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Abstract

The article concerns compressed sensing methods in the quaternion algebra. We
prove that it is possible to uniquely reconstruct – by `1 norm minimization – a sparse
quaternion signal from a limited number of its real linear measurements, provided
the measurement matrix satisfies so-called restricted isometry property with a suf-
ficiently small constant. We also provide error estimates for the reconstruction of
a non-sparse quaternion signal in the noisy and noiseless cases.

1 Introduction
The idea of compressed sensing is to recover a sparse (supported on a set of small

cardinality) finite dimensional signal x from a few number of its linear measurements
y = Φx, by solving the convex program of `1 norm minimization:

min ‖z‖1 subject to Φz = y.

It is well known that the exact recovery is possible if the measurement matrix Φ satisfies
a condition known as the restricted isometry property (Definition 3.1), introduced in [4],
with sufficiently small constant (see e.g. [2, 3, 4] and [7] for more references). Moreover,
even if the original signal is not sparse but e.g. compressible (most of its entries close
to zero), the same minimization provides a good sparse approximation of the signal and
the procedure is stable in the sense that the error is bounded above by the `1 norm of
the difference between the original signal and its best sparse approximation.

More general, one can assume that the observables are contaminated by a white noise,

y = Φx + e, where ‖e‖2 ≤ η.

The exact recovery is obviously impossible, however, if the signal x was sparse, we still
are able to reconstruct it in a stable manner, i.e. with an error bounded in terms of η. To
do so one solves a modified convex problem

min ‖z‖1 subject to ‖y −Φz‖2 ≤ η.

So far the attention of researchers in compressed sensing has mostly been focused
on the case of real and complex signals and measurements. Our aim is to investigate if
the compressed sensing methods can be successfully applied also to quaternion signals.
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This generalization would be significant because of broad applications of the quaternion
algebra. Apart from classical applications, e.g. in quantum mechanics, for the description
of 3D solid body rotations, etc., quaternions have also been used in the field of signal
processing. Their structure is suitable for description of a colour image – the imaginary
part is interpreted in terms of three components of a colour image: red, green and blue.
That is why quaternions have found numerous applications in image filtering, pattern
recognition, edge detection and watermarking [8, 9, 11, 13]. There has also been proposed
a dual-tree quaternion wavelet transform in a multiscale analysis of geometric image
features [5]. For this purpose an alternative representation of quaternions is used – through
its magnitude (norm) and three phase angles: two of them encode phase shifts while
the third contains image texture information.

The motivation for this work was article [14], the authors of which performed a nu-
merical experiment of a successful recovery of sparse quaternion signals from a limited
amount of their random Gaussian quaternion measurements. There has also been pro-
posed an algorithm for solving the `1 minimization problem in the algebra of quaternions
(by using the second-order cone programming). However, to the authors’ best knowledge,
so far in the literature there has been no proof for any compressed sensing methods in
the algebra of quaternions.

In this article we deal with the case of quaternion signals and their linear measurements
with real coefficients. The main results, stated in Theorem 4.1 and Corollary 5.1, confirm
the numerical experiments from [14] and provide estimates on the error for the problem of
reconstruction of a quaternion signal (not necessarily sparse) from noisy and noiseless data
by minimization of the `1 quaternion norm – under the condition that the real measure-
ments matrix satisfies the restricted isometry property with a sufficiently small constant.
This is a starting point for further research, i.e. investigating the case of quaternion mea-
surements of quaternion signals, search for ’good’ measurement quaternion matrices, etc.

The article is organized as follows. In the next section we recall basic properties of
quaternions and provide two versions of polarization identity. Section 3 is devoted to
the restricted isometry property and its consequences – we prove Lemma 3.3 which is
an important tool in the proof of our main results. In the sections 4 and 5 we state and
prove the main results – Theorem 4.1 and Corollary 5.1. Finally, section 6 presents results
of a numerical experiment for the considered case, i.e. reconstruction (by `1 minimization)
of sparse quaternion signals from their linear measurements with real coefficients and error
estimation for non-sparse quaternion signals giving a lower bound on the constant C0 from
Corollary 5.1.

2 Algebra of quaternions
Denote by H the algebra of quaternions

q = a+ bi + cj + dk, where a, b, c, d ∈ R

endowed with the standard norm

|q| =
√
qq =

√
a2 + b2 + c2 + d2,

where q = a− bi− cj−dk is the conjugate of q. The real part Re(q) of q = a+ bi+ cj+dk
is the real number a while quaternion bi + cj + dk is called the imaginary party of q and
denoted by Im(q). The conjugate of q can also be expressed as

q = −1

2
(q + iqi + jqj + kqk) .
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Recall that multiplication is in general not commutative in the quaternion algebra and is
defined by the following rules

i2 = j2 = k2 = ijk = −1

and
ij = −ji = k, jk = −kj = i, ki = −ik = j.

