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Abstract

This paper studies the stability problem of asynchronous switched systems and proposes novel

sequence-based average dwell time approaches. Both continuous-time and discrete-time systems

are considered. The proposed approaches exploit the switching sequences of subsystems which

were seldom utilized in the literature. More specifically, our approaches exploit the differences be-

tween different switching sequences, including the maximal asynchronous switching time, the energy

changing degree at switching times, and the increasing speed of energy functions in asynchronous

time intervals. As a result, the proposed approaches can reduce the threshold value of average

dwell time significantly. We also propose an approach to counterbalance the increasing of energy

functions in asynchronous time intervals by prolonging the preceding rather than subsequent sub-

system. Numerical results demonstrate that the proposed approaches can improve the performance

significantly in comparison with a well-known method.

Keywords: sequence-based average dwell time, asynchronous switched systems, sequence-based

average subsequent dwell time, sequence-based average preceding dwell time

1. INTRODUCTION

A switched system is generally defined as a special dynamical system that includes a finite

number of subsystems and a logical orchestrating rule, and these subsystems are often described by

differential or difference equations[1]. Switched systems can be used in modeling many physical or

man-made systems.When the switching between controllers and system modes is asynchronous, it5

is referred to as asynchronous switching [2, 3]. There have been strong research interests recently in
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applying switched systems for, e.g., fault detection, adaptive control, switched stochastic systems[4],

sliding-mode control, robust control, multi-agent systems[5, 6] and 2-D switched systems[7].

Many results on switched systems are based on dwell time. The concept of dwell time was

firstly introduced in [8] to study the stability of switched systems. A more flexible signal called10

average dwell time (ADT) switching was defined and used in [9]. In [10], the authors proposed a

more practical approach, called mode-dependent average dwell time (MDADT) switching. These

dwell time switching approaches have been applied to many switched systems, such as dynamic

output feedback control [11], and 2-D systems[7]. On the basis of average dwell time switching,

asynchronous switched systems have also been investigated. The stability and stabilization problems15

for asynchronous switched systems were investigated in [2, 12]. Asynchronous filtering of switched

systems was studied in [13]. Asynchronous L2 gain and H∞ control were considered in [14, 15, 16,

17]. Asynchronous control for 2-D switched systems was also analyzed in [7]. Nonlinear systems

under sampled-data control was discussed in [18, 19].

However, there are two main limitations in these studies on switched systems based on dwell20

time. Firstly, different sequences contain different asynchronous switching information, which is not

well exploited in these studies. For example, the whole asynchronous switching has one maximum

of asynchronous time and every sequence has its own maximum of asynchronous time. Almost all

the past work did not consider the differences from sequences to sequences. Papers [20, 21] con-

ducted stability analysis for switched systems using matrix sequences rather than mode switching25

sequences. Secondly, almost all studies try suppressing the increase of energy functions via prolong-

ing the average dwell time of the subsequent subsystem. There are actually other options which

can potentially lead to better performance as we are going to show in this paper.

This paper aims to overcome the aforementioned limitations by exploiting more asynchronous

switching information and counterbalancing the energy functions via prolonging preceding subsys-30

tems other than the subsequent subsystem. The major contributions of this paper are as follows:

(1) We propose two novel approaches for studying the stability problem of asynchronous switched

systems. They can relax the restrictions on average dwell time, improve the computational accu-

racy and reduce the threshold value, compared to existing approaches; (2) We propose two novel

parallel approaches for switched systems to improve the selectivity. These approaches provide a35

novel direction for solving the stability problem of asynchronous switched systems.

The remainder of this paper is structured as follows. In Section 2, we introduce some prelimi-

naries on asynchronous switching. In Section 3, we first propose two novel approaches for studying

the stability problem of general switched systems and then use the obtained results to solve linear

systems problems. A numerical example is given to verify the effectiveness of these novel theorems40
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in Section 4. Finally, Section 5 concludes this paper.

Notations: We use standard notations in this paper. The symbol × represents multiplication or

Cartesian product of sets. For any given matrix P , the superscript “T” means the matrix transpose,

and P > (or <) 0 denotes that matrix P is positive (or negative) definite and symmetric. If a

function κ is said to be of a class K∞ function, the function κ : [0,∞) → [0,∞), κ(0) = 0, must45

be strictly increasing, continuous, and unbounded. The symbols t1, t2, t3, · · · or k1, k2, k3, · · ·

denote the switching times for continuous-time asynchronous systems or discrete-time cases. The

flag t−i stands for the moment just before the switching time ti. For a switched system including s

subsystems, the function σ(t) or σ(k) : [0,+∞)→ S = {1, 2, · · · , s} stands for the switching signal.

