


where ϕ : R→ R is a given scalar function and the notation ϕ(wj) stands for ϕ(·) applied to each component
of the nw-dimensional vector wj

1. Policy (2) is indeed a state-feedback control policy since the disturbance
is recovered from the state according to (1). Notably, if the scalar function ϕ(·) is the identity map (i.e.,
ϕ(a) = a, ∀a ∈ R) and Bw = In, then, we obtain a policy that is equivalent to a feedback policy affine in
the state [3]. If ϕ(·) is given by the saturation function

ϕ(a) =


−ϕ̄, a < −ϕ̄
a, |a| ≤ ϕ̄
ϕ̄, a > ϕ̄,

(3)

(or alternatively by a sigmoidal function), then, the resulting policy is a nonlinear function of the state and
provides a bounded input even if the disturbance is unbounded [4, 5].

The state xt and the control input ut are both random variables since they depend on the stochastic
disturbance wt. The system performance is then expressed in terms of an average cost function. More
specifically, we adopt the average quadratic cost

J = E

[
M∑
t=1

xTt Qtxt +

M−1∑
t=0

uTt Rtut

]
, (4)

where Qt ∈ Rn×n and Rt ∈ Rm×m are symmetric positive semidefinite matrices. We consider input and
state constraints of the following form:

sup
t∈{0,...,M−1}

‖ut‖∞ ≤ ū,

(5)
sup

t∈{1,...,M}
‖Cxt‖∞ ≤ ȳ.

Note that the value taken by the input and state variables along the reference finite-horizon [0,M ] is
uncertain, since it depends on the noise process wt affecting the system evolution. To account for this when
formulating the constraints, one can either enforce the constraints (5) to hold for every and each disturbance
realization (hard constraints), even for those realizations that are quite unlikely to occur, or require them
to hold only on a set of disturbance realizations of probability at least 1− ε, with ε ∈ (0, 1) set by the user
(soft constraints).

As for the control input, hard constraints are typically motivated by the presence of saturation limits
of the actuators. However, they do not take into account the statistical properties of the noise and may
lead to conservative solutions, which motivates the introduction of soft constraints on the input. Note that,
whilst both hard and soft constraints on the input are always feasible (a feasible solution is obtained by
setting all the design parameters equal to zero), hard constraints on the state are not feasible when the noise
distribution has unbounded support, because wt enters additively the state equation and this contribution
cannot be canceled through any control action. Hence, if the noise is not bounded, one can only head for
soft state constraints, leading to the following two formulations for the input and state constraints:

- hard & soft {
supt∈{0,...,M−1} ‖ut‖∞ ≤ ū, ∀(w0, w1, . . . , wM−1)

P
{

supt∈{1,...,M} ‖Cxt‖∞ ≤ ȳ
}
≥ 1− ε;

1Note that one can also consider the more general setup where nw distinct ϕ functions are used , one for each component
of wj . This allows for a better exploitation of the disturbance characteristics and, moreover, all the subsequent derivations can
be straightforwardly extended to this setting as well. In the sequel, however, we will stick to the setup where the same ϕ is
applied to all the components of wj to avoid notational clutter.
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- soft & soft

P
{

sup
t∈{0,...,M−1}

‖ut‖∞ ≤ ū ∧ sup
t∈{1,...,M}

‖Cxt‖∞ ≤ ȳ
}
≥ 1− ε.

When formulating the constraints, the value of ȳ in the state constraints is quite critical, because of the
following two reasons:

- the feasibility of the soft constraint on the state is not always guaranteed since ȳ may be not compatible
with the disturbance characteristics, the system dynamics and initialization, and the saturation limits
imposed to the control input;

- even when the soft constraint is feasible, the performance of the obtained solution can be too much
adversely affected by the presence of the state constraints if ȳ takes a conservative value.

As a remedy to prevent the critical issues above, rather than seeing ȳ as a fixed value, one should try
to modulate it so as to guarantee feasibility, while achieving the appropriate compromise between state
constraint enforcement and performance.

In this paper we pursue this approach and, to address the feasibility issue, ȳ is replaced by a decision
variable, say h, so that it can be automatically set to a value compatible with the system dynamics and
initialization, input constraints, and noise characteristics. Appropriate chance-constrained optimization
problems depending on some parameter to be tuned are then introduced. In these optimization problems
both state constraints and performance are accounted for, and the value for the parameter determines the
trade-off between the objective of minimizing the control cost J in (4) (performance) and that of minimizing h
(state constraint enforcement). By tuning this parameter, one can explore the different possible compromises
between the two objectives – while preserving feasibility –, and choose the solution that is more satisfactory
in terms of values achieved for J and h.

From an algorithmic viewpoint, a randomized approach that is computationally tractable is proposed to
provide an approximate solution to the resulting chance-constrained optimization problems. The proposed
solution relies on the so-called scenario approach, [6, 7, 8, 9, 10], and requires using realizations of the
disturbance wt, which can be either available as time series data or artificially generated. In the latter case,
the probability distribution of wt has to be known. A detailed analysis of the suitability of the method is
also given.

A preliminary version of this work was presented as a conference contribution in [11]. The present paper
significantly extends [11] in that detailed proofs of the results and a more comprehensive example are given.

Remark 1 (possible extensions). To avoid cumbersome notations, all the results in this paper are given
for the constraints in (5). Nonetheless, the presented results are still valid in the more general setting of
multiple affine constraints on u and x,

sup
t∈{0,...,M−1}

‖Lkut + gk‖∞ ≤ ūk, k = 1, . . . , pu,

sup
t∈{1,...,M}

‖Ckxt + dk‖∞ ≤ ȳk, k = 1, . . . , px,

through which one can e.g. pose distinct limits on the various input/state components. Also, as for the
probabilistic constraints, extensions to the case when norms other than ‖·‖∞ are adopted can be easily worked
out, the only requirement being that the norm argument is affine in the optimization variables. Furthermore,
the proposed approach can also be adapted to the case when the disturbance is directly measurable and a
feed-forward disturbance compensator is adopted.

1.1. Brief literature overview

We can distinguish two classes of approaches for stochastic constrained control depending on the relax-
ation method adopted to cope with probabilistic constraints, which can either be based on randomization
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or on some analytic approximation, possibly accounting for constraints indirectly vai a penalization term in
the cost function.
Our approach belongs to the first class, as those proposed in [12, 13, 14]. The closest approach to the present
work is that in [14], where a penalty is added to the cost so as to avoid infeasibility, the key difference being
that in [14] the disturbance is assumed to be bounded and hard constraints only are considered. Indeed,
using penalty to ensure feasibility is a quite standard engineering practice in MPC [15]. In all methods,
limiting assumptions on the noise being bounded, or on the presence of input constraints only are made so
that they are not applicable to our framework.
The approaches in [16, 17, 18, 19, 20, 21, 22, 23, 24, 25] belong to the second class and address problems
where both input and state constraints are present and the disturbance has unbounded support, as it is the
case in our paper. In particular, in [16, 19, 21], state constraints are accounted for by introducing a penaliza-
tion term in the cost. In [17, 20, 22, 24, 25], an analytic convex relaxation of chance constraints is adopted,
while in [18, 23] the support of the disturbance is reduced to a compact set by suitably cutting the tails of
the disturbance distribution and then providing a result that holds with a certain (high) probability. In all
these analytic approaches that do not resort to randomization, the disturbance is assumed to be a sequence
of independent and identically distributed (i.i.d.) random variables. The approaches [16, 17, 18, 20, 22, 24]
also require the disturbance to be Gaussian.
In most of the cited approaches, a receding horizon implementation of the finite horizon solution to the
stochastic constrained optimization is adopted, leading to stochastic MPC solutions. This brings into the
picture further relevant issues like recursive feasibility and stability (see e.g. the recent surveys [26] and
[27] on stochastic MPC) that, however, go beyond the scope of this paper. Also, stability may be even
impossible to achieve in our setting where the control input is bounded and the disturbance is unbounded
as discussed in [28] with reference to mean square stability.

Interestingly, constraint tightening can be instrumental to enforce recursive feasibility and stability in
stochastic MPC, as shown in [29] though with reference to the case of an i.i.d. disturbance sequence with
bounded and convex support. The analysis is performed assuming that suitably designed probabilistic
constraints are satisfied. Either randomized or analytic methods can then be used for the algorithmic
solution of the involved chance-constrained optimization problem.