However, we have the property that

q · w = w · q for any q, w ∈ H.

For any n ∈ N we introduce the following function 〈·, ·〉 : Hn×Hn → H with quaternion
values:

〈x,y〉 =
n∑
i=1

xiyi, where x = (x1, . . . , xn)T , y = (y1, . . . , yn)T ∈ Hn

and T is the transpose. Denote also

‖x‖2 =
√
〈x,x〉 =

√√√√ n∑
i=1

|xi|2, for any x = (x1, . . . , xn)T ∈ Hn.

As a direct consequence of the following lemma, ‖·‖2 is a norm in Hn.

Lemma 2.1. The function 〈·, ·〉 satisfies axioms of the inner product.

Proof. Let x = (x1, . . . , xn)T ,y = (y1, . . . , yn)T , z = (z1, . . . , zn)T ∈ Hn and λ ∈ H.

• 〈x,y〉 =
n∑
i=1

xiyi =
n∑
i=1

xiyi =
n∑
i=1

yixi = 〈y,x〉 .

• 〈λx,y〉 =
n∑
i=1

λxiyi = λ
n∑
i=1

xiyi = λ 〈x,y〉.

• 〈x + y, z〉 =
n∑
i=1

(xi + yi)zi =
n∑
i=1

xizi +
n∑
i=1

yizi = 〈x, z〉+ 〈y, z〉.

• 〈x,x〉 =
n∑
i=1

xixi =
n∑
i=1

|xi|2 = ‖x‖22 ≥ 0.

• 〈x,x〉 = ‖x‖22 = 0 ⇐⇒ x = 0.

We have also the Cauchy-Schwarz inequality.

Lemma 2.2. For any x,y ∈ Hn,

| 〈x,y〉 | ≤ ‖x‖2 · ‖y‖2 .
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Proof. We carefully follow the classical steps of the proof, using the above properties and
keeping the order of terms in multiplication. Take any x,y ∈ Hn and q ∈ H. If y = 0 we
are done, hence assume that ‖y‖2 > 0. By Lemma 2.1 we have that

0 ≤ 〈x− qy,x− qy〉 = 〈x,x〉 − q 〈y,x〉 − 〈x,y〉 q + q 〈y,y〉 q
= ‖x‖22 − q〈x,y〉 − 〈x,y〉 q + |q|2 ‖y‖22 .

Putting q = 〈x,y〉
‖y‖2 we get

0 ≤ ‖x‖22 −
〈x,y〉 〈x,y〉
‖y‖22

− 〈x,y〉 〈x,y〉
‖y‖22

+
| 〈x,y〉 |2

‖y‖22
= ‖x‖22 −

| 〈x,y〉 |2

‖y‖22
,

which gives the result.

The function 〈·, ·〉 is not a standard inner product since its values are quaternions.
However, we are able to obtain for it the following versions of polarization identity.

Theorem 2.3 (Polarization identity I). For any x,y ∈ Hn we have

〈x,y〉 =
1

4

(
‖x + y‖22 − ‖x− y‖22

)
+

i

4

(
‖x + iy‖22 − ‖x− iy‖22

)
+

j

4

(
‖x + jy‖22 − ‖x− jy‖22

)
+

k

4

(
‖x + ky‖22 − ‖x− ky‖22

)
.

Proof. Denote x = (x1, . . . , xn)T , y = (y1, . . . , yn)T and let us begin with the real part.

‖x + y‖2 − ‖x− y‖2 =
n∑
i=1

(
(xi + yi)(xi + yi)− (xi − yi)(xi − yi)

)
=

n∑
i=1

(
xixi + xiyi + yixi + yiyi − xixi + xiyi + yixi − yiyi

)
= 2

n∑
i=1

(
xiyi + yixi

)
= 2
(
〈x,y〉+ 〈y,x〉

)
= 2

(
〈x,y〉+ 〈x,y〉

)
= 4 Re (〈x,y〉) .

Now, the term with the imaginary unit i.

‖x + iy‖2 − ‖x− iy‖2 =
n∑
i=1

(
(xi + iyi)

(
xi + iyi

)
− (xi − iyi)

(
xi − iyi

))
=

n∑
i=1

(
xixi + xiiyi + iyixi + iyiiyi − xixi + xiiyi + iyixi − iyiiyi

)
= 2

n∑
i=1

(
− xiyii + iyixi

)
= −2

(
〈x,y〉 i− i 〈y,x〉

)
= −2

(
〈x,y〉 i− i〈x,y〉

)
.
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Analogously for the remaining imaginary units:

‖x + jy‖22 − ‖x− jy‖22 = −2
(
〈x,y〉 j− j〈x,y〉

)
and

‖x + ky‖22 − ‖x− ky‖22 = −2
(
〈x,y〉k− k〈x,y〉

)
.

