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Robust Fragmentation Modeling of

Hegselmann-Krause-Type Dynamics*

Wei Su Jin Guo Xianzhong Chen Ge Chen

Abstract

In opinion dynamics, how to model the enduring fragmentation phenomenon (disagree-
ment, cleavage, and polarization) of social opinions has long possessed a central position. It is
widely known that the confidence-based opinion dynamics provide an acceptant mechanism
to produce fragmentation phenomenon. In this study, taking the famous confidence-based
Hegselmann-Krause (HK) model, we examine the robustness of the fragmentation coming
from HK dynamics and its variations with prejudiced and stubborn agents against random
noise. Prior to possible insightful explanations, the theoretical results in this paper explicitly
reveal that the well-appearing fragmentation of HK dynamics and its homogeneous varia-
tions finally vanishes in the presence of arbitrarily tiny noise, while only the HK model with
heterogenous prejudices displays a solid cleavage in noisy environment.

Keywords: Robust fragmentation, Hegselmann-Krause model, random noise, opinion dy-
namics, social networks

1 Introduction

Opinion dynamics has recently displayed its increasing attraction to the researchers from di-
verse areas, including sociology, mathematics, information science, physics and so on [1, 2]. One
quantitative way to reveal the opinion behaviors is to technically model its evolution mechanism,
and various agent-based models have been established during the past decades [3–10]. Roughly
categorized into two classes, namely topology-based and confidence-based, all these models suc-
ceeded in capturing some features of opinion evolution, and demonstrated plenty of behavioral
pictures coinciding with social reality, ranging from the basic agreement or disagreement of the
opinions [3, 7], to the more complex autocratic and democratic social structures [11].

One of predominantly important issues concerned in social dynamics is how to build the
model to produce the social disagreement or community cleavage [7, 12–14]. In [6, 7], a notable
model widely known as Hegselmann-Krause (HK) opinion dynamics later, was developed based
on bounded confidence and presented well-formed fragmentation. Meanwhile, G. Deffuant etc.
established a similar-spirit model along the same line [5]. Bounded confidence, which limits
the neighbor opinions that agents take into account when updating their opinions, ever since
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has been believed to be markedly capable of generating fragmentation of opinion dynamics.
Afterwards the HK model got fully exploited and fruitful results were theoretically obtained
[16, 17]. Other than bounded confidence, prejudiced and stubborn agents are also found as two
remarkable factors that take group cleavage as outcomes [13, 15, 18, 21].

However, whether bounded confidence can produce robust clusters has been challenged a lot
(see [14] or references therein), and a very late study theoretically reveals that the opinions under
HK dynamics will spontaneously achieve a consensus in the presence of random noise, no matter
whatever initial opinions and tiny noises were given [19]. In HK model, each agent updates its
states by averaging the opinions of its confidence-dependent neighbors. This local rule of self-
organization in HK model allows the fragmentation behavior to emerge. When random noise
is admitted, the interaction of opinions occurs in a stochastic yet more connected way, and
in consequence leads to a consensus. Moreover, in a variation of HK model with actually the
homogeneously prejudiced agents, the same phenomenon was verified, where driven by random
noise, the ever divergent opinions get merged to the prejudice value [20]. With these affirmative
facts of noise-induced consensus in hand, we can conclude, as a byproduct of these facts, that the
elegant HK dynamics alone or with homogeneously prejudiced agents is inadequate to produce
the fragmentation phenomenon in noisy environment. However, random noise arises ubiquitously
in natural and social systems [22–25], whence how the elegantly structured HK dynamics brings
about robust fragmentation against random noise requires further exploration.

In this paper, we propose and then examine the noisy HK models with prejudiced and with
stubborn agents in both homogeneous and heterogeneous cases. Just as the HK model with ho-
mogeneously prejudiced agents uncovered in [20], it will be rigorously proved that the HK model
with homogeneously stubborn agents fails likewise to exhibit a robust fragmentation against ran-
dom noise, with the noisy opinions finally getting synchronized to the stubborn agents. While
the noisy HK model with heterogeneously stubborn agents will only partly show community
cleavage for some specific initial opinions, it is finally established that the HK dynamics with
heterogeneously prejudiced agents will demonstrate a markedly robust fragmentation in the pres-
ence of noise. This discovery confirms a plainly intuitive idea that it is the innate difference

lying within the community rather than the mere bounded confidence of individuals

at that accounts for the ubiquitous social cleavage.