1.2. Structure of the paper

Section 2 introduces compact notations to simplify the reading. Two approaches to trade J with respect
to h are presented in Section 3, while Section 4 introduces suitable relaxations to the resulting chance-
constrained optimization problems leading to computationally tractable problems. Section 5 focuses on the
tuning of the parameter affecting the compromise between performance and state constraint enforcement
in both approaches. A thorough discussion on the properties of the achieved approximate solutions and on
the relation between the two approaches is also provided. The related proofs are presented in Section 6. A
numerical example is presented in Section 7, while some concluding remarks are drawn in Section 8.

2. Notations

In this section we introduce compact notations to simplify the equations and ease the paper understand-
ing.

Let

x =


x1

x2

...
xM

 u =


u0

u1

...
uM−1

 w =


w0

w1

...
wM−1


be the vectors collecting state, input, and disturbance samples along the reference time-horizon. Then, it is
easy to show that

x = Fx0 + Gu + Hw
u = Γ + Θϕ(w),

(6)
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where matrices F, G and H are given by

F =


A
A2

...
AM

 G =


B 0n×m · · · 0n×m

AB B
. . .

...
...

. . .
. . . 0n×m

AM−1B · · · AB B



H =


Bw 0n×nw

· · · 0n×nw

ABw Bw
. . .

...
...

. . .
. . . 0n×nw

AM−1Bw · · · ABw Bw

 ,
whereas Γ and Θ are given by

Γ =


γ0

γ1

...
γM−1

Θ =


0m×nw

0m×nw
· · · 0m×nw

θ1,0 0m×nw

. . .
...

...
. . .

. . . 0m×nw

θM−1,0 · · · θM−1,M−2 0m×nw


From (6) it is clear that both the state and control input depend linearly on the parameters Γ and Θ. For
ease of notation, we do not make this dependence explicit and use u and x in place of u(Γ,Θ) and x(Γ,Θ).

If we set

Q =

 Q1 · · · 0n×n
...

. . .
...

0n×n · · · QM

 R =

 R0 · · · 0m×m
...

. . .
...

0m×m · · · RM−1

 ,
mw = E[w], mϕ = E[ϕ(w)] and

V =

[
Vϕϕ Vϕw
V Tϕw Vww

]
,

where Vww and Vϕϕ are the covariance matrices of w and ϕ(w) and Vϕw is the cross covariance matrix of
ϕ(w) and w; then, the control cost (4) can be expressed as the following convex function of (Γ,Θ):

J(Γ,Θ) = E
[
xTQx + uTRu

]
(7)

= (Fx0 + GΓ + GΘmϕ + Hmw)TQ(Fx0 + GΓ + GΘmϕ + Hmw)

+ tr
(
Q

1
2 GΘVϕϕΘTGTQ

1
2

)
+ tr

(
Q

1
2 HVwwHTQ

1
2

)
+ 2tr

(
Q

1
2 GΘVϕwHTQ

1
2

)
+ (Γ + Θmϕ)

T
R (Γ + Θmϕ) + tr

(
R

1
2 ΘVϕϕΘTR

1
2

)
= (Fx0 + GΓ + GΘmϕ + Hmw)TQ(Fx0 + GΓ + GΘmϕ + Hmw)

+ tr
(
Q

1
2 [GΘ H] V [GΘ H]

T
Q

1
2

)
+ (Γ + Θmϕ)

T
R (Γ + Θmϕ)

+ tr
(
R

1
2 ΘVϕϕΘTR

1
2

)
As for the constraints (5), if we set

C =


C 0 . . . 0

0 C
...

...
. . . 0

0 . . . 0 C

 (8)
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then, they can be expressed in compact form as follows:

‖u‖∞ ≤ ū
‖Cx‖∞ ≤ h,

where ȳ has been replaced with the optimization variable h.
Thanks to the linear dependence of u and x on Γ and Θ, these constraints turn out to be convex with
respect to the optimization variables, h, Γ, Θ.

3. Trading performance for state constraint feasibility

In this section, two parametric optimization problems that account for the modulation of performance
in favor of the enforcement of state constraints are introduced. As anticipated in the introduction, in both
problems the bound h on the norm of the state is regarded as an optimization variable so that feasibility is
always recovered.

3.1. Additional penalization term in the control cost

In this first method, a penalization term is added to the average quadratic cost J in (4) in order to
penalize too high values for h:

J ′ = J + µh.

The coefficient µ ≥ 0 is the relative weight between J and h and determines the trade-off between the
objective of having a small J and that of having a small h. Depending on the kind of constraint adopted
for the control input, two chance-constrained problems can be formulated:

min
Γ,Θ,h

J(Γ,Θ) + µh subject to: (9){
‖u‖∞ ≤ ū, ∀w
P {‖Cx‖∞ ≤ h} ≥ 1− ε

min
Γ,Θ,h

J(Γ,Θ) + µh subject to: (10)

P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε

3.2. Two-step approach based on a pre-defined admissible deterioration of the control cost

In this second approach, the two objectives of minimizing the control cost as well as the bound h on the
state are handled by solving two optimization problems in cascade. In the first one, the smallest admissible
control cost is found by minimizing it subject to the control input constraints only, whereas in the second
one, h is minimized subject to the constraints on both state and control input and a further constraint on
the maximum admissible degradation of the control cost with respect to the value J? computed in the first
problem: J ≤ J? + α, with α ≥ 0. Again, the coefficient α determines the trade-off between performance
and state constraint enforcement.

When hard constraints are imposed on the control input, the first optimization problem is given by

min
Γ,Θ

J(Γ,Θ) subject to: (11a)

‖u‖∞ ≤ ū ∀w,

while, letting J? be the optimal cost obtained by solving (11a), the second optimization problem is:

min
Γ,Θ,h

h subject to: (11b) ‖u‖∞ ≤ ū ∀w
P {‖Cx‖∞ ≤ h} ≥ 1− ε
J(Γ,Θ) ≤ J? + α

.
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If the control input is subject to a probabilistic constraint as well, then, the first optimization problem
writes

min
Γ,Θ

J(Γ,Θ) subject to: (12a)

P {‖u‖∞ ≤ ū} ≥ 1− ε,

while, letting J? denote the optimal cost obtained by solving (12a), the second optimization problem is:

min
Γ,Θ,h

h subject to: (12b){
P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε
J(Γ,Θ) ≤ J? + α

.

Remark 2. As is clear, also a two-step approach where the role of J and h is inverted (namely in the first
step the smallest possible value for h subject to input and state constraints is found while in the second step
the control cost is minimized subject to an additional constraint on the maximum admissible degradation for
h) can be considered. However, it gives no real advantage over the two presented approaches and, as it will
be explained later in Remark 4, this approach suffers from some drawbacks in its approximate resolution.
Henceforth, it will not be taken into account.

Remark 3. In both the two approaches , µ and α are tuning parameters through which one can tradeoff
between contrasting objectives. In the two-step approach, α has a precise meaning, namely, it is the maximum
allowed degradation of the cost J with respect to J? and this interpretation helps the user to select the most
proper value of α for the problem at hand. There is not, instead, a similar interpretation for µ, being its
effect on J and h much more indirect. As such, a proper tuning of µ may be more difficult to achieve, and
usually it requires trials and errors. On the other hand, the approach with the additional penalization term
in the cost has some advantages as far as its approximate resolution is concerned, as it will be shown in the
next section.

4. Approximate solution to the optimization problems

The resolution of problems (9)–(12) posed in Sections 3.1 and 3.2 demands for algorithmic methods to
tackle the robust and probabilistic constraints.
As for the robust constraint ‖u‖∞ ≤ ū, ∀w, being the support of w unbounded, function ϕ(·) has to be
chosen as a saturation function as in (3) because otherwise, if e.g. ϕ(·) is the identity map, the robust
constraint would always lead to solutions with Θ = 0, i.e., to a control policy without the feedback term.
Assuming that |ϕ(·)| ≤ ϕ̄ and following [4, 5], the robust constraint can be then replaced by the following
finite set of convex constraints

|Γi|+ ‖Θi‖1ϕ̄ ≤ ū, i = 1, . . . ,mM, (13)

where Γi denotes the i-th element of vector Γ and Θi the i-th row of Θ. The idea behind (13) is that u
cannot be worse than when the components of ϕ(w) have all absolute value equal to ϕ̄ and signs such that
the elements of each row Θiϕ(w) + Γi positively sum up. Plainly, any feasible point for (13) is also feasible
for the original robust constraint, and, moreover, they are equivalent as long as |ϕ(w)| = ϕ̄ for some w. The
number of constraints in (13) is finite and usually small, and (13) can be dealt with by means of standard
solvers.

