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Systems with Time-varying Delays

Kun Liu ∗ and Alexandre Seuret †

November 19, 2016

Abstract

Integral inequalities for quadratic functions play an important role in the derivation of

delay-dependent stability criteria for linear time-delay systems. Based on the Jensen inequal-

ity, a reciprocally convex combination approach was introduced in [17] for deriving delay-

dependent stability criterion, which achieves the same upper bound of the time-varying delay

as the one on the use of the Moon et al.’s inequality. Recently, a new inequality called

Wirtinger-based inequality that encompasses the Jensen inequality was proposed in [20] for

the stability analysis of time-delay systems. In this paper, it is revealed that the reciprocally

convex combination approach is effective only with the use of Jensen inequality. When the

Jensen inequality is replaced by Wirtinger-based inequality, the Moon et al.’s inequality togeth-

er with convex analysis can lead to less conservative stability conditions than the reciprocally

convex combination inequality. Moreover, we prove that the feasibility of an LMI condition

derived by the Moon et al.’s inequality as well as convex analysis implies the feasibility of an

LMI condition induced by the reciprocally convex combination inequality. Finally, the efficiency

of the methods is demonstrated by some numerical examples, even though the corresponding

system with zero-delay as well as the system without the delayed term are not stable.

Keywords: Systems with time-varying delays, Jensen inequality, Wirtinger-based inequality, convex

method, Lyapunov-Krasovskii functionals.

1 Introduction

During the last two decades, a considerable amount of attention has been paid to stability and

control of linear systems with time-varying delays (see e.g., [2], [19] and the references therein).
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Comparison of Bounding Methods for Stability Analysis of Systems with Time-varying Delays

One of the popular methods is the use of Lyapunov-Krasovskii functionals (LKF) to derive so-

called delay-dependent sufficient conditions in terms of linear matrix inequalities (LMIs) (see e.g.,

[4], [17], [23], [12], [26], [27]). There are some degrees of freedom: 1) the selection of the functional; 2)

the application of one of the existing integral inequalities; 3) the application of matrix inequalities.

These three steps are the important ways to derive sufficient stability conditions and to reduce

their conservatism. Many bounding techniques have been developed for delay-dependent stability

analysis, for example, the Park’s inequality [15], the Moon et al.’s inequality [14], the Jensen

inequality [6], [13], the free-weighting matrix approach [8], [9], the convex approach [16], [23] and

the combinations of some techniques above.

It is noted that the utilization of Jensen inequality to estimate the upper bound of the derivative

of the LKF usually yields the following quadratic terms (see e.g., [11], [17]):

− 1
α(t)

ξT1 (t)Rξ1(t)− 1
1−α(t)

ξT2 (t)Rξ2(t), (1)

where 0 < α(t) < 1 is a time-varying continuous function, ξ1(t) and ξ2(t) are two real column

vectors with appropriate dimension, and R is a positive symmetric matrix with the same dimension

as ξ1 and ξ2. The main difficulty relies on the fact that this term is not convex with respect to α(t)

and, consequently, yields some difficulties when one wants to implement and to test the resulting

LMI conditions. Therefore, to obtain stability criteria via LMI setup, the upper bound of (1) can

be further estimated by virtue of the Park’s inequality or the Moon et al.’s inequality together with

the convex analysis [16]. Among the recent results, [17] introduced a reciprocally convex approach,

which not only achieves the same upper bound of the time-varying delay as the one provided by

[16] but also decreases the number of decision variables dramatically.

On the other hand, many different techniques have been introduced to reduce the bound on the

gap of the Jensen inequality, see e.g., [1], [10], [30], [32], [33] and [35]. Among them, an alternative

inequality called Wirtinger-based inequality, which encompasses Jensen inequality as a particular

case, was developed in [20] and [22]. By the reciprocally convex combination inequality introduced

in [17], the resulting stability conditions in [20] and [22] are less conservative than those of [16] and

[17] that are based on the Jensen inequality.

In this paper, we present a comparison of bounding methods for cross terms in deriving the delay-

dependent stability criteria for linear systems with time-varying delays. The main contributions

are as follows:

1. We reveal that the reciprocally convex combination approach is effective only with the use of

Jensen inequality. When the Jensen inequality is replaced by Wirtinger-based inequality, the Moon

et al.’s inequality together with convex analysis can lead to less conservative stability conditions

than the reciprocally convex combination inequality. This is different from the utilization of

Jensen inequality, where the reciprocally convex combination inequality and the Moon et al.’s
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inequality with convex analysis lead to identical admissible upper bound of the time-varying

delay.