The rest of the paper is organized as follows: Sec. 2 introduces noisy HK models and their
spontaneous consensus in the presence of noise; Sec. 3 presents the theoretical discoveries of the
noisy HK model with heterogeneous prejudices; Sec. 4 provides some numerical simulations to
verify the theoretical conclusions, and finally Sec. 5 concludes the paper.

2 φ-consensus of HK-type models

In this part, we will examine the fragmentation of noisy HK model and its variations with
homogeneously prejudiced and stubborn agents. The theoretical results will show that the well-
appearing fragmentation of these models disappears in the presence of arbitrarily tiny noise. To
begin with, the noisy HK models and strict definition of consensus in the noisy case are need.

2.1 Noisy HK models and φ-consensus

Suppose there are n agents in the group with V = {1, 2, . . . , n}, xi(t) ∈ [0, 1], i ∈ V, t ≥ 0 is the
opinion value of agent i at time t, then the basic noisy HK model is adopted following that in
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[19]:

xi(t+ 1) =





1, x∗i (t) > 1
x∗i (t), x∗i (t) ∈ [0, 1]
0, x∗i (t) < 0

∀i ∈ V, t ≥ 0, (2.1)

where
N (i, x(t)) = {j ∈ V : |xj(t)− xi(t)| ≤ ǫ} (2.2)

and
x∗i (t) = |N (i, x(t))|−1

∑

j∈N (i,x(t))

xj(t) + ξi(t+ 1) (2.3)

with ǫ ∈ (0, 1] being confidence bound, and {ξi(t)}i∈V ,t>0 the random noises which are i.i.d.
with Eξ1(1) = 0, Eξ21(1) > 0 and |ξ1(1)| ≤ δ a.s. for δ ≥ 0.

Without noise in (2.3) (i.e. δ = 0), system (2.1)-(2.3) degenerates to the original HK model
based on bounded confidence, which will converge in finite time in the sense that, there exist
T ≥ 0, x∗i ∈ [0, 1], i ∈ V such that xi(t) = x∗i , t ≥ T . If x∗i = x∗j for any i, j ∈ V, the opinions is
said to reach consensus; otherwise, there must exist i, j ∈ V with |x∗i −x∗j | > ǫ and fragmentation
forms.

Other than bounded confidence, prejudiced and stubborn agents are found to be another
two remarkable causes of well-formed fragmentation combined with HK dynamics. In this part,
we will first explore the noisy HK models with homogeneously prejudiced and stubborn agents.
Here, “homogeneous” refers to that all the prejudiced agents or the stubborn ones possess an
identically constant opinion value.

The noisy HK model with homogeneously prejudiced agents is obtained by modifying (2.3)
as follows:

x∗i (t) = (1− αI{i∈S1})
∑

j∈Ni(x(t))

xj(t)

|Ni(x(t))|
+ αI{i∈S1}J1 + ξi(t+ 1). (2.4)

where S1 ⊂ V is the set of prejudiced agents, J1 ∈ [0, 1] is the prejudice value, and α ∈ (0, 1] is the
attraction strength of prejudice value. As usual, without noise the model generates conspicuous
fragmentation [18, 20].

For the noisy HK model with homogeneously stubborn agents, to be convenience, we in-
troduce additionally in the model (2.1)-(2.3) a stubborn agents set, B1 , whose opinion values
satisfy

xi(t) ≡ B1, i ∈ B1, B1 ∈ [0, 1] (2.5)

and the neighbor set in (2.2) is modified as

N (i, x(t)) = {j ∈ V ∪ B1 : |xj(t)− xi(t)| ≤ ǫ}. (2.6)

Then (2.1), (2.3)-(2.6) describe a noisy HK model with homogeneously stubborn agents. Like-
wise, when the noise strength δ = 0, the system degenerates to the noise-free one, which is
claimed converging and also could produce fragmentation [27].

