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Abstract 

Using an acoustic vector sensor (AVS), an efficient method has been presented 

recently for direction-of-arrival (DOA) estimation of multiple speech sources via the 

clustering of the inter-sensor data ratio (AVS-ISDR). Through extensive experiments on 

simulated and recorded data, we observed that the performance of the AVS-DOA 

method is largely dependent on the reliable extraction of the target speech dominated 

time-frequency points (TD-TFPs) which, however, may be degraded with the increase 

in the level of additive noise and room reverberation in the background. In this paper, 

inspired by the great success of deep learning in speech recognition, we design two new 

soft mask learners, namely deep neural network (DNN) and DNN cascaded with a 

support vector machine (DNN-SVM), for multi-source DOA estimation, where a novel 

feature, namely, the tandem local spectrogram block (TLSB) is used as the input to the 

system. Using our proposed soft mask learners, the TD-TFPs can be accurately 

extracted under different noisy and reverberant conditions. Additionally, the generated 

soft masks can be used to calculate the weighted centers of the ISDR-clusters for better 

DOA estimation as compared with the original center used in our previously proposed 



AVS-ISDR. Extensive experiments on simulated and recorded data have been presented 

to show the improved performance of our proposed methods over two baseline AVS-

DOA methods in presence of noise and reverberation. 

Keywords: DOA estimation; tandem local spectrogram block; soft mask; deep neural 

network; support vector machine. 

1. Introduction 

Direction of arrival (DOA) estimation of acoustic sources with a microphone array of 

small size has drawn much attention due to its low cost, compact physical size and 

wide-range applications such as video conferencing and intelligent robots for 

identifying speech source locations swiftly and accurately [1]. Among them, Acoustic 

Vector Sensor (AVS) is a promising candidate providing great convenience in 

configuration and portability [2]. Different from the conventional arrays with 

omnidirectional microphones, an AVS contains one pressure sensor and three 

orthogonal velocity sensors that are collocated at a point geometry in space, and has a 

smaller size but provides more directional information [3, 4]. Recently, several AVS 

based DOA estimation algorithms have been proposed [5-11], including those for the 

under-determined DOA estimation problem [7-11], where the number of sources is 

greater than the number of sensors. In these studies, a common assumption has been 

made that the target speech dominated TF points (TD-TFPs) can be extracted based on 

the sparseness of speech signals [12]. In [8, 9], the subspace characteristics of the local 

TF covariance matrix have been exploited to determine the TD-TFPs to estimate the 

DOAs. However, the ambient noise and reverberation may corrupt the signal subspace 



[13], which leads to the performance degradation when using the method based on the 

selection of the TFPs with high Signal to Noise Ratio (HSNR). 

In our previous work [7], the DOA estimation of multi-sources has been addressed by 

clustering the inter-sensor data ratios of single acoustic vector sensor (AVS-ISDR), 

where the Sinusoidal Tracks Extraction (SinTrE) method [12] is introduced to extract 

the reliable TD-TFPs by exploiting the harmonic structure of speech. Then the ISDRs 

that contain DOA cues are calculated at the extracted TD-TFPs and clustered by the 

Kernel Density Estimation (KDE) method [14]. As a result, the DOAs are estimated 

using the centers of the ISDR-clusters. The AVS-ISDR was shown to be effective in 

estimating the DOAs for up to seven speech sources under low noise and reverberation 

conditions. However, experimental results also show that the performance of the TD-

TFPs extraction by SinTrE deteriorates as the level of noise and reverberation increases, 

resulting in performance degradation in the DOA estimation. Clearly, the reliable 

extraction of TD-TFPs is crucial for the AVS-ISDR method to obtain good DOA 

estimation performance under different noisy and reverberant conditions.  

To obtain the reliable extraction of TD-TFPs, in this paper, we perform our study 

from the following aspects. First, we get some insights from the perceptual mechanism 

of the human auditory system that the target speech and interferers are separated in local 

TF regions [15]. Second, we evaluate the local spectrogram block (LSB) of the received 

signals for four channels of the AVS under different noise and reverberation levels. 

Experiments showed that the LSBs centered by the TD-TFPs are distinguishable from 

those centered by the interferers (noise or reverberation) dominated TFPs (ID-TFPs). 

Third, the LSBs of TD-TFPs and ID-TFPs can be considered as two different patterns, 

and hence can be learned in a supervised manner.  