The probabilistic constraints

P {‖Cx‖∞ ≤ h} ≥ 1− ε and P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε,
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instead, are much harder to solve because they may be even non-convex, though ‖u‖∞ ≤ ū and ‖Cx‖∞ ≤ h
are convex for any fixed realization of w. An exact resolution of the problems (9)–(12) is therefore not
possible, except for few special cases, and some level of approximation must be accepted.

In the remainder of this section, suitable relaxations of the probabilistic constraints P {‖Cx(w)‖∞ ≤ h} ≥
1− ε and P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε are introduced and discussed so as to reformulate problems
(9)–(12) in a way that is amenable of resolution by means of standard convex optimization techniques.

4.1. Algorithms

Probabilistic constraints are tacked by resorting to the scenario approach, a recently developed random-
ized method to approximately solve chance-constrained problems [6, 7, 8, 9, 10].
The idea behind the scenario approach is very simple. A set of N realizations, i.e. scenarios, of the distur-
bance w, say w(1),w(2), . . . ,w(N), is generated according to the underlying probability distribution of w.
Then, the probabilistic constraints are replaced with a finite number N of constraints of the type ‖Cx‖∞ ≤ h
and/or ‖u‖∞ ≤ ū, those obtained in correspondence of the generated instances of the disturbance. More
precisely, writing explicitly the dependence of x and u on w, the constraint

P {‖Cx(w)‖∞ ≤ h} ≥ 1− ε

is replaced by
‖Cx(w(i))‖∞ ≤ h, i = 1, . . . , N,

while
P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε

is replaced by {
‖u(w(i))‖∞ ≤ ū
‖Cx(w(i))‖∞ ≤ h

i = 1, . . . , N.

Summarizing, depending on the chosen type of constraint (robust or in probability) for the input, and
on the chosen method to take into account the presence of the optimization variable h, the possible refor-
mulations of (9)–(12) are the following:

- Additional penalization term and hard constraint on input:

min
Γ,Θ,h

J(Γ,Θ) + µh subject to: (14){
|Γi|+ ‖Θi‖1ϕ̄ ≤ ū, i = 1, . . . ,mM

‖Cx(w(i))‖∞ ≤ h, i = 1, . . . , N

- Additional penalization term and soft constraint on input:

min
Γ,Θ,h

J(Γ,Θ) + µh subject to: (15){
‖u(w(i))‖∞ ≤ ū
‖Cx(w(i))‖∞ ≤ h

i = 1, . . . , N

- Two-step approach and hard constraint on input:

min
Γ,Θ

J(Γ,Θ) subject to: (16a)

|Γi|+ ‖Θi‖1ϕ̄ ≤ ū, i = 1, . . . ,mM
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Let J? be the optimal cost value of (16a).

min
Γ,Θ,h

h subject to: (16b)
|Γi|+ ‖Θi‖1ϕ̄ ≤ ū, i = 1, . . . ,mM,

‖Cx(w(i))‖∞ ≤ h, i = 1, . . . , N

J(Γ,Θ) ≤ J? + α

- Two-step approach and soft constraint on input:

min
Γ,Θ

J(Γ,Θ) subject to: (17a)

‖u(w(i))‖∞ ≤ ū i = 1, . . . , N

Let J? be the optimal cost value of (17a).

min
Γ,Θ,h

h subject to: (17b)
{
‖u(w(i))‖∞ ≤ ū
‖Cx(w(i))‖∞ ≤ h

i = 1, . . . , N

J(Γ,Θ) ≤ J? + α

Note that all the relaxed optimization problems above are always feasible (just take Γ = 0, Θ = 0 and
h = maxi ‖Cx(w(i))‖∞). To this purpose, note that in the two-step approach with soft constraints on input
the same realizations w(1),w(2), . . .w(N) must be used both in (17a) and in (17b), because, otherwise, the
feasibility of the optimization problem (17b), whose constraints depend on the solution of (17a), may be
compromised.

The resolution of (14)–(17) amounts to solving convex programs with a finite number of constraints and
requires no machinery other than standard convex optimization solvers like those used by CVX [30], and
YALMIP [31].

Despite the apparent naivety of the scenario approach, the obtained solutions come with precise guaran-
tees about their feasibility with respect the original probabilistic constraints as long as N is suitably chosen.
This is discussed in the next section.

4.2. Chance-constrained feasibility of the obtained approximate solutions

The problems (14)–(17) are obtained as relaxations of the original problems (9)–(12). The sub-optimality
of the obtained solutions is the price we must pay to enhance computational tractability. However, a main
issue is whether the solutions to problems (14), (15), (16), and (17) are feasible for the original constraints
on u and x in problems (9), (10), (11), and (12), respectively.

As already discussed, the reformulation introduced for the robust constraint, see (13), is such that
feasibility with respect to the original hard constraint is preserved. It is a fact that a similar result holds
for the relaxation of the constraints in probability introduced by the scenario approach, though this is much
less evident than the previous case. The following theorem taken from [8] provides the fundamental result
in this respect.

Theorem 1. Let f(ξ) : Rd → R be a convex function and g(ξ, δ) : Rd ×∆ → R be a parametric family of
convex functions (i.e. g(ξ, δ) is convex in ξ for any fixed value of δ ∈ ∆). Moreover, let Ξ be any given
convex subset of Rd. For a given positive integer N , consider the optimization problem

min
ξ∈Ξ⊆Rd

f(ξ) subject to:

g(ξ, δ(i)) ≤ 0, i = 1, . . . , N,
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where δ(1), δ(2), . . . , δ(N) are samples independently extracted according to a given probability P over ∆, and
let ξ∗ be the solution. If multiple solutions arise, then ξ∗ denotes the one which minimizes ‖ξ∗ − ξ̄‖, where
ξ̄ is a user-chosen reference point.
For any ε ∈ (0, 1) and β ∈ (0, 1), if

N ≥
d+ 1 + ln(1/β) +

√
2(d+ 1) ln(1/β)

ε
, (18)

then ξ∗ is feasible for the constraint in probability

P {g(ξ, δ) ≤ 0} ≥ 1− ε,

with confidence greater than or equal to 1− β. �

Theorem 1 was proven in [8], although in [8] an implicit expression for N is provided. The explicit expression
(18) was derived in [32] and [33]. Theorem 1 is amenable of extensions, like e.g. when some scenario
constraints are removed [34], or when the scenario constraints are not convex [35, 36]. This extensions,
however, are not considered here.

Note that the feasibility of ξ∗ for the probabilistic constraint can be guaranteed with high confidence
1 − β only. This is intrinsically so because ξ∗ is random as it depends on the extracted δ(1), δ(2), . . . , δ(N).
However, N depends on β logarithmically so that small values of β, like β = 10−5 or β = 10−7, can be forced
in without affecting N too much. With such small values for β, the result in Theorem 1 on the feasibility
of ξ∗ for the constraint in probability holds in practice with probability 1.

By letting ξ = (Γ,Θ, h), δ = w,

f(ξ) =

{
J(Γ,Θ) + µh for (14),(15)
h for (16b)

,

g(ξ, δ(i)) =

{
‖Cx(w(i))‖∞ − h for (14),(16b)
max{‖u(w(i))‖∞ − ū, ‖Cx(w(i))‖∞ − h} for (15)

,

and Ξ be the intersection of the other constraints that do not depend on w(i), a direct application of
Theorem 1 to (14), (15), (16b) shows that, if N satisfies (18), then the solutions of Problems (14), (15), (16)
are feasible with high confidence 1− β for the constraints on u and x in (9), (10), (11), respectively.