2.2 φ-consensus

Due to persistent disturbance of noise, the definition of consensus of noisy HK models slightly
differs:
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Definition 2.1. [26] Define

dV(t) = max
i,j∈V

|xi(t)− xj(t)| and dV = lim sup
t→∞

dV(t).

For φ ∈ [0,∞),
(i) If dV ≤ φ, we say the system will reach φ-consensus.
(ii) If P{dV ≤ φ} = 1, we say almost surely (a.s.) the system will reach φ-consensus.
(iii) Let T = inf{t : dV(t

′) ≤ φ for all t′ ≥ t}. If P{T < ∞} = 1, we say a.s. the system reaches
φ-consensus in finite time.

Furthermore for a constant A ∈ [0, 1], define dAV (t) = max
i∈V

|xi(t)−A| and dAV = lim sup
t→∞

dAV (t),

if substitute dAV in (i)-(iii) for dV , the system is accordingly said to reach φ-consensus with A.

2.3 Spontaneous φ-consensus caused by noise

Though the HK model with either prejudiced or stubborn agents enables a well-appearing frag-
mentation phenomenon, the introduction of random noise, even very tiny, makes the φ-consensus
of ever-divergent opinions spontaneously emerge. To be specific, we have

Theorem 2.2. Given any x(0) ∈ [0, 1]n, ǫ ∈ (0, 1]:
(a) for all δ ∈ (0, ǫ/2], a.s. the system (2.1)-(2.3) will reach 2δ-consensus in finite time.
(b) for all δ ∈ (0, δ], a.s. the system (2.1), (2.2), (2.4) will reach δ̄-consensus with J1. Here, δ̄
and δ are constants determined by parameters n, ǫ, α, |S1| (see [20]).
(c) for all δ ∈ (0, ǫ

2(n+1)), a.s. the system (2.1), (2.3)-(2.6) will reach 2δ-consensus and mean-

while (n+ 1)δ-consensus with B1;

Theorem 2.2 evidently shows that in the presence of tiny noise (δ is teeny), the HK-based
opinion dynamics with homogeneous variations lose their ability of generating fragmentation
phenomenon, and almost surely achieve a fairly approximate consensus (see Fig. 1). We did
not investigate with theoretical analysis the opinion behaviors when the noise strength is large,
where even the gathered opinions could get divergent and tanglesome, as verified in Theorem
8 of [19]. Conclusions (a) and (b) follow directly from Theorem 2 of [19] and Theorem 3.1
of [20]. Now we proceed to the the proof of conclusion (c). To begin with, some preliminary
lemmas are need.

Lemma 2.3. [17] Suppose {zi, i = 1, 2, . . .} is a nondecreasing (nonincreasing) real sequence.
Then for any integer s ≥ 0, the sequence {gs(k) =

1
k

∑s+k
i=s+1 zi, k ≥ 1} is monotonically nonde-

creasing (nonincreasing) for k.

Lemma 2.4. For i.i.d. random variables {ξi(t), i ∈ V, t ≥ 1} with Eξ1(1) = 0, Eξ21(1) > 0,
there exist constants a > 0 and 0 < p ≤ 1, such that

P{ξi(t) ≥ a} ≥ p, P{ξi(t) ≤ −a} ≥ p.

Lemma 2.4 is quite straightforward and we omit its proof.

Lemma 2.5. Let 0 < δ ≤ ǫ
2(n+1) and suppose a.s. there is a finite time T ≥ 0 such that

dB1

V (T ) ≤ (n+ 1)δ, then a.s. dV ≤ 2δ, dB1

V ≤ (n+ 1)δ.
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Lemma 2.5 implies that once all the noisy opinions enter the neighbor region of stubborn
agents, they will never get far away, and further reach 2δ-consensus. The proof of Lemma 2.5 is
put in Appendix.
Proof of Theorem 2.2: (c) By Lemma 2.4, there exist 0 < a ≤ δ, 0 < p ≤ 1 such that for all
i ∈ V, t ≥ 1,