2. Moreover, we prove that the feasibility of an LMI condition derived by the Moon et al.’s inequality

as well as convex analysis implies the feasibility of an LMI condition induced by the reciprocally

convex combination inequality.

The structure of this paper is as follows. The system and some preliminaries are described in

Section 2. Section 3 recalls some bounding techniques for cross terms and provides a theoretical

comparison. In Section 4 we present several delay-dependent stability conditions, the comparison

of conservatism and complexity of which is given. Examples of numerical simulation are illustrated

in Section 5.

Notations: Throughout the paper Rn denotes the n-dimensional Euclidean space with vector

norm | · |, Rn×m is the set of all n×m real matrices. The notation P ≻ 0, for P ∈ Rn×n, means that

P is symmetric and positive definite. The set Sn
+ represents the set of symmetric positive definite

matrices of Rn×n. Moreover, for any square matrix A ∈ Rn×n, we define He(A) = A + AT . The

matrix I represents the identity matrix of appropriate dimension. The notation 0n,m stands for the

matrix in Rn×m whose entries are zero and, when no confusion is possible, the subscript will be

omitted. For any function x : [−h, +∞) → Rn, the notation xt(θ) stands for x(t+ θ), for all t ≥ 0

and all θ ∈ [−h, 0].

2 Problem formulation

In order to illustrate the comparison of stability criteria for system with time-varying delays, we

will consider a linear time-delay system of the form:{
ẋ(t) = Ax(t) + Adx(t− h(t)), ∀t ≥ 0,

x(t) = ϕ(t), ∀t ∈ [−h2, 0],
(2)

where x(t) ∈ Rn is the state vector, ϕ is the initial condition, A and Ad are constant matrices

with appropriate dimensions. The delay is assumed to be time-varying and satisfies the following

constraint

h(t) ∈ [h1, h2], (3)

where 0 ≤ h1 ≤ h2. We also assume that the derivative of the delay is not constrained. For sim-

plicity, the time argument is omitted when there is no possible confusion, meaning, more especially,

that in the sequel h stands for h(t).

Among the LKFs that applied to the delay-dependent stability analysis of such time-delay

systems, one of the most relevant terms, which was introduced in [3] is a double integral quadratic
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term given by

V (ẋt) = h12

∫ −h1

−h2

∫ t

t+θ

ẋT (s)R2ẋ(s)dsdθ,

where h12 = h2 − h1, R2 ∈ Sn
+, and ẋt(θ) = ẋ(t + θ) represents the time-derivative state of the

time-delay system. This class of Lyapunov-Krasovskii terms has been widely used in the literature

mainly because the computation of its time-derivative leads to conditions which depend on the

explicit value of the delay h1, h2. Indeed when differentiating this term with respect to the time

variable t, we obtain

V̇ (ẋt) = h2
12ẋ

T (t)R2ẋ(t)− h12

∫ −h1

−h2

ẋT
t (s)R2ẋt(s)ds. (4)

This term is relevant to ensure the negativity of V̇ (xt) because of the negative contribution of the

second term. In order to transform (4) into a suitable LMI setup, this integral term should be

expressed appropriately in terms of xt(−h1), xt(−h) and xt(−h2). Therefore, in order to obtain a

more accurate bound for this integral term, and thus, to reduce the conservatism of the resulting

stability conditions, various bounding techniques have been employed in the literature. Among

them, we are concentrated on the use of the Jensen inequality [6], Wirtinger-based inequality [20]

together with the use of convex approach.

The objective of this paper is to compare the conservatism of several bounding methods in the

derivation of stability criteria for systems with time-varying delays.

3 Bounding techniques

In this section, we introduce several efficient bounding techniques to be used to deal with the

quadratic terms that arise in the derivation of the LKF.

3.1 Integral inequalities

Integral inequalities for quadratic functions play an important role in deriving the delay-dependent

stability criteria for linear time-delay systems. In the following, a brief recall of three integral

inequalities are proposed.

3.1.1 Jensen inequality

The first method to analyze the stability of time-delay systems is based on the Jensen inequality

formulated in the next lemma.
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Lemma 1 [6] For any matrix R in Sn
+ and any differentiable function x : [a, b] → Rn, the following

inequality holds: ∫ b

a
ẋT (u)Rẋ(u)du ≥ 1

b−a
ξT0 Rξ0, (5)

where

ξ0 = x(b)− x(a). (6)

By applying Lemma 1 to the second term of (4) after splitting the integral into two parts, we arrive

at
−h12

∫ −h1

−h2
ẋT
t (s)R2ẋt(s)ds

= −h12

[ ∫ −h1

−h
ẋT
t (s)R2ẋt(s)ds+

∫ −h

−h2
ẋT
t (s)R2ẋt(s)ds

]
≤ − h12

h−h1
ηT0 (t)R2η0(t)− h12

h2−h
ηT1 (t)R2η1(t)

= −

[
η0(t)

η1(t)

]T [
1
α
R2 0

∗ 1
1−α

R2

][
η0(t)

η1(t)

]
,

(7)

where
α = h−h1

h12
,

η0(t) = x(t− h1)− x(t− h),

η1(t) = x(t− h)− x(t− h2).