As for Problem (17), Theorem 1 does not apply in this case. As a matter of fact, J? in (17b) should be
more properly written as J?(w(1),w(2), . . . ,w(N)), being obtained as the optimal value of (17a), a program
where constraints depend on w(1),w(2), . . . ,w(N). This means that Ξ = Ξ(w(1),w(2), . . . ,w(N)), a setup
which is not covered by Theorem 1. Although we experimentally verified that, for N large enough, the
solution of Problem (17) is usually feasible for the constraint in probability

P {‖u‖∞ ≤ ū ∧ ‖Cx‖∞ ≤ h} ≥ 1− ε

(see e.g. the numerical example in Section 7), we were not able to prove that feasibility holds with high
confidence 1−β for N satisfying (18). Recently, in [37] it was shown that feasibility of the scenario solution
to the two-step approach holds with confidence 1− β if N is chosen so as to satisfy(

N
2(d+ 1)

)
(1− ε)N−2(d+1) ≤ β

which leads to the following more conservative bound for N :

N ≥
⌈

2

ε
ln

(
1

β

)
+ 4(d+ 1) +

4(d+ 1)

ε
ln

(
2

ε

)⌉
. (19)
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Remark 4. Note that the application of the scenario approach to the two-stage problem described in Remark
2 leads to a scenario based two-stage problem whose solution is not guaranteed to be feasible for the original
probabilistic constraint when N is chosen according to (18), either when the constraints on the input are
hard or when they are soft. As a matter of fact in both cases there is a probabilistic constraint on the output
in the first stage, resulting in Ξ = Ξ(w(1),w(2), . . . ,w(N)).

5. Choice of µ and α and trade-off between J and h

The parameters µ and α in Problems (14)–(17) play the role of tuning parameters through which the
user can modulate the trade-off between the objective of minimizing the control cost J and that of having
a small h to strengthen the state constraint satisfaction in the system operation.

To this purpose, the two extreme cases, where all effort is put in the minimization of the sole J or,
viceversa, of the sole h, are given by the following two problems:

min
Γ,Θ,h

J(Γ,Θ) subject to: (20)

F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0,

and

min
Γ,Θ,h

h subject to: (21)

F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0,

where, the notation F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0 is used as a shorthand to refer to{
|Γi|+ ‖Θi‖1ϕ̄ ≤ ū, i = 1, . . . ,mM
‖Cx(w(i))‖∞ ≤ h, i = 1, . . . , N,

or

{
‖u(w(i))‖∞ ≤ ū, i = 1, . . . , N
‖Cx(w(i))‖∞ ≤ h, i = 1, . . . , N,

(22)

depending on the chosen approach (hard or soft) to treat input constraints. Problem (20) corresponds to
(14) or (15) with µ = 0. In problem (20) only the performance cost J is optimized, while h can be taken
arbitrarily large. Problem (21) corresponds instead to (16b) or (17b) when the constraint on control cost
degradation is neglected. Contrary to the previous case, in problem (21) only h is minimized.

The properties below aim at showing that µ and α are indeed sensible tuning parameters, since by
progressively increasing them over a suitable range one can explore all possible trade-off combinations
between (20) and (21). Note that these properties refer to the scenario problems (14)-(17), and hold true
irrespectively of the connection of (14)-(17) with the original chance-constrained problems (9)-(12).

For a given µ, problem

min
Γ,Θ,h

J(Γ,Θ) + µh subject to: (23)

F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0,

which can represent either (14) or (15), may have multiple minimizers. For fixed µ, we let

Jµ =
{
J(Γµ,Θµ) : (Γµ,Θµ, hµ) is a minimizer of (23)

}
hµ =

{
hµ : (Γµ,Θµ, hµ) is a minimizer of (23)

}
,

(24)

that is, Jµ is the set of all values of the cost J achieved in correspondence of the minimizers of (23), while
hµ is the set of all values of h achieved in correspondence of the minimizers of (23). As µ is let vary, Jµ
and hµ are multi-valued functions of µ. Similarly, for a given α and letting J? be the optimal cost of (20),
consider problem

min
Γ,Θ,h

h subject to: (25){
F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0,

J(Γ,Θ) ≤ J? + α
,
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which can represent either (16) or (17). Again the problem may show multiple minimizers. We define

Jα = {J(Γα,Θα) : (Γα,Θα, hα) is a minimizer of (25)}
hα = {hα : (Γα,Θα, hα) is a minimizer of (25)}. (26)

Note that in this case hα is a singleton for any α. The following properties hold.

Property 1 (continuity and monotonicity I). For every µ ∈ (0,+∞), Jµ and hµ are closed intervals.
For µ1 < µ2 it holds that maxJµ1

≤ minJµ2
and that minhµ1

≥ maxhµ2
. Moreover,

lim
µ1→µ−2

maxJµ1
= minJµ2

, lim
µ2→µ+

1

minJµ2
= maxJµ1

,

lim
µ1→µ−2

minhµ1 = maxhµ2 , lim
µ2→µ+

1

maxhµ2 = minhµ1 .

�

Note that according to Property 1 the graphs of Jµ and hµ are composed by isolated vertical segments
connected by single-valued increasing/decreasing curves. For a pictorial view see the illustrative plots in
Fig. 1.

0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

µ

Figure 1: A possible behavior of Jµ (solid line) and hµ (dashed line).

Property 2 (continuity and monotonicity II). Let α∞ be equal to J(Γ∞,Θ∞) − J?, where (Γ∞,Θ∞,
h∞) denotes any minimizer of problem (21) chosen among those with the smallest value for J . Then, Jα and
hα are both single-valued continuous functions for α ∈ [0, α∞]. Moreover, Jα is monotonically increasing,
while hα is monotonically decreasing as a function of α. �

Property 3 (initial value). Let (Γ0,Θ0, h0) be any minimizer of problem (20) chosen among those with
the smallest value for h. When µ → 0 [α → 0], minJµ [Jα] tends to J(Γ0,Θ0) = J?, while maxhµ [hα]
tends to h0. �

Property 4 (final value). Let α∞ and (Γ∞,Θ∞, h∞) be as in Property 2. When µ → ∞ [α → α∞],
maxJµ [Jα] tends to J(Γ∞,Θ∞), while minhµ [hα] tends to h∞. �

Property 5 (equivalence). Let α∞ be as in Property 2. For any µ ∈ (0,+∞) and for any minimizer
(Γµ,Θµ, hµ) of problem (23), there is an α ∈ (0, α∞] such that Jα = J(Γµ,Θµ) and hα = hµ. Conversely, for
any α ∈ (0, α∞) there is a µ ∈ (0,+∞) and a minimizer (Γµ,Θµ, hµ) of problem (23) such that J(Γµ,Θµ) =
Jα and hµ = hα. �

The proof of Properties 1-5 is postponed to the next Section 6.
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5.1. Practical relevance of Properties 1-5
In this section, we briefly discuss the importance of Properties 1-5 above.
Apart from Property 5, which establishes a substantial equivalence between the additional penalization

term approach and the two-step approach, the other properties show that all possible trade-offs between
the two extremes represented by problem (20) – where cost J is minimized without accounting for state
restrictions – and problem (21) – where instead the state norm magnitude h is minimized with no concerns
about the control cost – can be achieved by increasing µ [α] from 0 to ∞ [from 0 to α∞], the dependence
of both the control cost J and the bound on the state norm h on the tuning parameters µ and α being
monotone and continuous (continuous in a generalized sense in the µ case). This means that µ and α can be
indeed regarded as tuning knobs by which, as they are increased, one can give up some control performance
to strengthen the restriction on the state norm.

Heuristically, one can proceed by solving the chosen program (14) or (15) [(16) or (17)] for a grid of values
of µ [of α], say µ1, µ2, . . . , µk [say α1, α2, . . . , αk], each time using the same realizations w(1),w(2), . . . ,w(N) of
the noise. This way, various solution pairs (Jµi

,hµi
) [(Jαi

,hαi
)], i = 1, 2, . . . , k, are obtained, each showing

a different trade-off between the control performance and the guarantee on the state norm. By comparing
all these pairs2, the user can eventually decide which solution to buy by selecting the most suitable trade-off
for the problem at hand (e.g., the user can decide whether it is better to have a smaller control cost at the
price of a bigger state response or viceversa whether is preferable to have a more constrained response and
a worse cost).