P{ξi(t) ≥ a} ≥ p, P{ξi(t) ≤ −a} ≥ p. (2.7)

Denote x̃i(t) = |N (i, x(t))|−1
∑

j∈N (i,x(t)) xj(t), t ≥ 0, and this denotation remains valid for

the rest of the context. If dB1

V (0) ≤ (n + 1)δ, the conclusion holds by Lemma 2.5. Otherwise,
consider the following protocol: for all i ∈ V, t > 0,

{
ξi(t+ 1) ∈ [a, δ], if x̃i(t) ≤ B1;
ξi(t+ 1) ∈ [−δ,−a], if x̃i(t) > B1.

(2.8)

By Lemma 2.3, (2.1), (2.3)-(2.6), it has under the protocol (2.8) that

dB1

V (1) ≤ max
i∈V

{|x̃i(0)−B1| − a} ≤ max
i∈V

{|xi(0)−B1| − a}

≤ dB1

V (0)− a.
(2.9)

By (2.7) and independence, we have

P{dB1

V (1) ≤ dB1

V (0)− a} ≥ pn. (2.10)

Let L = 1−(n+1)δ
a

, if dB1

V (1) ≤ (n + 1)δ a.s., the conclusion holds by Lemma 2.3. Otherwise,
continue the above procedure L times. By (2.10) and independence of noises, it has

P{dB1

V (L) ≤ (n+ 1)δ} ≥P{protocol (2.8) occurs L+1 times}

≥pn(L+1) > 0.
(2.11)

Thus
P
{
dB1

V (L) > (n + 1)δ
}
≤ 1− pn(L+1). (2.12)

Denote events (m ≥ 1)

E0 =Ω,

Em =
{
ω : dB1

V (t) > (n+ 1)δ, (m − 1)L < t ≤ mL
}
.

(2.13)

Since x(0) is arbitrarily given, by (2.12), it has for m ≥ 1

P
{
Em

∣∣∣
⋂

j<m

Ej

}
≤ P

{
dB1

V (mL) > (n+ 1)δ
∣∣∣
⋂

j<m

Ej

}

≤ 1− pn(L+1) < 1.

(2.14)

By Lemma 2.5, it must hold
{
dB1

V > (n+1)δ
}
⊂

{ ⋂
m≥1

{dB1

V (t) > (n+1)δ, (m−1)L < t ≤ mL}
}
,
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subsequently by (2.14)

P
{
dB1

V ≤ (n+ 1)δ
}
=1− P

{
dB1

V > (n+ 1)δ
}

≥1− P

{ ⋂

m≥1

{dB1

V (t) > (n+ 1)δ, (m − 1)L < t ≤ mL}

}

=1− P

{ ⋂

m≥1

Em

}
= −P

{
lim

m→∞

m⋂

j=1

Ej

}

=1− lim
m→∞

P

{ m⋂

j=1

Ej

}

=1− lim
m→∞

m∏

j=1

P

{
Ej

∣∣∣∣
⋂

k<j

Ek

}

≥1− lim
m→∞

(
1− pn(L+1)

)m

= 1.

Here, the exchangeability of probability and limit holds since
{ m⋂

j=1
Ej

}
,m ≥ 1 is a decreasing

sequence and P is a probability measure (refer to Corollary 1.5.2 of [28]).
Since δ ∈ (0, ǫ

2(n+1)), it has P{dB1

V < ǫ/2} = 1. Consequently, a.s. there exists a finite time

T such that dB1

V (T ) ≤ ǫ/2. Recalling Lemma 2.5 completes the proof of (c). ✷

3 HK model with heterogenous prejudices

In this part, we will mainly examine the HK model with heterogeneously prejudiced agents, while
the one with heterogeneously stubborn agents will be interpreted simply at last.“Heterogeneous”
means that the prejudiced agents in the group possess pronouncedly distinct opinions. Hetero-
geneous prejudices (or preferences) exist ubiquitously in real society, and taking rightwing and
leftwing in politics as example, produce much social cleavage. In this part, we introduce the noisy
HK models with heterogeneously prejudiced agents, afterwards establish the theoretical results
of fragmentation phenomenon. The heterogeneous model differs from the homogeneous one in
that more than one prejudiced opinion values are assumed in the models. In the subsequently
proposed model, only two distinctly heterogeneous opinions are discussed for convenience.