Multiplying the left hand sides by i, j,k respectively and summing up the identities we
obtain that

i
(
‖x + iy‖22 − ‖x− iy‖22

)
+ j
(
‖x + jy‖22 − ‖x− jy‖22

)
+ k

(
‖x + ky‖22 − ‖x− ky‖22

)
= −2 (i 〈x,y〉 i + j 〈x,y〉 j + k 〈x,y〉k)− 6〈x,y〉

= −2
(
−2〈x,y〉 − 〈x,y〉

)
− 6〈x,y〉

= 2 〈x,y〉 − 2〈x,y〉 = 4 Im (〈x,y〉) ,

which finishes the proof.

In order to formulate the second version of the last result, let us introduce a different
representation of a quaternion q ∈ H:

q = x+ uy, where x, y ∈ R, y ≥ 0, u ∈ H, Re(u) = 0, |u| = 1.

Then obviously
x = Re(q), uy = Im(q) and |q|2 = x2 + y2.

Since Re(u) = 0 and |u| = 1, we also have

u = −u and 1 = uu = u (−u) = −u2.

Any quaternion with these properties can also be called an imaginary unit (cf. [12]).

Lemma 2.4. For any q ∈ H with q = x + uy, where x, y ∈ R, y ≥ 0, u ∈ H, Re(u) = 0,
|u| = 1, we have

u q u = q and u q u = q.

Proof. Using the fact that multiplying quaternions by real numbers is commutative, we
get that

u q u = u(x+ uy)u = uxu+ uu y u = x|u|2 + |u|2y u = x+ uy = q.

And the second identity analogously.

Theorem 2.5 (Polarization identity II). For any x,y ∈ Hn, if we denote 〈x,y〉 = a+ub,
where a, b ∈ R, b ≥ 0, u ∈ H, Re(u) = 0, |u| = 1, we have

〈x,y〉 =
1

4

(
‖x + y‖22 − ‖x− y‖22

)
+
u

4

(
‖x + uy‖22 − ‖x− uy‖

2
2

)
.

Proof. The form of the real part was established in the previous theorem. Using the fact
that u = −u we get that

‖x + uy‖22 = ‖x‖22 + u〈x,y〉 − 〈x,y〉u+ ‖y‖22

and
‖x− uy‖22 = ‖x‖22 − u〈x,y〉+ 〈x,y〉u+ ‖y‖22 .
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Hence, by Lemma 2.4,

u
(
‖x + uy‖22 − ‖x− uy‖

2
2

)
= 2u2 〈x,y〉 − 2u 〈x,y〉u = −2〈x,y〉+ 2u 〈x,y〉u

= −2〈x,y〉+ 2 〈x,y〉 = 2
(
〈x,y〉 − 〈x,y〉

)
= 4 Im

(
〈x,y〉

)
.

In what follows we will consider ‖·‖p norms for quaternion vectors x ∈ Hn defined in
the standard way:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, for p ∈ [1,∞)

and
‖x‖∞ = max

1≤i≤n
|xi|,

where x = (x1, . . . , xn)T . We will also apply the usual notation for the cardinality of
the support of x, i.e.

‖x‖0 = #supp(x), where supp(x) = {i ∈ {1, . . . , n} : xi 6= 0}.

3 Restricted Isometry Property
Recall that we call a vector (signal) x ∈ Hn s-sparse if it has at most s nonzero

coefficients, i.e.
‖x‖0 ≤ s.

As it was mentioned in the introduction, one of the conditions which guarantees exact
reconstruction of a sparse real signal from a few number of its linear measurements is
that the measurement matrix satisfies so-called restricted isometry property (RIP) with
a sufficiently small constant. The notion of restricted isometry constants was introduced
by Candès and Tao in [4].

Definition 3.1. Let s ∈ N and Φ ∈ Rm×n. We say that Φ satisfies the s-restricted
isometry property (for real vectors) with a constant δs ≥ 0 if

(1− δs) ‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs) ‖x‖22
for all s-sparse real vectors x ∈ Rn. The smallest number δs ≥ 0 with this property is
called the s-restricted isometry constant.