As is clear, one delicate point is the choice of the grid µ1, µ2, . . . , µk [α1, α2, . . . , αk], which must allow the
exploration of a number of significant trade-offs. In this respect, we reckon two advantages of the two-step
approach (parameter α) over the additional penalization term approach (parameter µ) as explained in the
following.

1. Parameter α has a precise interpretation as the maximum allowed degradation of the cost, see Remark
3. As such, it is better suited to achieve predefined trade-offs between J and h. For example, if J? = 1,
by taking a grid of values α1 = 1/k, α2 = 2/k, . . ., αk = k/k = 1, one knows in advance that s/he is
going to explore all the trade-offs between J and h where the cost is first increased to Jα1

= 1 + 1/k
to improve the value of hα1 , then to Jα2 = 1 + 2/k to further decrease hα2 , and so forth and so on.

In view of the equivalence between the two approaches, the same trade-offs between J and h can be
obtained by means of the additional penalization term approach, but in this case no relation between
the choice of the parameter µ and the variation of J and h is available. If, for example, µ1, µ2, . . .,
µk are chosen equi-spaced as the α’s above, it may be that the obtained values for Jµ1

,Jµ2
, . . . ,Jµk

and hµ1
,hµ2

, . . . ,hµk
are all closed together, meaning that the possible trade-offs between J and h

are not explored at all.

In conclusion, there is not an easy recipe to properly select the grid µ1, µ2, . . . , µk, while this is the
case for α1, α2, . . . , αk.

2. The additional penalization term approach has a second issue. In view of Property 2, it may be
that, in order to explore suitable trade-offs between J and h, the user is required to grid also the
vertical segments in the graphs of Jµ and hµ. This means that one has to distinguish among different
minimizers for the same values of µ, which is not trivial at all. This issue, instead, does not arise in
the two-step approach, because thanks to the continuity of Jα and hα (Property 1) all the minimizers
for a given α returns the same trade-off between J and h.

The sole drawback of the two-step approach is that, when probabilistic constraints on the input are also
considered, the available a-priori guarantee on the feasibility of the scenario solution is weaker than that
available in the other cases (compare equation (19) with (18)). In this case, one may find preferable to resort
to the additional penalization term approach, although, objectively, the drawback seems to be minor.

2Note that, when Theorem 1 applies, for each grid-point, the obtained approximate solution is guaranteed to be feasible
for the original optimization problem except for a set of bad extractions whose probability is at most β. When considering
and comparing all the approximate solutions obtained for the k grid points, the guarantee holds jointly except for a set whose
probability can be upper bounded by k · β.
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6. Proof of Properties 1-5

For ease of exposition, in this section we prove a number of propositions, from which Properties 1-5
can be recovered as a byproduct. In particular: Property 1 follows from Propositions 1 and 7; Property 2
follows from Propositions 3 and 9; Property 3 follows from Propositions 1, 4, 7, and 9; Property 4 follows
from Propositions 5 and 9; Property 5 follows from Propositions 6 and 10. Note that the propositions have
general validity in that they do not depend on the fact that constraint F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0 is as in
(22). Derivations are in line with the convex analysis results in [38], though tailored to the present context.

Proposition 1. Let µ1 < µ2 and let (Γµ1
,Θµ1

, hµ1
) be any solution to problem (23) when µ = µ1 and let

(Γµ2
,Θµ2

, hµ2
) be any solution when µ = µ2. It holds that J(Γµ1

,Θµ1
) ≤ J(Γµ2

,Θµ2
) and that hµ1

≥ hµ2
.�

Proof 1. Note that any solution to (23) when µ = µ1 is feasible for the problem with µ = µ2 and viceversa,
since the constraint F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0 is the same for the two problems. Hence,

J(Γµ1
,Θµ1

) + µ1hµ1
≤ J(Γµ2

,Θµ2
) + µ1hµ2

(27a)

[optimality of (Γµ1
,Θµ1

, hµ1
)]

J(Γµ2
,Θµ2

) + µ1hµ2
< J(Γµ2

,Θµ2
) + µ2hµ2

(27b)

[µ1 < µ2]

J(Γµ2
,Θµ2

) + µ2hµ2
≤ J(Γµ1

,Θµ1
) + µ2hµ1

(27c)

[optimality of (Γµ2
,Θµ2

, hµ2
)].

From (27a) and (27c) it follows that

µ1(hµ1
− hµ2

) ≤ J(Γµ2
,Θµ2

)− J(Γµ1
,Θµ1

) ≤ µ2(hµ1
− hµ2

). (28)

If hµ1
< hµ2

from µ1(hµ1
−hµ2

) ≤ µ2(hµ1
−hµ2

) it would be µ2 ≤ µ1 which is in contradiction to the initial
hypothesis µ1 < µ2. Hence, hµ1

≥ hµ2
and, from (28), we obtain J(Γµ1

,Θµ1
) ≤ J(Γµ2

,Θµ2
) too.

Proposition 2. Let (Γµ,Θµ, hµ) be any solution to (23). Then, J(Γµ,Θµ) + µhµ is a continuous strictly
increasing function of µ. �

Proof 2. For a fixed µ even though problem (23) admits multiple solutions, the value of the optimal objective
J(Γµ,Θµ) + µhµ is the same irrespective of the chosen solution, and, hence, J(Γµ,Θµ) + µhµ is indeed a
single-valued function of µ.

Let µ1 < µ2 and (Γµ1
,Θµ1

, hµ1
) and (Γµ2

,Θµ2
, hµ2

) as in the proof of Proposition 1. Inequalities (27a)
and (27b) together show that J(Γµ,Θµ) + µhµ is strictly increasing. Moreover, they yield

lim
µ1→µ−2

J(Γµ1
,Θµ1

) + µ1hµ1
≤ J(Γµ2

,Θµ2
) + µ2hµ2

. (29)

From (27c) we have:

J(Γµ1 ,Θµ1) + µ1hµ1 ≥ J(Γµ2 ,Θµ2) + µ2hµ2 + (µ1 − µ2)hµ1

≥ J(Γµ2 ,Θµ2) + µ2hµ2 + (µ1 − µ2)h̄,

where h̄ is a suitable upper bound to hµ whose existence is guaranteed by the decreasing property of hµ in
Proposition 1, and by the fact that there exists at least one solution to problem (23) when µ = 0. Hence,

lim
µ1→µ−2

J(Γµ1 ,Θµ1) + µ1hµ1 ≥ lim
µ1→µ−2

J(Γµ2
,Θµ2

) + µ2hµ2
+ (µ1 − µ2)h̄

= J(Γµ2 ,Θµ2) + µ2hµ2 ,

which, together with (29), yields left continuity. Right continuity can be proved likewise.
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For given µ and α, we define

Jα = supJα Jµ = supJµ hµ = suphµ
Jα = inf Jα Jµ = inf Jµ hµ = inf hµ,

where Jα, Jµ, and hµ are as in (24) and (26). Note instead that, hα is a singleton for any given α, hα
being the optimal objective for problem (25).

Proposition 3. Both Jα and Jα are increasing functions of α, while hα is a decreasing function of α. �

Proof 3. Let α1 < α2. Every solution (Γα1
,Θα1

, hα1
) to problem (25) with α = α1 is also feasible for the

problem (25) with α = α2 because J(Γα1
,Θα1

) ≤ J? +α1 < J? +α2. Letting (Γα2
,Θα2

, hα2
) be any solution

to (25) with α = α2, given the optimality of hα2
, we have that hα2

≤ hα1
, i.e. hα is decreasing.

If J(Γα2 ,Θα2) > J? + α1 for all the solutions to problem (25) with α = α2, then Jα2 > Jα1 and Jα2
> Jα1

because J(Γα1 ,Θα1) ≤ J? +α1 for all the solutions to problem (25) with α = α1. If, instead, J(Γα2 ,Θα2) ≤
J? + α1 for some solution (Γα2

,Θα2
, hα2

) to problem (25) with α = α2, then (Γα2
,Θα2

, hα2
) is feasible for

problem (25) with α = α1, and, since hα2
≤ hα1

, it is also optimal, i.e. hα2
= hα1

. This in turn implies
that all the solutions to problem (25) with α = α1 are also solutions to problem (25) with α = α2. Thus,
summarizing, if J(Γα2 ,Θα2) ≤ J?+α1 for some solution, then Jα1 ⊆ Jα2 , and, thus, Jα2

≥ Jα1
. Moreover,

since the solutions for α = α1 correspond to the solutions for α = α2 with the lower values for J , it holds
that Jα2

= Jα1
.