3.1 Noisy HK model with heterogeneously prejudiced agents

Similarly, the heterogeneously prejudiced model is obtained by extending (2.4):

x∗i (t) = (1− αI{i∈S1∪S2})
∑

j∈Ni(x(t))

xj(t)

|Ni(x(t))|
+ α(I{i∈S1}J1 + I{i∈S2}J2) + ξi(t+ 1), (3.1)

where S1∪S2 = V,S1∩S2 = ∅ are the sets of heterogeneously prejudiced agents, and J1, J2 ∈ [0, 1]
are the distinct prejudiced opinion values satisfying |J1 − J2| > ǫ.

3.2 Robust fragmentation of heterogeneous prejudices

It is easy to examine that without noise, system (2.1), (2.2), (3.1) will produce fragmentation.
The following theorems tell that the fragmentation phenomenon is preserved and even refined
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in the presence of noise. First we present a general but conservative conclusion, then derive a
more refined result.

Theorem 3.1. Consider system (2.1), (2.2), (3.1), given any x(0) ∈ [0, 1]n, ǫ ∈ (0, 1), then (i)

S1 a.s. achieves (1−α)ǫ+δ
α

-consensus with J1; (ii) S2 a.s. achieves (1−α)ǫ+δ
α

-consensus with J2.

Proof : Consider i ∈ S1, then by (3.1), it has for t ≥ 0

xi(t+ 1) = αJ1 + (1− α)
∑

j∈Ni(x(t))

xj(t)

|Ni(x(t))|
+ ξi(t+ 1).

Noting that |xi(t)− xj(t)| ≤ ǫ for all j ∈ Ni(x(t)), it obtains

|xi(t+ 1)− J1| =
∣∣∣(1− α)

∑

j∈Ni(x(t))

xj(t)− J1
|Ni(x(t))|

+ ξi(t+ 1)
∣∣∣

≤(1− α)
∑

j∈Ni(x(t))

|xj(t)− J1|

|Ni(x(t))|
+ |ξi(t+ 1)|

≤(1− α)
∑

j∈Ni(x(t))

|xi(t)− J1|+ ǫ

|Ni(x(t))|
+ δ

=(1− α)|xi(t)− J1|+ (1− α)ǫ+ δ

· · ·

≤(1− α)t+1|xi(0)− J1|+ ((1− α)ǫ+ δ)

· ((1 − α)t + . . .+ (1− α) + 1)

→
(1− α)ǫ+ δ

α
, a.s., as t → ∞,

(3.2)

implying dJ1S1
≤ (1−α)ǫ+δ

α
, a.s.. Similarly, we can get that dJ2S2

≤ (1−α)ǫ+δ
α

, a.s.. ✷

Theorem 3.1 says that the prejudiced agents will finally stay near their preferences and the
system generally displays a rough robustness of fragmentation. Smaller ǫ and δ, and larger α
make a closer reach to J1 and J2. Though all agents in the group admit two distinct prejudices,
sometimes the noise-free fragmentation forms with more than two clusters, while in the presence
of noise, the group emerges with bipartite cleavage (see Figures 2 and 3). The following theorem
gives a guarantee of the bipartite fragmentation when the discrepancy of J1 and J2 is large
enough,.

Theorem 3.2. Suppose J1 − J2 > ǫ + 2 (1−α)ǫ+δ
α

in system (2.1), (2.2), (3.1), then for any

x(0) ∈ [0, 1]n, (i) S1 a.s. achieves δ
α
-consensus with J1; (ii) S2 a.s. achieves δ

α
-consensus with

J2.

Lemma 3.3. Let dJ1S1
(0) ≤ (1−α)ǫ+δ

α
, dJ2S2

(0) ≤ (1−α)ǫ+δ
α

in system (2.1), (2.2), (3.1) with J1 −

J2 > ǫ + 2 (1−α)ǫ+δ
α

. If a.s. there exists a finite time T < ∞ that dJ1S1
(T ) ≤ δ

α
, then dJ1S1

≤ δ
α
;

Similarly, if a.s. there exists a finite time dJ2S2
(T ) ≤ δ

α
, then dJ2S2

≤ δ
α
.