(8)

3.1.2 Wirtinger-based integral inequality

The following lemma provides an inequality called Wirtinger-based inequality, which encompasses

Jensen inequality as a particular case, and was recently proposed in [20].

Lemma 2 [20] For any matrix R ∈ S+
n and any differentiable function x : [a, b] → Rn, the following

inequality holds: ∫ b

a
ẋT (u)Rẋ(u)du ≥ 1

b−a

[
ξ0

ξ1

]T

R̃

[
ξ0

ξ1

]
, (9)

where ξ0 is given by (6) and

ξ1 = x(b) + x(a)− 2
b−a

∫ b

a
x(u)du,

R̃ = diag(R, 3R).
(10)

The application of Lemma 2 to the second term of (4) yields

−h12

∫ −h1

−h2
ẋT
t (s)R2ẋt(s)ds

≤ − h12

h−h1
ζT0 (t)R̃2ζ0(t)− h12

h2−h
ζT1 (t)R̃2ζ1(t)

= −

[
ζ0(t)

ζ1(t)

]T [
1
α
R̃2 0

∗ 1
1−α

R̃2

][
ζ0(t)

ζ1(t)

]
,

(11)
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where α is given in (8) and

R̃2 = diag(R2, 3R2),

ζ0(t)=

[
x(t− h1)− x(t− h)

x(t− h1)+x(t− h)− 2
h−h1

∫ t−h1

t−h
x(s)ds

]
,

ζ1(t)=

[
x(t− h)− x(t− h2)

x(t− h)+x(t− h2)− 2
h2−h

∫ t−h

t−h2
x(s)ds

]
.

(12)

3.1.3 Free-matrix-based integral inequality

Recently, a free-matrix-based integral inequality was provided in [28] to estimate the bound of the

second term of (4).

Lemma 3 [28] Let x be a differentiable function [a, b] → Rn. For any matrices R ∈ S+
n and

Z1, Z3,∈ S+
3n, and matrices Z2 ∈ R3n×3n, N1, N2 ∈ R3n×n, satisfying Z1 Z2 N1

∗ Z3 N2

∗ ∗ R

 ≽ 0, (13)

the following inequality holds ∫ b

a
ẋT (u)Rẋ(u)du ≥ ρTΣρ, (14)

where

ρ =
[
xT (b) xT (a) 1

b−a

∫ b

a
xT (u)du

]T
,

Σ = (b− a)(−Z1 − Z3

3
)− He(N1Π1 +N2Π2),

Π1 =
[
I −I 0

]
, Π2 =

[
I I −2I

]
.

(15)

The utilization of Lemma 3 to the second term of (4) leads to

−h12

∫ −h1

−h2
ẋT
t (s)R2ẋt(s)ds

= −h12

[ ∫ −h1

−h
ẋT
t (s)R2ẋt(s)ds+

∫ −h

−h2
ẋT
t (s)R2ẋt(s)ds

]
≤ −ρT1Σ1ρ1 − ρT2Σ2ρ2,

(16)

where

ρ1 =
[
xT
t (−h1) xT

t (−h) 1
h−h1

∫ −h1

−h
xT
t (u)du

]T
,

ρ2 =
[
xT
t (−h) xT

t (−h2)
1

h2−h

∫ −h

−h2
xT
t (u)du

]T
,

Σ1 = (h− h1)(X
1
1 +

X1
3

3
) + He(N1

1Π1 +N1
2Π2),

Σ2 = (h2 − h)(X2
1 +

X2
3

3
) + He(N2

1Π1 +N2
2Π2)

(17)
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with  X i
1 X i

2 N i
1

∗ X i
3 N i

2

∗ ∗ R2

 ≽ 0, i = 1, 2. (18)

The right-hand side of the inequality (16) can be transformed into a suitable LMI setup by

convex optimization approach with h = h1 and h = h2 [5].