Proposition 4 (initial value). Let (Γ0,Θ0, h0) be a generic solution to problem (20) and let h0 = inf h0.
Any solution (Γα,Θα, hα) to problem (25) is such that J(Γα,Θα) = J(Γ0,Θ0) = J? and hα = h0 when
α = 0. �

Remark 5. Note that the solutions to problem (23) with µ = 0 coincide with the solutions to problem (20).
In general, though Jµ is a singleton when µ = 0, this is not so for hµ when µ = 0. Proposition 4 shows
instead that both Jα and hα are singleton when α = 0. �

Proof 4. When α = 0, J(Γα,Θα) must be equal to J? because the constraint J(Γ,Θ) ≤ J? is forced and J?

is the minimal value for J given the constraint F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0. Since any solution to (20)
is feasible for (25) with α = 0, and viceversa, then hα = h0 follows. This also shoes that h0 is actually a
minimum.

Proposition 5 (final value). Let (Γ∞,Θ∞, h∞) denote a generic solution to problem (21), and let J∞
= sup{J(Γ∞,Θ∞)} and J∞ = inf{J(Γ∞,Θ∞)} where sup and inf are taken with respect to the solutions to
problem (21). Then:

a) both hµ and hµ tend to h∞ and both Jµ and Jµ tend to J∞ as µ→∞.

b) for every α ≥ J∞ − J?, it holds that hα = h∞ and that Jα = J∞. Moreover, Jα tends to J∞ as
α→∞. �

Remark 6. Note that h∞ is uniquely defined being the optimal value of (21). �

Proof 5. Points a) and b) are proved in order.

a) Note that J∞ < +∞ since (21) admits at least a solution. Every solution to problem (21) is also
feasible for problem (23) and viceversa, since the two problems have the same constraints. Because of
the minimality of h∞ it holds that hµ ≥ hµ ≥ h∞ and, hence,

lim
µ→∞

hµ ≥ lim
µ→∞

hµ ≥ h∞ (30)
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(the limit exists since hµ and hµ are decreasing and bounded from below). Because of its optimality, it
holds for every solution (Γµ,Θµ, hµ) to (23) that:

J(Γµ,Θµ) + µhµ ≤ J∞ + µh∞, (31)

which yields

hµ ≤
J∞ − J(Γµ,Θµ)

µ
+ h∞ ≤

J∞
µ

+ h∞.

Hence

lim
µ→∞

hµ ≤ lim
µ→∞

hµ ≤ lim
µ→∞

J∞
µ

+ h∞ = h∞,

which, together with (30), yields
lim
µ→∞

hµ = lim
µ→∞

hµ = h∞.

From (31), it also follows that:

J(Γµ,Θµ) ≤ J∞ + µ(h∞ − hµ) ≤ J∞,

where the last inequality holds since hµ ≥ h∞. Hence limµ→∞ Jµ ≤ limµ→∞ Jµ ≤ J∞, where limits

exist because Jµ and Jµ are increasing and bounded from above. Suppose for the sake of contradiction
that

lim
µ→∞

Jµ = J̃ < J∞.

Letting α̃ = J̃ − J? and (Γα̃,Θα̃, hα̃) be a solution to problem (25) when α = α̃, it holds then that
hα̃ = h∞. Indeed, for every µ ∈ [0,+∞) and for every solution (Γµ,Θµ, hµ) to (23), it holds that

J(Γµ,Θµ) ≤ J̃ and hence (Γµ,Θµ, hµ) is feasible for problem (25) with α = α̃. Hence, hα̃ ≤ hµ, ∀µ,
which in turn implies that hα̃ ≤ h∞ = limµ→+∞ hµ. Since h∞ ≤ hα̃ (indeed hα ≥ h∞ ∀α because the
set of feasible points for problem (25) is contained into the set of feasible points for (21)), we have that
hα̃ = h∞. The solutions to problem (25) with α = α̃ are thus feasible and optimal for problem (21).
Yet, Jα̃ ≤ J̃ < J∞, which contradicts the definition of J∞. Hence necessarily

lim
µ→∞

Jµ = J∞,

which also implies limµ→∞ Jµ = J∞.

b) The last reasoning in point a) shows that for α = J∞ − J? = α∞ any solution to problem (25) is
such that hα = h∞ and hence is a solution to problem (21) as well. Moreover J(Γα,Θα) = J∞, since
J(Γα,Θα) < J∞ would violate the definition of J∞, while J(Γα,Θα) > J∞ would violate the condition
J(Γα,Θα) ≤ J? + α. This shows that J∞ is actually a minimum.
For any fixed α ≥ J∞−J?, all the solutions (Γ∞,Θ∞, h∞) to (21) such that J(Γ∞,Θ∞) ≤ J? +α (at
least one exists because of the definition of minimum) become feasible for problem (25) and they are
optimal because h∞ ≤ hα, as shown in point a). Hence hα = h∞, and this in turn implies that all the
solutions to (25) coincide with the solutions to (21) such that J(Γ∞,Θ∞) ≤ J? + α. Thus, Jα = J∞.
Since the solutions to (21) such that J(Γ∞,Θ∞) ≤ J? + α tends to cover the whole set of solutions to
(21) as α→ +∞, we also have that Jα → J∞.

This concludes the proof.

Proposition 6 (equivalence I). For every µ ∈ (0,+∞) and for every solution (Γµ,Θµ, hµ) to (23) there
is an α ∈ (0, J∞ − J?] such that any solution (Γα,Θα, hα) to (25) satisfies J(Γα,Θα) = J(Γµ,Θµ) and
hα = hµ. �
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Proof 6. Take α = J(Γµ,Θµ)− J? and let (Γα,Θα, hα) be any solution to the corresponding problem (25).
Clearly,

J(Γα,Θα) ≤ J? + α = J(Γµ,Θµ).

On the other hand, the solution (Γµ,Θµ, hµ) satisfies the constraint

F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0

and J(Γµ,Θµ) ≤ J? + α, so that the solution (Γµ,Θµ, hµ) is feasible for problem (25). Hence,

hα ≤ hµ

because of the minimality of hα. If J(Γα,Θα) < J(Γµ,Θµ) or hα < hµ, then we would obtain J(Γα,Θα) +
µhα < J(Γµ,Θµ) + µhµ, which is not possible because (Γα,Θα, hα) is feasible for (23) and J(Γµ,Θµ) + µhµ
is optimal. Hence, J(Γα,Θα) = J(Γµ,Θµ) and hα = hµ.

Remark 7. From the proof of Proposition 6 we see that the values taken by J(Γµ,Θµ) for µ ∈ (0,+∞)
corresponds to the values taken by of J(Γα,Θα) when α = J(Γµ,Θµ)− J?. Moreover, for these α’s, Jα is a
singleton. By virtue of the increasing properties of Jα and Jα (see Proposition 3 and its proof), if for some
α ∈ (0, J∞−J?], Jα is a proper interval, then intermediate values are not included in any Jµ, µ ∈ (0,+∞),
i.e. the multi-valued function Jµ is, in a sense, discontinuous. �

The following proposition characterizes the conditions under which Jµ shows a sort of continuity.

Proposition 7. If J(Γ,Θ) is convex and continuous and if the constraint F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0 is
convex and compact, then, for every µ ∈ (0,+∞), Jµ and hµ are closed intervals and for every µ ∈ [0,+∞)
it holds that

lim
µ′→µ+

Jµ′ = lim
µ′→µ+

Jµ′ = Jµ lim
µ′→µ+

hµ′ = lim
µ′→µ+

hµ′ = hµ (32)

lim
µ′→µ−

Jµ′ = lim
µ′→µ−

Jµ′ = Jµ lim
µ′→µ−

hµ′ = lim
µ′→µ−

hµ′ = hµ (33)

�

Remark 8. Note that, when constraint

F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0

takes the expression in (22), then convexity and compactness are indeed obtained. As a matter of fact,
convexity and closedness are clearly satisfied, while the constraint on the control input in (22) guarantees
that Γ and Θ take value in a bounded set, and, thanks to Propositions 2 and 4, h ≤ h0.