Based on the above findings, we firstly propose a novel tandem LSB (TLSB) feature, 

which is defined as the LSBs of the four channels of AVS in tandem that are centered 

by the same time-frequency point, as the input to the training system. Then, we design 

two different soft mask learners to extract TD-TFPs: 

(1) Making use of the powerful learning ability of deep neural network (DNN) [16]  

with large scale training dataset, a DNN is trained by mapping the TLSB feature to the 

Idea Binary Mask (IBM) [17] for each TFP. Then in the testing phase, the received 

signals of the AVS can be transformed to TLSB features and then decoded by the well-

trained DNN to generate the soft mask, which represents the probability of a TFP being 

considered as TD-TFP. By comparing the soft masks with a predefined threshold, the 

TD-TFPs can be accurately extracted.  

(2) The last hidden layer representations (LHLR) of DNN are taken as the feature for 

training the linear support vector machine (SVM), which is motivated by the following 

reasons: 1) DNN can be viewed as a hierarchical feature detector, and each hidden layer 

of DNN is a different representation of the original feature, where the LHLRs with high 

dimension are more linearly separable and therefore useful for classification [18]; 2) 

SVM can tackle the high dimensional data classification problems [19], and is currently 

one of the best performers for a number of classification tasks in speech applications [18, 

20-22]. In addition, the linear separability of LHLRs facilitates the performance of 

linear SVM with lower computational complexity as compared with kernel SVMs. 

Similarly, the soft masks can also be obtained via the decision function of SVM.   

Following our previously proposed AVS-ISDR algorithm, the soft masks are also 

used to calculate the weighted centers of the ISDR-clusters, for further improving the 

DOA estimation accuracy. 



The remainder of this paper is organized as follows. The formulation of the AVS-

ISDR algorithm is illustrated in Section 2. In Section 3, we present our proposed soft 

mask learning algorithms for DOA estimation in details, and experiments and analysis 

are given in Section 4 before we conclude the paper. 

 

2. Formulation of AVS-ISDR 

2.1. Data model for AVS 

Assume the acoustic signal is sampled by one single AVS in a noisy and reverberant 

environment. The signal observed by the AVS at the discrete time instance t can be 

modeled as 
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where x(t)=[xu(t), xv(t), xw(t), xo(t)]
T represents the received signal at three bidirectional 

sensors (u-, v-, w-sensors) and one omnidirectional sensor (o-sensor) respectively, the 

superscript T denotes the vector transpose. I is the number of speech sources, si(t) is the 

ith source, hi(t)=[hui(t), hvi(t), hwi(t), hoi(t)]
T (1≤i≤I) is the impulse response sample 

vector from the ith source to the corresponding sensor, ∗ denotes convolution and 

n(t)=[nu(t), nv(t), nw(t), no(t)]
T is defined as the noise components. By taking the short-

time Fourier transform (STFT), Eqn. (1) can be written as 
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where m is the time frame index and k is the frequency bin index, Si(k,m) is the STFT of 

si(t). X(k,m), Hi(k) and N(k,m) are the 4-by-1 STFT coefficient vector of x(t), hi(t), and 

n(t) respectively, which are given by 
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With the reverberation, Hi(k) (1≤i≤I) can be decomposed into [9] 
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where H
d 

i (k) and H
r 

i (k) are the direct-path component and reflection component 

respectively, which are denoted as 
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where i isthe direct-path time delay, kis the kth discrete angular frequency, and ai is 

the manifold vector for speech source si(t) with the elevation i ∈[0°, 180°] and 

azimuth i ∈[0°, 360°), which has the form 
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where ui, vi and wi are given by 
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i , 1]T is the manifold vector pointing towards the qth reflection component, 

q

i  and 
q

i  are the time delay of the reflection and attenuation due to absorption at 

surfaces of the room. Therefore, the problem of DOAs estimation of multi-sources is 

converted into the estimation of [ui, vi, wi] (1≤i≤I). 

2.2. Inter-sensor data ratio model 

The inter-sensor data ratios (ISDR) of the AVS are defined as [7] 
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where ruo, rvo, rwo are the ISDRs between u- and o-sensor, v- and o-sensor, w- and o-

sensor respectively. Based on the Eqn. (2)-(9), for the f-sensor (f=u, v, w), the ISDR can 

be represented as 
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If  the time-frequency point X(k,m) is a TD-TFP, which is assumed to be dominated by 

the ith sources and the direct-path component is significantly larger than the reflection 

and noise components, X(k,m) can be appproximated by 
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where H
d 

i (k) is the direct-path component defined in (7), then ISDRs can be transformed 

into 
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where ( , )= ( , ) ( , )k i
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( , )foe k m  is the residual error caused by ambiet noise, reverberation and model 

mismatch. 