Note that we can define s-isometry constants for any matrix Φ ∈ Rm×n and any
number s ∈ {1, . . . , n}. There are various examples of real matrices satisfying RIP (with
overwhelming probability), e.g. Bernoulli/Gaussian random matrices with i.i.d. entries
or, more general, random sampling matrices associated to bounded orthonormal systems
(cf. [3, 4, 7]). The following observation allows us to use these matrices also for quaternion
signals.

Lemma 3.2. If a matrix Φ ∈ Rm×n satisfies the s-restricted isometry property (for real
vectors) with a constant δs ≥ 0, then it satisfies the s-restricted isometry property for
quaternion vectors with the same constant, i.e.

(1− δs) ‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs) ‖x‖22
for all s-sparse quaternion vectors x ∈ Hn.

6



Proof. Take any s-sparse vector x ∈ Hn and express it as

x = xr + ixi + jxj + kxk, where xi ∈ Rn, i ∈ {r, i, j,k}.

Notice that all vectors xi ∈ Rn are also s-sparse. Moreover,

Φx = Φxr + iΦxi + jΦxj + kΦxk, where Φxi ∈ Rn, i ∈ {r, i, j,k}.

Hence
‖Φx‖22 = ‖Φxr‖22 + ‖Φxi‖22 + ‖Φxj‖22 + ‖Φxk‖22

and obviously
‖x‖22 = ‖xr‖22 + ‖xi‖22 + ‖xj‖22 + ‖xk‖22 .

And the result follows after applying the s-restricted isometry inequalities to each vector
xi ∈ Rn separately.

The next result is an important tool in the proof of Theorem 4.1. Note that for quater-
nion vectors we are not able to obtain the same estimate as in the real case. However,
the enhanced version of the polarization identity (Theorem 2.5) – which is the key ingre-
dient in the proof – allows us to decrease the multiplicative constant from 2 to

√
2.

Lemma 3.3. Let δs be the s-isometry constant for a matrix Φ ∈ Rm×n for s ∈ {1, . . . , n}.
For any pair of x,y ∈ Hn with disjoint supports and such that ‖x‖0 ≤ s1 and ‖y‖0 ≤ s2,
where s1 + s2 ≤ n, we have that

|〈Φx,Φy〉| ≤
√

2δs1+s2 ‖x‖2 ‖y‖2 .

Proof. First take two unit vectors x,y ∈ Hn satisfying the assumptions of the lemma.
Since x and y have disjoint supports and ‖x‖2 = ‖y‖2 = 1 we have that

‖x± y‖22 = ‖x‖22 + ‖y‖22 = 2.

Moreover, for any quaternion q ∈ H with |q| = 1,

‖x± qy‖22 = ‖x‖22 + |q|2 ‖y‖22 = 2.

Denote 〈Φx,Φy〉 = a+ub, where a, b ∈ R, b ≥ 0, u ∈ H, Re(u) = 0, |u| = 1. Applying
the polarization identity from Theorem 2.5 we get that

〈Φx,Φy〉 =
1

4

(
‖Φx + Φy‖22 − ‖Φx−Φy‖22

)
+
u

4

(
‖Φx + uΦy‖22 − ‖Φx− uΦy‖22

)
.

Since x± y are (s1 + s2)-sparse,

(1− δs1+s2) ‖x± y‖22︸ ︷︷ ︸
=2

≤ ‖Φx±Φy‖22 = ‖Φ(x± y)‖22 ≤ (1 + δs1+s2) ‖x± y‖22︸ ︷︷ ︸
=2

and therefore

‖Φx + Φy‖22 − ‖Φx−Φy‖22 ≤ 2 (1 + δs1+s2)− 2 (1− δs1+s2) = 4δs1+s2 .

Similarly, since Φ is real and x± uy are also (s1 + s2)-sparse,

(1− δs1+s2) ‖x± uy‖
2
2︸ ︷︷ ︸

=2

≤ ‖Φx± uΦy‖22 = ‖Φ(x± uy)‖22 ≤ (1 + δs1+s2) ‖x± uy‖
2
2︸ ︷︷ ︸

=2

,
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hence

‖Φx + uΦy‖22 − ‖Φx− uΦy‖22 ≤ 2 (1 + δs1+s2)− 2 (1− δs1+s2) = 4δs1+s2 .

Finally

|〈x,y〉| ≤ 1

4

√
42δ2s1+s2 + 42δ2s1+s2 =

√
2 δs1+s2 .

Now, if x,y ∈ Hn are any vectors satisfying assumptions of the lemma, applying
the above estimate we conclude that

|〈x,y〉| = ‖x‖2 ‖y‖2

∣∣∣∣〈 x

‖x‖2
,

y

‖y‖2

〉∣∣∣∣ ≤ √2 δs1+s2 ‖x‖2 ‖y‖2 .