Proof 7. For any given µ ∈ [0,+∞), consider the sequence µn = µ+ 1
n , n ∈ N, which tends to µ from the

right and let (Γµn
,Θµn

, hµn
) be any solution of problem (23) when µ = µn. Without any loss of generality we

can assume that (Γµn
,Θµn

, hµn
) is convergent, because if it were not, one could always extract a convergent

subsequence (since the constraint set is compact) and work with the subsequence in place of the original
sequence. Hence, we let

(Γ?,Θ?, h?) = lim
n→∞

(Γµn ,Θµn , hµn).

Thanks to the continuity of J , it also holds that limn→∞ J(Γµn
,Θµn

) = J(Γ?,Θ?).
It is a fact that (Γ?,Θ?, h?) is a solution of problem (23). Indeed,

J(Γ?,Θ?) + µh? = lim
n→∞

[J(Γµn
,Θµn

) + µnhµn
] = J(Γµ,Θµ) + µhµ,
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where (Γµ,Θµ, hµ) is any solution to problem (23) and the last equality follows from the continuity of
J(Γµ,Θµ) + µhµ as a function of µ (see Proposition 2). Furthermore, we have that

J(Γ?,Θ?) = Jµ, h? = hµ,

i.e. (Γ?,Θ?, h?) is the solution of problem (23) where the extremal values Jµ and hµ are achieved. As a
matter of fact, if this was not the case, then there would be a solution (Γµ,Θµ, hµ) such that J(Γ?,Θ?) <
J(Γµ,Θµ) and/or h? > hµ, in contradiction with the fact that J(Γµn ,Θµn)→ J(Γ?,Θ?) and J(Γµn ,Θµn) ≥
J(Γµ,Θµ) and with the fact that hµn → h? and hµn ≤ hµ (see Proposition 1). Hence, limn→∞ J(Γµn ,Θµn) =
Jµ and limn→∞ hµn

= hµ, and, since Jµ ≤ Jµn
≤ Jµn

≤ J(Γµn−1
,Θµn−1

) and hµ ≥ hµn
≥ hµn

≥ hµn−1
,

(32) remains proven.
Similarly, for µ > 0, one can consider the sequence µm = µ− 1

m , m ∈ N, and the corresponding sequence of
solutions (Γµm

,Θµm
, hµm

), which without loss of generality can be assumed to be convergent. Letting

(Γ?,Θ?, h?) = lim
m→∞

(Γµm
,Θµm

, hµm
),

it can be proved likewise as before that J(Γµm
,Θµm

)→ J(Γ?,Θ?), that (Γ?,Θ?, h?) is a solution to problem
(23), and that J(Γ?,Θ?) = Jµ and h? = hµ. Hence, limm→∞ J(Γµm

,Θµm
) = Jµ and limm→∞ hµm

= hµ,

and again (33) remains proven because J(Γµm−1
,Θµm−1

) ≤ Jµm
≤ Jµm

≤ Jµ and hµm−1
≥ hµm

≥ hµm
≥

hµ.
To prove the remaining part of the proposition, let (Γλ,Θλ, hλ) = λ(Γ?,Θ?, h?) + (1 − λ)(Γ?,Θ?, h?),

λ ∈ [0, 1]. Given the convexity of the constraint set, (Γλ,Θλ, hλ) is feasible for problem (23) and, moreover,
it is also a solution. As a matter of fact,

J(Γλ,Θλ) + µhλ (34)

= J(λΓ? + (1− λ)Γ?, λΘ? + (1− λ)Θ?) + µ[λh? + (1− λ)h?]

≤ [J is convex]

≤ λJ(Γ?,Θ?) + (1− λ)J(Γ?,Θ?) + λµh? + (1− λ)µh?

= λ[J(Γ?,Θ?) + µh?] + (1− λ)[J(Γ?,Θ?) + µh?]

= [since J(Γ?,Θ?) + µh? = J(Γ?,Θ?) + µh? = J(Γµ,Θµ) + µhµ]

= J(Γµ,Θµ) + µhµ,

and being J(Γµ,Θµ) + µhµ optimal, it must be that J(Γλ,Θλ) + µhλ = J(Γµ,Θµ) + µhµ. This also implies
that, since hλ = λh? + (1− λ)h? by definition, J(Γλ,Θλ) = λJ(Γ?,Θ?) + (1− λ)J(Γ?,Θ?), which is to say
that J(Γλ,Θλ) takes on all the values between Jµ and Jµ and hλ takes on all the values between hµ and hµ
as λ is let vary in [0, 1]. That is, Jµ and hµ are closed intervals.

Note that if J(Γ,Θ) is continuous and strictly convex, then Proposition 7 holds true without assuming
that F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0 is compact. Indeed, thanks to Proposition 5, the optimal Γµ,Θµ has to
lie in the level set {(Γ,Θ) : J(Γ,Θ) ≤ J∞}, which is a compact set thanks to the strict convexity of J ,
while hµ ≤ h0 as already noticed. When J is as in (7), strict convexity can be secured, e.g., by assuming
that matrices R and Vϕϕ = E

[
(ϕ(w)− E[ϕ(w)])(ϕ(w)− E[ϕ(w))T

]
are positive definite. See Appendix

Appendix A for a proof.
Under the assumption that J is strictly convex the following stronger proposition holds.

Proposition 8. If J(Γ,Θ) is continuous and strictly convex and

F (Γ,Θ, h,w(1), . . . ,w(N)) ≤ 0

is a convex constraint then Jµ and hµ are continuous single-valued functions over (0,+∞). �
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Proof 8. As remarked above, under the present assumptions, the same argument used to prove Proposition
7 applies. However, because of strict convexity, if (Γ?,Θ?, h?) 6= (Γ?,Θ?, h?), then (34) would write

J(Γλ,Θλ) + µhλ < J(Γµ,Θµ) + µhµ,

which contradicts the minimality of J(Γµ,Θµ) + µhµ. Hence necessarily

(Γ?,Θ?, h?) = (Γ?,Θ?, h?),

showing that Jµ and hµ are continuous and single-valued.

Proposition 9. Let J∞ as in Proposition 5. Under the assumptions of Proposition 7 and for α ∈ [0, J∞−
J?], Jα and hα are continuous single-valued functions. �

Proof 9. hα is single-valued by definition. Jα has been already shown to be single-valued for α = 0 and
for α = J∞ − J? in Propositions 4 and 5, respectively, while for α ∈ (0, J∞ − J?) the property follows in
view of Proposition 6 (Remark 7) and Proposition 7. Proposition 6 also yields that for α ∈ [0, J∞ − J?] the
image of Jα is [J?, J∞] while the image of hα is [h∞, h0], where h0 is as in 4. Continuity follows from the
monotonicity of Jα and hα stated in Proposition 3.

Eventually, we have also the following proposition, which, together with Proposition 6, shows a substan-
tial equivalence between problems (25) and (23).

Proposition 10 (equivalence II). Under the assumption of Proposition 7, for every α ∈ (0, J∞ − J?)
there is a µ ∈ (0,+∞) and a solution (Γµ,Θµ, hµ) to problem (23) such that J(Γµ,Θµ) = Jα and hµ = hα.
�

Proof 10. For any given α ∈ (0, J∞ − J?), Jα ∈ (J?, J∞), hα ∈ (h0, h∞). By Proposition 7, we have that

∃µ, ∃(Γµ,Θµ, hµ) : J(Γµ,Θµ) = Jα.

The solution (Γµ,Θµ, hµ) to problem (23) is feasible for problem (25) and, hence, hα ≤ hµ. On the other
hand, hα < hµ would give for some solution (Γα,Θα, hα)

J(Γα,Θα) + µhα = Jα + µhα = J(Γµ,Θµ) + µhα < J(Γµ,Θµ) + µhµ, (35)

which is an absurd because any solution to problem (25) is feasible for problem (23) and the right-hand side
of (35) is the optimal value for problem (23). Hence, hµ = hα.

7. Numerical example

The approaches described in Sections 3.1 and 3.2 are here applied to a numerical example inspired by
[24].