The symbol [p|q] denotes the situation when the pth subsystem is aroused immediately after the50

qth subsystem. Let T↓(tl, tl+1) and T↑(tl, tl+1) denote the unions (or the length of the unions) of

the decreasing and increasing time (including unchanging time) of the Lyapunov function within

the interval [tl, tl+1). For different switching sequences or subsystems, T↓(tl, tl+1) and T↑(tl, tl+1)

have different subscripts.

2. PRELIMINARIES55

Suppose that there is a time lag T between switched controllers and system modes. Consider

the closed-loop asynchronous switched system in

(a) continuous-time case:

ẋ(t) = Aσ(t)x(t) +Bσ(t)Kσ(t−T )x(t); (1)

and (b) discrete-time case:

x(k + 1) = Aσ(k)x(k) +Bσ(k)Kσ(k−T )x(k). (2)

In the above systems, x(t) (or x(k)) ∈ Rn is the state vector; Aσ(t) ( or Aσ(k)) and Bσ(t) ( or Bσ(k))

are the system and input matrix; u(t) = Kσ(t−T )x(t) ( or u(k) = Kσ(k−T )x(k)) is the control input.

In order to analyze the stability of the above systems, [2] used the average dwell time (ADT)

to develop effective switching strategy. Its definition is given below.

Definition 1. [9] For any switching times 0 ≤ t1 ≤ t2 and a switching signal σ(t), let Nσ(t1, t2)60

be the number of discontinuities of σ(t) in the open interval (t1, t2). It is said that the signal σ(t)

has an average dwell time τa if there exist two scalar N0 ≥ 0 (N0 is called the chatter bound) and

τa such that Nσ(t1, t2) ≤ N0 + t2−t1
τa

.
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3. MAIN RESULTS

In this section, we propose two novel approaches for stabilizing asynchronous switched systems.65

We first present novel results for general situations and then apply them to the linear case.

3.1. General Switched Systems

We first consider general asynchronous switched systems. Two novel concepts are introduced

below.

Definition 2. For the switching signal σ(t) and any switching time 0 ≤ t1 < t2, let Nσ[p|q](t1, t2)

and Tp,[p|q](t1, t2) represent the number of sequences and the total running time of the pth subsystem,

respectively, when the pth subsystem is aroused immediately after the qth subsystem over the time

interval [t1, t2). If there exist two nonnegative scalars τa(p,[p|q]) and N0(p,[p|q]) which is called the

subsequent sequenced-based chatter bound, such that

Nσ[p|q](t1, t2) ≤ N0(p,[p|q]) +
Tp,[p|q](t1, t2)

τa(p,[p|q])
, (3)

then it is said that σ(t) has a sequence-based average subsequent dwell time (SBASDT) τa(p,[p|q]).70

Definition 3. For the switching signal σ(t) and any switching time 0 ≤ t1 < t2, let Nσ[p|q](t1, t2)

and Tq,[p|q](t1, t2) denote the number of the sequences and the total running time of the qth subsys-

tem, when the pth subsystem is aroused immediately after the qth subsystem over the time interval

[t1, t2). If there exist two nonnegative scalars τa(q,[p|q]) and N0(q,[p|q]) which is called the preceding

sequenced-based chatter bound, such that

Nσ[p|q](t1, t2) ≤ N0(q,[p|q]) +
Tq,[p|q](t1, t2)

τa(q,[p|q])
, (4)

then it is said that σ(t) has a sequence-based average preceding dwell time (SBAPDT) τa(q,[p|q]).

Definition 2 and 3 provide two new sequence-based average dwell time (SBADT) concepts.

Remark 1. Definition 2 and 3 take into consideration the influence of sequences. They are differ-

ent from the definition of conventional average dwell time in [2, 9].

Remark 2. We note that paper [22] also considers sequence-based switching. It mainly studied75

a general class of switching signals with which the resulting switched system was input-to-state

stable, while this paper considers the stability of asynchronous switched systems. Paper [22] recast

generalized switching signal for input-to-state stability and did not address the concrete concept

Tp,[p|q](t1, t2) , especially for asynchronous switching, as in this paper.
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To simplify presentation, we assume that a proper decreasing (increasing) Lyapunov function80

can be found in the synchronous (asynchronous) switching time section. We can then obtain the

following four theorems for general asynchronous switched systems.