4 Stable reconstruction from noisy data
As we mentioned in the introduction, our aim is to reconstruct a quaternion signal

from a limited amount of its linear measurements with real coefficients. We will also
assume the presence of a white noise with bounded `2 quaternion norm. The observables
are, therefore, given by

y = Φx + e, where x ∈ Hn, Φ ∈ Rm×n, y ∈ Hm and e ∈ Hn with ‖e‖2 ≤ η

for some m ≤ n and η ≥ 0.
We will use the following notation: for any h ∈ Hn and a set of indices T ⊂ {1, . . . , n},

the vector hT ∈ Hn is supported on T with entries

(hT )i =

{
hi if i ∈ T
0 otherwise , where h = (h1, . . . , hn)T .

The complement of T ⊂ {1, . . . , n} will be denoted by T c = {1, . . . , n}\T and the symbol
x|s will be used for the best s-sparse approximation of the vector x, i.e. x|s = xT0 , where
T0 is the set of indices of x coordinates with the biggest quaternion norms.

The following result is a generalization of [2, Theorem 1.3] to the case of quaternion
signals.

Theorem 4.1. Suppose that Φ ∈ Rm×n satisfies the 2s-restricted isometry property with
a constant δ2s < 1

3
and let η ≥ 0. Then, for any x ∈ Hn and y = Φx + e with ‖e‖2 ≤ η,

the solution x# of the problem

arg min
z∈Hn

‖z‖1 subject to ‖Φz− y‖2 ≤ η (4.1)

satisfies ∥∥x# − x
∥∥
2
≤ C0√

s
‖x− x|s‖1 + C1η (4.2)

with constants

C0 =
2(1 + δ2s)

1− 3δ2s
, C1 =

4
√

1 + δ2s
1− 3δ2s

,

where x|s denotes the best s-sparse approximation of x.
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Proof. First, note that, since x# is the minimizer of (4.1) and x is feasible, we get that∥∥Φ (x# − x
)∥∥

2
≤
∥∥Φx# − y

∥∥
2

+ ‖Φx− y‖2 ≤ 2η. (4.3)

Denote
h = x# − x

and decompose h into a sum of vectors hT0 ,hT1 ,hT2 . . . in the following way: let T0 be
the set of indices of x coordinates with the biggest quaternion norms; T1 is the set of
indices of hT c

0
coordinates with the biggest norms, T1 is the set of indices of of h(T0∪T1)c

coordinates with the biggest norms, etc. Then obviously hTj are s-sparse and have disjoint
supports.

Notice that for j ≥ 2 we have that∥∥hTj∥∥22 =
∑
i∈Tj

|hi|2 ≤
∑
i∈Tj

∥∥hTj∥∥2∞ = s
∥∥hTj∥∥2∞ ,

where hi are the coordinates of h and
∥∥hTj∥∥∞ = max

i∈Tj
|hi|. Moreover, since all non-zero

coordinates of hTj−1
have norms not smaller than non-zero coordinates of hTj ,∥∥hTj∥∥∞ ≤ 1

s

∑
i∈Tj−1

|hi| =
1

s

∥∥hTj−1

∥∥
1
.

Hence, for j ≥ 2 we get that∥∥hTj∥∥2 ≤ √s∥∥hTj∥∥∞ ≤ 1√
s

∥∥hTj−1

∥∥
1
,

which implies ∑
j≥2

∥∥hTj∥∥2 ≤ 1√
s

∑
j≥1

∥∥hTj∥∥1 ≤ 1√
s

∥∥hT c
0

∥∥
1
. (4.4)

Finally ∥∥h(T0∪T1)c
∥∥
2

=

∥∥∥∥∥∑
j≥2

hTj

∥∥∥∥∥
2

≤
∑
j≥2

∥∥hTj∥∥2 ≤ 1√
s

∥∥hT c
0

∥∥
1
. (4.5)

Observe that
∥∥hT c

0

∥∥
1
can not be to large since

∥∥x#
∥∥
1

= ‖x + h‖1 is minimal. Indeed,

‖x‖1 ≥ ‖x + h‖1 = ‖xT0 + hT0‖1 +
∥∥xT c

0
+ hT c

0

∥∥
1
≥ ‖xT0‖1 − ‖hT0‖1 −

∥∥xT c
0

∥∥
1

+
∥∥hT c

0

∥∥
1
,

hence ∥∥xT c
0

∥∥
1

= ‖x‖1 − ‖xT0‖1 ≥ −‖hT0‖1 −
∥∥xT c

0

∥∥
1

+
∥∥hT c

0

∥∥
1

and therefore ∥∥hT c
0

∥∥
1
≤ ‖hT0‖1 + 2

∥∥xT c
0

∥∥
1
. (4.6)