 

2.3. ISDRs clustering based DOA estimation  

From Eqn. (13), the ISDRs ruo(k,m), rvo(k,m) and rwo(k,m) can be viewed as random 

variables in TF domains with the mean of ui, vi, and wi respectively [7]. It is noted that 

the residual error ( , )foe k m  is small for the TD-TFP, while large for the ID-TFP. To 

accurately estimate [ui, vi, wi] (1≤i≤I), it is crucial to extract reliable  TD-TFPs for the 

calculation of ISDRs. Specifically, assuming there are J TD-TFPs that are associated 

with I sources, then the ISDRs 
1{[ , , ] }j j j

uo vo wo j Jr r r  
 can be obtained and clustered into I 

classes where each represents one source. To illustrate this, we take the ISDRs between 

the u-sensor and o-sensor as an example, and plot the ratios r
g 

uo (g∈Gi) in Fig 1, where 

Gi is the index set of the elements in the ith ISDR-cluster. As shown in Fig 1, the ratios 

 

Fig. 1. Illustration of the ISDRs between the u-sensor and o-sensor, where ‘△’ is the 

ratio r
g 

uo in the ith ISDR-cluster, the red line is the true ratio ui, the green line is the 

average of r
g 

uo (g∈Gi), and the black line is the weighted average of r
g 

uo (g∈Gi). 



r
g 

uo fluctuate up and down around the true ratio ui (red line), thus it is a good choice to 

select the average (green line) of r
g 

uo to approximate ui for DOA estimation. Based on 

Eqn. (9), the centers of each ISDR-cluster can be calculated by taking the average of the 

points within the cluster and used for DOA estimation as follows: 
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where ˆ ˆ ˆ{ , , }i i i

uo vo wor r r  is the center of the ith ISDR-cluster, and |·| denotes the number of 

elements in the set. ˆ
i

  and ˆ
i

  are the estimated elevation and azimuth for the ith source.  

As we can see from (13) and Fig 1, the biases in DOA estimation by AVS-ISDR 

mainly come from the residual errors { ( , ), ( , ), ( , )}uo vo woe k m e k m e k m , since the large 

residual errors increase the estimation errors of the centers of the clusters for DOA 

estimation.  In an effort to overcome this problem, two strategies have been exploited: 

1) The TD-TFPs with low residual errors (in terms of a pre-defined threshold) are 

identified and extracted. 

2) The weighted centers of ISDR-clusters are used to replace the original centers (14) 

by assigning the ISDRs having large residual errors with small weights, and the 

ISDRs having small residual errors with large weights. 

 

3. Our proposed DOA estimation methods 

In this section, the proposed novel TLSB features, which show different patterns for 

TD-TFPs and ID-TFPs, are firstly presented. Then, we present the details of soft mask 



learning by DNN and DNN-SVM in a supervised manner to extract reliable TD-TFPs. 

Finally, our proposed robust DOA estimation methods, by using the weighted centers of 

the ISDR-clusters (WISDR), termed in short as AVS-WISDR-DNN and AVS-WISDR-

DNN-SVM, are introduced. 

3.1. Extraction of the tandem local spectrogram block  

According to above discussions, here we use the log-power STFT, 

Yf(k,m)=10log10(||Xf(k,m)||) (f=u,v,w,o), where ||·|| denotes the Euclidean norm. Then 

the shape of LSB centered by the TFP (k, m) of the f-sensor is defined as
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where B and C are the row and column offset respectively, which are found empirically 

in our experiments.  

To give some insights, an example is given here to show the patterns of LSBs, 

where the SNR level of Gaussian noise is set at 5dB and reverberation time at 350ms, 

 
(a)                                                     (b) 
 

Fig. 2. LSBs of 11×11 size that are randomly selected from the spectrogram of the 

received signal at the o-sensor with SNR level being 5dB and reverberation time 

being 350ms: (a) Nine local spectrogram blocks of TD-TFPs (TD-TFP-LSBs); (b) 

Nine local spectrogram blocks of ID-TFPs (ID-TFP-LSBs) 



the room size is 6m×6m×4m, the AVS is located at [3m, 3m, 1.3m], and two speech 

sources are placed 1.7m away from the sensor with DOA at (60o, -45o) and (80o, 120o) 

respectively. Then the spectrogram is obtained by taking the log-power STFT on the 

received signal of the AVS. The offsets B and C are all set to be 5 (the size of LSB is 

11×11). Taking the LSBs of the o-sensor as an example, TD-TFP-LSBs and ID-TFP-

LSBs are shown in Fig. 2 (a) and (b) respectively. From Fig. 2 (a) and (b), we can 

observe the following properties: 1) most TFPs in TD-TFP-LSBs have relatively high 

energy; 2) those TFPs in TD-TFP-LSBs with high energy constitute parallel “stripes”; 3) 

TD-TFP-LSBs contain more TD-TFPs. It is noted that similar patterns can be observed 

at other sensors (u-, v-, w-sensor) and in other noisy and reverberant enviroments.  