 

Figure 2: Scheme of the mechanical system.
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We consider the mechanical system reported in Figure 2, which is composed of four masses and four
springs. The state of the system is given by the mass displacements from the equilibrium position when all
inputs are zero and their derivatives: x = [d1, d2, d3, d4, ḋ1, ḋ2, ḋ3, ḋ4]T . The control input is u = [u1, u2, u3]T

where u1, u2 and u3 are forces acting on the masses as in Figure 2.
We set all masses and stiffness constants equal to 1, i.e., m1 = m2 = m3 = m4 = 1 and k1 = k2 = k3 =

k4 = 1, and consider the discrete time model of the system

xt+1 = Axt +But + wt,

obtained by time discretization under the assumption that the control action is piecewise constant over the
intervals [t, t+ 1) and where the state of the system is supposed to be affected by a white Gaussian noise w
with zero mean and covariance matrix I8×8.
Our goal is to design a state feedback control policy that is able to counteract the disturbance w, maintaining
the third and the fourth masses close to their equilibrium positions and keeping the springs within their
linear operating domain. The latter requirement is explicitly accounted for by imposing a constraint on the
spring deformations.

To the purpose of regulating the third and the fourth masses around their equilibrium positions, we
consider the average control cost (4) with a prediction horizon of length M = 5 and constant weight
matrices

Q =

 I2×210−3 02×2 04×4

02×2 I2×2

04×4 04×4

 R = 10−6I3×3.

Let

C =


1 0 0 0
−1 1 0 0 04×4

0 −1 1 0
0 0 −1 1


so that

Cxi =


d1,i

d2,i − d1,i

d3,i − d2,i

d4,i − d3,i


provides the springs deformation at time i. Then, the state constraints, introduced to limit the springs
deformation, can be expressed as

‖Cx‖∞ ≤ h,

where C is defined as in (8). Eventually, we suppose that the control input is subject to the saturation limit

‖u‖∞ ≤ ū,

where ū = 4.
We shall now illustrate the performance of the approaches in Sections 3.1 and 3.2. The control policy

is parameterized according to (2) where ϕ(·) is the saturation function in (3) with ϕ̄ set equal to 2. The
initial state is zero, i.e., the system starts at the equilibrium point. We shall focus on the case when
constraints on both the control input and the state are expressed in probability with an admissible violation
ε = 0.1. In the scenario solution to the resulting chance-constrained optimization problems, we set β = 10−5.
Correspondingly, the number of disturbance realizations to extract is N = 3455. All scenario problems were
solved by running YALMIP over SeDuMi [31].

Table 1 reports the optimal values of J and h obtained by the approach in Section 3.1 where the penalized
control cost J ′ = J +µh is adopted for five different values of µ. The last column of Table 1 also reports the
estimate ε̂ of the actual probability of constraint violation calculated through the Monte Carlo method over
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5000 runs of the controlled system. It is worth noticing that the estimate ε̂ is always smaller than ε = 0.1,
as it is guaranteed by the scenario theory with confidence 1− 5 · 10−5.

From Table 1, it is apparent that parameter µ affects the trade-off between the two objectives, i.e.,
control cost and state constraints: for small values of µ, the state constraints are ineffective in practice,
whereas for large µ’s, h decreases at the price of a significant increase of J . Results reported in Table 2 refer

Table 1: Results of the approach with additional penalization term in the control cost.

µ J h ε̂

0 20.41 12.60 0.0366
0.1 20.50 10.40 0.0394

1 21.69 7.58 0.0452
10 28.02 5.84 0.0546

100 36.78 5.40 0.0724

to the two-step approach in Section 3.2. The same comments as for Table 1 apply. In particular, the actual
constraint violation ε̂ is small and lower than ε = 0.1. This is a quite interesting fact, since there are no
a-priori guarantees on the feasibility of the scenario solution in this case for N satisfying (18) as discussed
in Section 4.2.

Table 2: Results of the two-step approach.

α/J? J h ε̂

0 20.41 12.60 0.0366
0.05 21.43 7.86 0.0460
0.1 22.45 6.99 0.0500
0.2 24.49 6.35 0.0536
0.5 30.62 5.64 0.0654

Note that, since we are imposing a probabilistic bound on the control input u, there may be disturbance
realizations such that the bound on u is violated. If this is the case in the simulations of the controlled
system, the components of u whose absolute value exceeds ū are saturated to ±ū (clipping of the control
input). It is then interesting to assess the performance of the clipped version of the obtained controllers.
To this purpose, the average control cost (4) when clipping holds, say Ĵ , is estimated via Monte Carlo
simulations over 5000 runs and is reported in Table 3. As it appears, the values of Ĵ are quite close to the

Table 3: Average control cost for the clipped controllers.

µ J Ĵ α/J? J Ĵ

0 20.41 20.66 0 20.41 20.66
0.1 20.50 20.75 0.05 21.43 21.71

1 21.69 21.98 0.1 22.45 22.74
10 28.02 28.40 0.2 24.49 24.84

100 36.78 37.18 0.5 30.62 31.84

corresponding values of J in Tables 1 and 2. This is not surprising given that the violation of the constraint
on the input has small probability to occur, which makes the impact of clipping on performance negligible.
This is not the case for the optimal LQG control policy where constraints on both state and input are
ignored. Clipped LQG control has a cost Ĵ = 36.09, with a significant degradation with respect to the
optimal LQG cost J = 13.81.
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As for the constraint on the state, Figures 3 and 4 depict the probability distribution function of ‖Cx‖∞
for the designed clipped controllers in correspondence of the different values of µ and α, respectively, together
with the probability distribution of ‖Cx‖∞ for the clipped LQG control.

These figures reveal that all designed clipped controllers outperform the clipped LQG policy in terms of
state constraint guarantees. Moreover, Figures 3 and 4 together with Table 3 show that as µ and α vary, a
trade-off between performance and state constraint guarantees similar to that revealed by Tables 1 and 2 is
achieved when clipping is active.
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Figure 3: Probability distribution function of ‖Cx‖∞ for the clipped controllers corresponding to the different values of µ and
for the clipped LQG controller.
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Figure 4: Probability distribution function of ‖Cx‖∞ for the clipped controllers corresponding to the different values of α and
for the clipped LQG controller.
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8. Conclusion

In this paper, we proposed a control design methodology to address finite-horizon control for a stochastic
linear system subject to a possible unbounded disturbance. The presence of constraints, and in particular
of the constraints in probability on the state variables, makes the problem difficult to solve. In order to
guarantee state constraint feasibility while optimizing the control performance, we define appropriate para-
metric chance-constrained optimization problems where different trade-off levels between the minimization
of the control cost and the satisfaction of the state constraint can be explored by tuning some parameter. A
numerical example shows the efficacy of the approach. Notably, sampling of the constraints in probability
allows to obtain a computationally affordable solution while retaining chance-constraints feasibility.

The proposed approach to stochastic constrained control is amenable for a receding-horizon implemen-
tation. However, long-run properties of the obtained solution are not considered here and deserve further
study.
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Appendix A. Strict convexity of the cost function

Proposition 11. If matrices R and

Vϕϕ = E
[
(ϕ(w)− E[ϕ(w)])(ϕ(w)− E[ϕ(w)])T

]
are positive definite, then the cost function (4) is strictly convex. �

Proof 11. Being J(Γ,Θ) the sum of two quadratic functions (see (7)) it is enough to show that one of them
is strictly convex. We consider

E[uTRu] = (Γ + Θmϕ)
T

R (Γ + Θmϕ) + tr
(
R

1
2 ΘVϕϕΘTR

1
2

)
. (A.1)

Strict convexity is equivalent to the property:

E[uTRu] = 0⇐⇒ Γ = 0 Θ = 0.

Since E[uTRu] is the sum of two non negative terms, it is null if and only if both terms are null. Since R
is positive definite the first term is null if and only if

Γ + Θmϕ = 0. (A.2)

The second term in (A.1) can be rewritten as

tr(R
1
2 ΘVϕϕΘTR

1
2 ) =

Mm∑
i=1

(R
1
2 Θ)iVϕϕ(R

1
2 Θ)Ti
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where (R
1
2 Θ)i denotes the i-th row of R

1
2 Θ. Since Vϕϕ is positive definite then

tr(R
1
2 ΘVϕϕΘTR

1
2 ) = 0⇐⇒ (R

1
2 Θ)i = 0 ∀i = 1, . . . ,Mm⇐⇒ R

1
2 Θ = 0.

Since R is positive definite this implies that Θ = 0 and from (A.2) it follows that Γ = 0 as well.
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