3.1.4 Comparison of Wirtinger-based and free-matrix-based integral inequalities

In this section, we illustrate a theoretical comparison of Wirtinger-based and free-matrix-based

integral inequalities. By defining in Lemma 3

N =

[
NT

1

NT
2

]
, Π =

[
Π1

Π2

]
,

it is easy to see that

He(N1Π1 +N2Π2) = He(NTΠ) = Θ̃− 1
b−a

ΠT R̃Π− (b− a)NT R̃−1N, (19)

where R̃ is defined in (10) and

Θ̃ = (b− a)( 1
b−a

R̃Π+N)T R̃−1( 1
b−a

R̃Π+N). (20)

Then, it follows that Σ given in (17) can be rewritten as

Σ = (b− a)(−Z1 − Z3

3
)− Θ̃ + 1

b−a
ΠT R̃Π+ (b− a)NT R̃−1N

= 1
b−a

ΠT R̃Π− Θ̃− (b− a)(Z1 −N1R
−1NT

1 )− b−a
3
(Z3 −N2R

−1NT
2 )

≼ 1
b−a

ΠT R̃Π.

(21)

The latter inequality holds because of Θ̃ ≽ 0 and the fact that application of Schur complement to

(13) implies Z1−N1R
−1NT

1 ≽ 0 and Z3−N2R
−1NT

2 ≽ 0. Hence, from (21) and ρTΠT =
[
ξT0 ξT1

]
,

it is verified that the free-matrix-based integral inequality (14) with (13) cannot deliver a more tight

lower bound of
∫ b

a
ẋT (u)Rẋ(u)du than (9) although more free matrices are involved in (14).

3.2 Convex approaches

It is noted that in (7) and (11), the positive definite matrix[
1
α
R 0

∗ 1
1−α

R

]
(22)
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with R = R2 or R̃2 is time-varying due to time-varying 1
α
and 1

1−α
with 0 < α < 1. To derive

stability conditions in terms of LMIs, the time-varying matrix (22) needs to be estimated by some

bounding techniques. For example, in [4] and [25], the matrix (22) was estimated as follows:[
1
α
R 0

∗ 1
1−α

R

]
≽

[
R 0

∗ 0

]
. (23)

By including a useful term, the matrix (22) was further estimated in [8] as[
1
α
R 0

∗ 1
1−α

R

]
≽

[
R 0

∗ R

]
. (24)

Compared to (23), inequality (24) possesses a more tight lower bound of (22) and thus, can derive

less conservative LMI stability conditions than (23). However, (24) still leaves some room for a

more tight lower bound of (22).

3.2.1 Moon et al.’s inequality

Lemma 4 [14] Suppose that there exists matrices Q,Z in Sn
+, matrix X ∈ Rn×n satisfying

[
Q X

∗ Z

]
≽

0. Then the following inequality holds for any x, y ∈ Rn, any matrix N ∈ Rn×n

−2xTNy ≤

[
x

y

]T [
Q X −N

∗ Z

][
x

y

]
. (25)

For any scalar ε > 0, any matrix R in Sn
+, it follows from (25) with the choice of Q = ε−1R,

Z = εR−1, X = N = −I that

Lemma 5 For any x, y ∈ Rn, any scalar ε > 0, any matrix R in Sn
+, the following inequality holds

2xTy ≤ ε−1xTRx+ εyTR−1y. (26)

Then for any matrices Mi in R2n×n, i = 1, 2, we have

1
α

[
I

0

]
R
[
I 0

]
+ αM1R

−1MT
1 ≽ He(M1[I 0]) and

1
1−α

[
0

I

]
R
[
0 I

]
+ (1− α)M2R

−1MT
2 ≽ He(M2[0 I]).

Therefore, the equality[
1
α
R 0

∗ 1
1−α

R

]
= He(M1[I 0] +M2[0 I])−αM1R

−1MT
1

−(1− α)M2R
−1MT

2 +Θ1(α) + Θ2(α)

(27)
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holds for all scalar α ∈ (0, 1), where

Θ1(α) = α( 1
α
R[I 0]−MT

1 )
TR−1( 1

α
R[I 0]−MT

1 ) ≽ 0,

Θ2(α) = (1− α)( 1
1−α

R[0 I]−MT
2 )

TR−1( 1
1−α

R[0 I]−MT
2 ) ≽ 0.