Proof of Lemma 3.3 is put in Appendix.
Proof of Theorem 3.2: By Theorem 3.1, there a.s. exists T < ∞ such that for all t ≥ T , it has
|xi(t) − J1| ≤

(1−α)ǫ+δ

α
, |xj(t) − J2| ≤

(1−α)ǫ+δ

α
, i ∈ S1, j ∈ S2. Since J1 − J2 > ǫ + 2 (1−α)ǫ+δ

α
,

we know that from the moment T , any agent in S1 cannot be the neighbor of agents in S2,
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and vice versa. Without loss of generality, we suppose T = 0 a.s. Consider the subgroup S1, if
dJ1S1

(0) ≤ δ
α
, by Lemma 3.3 we have dJ1S1

≤ δ
α
. Otherwise, consider the following protocol: for all

i ∈ S1, t > 0, {
ξi(t+ 1) ∈ [a, δ], if x̃i(t) ≤ J1;
ξi(t+ 1) ∈ [−δ,−a], if x̃i(t) > J1,

(3.3)

where a > 0 is given in Lemma 2.4. By Lemma 2.3 and (2.1), (2.2), (3.1), it has under the
protocol (3.3) that

dJ1S1
(1) ≤ max

i∈S1

{|x̃i(0) − J1| − a} ≤ max
i∈S1

{|xi(0) − J1| − a}

≤ dJ1S1
(0)− a.

(3.4)

By Lemma 2.4 and independence, we have

P{dJ1S1
(1) ≤ dJ1S1

(0) − a} ≥ pn. (3.5)

Then following a similar line of the procedure behind (2.12) of the proof of Theorem 2.2, we can
get that

P
{
dJ1S1

≤
δ

α

}
= 1.

Similarly, we can also obtain

P
{
dJ2S2

≤
δ

α

}
= 1.

This completes the proof. ✷

At the end of this section, we give a short discussion of the noisy HK model with heteroge-
neously stubborn agents. Introducing in (2.5) another stubborn agent set, B2, and the distinct
stubborn opinion values satisfy

xi(t) ≡ B1, xj(t) ≡ B2, i ∈ B1, j ∈ B2, t ≥ 0, (3.6)

with B1, B2 ∈ [0, 1],B1 ∩ B2 = ∅. The neighbor set in (2.6) is modified accordingly as

N (i, x(t)) = {j ∈ V ∪ B1 ∪ B2 : |xj(t)− xi(t)| ≤ ǫ} (3.7)

Further, it assumes that B2−B1 > ǫ which implies a pronounced difference between the stubborn
agents.

Theorem 3.2 clearly shows that given any initial opinion values, the system with heteroge-
neous prejudices will display robust fragmentation in the presence of noise. However, for the
system (2.1), (2.3), (3.6), (3.7) of heterogeneously stubborn agents, whether robust fragmenta-
tion can be formed highly depends on the location of initial opinions. Here, without further
interpretation, we simply give some examples:

Theorem 3.4. For system (2.1), (2.3), (3.6), (3.7), (i) if xi(0) ∈ [0, B2−ǫ) or (B1+ǫ,B2], then
for all δ ∈ (0, B2−B1−ǫ

n+1 ), we have dV ≤ 2δ; (ii) if xi(0) ∈ [0, B1], i ∈ V1 and xj(0) ∈ [B2, 1], j ∈ V2

where V1 ∪ V2 = V,V1 ∩ V2 = ∅, then for all δ ∈ (0, B2−B1−ǫ
2(n+1) ), we have dV1

≤ 2δ, dV2
≤ 2δ.
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Figure 1: Opinion evolution of system (2.1), (2.3)-(2.6) of 10 agents and a stubborn agent. The
initial opinion value is randomly generated in [0, 1], the opinion value of stubborn agents takes
0.5, confidence threshold ǫ = 0.2, and noise strength δ = 0.04ǫ.