Above observations motivate us to use the LSB as a cue to estimate the TF mask. 

Based on the structure of AVS, we propose to make use of the LSBs from all the 4 

channels of the AVS, as illustrated in Fig. 3, where LSBs centered by the same TFP are 

vectorized and cascaded to form a 484 (4×11×11)-dimension vector termed as tandem 

LSB (TLSB). 

 

Fig. 3. Tandem local spectrogram block extraction 



3.2. Design of the soft mask learner 

A TD-TFP means the signal-to-noise ratio (SNR) of the TFP is larger than a local 

SNR where idea binary mask (IBM) has been suggested as a criterion as follows [17] 
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where  is a constant that is set to be 0.5 in this paper. Clearly, the IBM is 1 for TD-

TFP and 0 for ID-TFP. It is noted that the IBM can only be used to determine whether 

the TFP is TD-TFP or not. To obtain a center that is closer to the true center as shown in 

Fig 1, the soft mask can be utilized. The soft mask, denoting the probability of a TFP 

being TD-TFP, can be used to determine the TD-TFPs and used as the weights to 

calculate the weighted centers of ISDR-clusters for better DOA estimation. Therefore, 

two soft mask learners have been proposed in the following subsections. 

3.2.1. Soft mask learning by DNN 

With the TLSB as input, we propose to employ the DNN to learn the soft TF mask 

for each TFP, which involves the training phase and test phase.  

In the training phase, we create a training dataset of TLSBs that are extracted from 

the spectrograms of an AVS in different noisy and reverberant environments (details are 

given in Section 4), and the IBM of each TFP is used as the ground truth. With the 

training dataset {(TLSBd, ld), d=1, 2, ..., D}, where D is the number of TLSB samples 

and ld is the label (IBM) corresponding to the dth TLSB, the DNN is firstly pre-trained 

via a deep generative model of TLSBs by a stack of multiple restricted Boltzmann 

machines (RBMs) in an unsupervised fashion by using the contrastive divergence (CD) 

algorithm [23]. Then following the learning rate annealing and early stopping strategies 



used in the BP process [16], the DNN is fine-tuned using a stochastic gradient descent 

(SGD) algorithm by maximizing the cross-entropy between the true IBM and the 

predicted probability.  

In the test phase, with the test TLSB at (k, m), the trained DNN is used to generate the 

soft mask (i.e. a posterior probability, which is the output of DNN) for the TFP as  

 (IBM=1|TLSB( ))p P k,m   (18) 

Then any TFP with the soft mask larger than a predefined value (set to be 0.9 

empirically) is taken as a TD-TFP, which is used for DOA estimation. 

3.2.2. Soft mask learning by DNN-SVM 

With the well-trained DNN, in a generative manner, the last hidden layer 

representations (LHLR) of DNN can be obtained by using the TLSB as the input  

 LHLR (TLSB ),( 1,2,..., )d d d D     (19) 

where ( )   is the mapping from the input to the last hidden layer of DNN. As discussed 

above, LHLRs have the linear separability in favour of the linear SVM. Thus, the new 

training dataset {(LHLRd, ld), d=1, 2, ..., D} can be obtained by Eqn. (19) and used for 

training a linear SVM, which has the following decision function [24] 
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where z is the test LHLR, i is the ith support vector associated with the weight i, Ns is 

the total number of support vectors, and 0 is the bias term. It is noted that, when the 

decision function L(z) is positive, the TFP corresponding to the test LHLR is judged to 

be a TD-TFP. Intuitively, when L(z) has a larger positive value, the TFP is determined 

as a TD-TFP with a higher confidence, and vice versa. Therefore, similar to the 

relevance vector machine (RVM) [25] that has the identical function of SVM but 



provides probabilistic classification, the soft mask based on SVM can be defined by 

wrapping Eqn. (20) in a sigmoid squashing function 
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Then any TFP with the soft mask larger than 0.5 (L(z) is positive) is taken as a TD-TFP. 

3.3. DOA estimation via weighted ISDR centers 

Following the ISDR model presented in [7], we propose a weighted ISDR (WISDR) 

model for DOA estimation. Specifically, take the J TD-TFPs determined by DNN as an 

example, assume the corresponding soft masks are {p1, p2, …, pJ}. Then the ISDRs 

1{[ , , ] }j j j

uo vo wo j Jr r r  
 can be calculated by Eqn. (10) and clustered into I classes by using 

the kernel density estimation (KDE) as used in [7]. The soft mask represents the 

probability of the TFP being considered as a TD-TFP, and as a result, it becomes useful 

for estimating the centers of the clusters. As shown in Fig 1, the center ˆi

uor  of the ratio r
g 

uo 

(g∈Gi) in the ith ISDR-cluster is severely impacted by the r
g 

uo with high residual errors. 