(28)

3.2.2 Reciprocally convex combination inequality

Recall the reciprocally convex combination lemma (RCCL) provided in [17]:

Lemma 6 (RCCL) For a given matrix R ∈ Sn
+, assume that there exists a matrix X ∈ Rn×n such

that [
R X

∗ R

]
≽ 0. (29)

Then the equality [
1
α
R 0

∗ 1
1−α

R

]
=

[
R X

∗ R

]
+Θ(α) (30)

holds for all scalar α ∈ (0, 1), where

Θ(α) =

[
1−α
α

R −X

∗ α
1−α

R

]

=

[ √
1−α
α

I 0

∗ −
√

α
1−α

I

][
R X

∗ R

][ √
1−α
α

I 0

∗ −
√

α
1−α

I

]
≽ 0.

3.2.3 Comparison of (27) and (30) with (29)

In order to apply (27) or (30) to derive LMI stability conditions of system (2), the lower bound of[
1
α
R 0

∗ 1
1−α

R

]
needs to be estimated since both Θi(α), i = 1, 2, in (27) and Θ(α) in (30) are not

affine in the convex parameter α. Then we have the following result:

Lemma 7 The equality (27) provides a tighter lower bound of (22) that is affine in α than equality

(30) with (29).

Proof 1 Suppose now that there exist matrices R ∈ Sn
+ and X ∈ Rn×n such that (29) and (30) are

satisfied. In (27), choose

MT
1 = R[I 0] +X[0 I],

MT
2 = R[0 I] +XT [I 0].

9
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Then, the sum of Θ1(α) and Θ2(α) in (28) can be presented as

Θ1(α) + Θ2(α)

=

[
(1−α)2

α
R 0

∗ α2

1−α
R

]
+

[
0 −X

∗ 0

]
+

[
0 0

∗ αXTR−1X

]
+

[
(1− α)XR−1XT 0

∗ 0

]

= Θ(α)−

[
(1−α)(R−XR−1XT ) 0

∗ α(R−XTR−1X)

]
≼ Θ(α).

The latter inequality is guaranteed by the fact that application of Schur complement to (29) yields

R−XR−1XT ≽ 0 and R−XTR−1X ≽ 0. Then, by comparing (30) and (27) we arrive at[
R X

∗ R

]
≼ He(M1[I 0] +M2[0 I])− αM1R

−1MT
1 − (1− α)M2R

−1MT
2 ,

which shows that the RCCL is a particular case of the Moon et al.’s inequality.

An alternative proof of Lemma 7 can be found in [31]. From Lemma 7, it is then expected that

the stability conditions resulting from the application of the RCCL is more conservative than the

ones obtained from the application of Moon et al.’s inequality.

In Section 3.1.4, although it is verified that the free-matrix-based inequality (14) with (13)

cannot deliver a more tight lower bound of
∫ b

a
ẋT (u)Rẋ(u)du than Wirtinger-based inequality (9),

this formulation still has some interest with respect to the original Wirtinger-based inequality, as

noticed in [7]. Indeed, when one has to test stability of time-varying delay systems, Lemma 3 can

deliver tighter lower bounds than the one based on the Wirtinger-based integral inequality together

with the RCCL. In light of [7] and on the previous considerations, this reduction of the conservatism

is mainly due to the application of the convex optimization approach. Indeed when one uses the

Wirtinger-based inequality together with the Moon et al.’s inequality and convex analysis, one can

derive less conservative stability conditions than the one based on inequality (14) and also with a

lower number of decision variables.

4 Delay-dependent stability conditions and comparison of

conservatism and complexity

This section first presents several delay-dependent stability conditions obtained by means of the

Jensen inequality or Wirtinger-based integral inequality together with the convex approaches pro-

vided in Section 3.2 and then provides a comparison of the conservatism and numerical complexity

of different methods. For the simplicity of presentation, the following notations will be used in this
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section.

ei = [0n×(i−1)n In 0n×(7−i)n], i = 1, . . . , 7,

G0 = Ae1 + A1e3, Γ = [GT
3 GT

4 ]
T , G1(h) = [eT1 h1e

T
5 (h− h1)e

T
6 + (h2 − h)eT7 ]

T ,

G2 = [eT1 − eT2 eT1 + eT2 − 2eT5 ]
T , G3 = [eT2 − eT3 eT2 + eT3 − 2eT6 ]

T ,

G4 = [eT3 − eT4 eT3 + eT4 − 2eT7 ]
T , G5 = [eT2 eT3 eT6 ]

T , G6 = [eT3 eT4 eT7 ]
T .

(31)

4.1 Stability conditions

Consider the standard LKF for the stability analysis of systems with time-varying delay from the

interval [h1, h2] (see e.g., [17]). The application of Moon et al.’s inequality in Lemma 5 to (7) and

the Jensen inequality leads to the following condition for stability of system (2).