Now, the Cauchy-Schwarz inequality immediately implies that

‖hT0‖1 =
∑
i∈T0

|hi| · 1 ≤
√∑

i∈T0

|hi|2 ·
√∑

i∈T0

12 =
√
s ‖hT0‖2

From this, (4.5) and (4.6) we conclude that∥∥h(T0∪T1)c
∥∥
2
≤ 1√

s

∥∥hT c
0

∥∥
1
≤ 1√

s
‖hT0‖1 +

2√
s

∥∥xT c
0

∥∥
1
≤ ‖hT0‖2 + 2ε, (4.7)
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where ε = 1√
s

∥∥xT c
0

∥∥
1

= 1√
s
‖x− x|s‖1. This is the first ingredient of the final estimate.

In what follows we are going to estimate the remaining component, i.e.
∥∥h(T0∪T1)c

∥∥
2
.

Since

ΦhT0∪T1 = Φ

(
h−

∑
j≥2

hTj

)
= Φh−

∑
j≥2

ΦhTj ,

using linearity of 〈·, ·〉, we get that

‖ΦhT0∪T1‖
2
2 = 〈ΦhT0∪T1 ,ΦhT0∪T1〉 = 〈ΦhT0∪T1 ,Φh〉 −

∑
j≥2

〈
ΦhT0∪T1 ,ΦhTj

〉
= 〈ΦhT0∪T1 ,Φh〉 −

∑
j≥2

〈
ΦhT0 ,ΦhTj

〉
−
∑
j≥2

〈
ΦhT1 ,ΦhTj

〉
.

Estimate of the first element follows from Lemma 2.2, (4.3) and RIP

|〈ΦhT0∪T1 ,Φh〉| ≤ ‖ΦhT0∪T1‖2 · ‖Φh‖2 ≤
√

1 + δ2s ‖hT0∪T1‖2 · 2η. (4.8)

For the remaining terms recall that hTj are s-sparse with disjoint supports and apply
Lemma 3.3 ∣∣〈ΦhT0 ,ΦhTj

〉∣∣ ≤ √2 δ2s · ‖hT0‖2 ·
∥∥hTj∥∥2 , j ≥ 2,∣∣〈ΦhT1 ,ΦhTj

〉∣∣ ≤ √2 δ2s · ‖hT1‖2 ·
∥∥hTj∥∥2 , j ≥ 2.

Since T0 and T1 are disjoint, ‖hT0∪T1‖
2
2 = ‖hT0‖

2
2 + ‖hT1‖

2
2 and therefore

‖hT0‖2 + ‖hT1‖2 ≤
√

2 ‖hT0∪T1‖2

since for any a, b ∈ R we have (a+ b)2 ≤ 2(a2 + b2). Hence, using the RIP, (4.8) and (4.4),

(1− δ2s) ‖hT0∪T1‖
2
2 ≤ ‖ΦhT0∪T1‖

2
2

≤
√

1 + δ2s ‖hT0∪T1‖2 · 2η +
√

2 δ2s · (‖hT0‖2 + ‖hT1‖2)
∑
j≥2

∥∥hTj∥∥2
≤
(

2
√

1 + δ2s · η +
2δ2s√
s

∥∥hT c
0

∥∥
1

)
‖hT0∪T1‖2 ,

which implies that

‖hT0∪T1‖2 ≤
2
√

1 + δ2s
1− δ2s

· η +
2δ2s

1− δ2s
·
∥∥hT c

0

∥∥
1√

s
. (4.9)

This, together with (4.6), gives the following estimate

‖hT0∪T1‖2 ≤ α · η + β · ‖hT0‖1√
s

+ 2β ·
∥∥xT c

0

∥∥
1√

s
,

where

α =
2
√

1 + δ2s
1− δ2s

and β =
2δ2s

1− δ2s
.

Since ‖hT0‖1 ≤
√
s ‖hT0‖2 ≤

√
s ‖hT0∪T1‖2, therefore

‖hT0∪T1‖2 ≤ α · η + β · ‖hT0∪T1‖2 + 2β · ε,
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where recall that ε = 1√
s

∥∥hT c
0

∥∥
2
, hence

‖hT0∪T1‖2 ≤
1

1− β
(α · η + 2β · ε) , (4.10)

as long as β < 1 which is equivalent to δ2s < 1
3
.