By assigning each r
g 

uo with the corresponding soft mask as the weight, the weighted 

center 
i

uor  of  r
g 

uo  (g∈Gi) is able to approximate the true ratio ui more closely as 

compared with the center ˆi

uor . Thus, different from Eqn. (14), we take the weighted 

average as the center of the ith cluster as follows 
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Similiar to (15), by replacing the original centers (14) with the weighted centers (22), 

the DOA can be estimated by 
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To distinguish from the baseline AVS-ISDR algorithm, we term the proposed 

algorithms in short as AVS-WISDR-DNN and AVS-WISDR-DNN-SVM 

respectively，which are summarized in Tables 1 and 2. 

 

 

Table 1. Summary of our proposed AVS-WISDR-DNN algorithm 

Algorithm 1. AVS-WISDR-DNN 

1. DNN training: 

1) Construct the training dataset {(TLSBd, ld), d=1, 2, ..., D} by extracting the 

TLSB feature and corresponding IBM from the spectrograms of an AVS in 

different noisy and reverberant environments; 

2) Train the DNN with the TLSBs and corresponing IBMs as training pairs; 

3) Save the DNN model. 

2. DOA estimation stage: 

1) Transform the received signal of the AVS to the spectrograms; 

2) Extract the TLSBs from the spectrograms as the input of DNN; 

3) Compute the soft masks by using TLSBs as the input of DNN (18), and 

determine the TD-TFPs with values of the soft masks larger than a 

predefined threshold (e.g., 0.9); 

4) Compute and cluster the ISDRs (10) of TD-TFPs into I classes by KDE; 

5) Perform DOA estimation (23) on the weighted centers of ISDR-clusters 

(22).     

 

 



 

Table 2. Summary of our proposed AVS-WISDR-DNN-SVM algorithm 

Algorithm 2. AVS-WISDR-DNN-SVM 

1. DNN-SVM training: 

1) Construct the training dataset {(TLSBd, ld), d=1, 2, ..., D} by extracting the 

TLSB feature and corresponding IBM from the spectrograms of an AVS in 

different noisy and reverberant environments; 

2) Train the DNN with the TLSBs and corresponing IBMs as training pairs; 

3) Extract the LHLRs with the well-trained DNN as shown in (19); 

4) Train the SVM with the LHLRs and corresponing IBMs as training pairs   

5) Save the DNN and SVM models. 

2. DOA estimation stage: 

1) Transform the received signal of the AVS to the spectrograms; 

2) Extract the TLSBs from the spectrograms as the input of DNN; 

3) Extract the LHLRs with the well-trained DNN as shown in (19) 

4) Compute the soft masks by using LHLRs as the input of SVM (20) (21), and 

determine the TD-TFPs with values of soft masks larger than a predefined 

threshold (e.g., 0.5); 

5) Compute and cluster the ISDRs (10) of TD-TFPs into I classes by KDE; 

6) Perform DOA estimation (23) on the weighted centers of ISDR-clusters 

(22).     

 

 

Table 3. Configurations used for TLSB generation 

Speech 50 randomly selected sentences from TIMIT [23] 

DOA (°) and randomly sampled from 0~180 and 0~360 

SNR (dB) -5 to 20 with 5 step 

T60 (s) 0.15 to 0.75 with 0.1 step 

Room size (m) 4×5×3 (small), 8×10×3.5 (medium), 15×18×4 (large) 

Position of AVS in the center of the room with the height to be 1.5m 

Distance (m) near (1) and far (3, 6, 9 for small, medium, large) 

 



4. Experiments and analysis 

4.1. Experimental settings 

To create the dataset for training the DNN, the received signal x(t) of the AVS is 

generated according to Eqn. (1) where the room impulse responses h(t) are simulated 

following the image method proposed in [26], and n(t) is of Gaussian distribution. To 

obtain TLSBs in a variety of conditions, we simulate x(t) with different DOAs, room 

size, source to AVS distances, noise and reverberation levels, where the detailed 

configuration is summarized in Table 3. In each configuration, the elevation and 

azimuth are randomly sampled from [0° , 180°]  and [0° , 360°) respectively. We 

simulate 3 types of room size: small (4m×5m×3m), medium (8m×10m×3.5m), and large 

(15m×18m×4m). In each room, the AVS is all placed in the center with the height of 

1.5m. 50 sentences randomly selected from the TIMIT corpus [27] are used as the 

original speech sources, and each sentence is repeatedly used for different simulation 

 

Fig. 4. The architecture of DNN used in our work 



configurations. The signals are sampled at 8kHz. The Hamming window of 256 samples 

is used to compute the spectrograms Yf(k,m) (f=u,v,w,o), with a 50% overlap between 

the neighbouring windows. To create a proper dataset, for the spectrograms obtained in 

each configuration, we extract TLSBs which can be divided into 3 parts:  

1) TLSBs of TD-TFPs are all extracted and preserved, and the label (IBM) is set to 

be 1. 