Theorem 1. For a switched system

ẋ(t) = fσ(t)(x(t)), (5)

let α[p|q] > 0, λq > 0, λp > 0, µ[p|q] > 1 be given constants. For every s ∈ S, suppose there exist

functions k1s, k2s of class K∞ and C1 fuctions Vs : Rn → R, such that

k1s(‖x(t)‖) ≤ Vs(x(t)) ≤ k2s(‖x(t)‖), (6)

∀i = 1, 2, · · · , ∀(σ(ti) = p, σ(t−i ) = q) ∈ S × S, p 6= q,

V̇p(x(t)) ≤

 −λpVp(x(t)),∀t ∈ T↓[ti, ti+1),

α[p|q]Vp(x(t)),∀t ∈ T↑[ti, ti+1),
(7)

and

Vp(x(ti)) ≤ µ[p|q]Vq(x(ti)). (8)

Then the system is globally uniformly asymptotically stable for any switching signals with SBASDT

τa(p,[p|q]) ≥ τ∗a(p,[p|q]) =
T[p|q] max↑(λp + α[p|q]) + lnµ[p|q]

λp
, (9)

where T[p|q] max↑, max
l,σ(tl)=p, σ(t

−
l )=q

T↑(tl, tl+1), ∀l ∈ Z+.

Proof : Let t0 = 0. For any t > 0, t ∈ [tl, tl+1), l ∈ Z+, we define two novel sets: S ′ ,

{(p, q); p ∈ S, q ∈ S, p 6= q}; S ′′ , {(σ(ti), σ(t−i )) ∈ S × S, i = 1, 2, 3, · · · , l}. The total numbers85

of the set S ′ and S ′′ are s′ and s′′. Therefore, S′′ ⊆ S′, s′ = s(s− 1), s′′ ≤ l and s′′ ≤ s′.

For all the elements in the set S ′′, we order and list them. We use the symbol [p|q](k) to represent

the kth element. The total aroused numbers of the kth element is represented by Nσ[p|q](k)(0, t).

The sum of dwell time of the pth subsystems for the sequence [p|q] is denoted by Tp,[p|q](k)(0, t).

When σ(tj) = p, σ(t−j ) = q, ∀j = 1, 2, · · · , l, and the element (p, q) is the kth element, we90

rewrite µσ(tj) as µ[p|q](k) to denote the switching sequences. In this situation, we also use α[p|q](k)

to denote ασ(tj).

According to (7) and (8), it holds that

Vσ(t)(x(t))

≤ exp
{
−λσ(tl)T↓(tl, t) + ασ(tl)T↑(tl, t)

}
Vσ(tl)(x(tl))

≤ exp
{
−λσ(tl)T↓(tl, t) + ασ(tl)T↑(tl, t)

}
µ
σ(tl)|σ(t−

l
)
V
σ(t−

l
)
(x(tl

−)).

(10)
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Recursively,

Vσ(t)(x(t))

≤

{
l∏

j=1

µ
σ(tj)|σ(t−j )

}
exp

{
−λσ(tl)T↓(tl, t)− · · · − λσ(t1)T↓(t1, t2)

}
× exp

{
ασ(tl)T↑(tl, t) + · · ·+ ασ(t1)T↑(t1, t2)

}
exp

{
−λσ(0)(t1 − 0)

}
Vσ(0)(x(0)).

(11)

We can also obtain the following formal transformation:

l∏
j=1

µσ(tj)|σ(t−j ) =

s′′∏
k=1

µ
N[p|q](k) (0,t)

[p|q](k) . (12)

Therefore,

Vσ(t)(x(t))

≤


s′′∏
k=1

µ
N[p|q](k) (0,t)

[p|q](k)

exp


s′′∑
k=1

−λpTp,[p|q](k)↓(0, t)

exp


s′′∑
k=1

α[p|q](k)Tp,[p|q](k)↑(0, t)


× exp

{
−λσ(0)(t1 − 0)

}
Vσ(0)(x(0)).

(13)

Without affecting the conclusion, we assume that there is no asynchronous switching between the

first switching time t1 and the initial time 0. Hence,

s′′∑
k=1

α[p|q](k)Tp,[p|q](k)↑(0, t) =

s′′∑
k=1

α[p|q](k)T[p|q](k)↑(0, t),

where T[p|q](k)↑(0, t) stands for the total asynchronous switching time (or the increasing/unchanging

time of Lyapunov functions) in the time internal [0, t).