Finally, (4.7) and (4.10) imply the main result

‖h‖2 ≤ ‖hT0∪T1‖2 +
∥∥h(T0∪T1)c

∥∥
2
≤ ‖hT0∪T1‖2 + ‖hT0‖2 + 2ε

≤ 2 ‖hT0∪T1‖2 + 2ε ≤ 2α

1− β
· η +

(
4β

1− β
+ 2

)
· ε

and the constants in the statement of the theorem equal

C0 =
4β

1− β
= 2

1 + β

1− β
= 2

1 + δ2s
1− 3δ2s

and C1 =
2α

1− β
=

4
√

1 + δ2s
1− 3δ2s

.

5 Stable reconstruction from noiseless data
In this section we will assume that our observables are exact, i.e.

y = Φx, where x ∈ Hn, Φ ∈ Rm×n, y ∈ Hm.

The undermentioned result is a natural corollary of Theorem 4.1 for η = 0.

Corollary 5.1. Let Φ ∈ Rm×n satisfies the 2s-restricted isometry property with a constant
δ2s <

1
3
. Then for any x ∈ Hn and y = Φx ∈ Hm, the solution x# of the problem

arg min
z∈Hn

‖z‖1 subject to Φz = y (5.1)

satisfies ∥∥x# − x
∥∥
1
≤ C0 ‖x− x|s‖1 (5.2)∥∥x# − x

∥∥
2
≤ C0√

s
‖x− x|s‖1 (5.3)

with constant C0 as in the Theorem 4.1. In particular, if x is s-sparse and there is no
noise, then the reconstruction by `1 minimization is exact.

Proof. Inequality (5.3) follows directly from Theorem 4.1 for η = 0. The result for sparse
signals is obvious since in this case x = x|s. We only need to prove (5.2).

We will use the same notation as in the proof of Theorem 4.1. Recall that

‖hT0‖1 ≤
√
s ‖hT0‖2 ≤

√
s ‖hT0∪T1‖2

which together with (4.9) for η = 0 implies

‖hT0‖1 ≤
2δ2s

1− δ2s
·
∥∥hT c

0

∥∥
1

Using this and (4.6), denoting again β = 2δ2s
1−δ2s , we get that∥∥hT c

0

∥∥
1
≤ β

∥∥hT c
0

∥∥
1

+ 2
∥∥xT c

0

∥∥
1
, hence

∥∥hT c
0

∥∥
1
≤ 2

1− β
∥∥xT c

0

∥∥
1
.
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Finally, we obtain the following estimate on the `1 norm of the vector h = x# − x

‖h‖1 = ‖hT0‖1 +
∥∥hT c

0

∥∥
1
≤ (1 + β)

∥∥hT c
0

∥∥
1
≤ 2

1 + β

1− β︸ ︷︷ ︸
=C0

∥∥xT c
0

∥∥
1
,

which finishes the proof.

We conjecture that the requirement δ2s < 1
3
is not optimal – there are known refine-

ments of this condition for real signals (see e.g. [7, Chapter 6] for references). However,
the authors of [1] constructed examples of s-sparse real signals which can not be uniquely
reconstructed via `1 minimization for δs > 1

3
. This gives an obvious upper bound for δs

also for the general quaternion case.

6 Numerical experiment
Inspired by the article [14] we performed numerical experiments for the case considered

in this paper, i.e. when the measurement matrix Φ is real and satisfies (with overwhelming
probability) the restricted isometry property and signals are quaternion vectors. We ap-
plied the algorithm described in [14] which express the `1 quaternion norm minimization
problem in terms of the second-order cone programming (SOCP).

As it was also pointed out in [14], our problem is equivalent to

arg min
t∈R+

t subject to y = Φx, ‖x‖1 ≤ t. (6.1)

We decompose

t =
n∑
k=1

tk, where tk ∈ R+,

and
x = xr + ixi + jxj + kxk, where xr,xi,xj,xk ∈ Rn,

and denote
xr = (xr,1, xr,2, . . . , xr,n)T ,
xi = (xi,1, xi,2, . . . , xi,n)T ,
xj = (xj,1, xj,2, . . . , xj,n)T ,
xk = (xk,1, xk,2, . . . , xk,n)T .