2) TLSBs of those ID-TFPs that lie in the LSBs of TD-TFPs are extracted and 

preserved, and the label is set to be 0. 

3) By dividing the spectrogram into LSBs of size 11×11 without overlap across time 

frames and frequency bins, TLSBs of ID-TFPs are extracted and preserved, and 

the label is set to be 0. 

Totally 7 million training samples are obtained, where 5 million training samples 

{(TLSBd, ld), d=1, 2, ..., 5×106} are randomly selected to train the DNN, as we find the 

DNN has better performance with a large dataset and the performance is almost 

saturated with 5 million training samples. It is noted that the training dataset is 

generated under one-source condition, since the TLSBs under multi-source conditions 

have similar patterns. 

As for DNN, the architecture we adopted is demonstrated in Fig. 4, where the DNN 

contains one input layer (484-dimension, the block shape is the same as that in Section 

4.1), three hidden layers with 512 units per layer and one output layer (2-dimension), 

and the last two layers constitute a softmax classifier. It is noted that the number of 

hidden layers of the DNN is determined with the cross-validation experiments by 

setting it as 2, 3, 4 and 5, where the DNN with 3 hidden layers gives the best 

performance in terms of the cross-validation classification accuracy. As a result, we 



choose the DNN with 3 hidden layers in our experiments. When the DNN is well-

trained with the created dataset {(TLSBd, ld), d=1, 2, ..., D}, the corresponding LHLR 

dataset {(LHLRd, ld), d=1, 2, ..., D} can be obtained. As for the linear SVM, we 

randomly select 104 LHLR samples from the LHLR dataset, and use the default settings 

in the LIBSVM [28] package to train a linear SVM. In the test phase, the unused 

utterances selected from the TIMIT database are used as speech sources, the room size 

and the location of AVS are set to be 6m×6m×4m and [3m, 3m, 1.3m], and distances 

between the AVS and sources are all set to be 1.7m. The AVS-ISDR method [7] and the 

method by Wu et al. [9] (here termed as AVS-LRSS) are taken as baselines, where the 

settings of AVS-LRSS are the same as [9]. The root mean squared error (RMSE) is used 

as the performance metric 
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where L is the total number of trials, il and il are the estimation of i and i in the lth 

trial respectively. 

4.2. Experimental results 

4.2.1. Visualization of hidden layer representations of DNN 



To illustrate the distribution of learned hidden layer representations (HLR) via DNN, 

Fig. 5 shows the 3-dimensional projection of representations of 3 hidden layers of DNN. 

The projection is achieved by the t-SNE algorithm [29] and 103 TLSB samples are 

randomly selected from {(TLSBd, ld), d=1, 2, ..., D}. In a generative manner, the first, 

second and third HLRs can be obtained via DNN with the TLSB samples as input. From 

Fig. 5, it can be observed that the HLRs become more separable as the depth of hidden 

layers increases, and the third HLRs, namely LHLRs, provide the best capability to 

discriminate the most TD-TFPs (IBM=1) and ID-TFPs (IBM=0). These results 

demonstrate that DNN is able to extract the LHLR features from the raw TLSB features 

which help to distinguish whether the TFP is a TD-TFP or ID-TFP.   

4.2.2. Performance comparison for TD-TFPs extraction  

 

(a)                                         (b)                                         (c) 

Fig. 5. 3-dimensional projection (w1, w2, w3) of hidden layer representations 

(HLR): (a) First HLRs; (b) Second HLRs; (c) Third HLRs (LHLRs) 



To verify the effectiveness of TLSB based DNN and DNN-SVM for extracting TD-

TFPs, as compared with the existing SinTrE [12] and coherence test [9] method, we 

generate the test TLSB dataset that is synthesized under different reverberation levels 

with the SNR fixed at 5dB, where the F1 score is used  
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where Pr is the precision, which is the number of correctly predicted positive (IBM=1) 

results divided by the number of all predicted positive results, and Re is the recall, which 

is the number of correctly predicted positive results divided by the number of all true 

positive results. Under each reverberant condition, 100 trials have been conducted and 

the average F1 score is used as the evaluation metric, and the results are shown in Table 

4. From Table 4, we can see that, as expected, the average F1 scores of all methods 

decrease when the reverberation time T60 is increased, and our proposed methods have 

significant improvements over the SinTrE and the coherence test methods, where the 

DNN-SVM gives the best performance with the highest average F1 scores, since the 

SVM gives better classification performance than the softmax of DNN [30]. 