Lemma 8 (Jensen-Moon-Convex) Assume that there exist two scalars h2 > h1 ≥ 0, matrices

P , Si, and Ri in Sn
+, and two matrices Yi in R4n×n, i = 1, 2, such that the following LMIs are

satisfied [
Φ− h12He(Y1F23 + Y2F34) h12Yi

∗ −R2

]
≺ 0, i = 1, 2, (32)

where
Φ = He(F T

1 PF0)+S+F T
0 (h

2
1R1+h2

12R2)F0 − F T
12R1F12,

F0 =
[
A 0 Ad 0

]
, F1 =

[
I 0 0 0

]
,

F12 =
[
I −I 0 0

]
, F23 =

[
0 I −I 0

]
,

F34 =
[
0 0 I −I

]
, S = diag(S1, S2 − S1, 0,−S2).

(33)

Then the system (2) is asymptotically stable for the time-varying delay h satisfying (3).

Recently, Lemma 6 together with the Jensen inequality is widely employed to derive stability con-

dition for systems with time-varying delay. The stability condition is summarized in the following

theorem, taken from [17].

Lemma 9 (Jensen-RCCL) Assume that there exist two scalars h2 > h1 ≥ 0, matrices P , Si, and

Ri, i = 1, 2, in Sn
+, and a matrix X in Rn×n such that the following LMIs are satisfied

Ψ =

[
R2 X

∗ R2

]
≽ 0, Φ−

[
F T
23 F T

34

]
Ψ
[
F T
23 F T

34

]T
≺ 0, (34)

where Φ, F23 and F34 are given in (33). Then the system (2) is asymptotically stable for the time-

varying delay h satisfying (3).

To employ Lemma 2 for delay-dependent analysis of systems with time-varying delays, an augmented

LKF was suggested in [22]. The stability condition that derived in [22] by means of Lemma 6 as

well as Wirtinger-based integral inequality in Lemma 2 is summarized in the following theorem.

11
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Lemma 10 (Wirtinger-RCCL) Assume that there exist matrices P in S3n
+ , Si, and Ri, i = 1, 2,

in Sn
+, and a matrix X in R2n×2n such that the following matrix inequalities are satisfied for h in

{h1, h2}

Ψ̃ =

[
R̃2 X

∗ R̃2

]
≽ 0, Φ(h) = Φ0(h)− ΓT Ψ̃Γ ≺ 0, (35)

where
Φ0(h) = He(GT

1 (h)PG0) + Ŝ +GT
0 (h

2
1R1 + h2

12R2)G0 −GT
2 R̃1G2,

Ŝ = diag(S1, S2 − S1,−S2, 03n),

R̃1 = diag(R1, 3R1),

(36)

and the notations are given in (12) and (31). Then the system (2) is asymptotically stable for all

time-varying delay functions h satisfying (3).

Moreover, following [28] and applying Lemma 3 to the second term of (4) after splitting the

integral into two parts, we derive the following result:

Lemma 11 (Free-matrix and Convex) Assume that there exist matrices P,X i
1, X

i
3 in S3n

+ , Si,

Ri in Sn
+, and matrices X i

2 in R3n×3n, N i
1, N

i
2 in R3n×n, i = 1, 2, such that (18) and the following

matrix inequalities are satisfied for h in {h1, h2}

Φ0(h) + h12(h− h1)G
T
5 (X

1
1 +

1
3
X1

3 )G5 + h12(h2 − h)GT
6 (X

2
1 +

1
3
X2

3 )G6

+h12He(G
T
5N

1
1 [I 0]G3 +GT

5N
1
2 [0 I]G3 +GT

6N
2
1 [I 0]G4 +GT

6N
2
2 [0 I]G4) ≺ 0,

(37)

where the notations Φ0(h) and G5, G6 are given in (36) and (31), respectively. Then, the system (2)

is asymptotically stable for all time-varying delay functions h satisfying (3).

The application of Lemma 5 to (11) and Wirtinger-based integral inequality also allows us to

derive stability criterion via LMI setup. In such situation, the following theorem is provided.

Theorem 1 (Wirtinger-Moon-Convex) Assume that there exist matrices P in S3n
+ , Si, and Ri

in Sn
+, and two matrices Yi in R7n×2n, i = 1, 2, such that the following LMIs are satisfied for h in

{h1, h2}

Ω(h) =

[
Φ0(h)− h12He(Y1G3 + Y2G4) h12Yi

∗ −R̃2

]
≺ 0, i = 1, 2, (38)

where the notations R̃2, Φ0(h) and G3, G4 are given in (12), (36) and (31), respectively. Then the

system (2) is asymptotically stable for all time-varying delay functions h satisfying (3).