We also denote Φ = (φ1, . . . , φn), where φk ∈ Rm for k ∈ {1, 2, . . . , n}. Then, we can write
the second constraint from (6.1) as∥∥(xr,k, xi,k, xj,k, xk,k)

T
∥∥
2
≤ tk for k ∈ {1, 2, . . . , n}. (6.2)

This allows us to express our optimization problem (6.1) in the real-vector setup in the fol-
lowing way

arg min
x̃∈Rn

cT x̃ subject to ỹ = Φ̃x̃

and
∥∥(xr,k, xi,k, xj,k, xk,k)

T
∥∥
2
≤ tk, k ∈ {1, 2, . . . , n},

(6.3)
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where
x̃ = (t1, xr,1, xi,1, xj,1, xk,1, . . . , tn, xr,n, xi,n, xj,n, xk,n)T ∈ R5n,

c = (1, 0, 0, 0, 0, . . . , 1, 0, 0, 0, 0)T ∈ R5n,

ỹ = (yTr ,y
T
i ,y

T
j ,y

T
k )T ∈ R4m,

Φ̃ =


0 φ1 0 0 0 . . . 0 φn 0 0 0
0 0 φ1 0 0 . . . 0 0 φn 0 0
0 0 0 φ1 0 . . . 0 0 0 φn 0
0 0 0 0 φ1 . . . 0 0 0 0 φn

 ∈ R4m×5n.

(6.4)

This is a standard form of the SOCP and we solved it using the Matlab toolbox Se-
DuMi [10]. Finally, the quaternion signal x#, which is the solution of (6.1), can easily be
obtained from x̃.

Our program was carried out on a standard PC machine, with Microsoft Windows 8.1
Pro system with Intel(R) Core(TM) i7-4790 CPU (3.60GHz) and 8GB RAM. The follow-
ing algorithm was implemented in Matlab R2011b:

1. Fix constants n = 128 (length of the signal x) and m (number of observables, i.e.
size of the vector y) and generate the measurement matrix Φ ∈ Rm×n with random
entries from i.i.d. standard normal distribution N (0, 1);

2. Choose the sparsity s ≤ n
2
, select a support set T (#T = s) uniformly at random and

generate a vector x ∈ Hn supported on T with i.i.d. standard normal distribution
(in the quaternion `2-norm sense with independent components);

3. Compute observables y = Φx, y ∈ Hm;

4. Construct vectors x̃, c, ỹ and matrix Φ̃ as in (6.4);

5. Call the SeDuMi toolbox to solve SOCP problem formulated in (6.3) and calculate
the quaternion reconstructed vector x#;

6. Compute the error of reconstruction, i.e.
∥∥x# − x

∥∥
2
;

7. For each pair of n and s perform 100 experiments and save errors of each recon-
struction and number of perfect reconstructions (we claim that the reconstruction
is perfect if

∥∥x# − x
∥∥
2
≤ 10−7).

Next, we performed the same experiment for more general case, i.e. Φ ∈ Hm×n, as
in [14]. Fig. 1(a) shows how the percentage of the perfect recovery depends on the number
of measurements m and the sparsity s for n = 128. Fig. 1(b) shows the same results
for the general case Φ ∈ Hm×n. We can see, for example, that for s ≤ m

4
and m = 32

the recovery rate is greater than 95% in the first experiment. Notice that this result is
slightly worse than in the general case. So far we do not know the direct reason for this
observation, however, it may be that the random quaternion matrix has better properties
than the random real matrix (where three components are fixed to be zeros and only
the real part is chosen at random). We plan to further study this issue in future research.

To further illustrate the results formulated in Theorem 4.1 and Corollary 5.1 we per-
formed another experiment. We fixed constants n = 256 and m = 32 and generated
the measurement matrix Φ ∈ Rm×n with random entries from i.i.d. standard normal
distribution and an arbitrary vector x ∈ Hn (not assuming sparsity) with random quater-
nion entries from i.i.d. standard normal distribution (in the quaternion `2-norm sense
with independent components). We performed the reconstruction of the vector x, using
the algorithm described above, and calculated errors of reconstruction

∥∥x# − x
∥∥
1
and
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(a) (b)

Figure 1: Results of the recovery experiment for n = 128. The image intensity stands for
the percentage of perfect reconstructions. (a) The case for Φ ∈ Rm×n. (b) The case for
Φ ∈ Hm×n.∥∥x# − x

∥∥
2
. We used the inequalities (5.2) and (5.3) to obtain a lower bound on the con-

stant C0 as a function of s (Fig. 2). We repeated the experiment for various choices of m
and n but the results where comparable.

As we see the results slightly differ (which is not surprising since we use (5.3) to
prove (5.2)), but we still obtain a lower bound for C0 as the maximum of those two
values (for arbitrary s). Observe that, as expected from the statement of Theorem 4.1
and Corollary 5.1, the dependence on s is monotone. Note also that the empirical bound
on C0 is smaller than 2 for all s, whereas the theoretical formula gives C0 > 2. We suspect,
therefore, that our result is not sharp and can be improved.

(a) (b)

Figure 2: Lower estimates for the constant C0 in Corollary 5.1, experiment performed for
n = 256 and m = 32, results for s = 1, . . . , 128. (a) Results obtained from inequality (5.2).
(b) Results obtained from inequality (5.3).
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