Table 4. Average F1 scores versus reverberation time T60, with SNR = 5dB 

method 
Reverberation time T60  

0.15s 0.25s 0.35s 0.45s 0.55s 

SinTrE 0.242 0.082 0.038 0.024 0.021 

Coherence test 0.478 0.108 0.056 0.054 0.036 

DNN 0.669 0.357 0.280 0.230 0.192 

DNN-SVM 0.701 0.382 0.313 0.258 0.225 

 



4.2.3. DOA estimation accuracy versus azimuth 

This experiment aims to evaluate the performance of DOA estimation versus 

different azimuth, where the elevation is fixed at 60o, the azimuth is varied from -90o to 

90o with 10o step, and the SNR and T60 are fixed at 5dB and 0.35s, respectively. 100 

trials have been repeated for each azimuth, and the results are shown in Fig. 6. It can be 

clearly seen that AVS-LRSS outperforms the AVS-ISDR for all azimuths, and both 

have the degraded performance when the azimuth is -90°, 0° and 90°. However, it 

is promising to see that AVS-WISDR-DNN and AVS-WISDR-DNN-SVM achieve 

better performance for all azimuths, which confirms the effectiveness of the TLSBs 

used for soft mask estimation based on DNN and DNN-SVM. 

 

Fig. 6. RMSE versus different azimuth 



4.2.4. DOA estimation of multi-sources 

Fig. 7 shows the performance of DOA estimation of two sources located at (60o, -45o) 

and (80o, 120o) in different noisy and reverberant environments and L=100. It can be 

seen that the performance of all methods degrades with increasing levels of noise and 

reverberation, however our proposed methods still achieve better performance under all 

conditions, followed by AVS-LRSS and AVS-ISDR, which demonstrates the advantage 

of the proposed method in noisy and reverberant environments. In addition, since the 

DNN and DNN-SVM are trained by the dataset generated under different noisy and 

reverberant conditions, our methods are less sensitive and more robust to noise and 

reverberation. 

 

Fig. 7. RMSE versus different noise and reverberation levels with 2 sources located 

at (60o, -45o) and (80o, 120o) 



4.2.5. Performance evaluation under different noise conditions 

The DNN and DNN-SVM used in our work are aimed for predicting the type of the 

time-frequency points (TD-TFPs or ID-TFPs), which shows good performance under 

the white noise condition. To analyze the performance of our proposed algorithms under 

different noise conditions, we conducted experiments under 5 types of noise: white, 

machniegun, babble, f16 and destroyerops noise, which are seclected from the 

NOISEX-92 corpus [31]. We used one source, varied the SNR from 0dB to 15dB with 

5dB interval and fixed T60 at 0.35s. Then, 100 trials have been repeated for each SNR 

level, and the DOA is randomly generated for each trial. The experimental results are 

shown in Fig. 8. From the results shown in Fig. 8, we have the following observations. 1) 

With the increase in SNR, our proposed methods give lower DOA RMSE results for 

each noise-type. 2) For a certain type of noise (f16 as an example), our proposed 

    

                                  (a)                                                                  (b) 

    

                                  (c)                                                                            (d) 

Fig. 8. Performance evaluation under different noise conditions with different SNR 

levels: (a) 0dB; (b) 5dB; (c) 10dB; and (d) 15dB 



methods (green and yellow color bars) outperform the AVS-ISDR and AVS-LRSS 

algorithms. 3) For a certain SNR (0dB as an example), our proposed algorithms give the 

lowest DOA RMSE results for white noise while they give highest DOA RMSE results 

for babble noise. Such performance degradation is expected since the training data of 

DNN for our algorithms is only constructed by mixing the clean speech with white 

noise. 4) The mismatch of the noise condition between the test data and the training data 

leads to the performance degradation of our proposed algorithms. These observations 

also suggest that a large scale training dataset that encompasses many possible the 

combinations of speech and noise conditions, are  helpful for enhancing the generality 

of our proposed DNN-based DOA estimation methods. 