Proof 2 The proof follows from the standard arguments for the delay-dependent stability analysis

with the use of Wirtinger-based integral inequality (9), Moon et al.’s inequality (27) and convex

analysis. Consider the augmented Lyapunov functional V (xt, ẋt) given in [22] and define ζ(t) =

12



Comparison of Bounding Methods for Stability Analysis of Systems with Time-varying Delays

col{η(t), 1
h1

∫ 0

−h1
xt(s)ds,

1
h−h1

∫ −h1

−h
xt(s)ds,

1
h2−h

∫ −h

−h2
xt(s)ds} with η(t) = col{x(t), x(t − h1), x(t −

h), x(t− h2)}.
By Lemma 2 the differentiation of V (xt, ẋt) along the trajectories of (2) leads to

V̇ (xt, ẋt) ≤ ζT (t)Φ0(h)ζ(t)− h12

∫ −h1

−h2
ẋT
t (s)R2ẋt(s)ds, (39)

where Φ0(h) is given in (36). Furthermore, from (11) the following inequality

−h12

∫ −h1

−h2
ẋT
t (s)R2ẋt(s)ds

≤ −ζT (t)
[
GT

3 GT
4

] [ 1
α
R̃2 0

∗ 1
1−α

R̃2

][
G3

G4

]
ζ(t)

≤ −ζT (t)
[
GT

3 GT
4

] [
He

([
h12Ŷ1

0

]
[I 0] +

[
0

h12Ŷ2

]
[0 I]

)
−h12(h−h1)

[
Ŷ1

0

]
R̃−1

2 [Ŷ T
1 0]

−h12(h2 − h)

[
0

Ŷ2

]
R̃−1

2 [0 Ŷ T
2 ]

] [ G3

G4

]
ζ(t)

(40)

holds for any matrices Ŷ1, Ŷ2 ∈ R2n×2n, where α = (h− h1)/h12. The latter inequality is guaranteed

by Lemma 5, with M1 = h12[Ŷ
T
1 0]T and M2 = h12[0 Ŷ T

2 ]T . Thus, by letting Y1 = GT
3 Ŷ1 and

Y2 = GT
4 Ŷ2, we obtain from (39) and (40) that

V̇ (xt, ẋt) ≤ ζT (t)Φ(h)ζ(t),

where Φ(h) = Φ0(h)−h12He(Y1G3+Y2G4)+h12(h−h1)Y1R̃
−1
2 Y T

1 +h12(h2−h)Y2R̃
−1
2 Y T

2 . Since Φ(h)

is affine with respect to h, the two matrix inequalities Φ(h1) ≺ 0 and Φ(h2) ≺ 0 imply Φ(h) ≺ 0 for

all h ∈ [h1, h2]. This means that by Schur complement if the two LMIs Ω(h)|h=hi
≺ 0, i = 1, 2, then

V̇ (xt, ẋt) < 0, implying asymptotic stability of system (2) for all time-varying delay in the interval

[h1, h2].

Remark 1 Lemmas 10, 11 and Theorem 1 are also applicable to the stability analysis of systems

with interval delays, which may be unstable for small delays (or without delays). It is worth noting

that Lemmas 8 and 9 that correspond to classical Lyapunov-Krasovskii approaches based on Jensen

inequality cannot assess stability of such systems.

Remark 2 More recently, generalized integral inequalities were developed in [21] based on Bessel’s

inequality and Legendre polynomials, which includes Jensen and Wirtinger-based inequalities and

the recent inequalities based on auxiliary functions ([18], [29]) as particular cases. Therefore, the

stability criteria of Lemmas 8-11 and Theorem 1 could be further improved by employing generalized

integral inequalities together with Lemma 5 or 6.

13
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Table 1: The comparison of admissible upper bound h2 for different methods.

Methods Lemma 1 Lemma 2 Lemma 3

(Jensen) (Wirtinger) (free-matrix)

Lemma 6 h2{Lem. 9} =⇒ (≤) h2{Lem.10} ——–

(reciprocally convex) ⇕ (=) ⇓ (≤)

Lemma 5 h2{Lem.8} h2{Th.1} (≥) ⇐= h2{Lem.11}
(Moon et al.)

Table 2: The comparison of the numerical complexity of different methods.