4 Simulations

In this part, we present some simulation results to verify our main theoretical conclusions. First
consider the HK model with homogeneously stubborn agents which consists of 10 agents whose
initial opinion values are randomly generated in [0, 1], and a stubborn agent whose constant
opinion value takes 0.5. Further, let ǫ = 0.2, δ = 0.04ǫ, then Figure 1 shows that the opinions
finally synchronize to 0.5 and the fragmentation vanishes. Some simulation results of the systems
with homogeneously prejudiced agents can be found in [20], and we omit them here.

In the following, we consider the HK system with heterogeneously prejudiced agents. Let
the system consist of 20 agents, whose initial opinion values randomly generate in [0, 1], J1 =
0.6, J2 = 0.2, confidence threshold ǫ = 0.2, and attraction strength α = 0.4. First we present the
opinion evolution without noise, and Figure 2 shows that the system forms four clusters. Then
we add noise with strength δ = 0.02 in the system, and Figure 3 shows that the fragmentation
emerges with two clusters which locate near the prejudices J1 and J2.

5 Conclusions

In this paper, we investigated how the fragmentation phenomenon emerges with HK dynamics.
It has been shown that the original HK model fails to generate cleavage in the presence of
tiny noise. Here we further prove that the well-appearing fragmentation of HK models with
homogeneously prejudiced or stubborn agents also vanishes with noise. We finally reveal that
the HK model with heterogeneously prejudiced agents can preserve a robust and well-shaping
fragmentation under the drive of noise. This implies a quite intuitive conclusion that only the
innate difference within the group rather than the mere bounded confidence of individuals that
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Figure 2: Opinion evolution of system (2.1), (2.2), (3.1) of 20 agents without noise. The initial
opinion value is randomly generated in [0, 1] ,J1 = 0.6, J2 = 0.2, confidence threshold ǫ = 0.2,
and attraction strength α = 0.4.
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α=0.4, δ=0.02

Figure 3: Opinion evolution of system (2.1), (2.2), (3.1) of 20 agents with noise. The initial
conditions are the same as that in Figure 2 and the noise strength δ = 0.02.
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cause the ubiquitous social cleavage.

Appendix

Proof of Lemma 2.5: It is easy to check that dV(T ) ≤ 2|dB1

V (T )| ≤ ǫ. This implies that at time
T , all agents in V are neighbors to each other. By (2.1), (2.3)-(2.6), we have for i ∈ V

xi(T + 1) =

∑
j∈V

xj(T ) + |B1|B1

n+ |B1|
+ ξi(T + 1)

thus

|xi(T + 1)−B1| ≤

∣∣∣∣

∑
j∈V xj(T ) + |B1|B1

n+ |B1|
−B1

∣∣∣∣+ |ξi(T + 1)|

≤

∑
j∈V |xj(T )−B1|

n+ |B1|
+ δ ≤

n(n+ 1)

n+ |B1|
δ + δ

≤(n+ 1)δ ≤
ǫ

2
, a.s..

(5.1)

Meanwhile, for all i, j ∈ V, it has a.s.

|xi(T + 1)− xj(T + 1)| ≤ |ξi(T + 1)| + |ξj(T + 1)| ≤ 2δ.

Repeating the above procedure yields the conclusion. ✷

Proof of Lemma 3.3: Since J1 − J2 > ǫ+ 2 (1−α)ǫ+δ
α

, at time T , any agent in S1 cannot be the
neighbor of agents in S2, hence for all i ∈ S1

|xi(T + 1)− J1| =
∣∣∣(1− α)

∑

j∈Ni(x(T ))

xj(T )− J1
|Ni(x(T ))|

+ ξi(T + 1)
∣∣∣

≤(1− α)
∑

j∈Ni(x(T ))

|xj(T )− J1|

|Ni(x(T ))|
+ |ξi(T + 1)|

≤(1− α)
δ

α
+ δ =

δ

α
, a.s.

Repeating the above procedure, it follows that dJ1S1
≤ δ

α
, and similarly dJ2S2

≤ δ
α
. ✷
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