Conclusions

Motivated by Hu, Mao and Shen [3], we have used the method of multiple Lyapunov functions

to study the asymptotic boundedness and stability of the SFDE with Markovian switching.

Different type of Lyapunov functions for different mode has been used to deal with the

structure difference of the underlying SFDE in different mode. It is in this way that our

results on the boundedness and stability are more general than the existing results in this

area. Several examples and computer simulations have been used to illustrate our new results.
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Figure 4: Simulations of E(x2(t)),
∫ t
0

1
1+tE(x2(t))dt,

∫ t
0

1
1+tE(x4(t))dt,

∫ t
0

1
1+tE(x6(t))dt for

the solution x(t) of system (4.1) on [0, 10] and sample size 200.
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Figure 5: Simulations of the trajectories of the solution x(t) of system (4.1),
∫ t
0

1
1+tx

2(t)dt,∫ t
0

1
1+tx

4(t)dt and
∫ t
0

1
1+tx

6(t)dt on [0, 10].
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