Decision variables Lemma 1 Lemma 2 Lemma 3

No. and order of LMIs (Jensen) (Wirtinger) (free-matrix)

Lemma 6 3.5n2 + 2.5n 10.5n2 + 3.5n

1 of 2n× 2n 1 of 4n× 4n ——–

1 of 4n× 4n 1 of 7n× 7n

(reciprocally convex) (Lem.9) (Lem.10)

Lemma 5 10.5n2 + 2.5n 20.5n2 + 3.5n 54.5n2 + 9.5n

2 of 5n× 5n 2 of 8n× 8n 2 of 3n× 3n, 1 of 7n× 7n

(Moon et al.) (Lem.8) (Th.1) (Lem.11)

4.2 Comparison of numerical complexity of different conditions

Based on the discussions in Sections 3.1.4 and 3.2.3, and the fact of Wirtinger-based inequality

encompassing the Jensen inequality, Table 1 shows the comparison of the maximum values of h2

that preserve the stability by applying Lemmas 8-11 and Theorem 1 with given lower bound h1.

The numerical complexity of the resulting LMIs under different bounding techniques is illustrated

in Table 2.

From Tables 1 and 2, it is seen that Lemma 9, which is derived by Jensen inequality and the

reciprocally convex combination approach, possesses the least number of scalar decision variables

while Theorem 1, which is obtained by Wirtinger-based inequality and the Moon et al.’s inequality

together with convex analysis, leads to the least conservative results regardless of the complexity.

5 Numerical Examples

To demonstrate the effectiveness and the comparison of the stability criteria Lemmas 8-11 and

Theorem 1, we consider two numerical examples as follows.

14
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Table 3: Admissible upper bound h2 for various h1 for the system described in Example (41).

Methods \ h1 0.0 0.4 0.7 1.0 2.0 3.0

Lemma 8 1.86 1.88 1.95 2.06 2.61 3.31

Lemma 9 1.86 1.88 1.95 2.06 2.61 3.31

Lemma 10 2.11 2.17 2.23 2.31 2.79 3.49

Lemma 11 2.18 2.21 2.25 2.32 2.79 3.49

Theorem 1 2.24 2.27 2.29 2.34 2.80 3.49

5.1 Example 1

Consider the following linear time-delay system (2) with:

A =

[
−2.0 0.0

0.0 −0.9

]
, Ad =

[
−1.0 0.0

−1.0 −1.0

]
. (41)

It is well-known that this system is stable for constant delay h ≤ 6.1725. The results for time-

varying delays by applying Lemmas 8-11 and Theorem 1 are summarized in Table 3. In Lemmas

8 and 9, the stability conditions are restricted by the use of the Jensen inequality. The results

obtained by solving Lemma 10 show a clear reduction of the conservatism. This is due to the use of

both reciprocally convex combination Lemma 6 and Wirtinger-based integral inequality provided

in Lemma 2. The conservatism can be further reduced by substitution Lemma 5 for reciprocally

convex combination Lemma 6.

Moreover, less conservative criteria can be obtained by including other techniques, e.g., addi-

tional triple integral term in LKF [24], delay-partitioning approach [5], developed integral inequal-

ities [30], [32], [33], [34]. This is not our focus in the present paper.

5.2 Example 2

Consider the system (2) with:

A =

[
0.0 1.0

−2.0 0.1

]
, Ad =

[
0.0 0.0

1.0 0.0

]
. (42)

Notice that Re(eig(A + Ad)) = 0.05 > 0, the delay free system is unstable, therefore, in this case,

Lemmas 8 and 9 that correspond to classical Lyapunov-Krasovskii approaches based on Jensen

inequality are not applicable any more. For the constant delay case, a frequency approach shows

that the solutions of this system are stable if the delay belongs to the interval [0.10017, 1.7178] [6].

The stability conditions of Lemma 10 and Theorem 1 can be applied to assess the stability of such

systems due to the use of Wirtinger-based integral inequality provided in Lemma 2. Table 4 shows

that Theorem 1 leads to a larger delay interval that preserve the stability of systems than Lemma 10.
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Table 4: Admissible upper bound h2 for various h1 for the system described in Example (42).

Methods \ h1 0.11 0.3 0.5 0.8 1.0 1.3

Lemma 11 0.40 1.09 1.34 1.49 1.53 1.54

Lemma 10 0.42 1.09 1.36 1.52 1.56 1.57

Theorem 1 0.42 1.10 1.38 1.54 1.57 1.57

6 Conclusions

In this paper, we have revealed that the reciprocally convex combination approach is effective only

with the use of Jensen inequality. When the Jensen inequality is replaced by Wirtinger-based

inequality, the Moon et al.’s inequality instead of the reciprocally convex combination approach is

suggested for delay-dependent stability analysis of linear time-delay systems. Polytopic uncertainties

in the system model can be easily included in the analysis.
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2003.
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