 

 

Fig. 9. Experimental device of DOA estimation system based on single AVS 

Table 5. DOA estimation in a real scenario

DOA of speaker 1 [90°, 0°] 
ART(s) 

DOA of speaker 2 [90°, 45°] [90°, 90°] [90°, 135°] [90°, 180°] 

RMSE 

(°) 

AVS-ISDR 8.29 6.64 5.93 5.90 0.486 

AVS-LRSS 5.44 5.64 5.53 5.47 9.206 

AVS-WISDR-DNN 5.37 4.76 5.00 4.77 1.481 

AVS-WISDR-DNN-SVM 5.12 4.48 4.73 4.41 3.039 

 



4.2.6. DOA estimation in a real scenario 

Finally, we conduct an experiment in a real scenario using the AVS data capturing 

system developed by ADSPLAB as shown in Fig. 9, where a single AVS is placed on 

top of the smart car to capture the signals, and the room has a size of about 

8.5m×3m×5m with uncontrolled reverberation and background noise from air 

conditioner and computer servers. Specifically, the experimental settings for the data 

recording are as follows: two speakers are used as the sources, the DOA of one speaker 

is fixed at [90o, 0o], and the elevation of the other speaker is fixed at 90o, while the 

azimuth varies from 45o to 180o with a 45o interval, which, therefore, results in 4 types 

of combinations. Besides, the distance between the speakers and the AVS is all set as 

1m, and 10 trials have been conducted for each combination.  

The RMSE results of DOA estimation are shown in Table 5. It can be seen that the 

proposed AVS-WISDR-DNN-SVM offers the best performance with the lowest RMSE 

for each source combination, followed by AVS-WISDR-DNN, AVS-LRSS and AVS-

ISDR, which further demonstrates the effectiveness and superiority of our proposed 

methods. It is noted that the DNN and DNN-SVM are trained without performing any 

matching from the training dataset to the real test environment. Our proposed methods 

offer better performance due to the generalization ability of DNN and DNN-SVM to 

other unseen conditions. We will study the possibility of matching a training dataset to 

the given test environment for better DOA estimation in our future work. 

 Through quantitative analysis, by limiting the recorded data to be 3s for each trial, 

we also record the average running time (ART) of each algorithm in Table 5, where the 

AVS-ISDR has the smallest ART and AVS-LRSS has the largest ART. In essence, the 

DOA estimation of AVS-LRSS is based on the multiple signal classification (MUSIC) 



algorithm, which involves the MUSIC spectrum search to determine the elevation and 

azimuth simultaneously, and thus has a higher computational load. In contrast, the 

AVS-ISDR performs DOA estimation on the TD-TFPs with ISDRs that can be simply 

calculated with much lower complexity, which therefore has lower computational loads. 

Finally, our proposed methods provide a tradeoff between the DOA estimation accuracy 

and speed (running time), where the computational costs for TD-TFPs extraction by 

DNN and DNN-SVM are higher than those for the SinTre used in AVS-ISDR and the 

coherence test used in AVS-LRSS, however their TD-TFPs extraction accuracy is much 

higher, as shown in Table 4. In addition, due to the use of a number of support vectors, 

the computational cost of SVM tends to be higher than that of the softmax of DNN, as a 

result, the DNN-SVM is slower than DNN. Similiar to AVS-ISDR, our proposed 

methods are much faster than AVS-LRSS for DOA estimation. 

5. Conclusion 

In this paper, we have presented two soft mask learning methods for DOA estimation 

of multi-sources using DNN and DNN-SVM. The methods are based on the analysis of 

a previous method, i.e. AVS-ISDR algorithm, which we proposed earlier. The 

performance of this previous method largely depends on the reliable extraction of TD-

TFPs that could be affected significantly by the increasing levels of noise and 

reverberation. A novel TLSB feature, that is shown to be different for TD-TFPs and ID-

TFPs has been presented. By training a DNN with a large scale dataset that is composed 

by TLSB and corresponding IBM under various noisy and reverberant conditions, the 

soft masks can be generated via DNN to determine reliable TD-TFPs and used to 

calculate the weighted centers of ISDR-clusters for better DOA estimation. Due to the 



scalability and flexibility of DNN, the LHLR features learned from TLSBs are shown to 

be more linearly separable and thus used to train a linear SVM with a lower 

computational complexity. We note that the DNN-SVM can also be used to generate the 

soft masks by mapping the outputs of SVM to posterior probability for DOA estimation. 

The proposed AVS-WISDR-DNN and AVS-WISDR-DNN-SVM methods have shown 

significant improvements over AVS-ISDR and AVS-LRSS methods, where AVS-

WISDR-DNN-SVM offers the best performance among these compared methods.  

Our future work aims to exploit the influence of the size and shape of local 

spectrogram blocks on soft masking and design other DNN architecture to further 

improve the estimation performance of the soft masks. Besides, the selection of LHLR 

samples to further improve the training of a linear SVM is also worth studying. 
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