According to (3), one has

Vσ(t)(x(t))

≤


s′′∏
k=1

µ
N0[p|q](k)

+
Tp,[p|q](k)

(0,t)

τa(p,[p|q](k))

[p|q](k)

 exp

{
s′′∑
k=1

−λpTp,[p|q](k)↓(0, t)+α[p|q](k)T[p|q](k)↑(0, t)

}

× exp
{
−λσ(0)(t1 − 0)

}
Vσ(0)(x(0)).

(14)

Since Tp,[p|q](k)(0, t) = T[p|q](k)↑(0, t) + Tp,[p|q](k)↓(0, t), it is not difficult to obtain

Vσ(t)(x(t))

≤ exp

{
s′′∑
k=1

N0[p|q](k) lnµ[p|q](k)

}
exp

{
s′′∑
k=1

(
lnµ[p|q](k)
τa(p,[p|q](k))

− λp)Tp,[p|q](k)(0, t)

}

× exp

{
s′′∑
k=1

(λp + α[p|q](k))T[p|q](k)↑(0, t)

}
exp

{
−λσ(0)(t1 − 0)

}
Vσ(0)(x(0)).

(15)

According to the definition of T[p|q] max↑, one can directly obtain

T[p|q](k)↑(0, t) ≤ Nσ[p|q](k)(0, t)T[p|q](k) max↑. (16)
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According to (3) and (16), one can arrive at

Vσ(t)(x(t))

≤ exp

{
s′′∑
k=1

N0[p|q](k) lnµ[p|q](k)

}
exp

{
s′′∑
k=1

(
lnµ[p|q](k)
τa(p,[p|q](k))

− λp)Tp,[p|q](k)(0, t)

}

× exp

{
s′′∑
k=1

(λp + α[p|q](k))N0[p|q](k)T[p|q](k) max↑

}
exp

{
s′′∑
k=1

(λp + α[p|q](k))
Tp,[p|q](k)

(0,t)

τa(p,[p|q](k))
T[p|q](k) max↑

}
× exp

{
−λσ(0)(t1 − 0)

}
Vσ(0)(x(0)).

(17)

We define

C1
∆
= exp

{
s′′∑
k=1

{
N0[p|q](k) lnµ[p|q](k)

}}
exp

{
s′′∑
k=1

{
(λp + α[p|q](k))N0[p|q](k)T[p|q](k) max↑

}
exp

{
−λσ(0)(t1 − 0)

}}
.

Inequality (17) can be rewritten as

Vσ(t)(x(t))

≤ C1 exp

{
s′′∑
k=1

(
lnµ[p|q](k)
τa(p,[p|q](k))

− λp)Tp,[p|q](k)(0, t)

}
exp

{
s′′∑
k=1

{
T[p|q](k) max↑

(λp+α[p|q](k)
)

τa(p,[p|q](k))
Tp,[p|q](k)(0, t)}

}
×Vσ(0)(x(0)).

(18)

95

If there exist constants

τa(p,[p|q](k))>
(T[p|q](k) max↑(λp+α[p|q](k) )+lnµ[p|q](k) )

λp
,

we have

Vσ(t)(x(t))

≤ C1exp {value1×(t−t1)}Vσ(0)(x(0)).
(19)

where

value1 , max
k

{
lnµ[p|q](k)+T[p|q](k) max↑(λp+α[p|q](k) )

τa(p,[p|q](k))
− λp

}
.

Therefore, it is concluded that Vσ(t)(x(t)) will converge to 0 as t→ +∞. Then, the asymptotic

stability can be deduced. �

Remark 3. From Theorem 1, we can see that the proposed approaches exploit the differences of

(a) the maximal asynchronous switching time T[p|q] max↑, (b) the energy changing degree µ[p|q]100

at switching times, and (c) the increasing speed α[p|q] of energy functions in asynchronous time

intervals, for different switching sequences. Such sequence information is often ignored in the

existing methods.

In order to show the relationship between the proposed methods and the conventional ADT

method, we derive the following corollary from Theorem 1.105
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Corollary 1. For the switched system (5), let α > 0, λ > 0, λ > 0, µ > 1 be given constants. For

every s ∈ S, suppose there exist functions k1s, k2s of class K∞ and C1 fuctions Vs : Rn → R, such

that

k1(‖x(t)‖) ≤ Vs(x(t)) ≤ k2(‖x(t)‖), (20)

∀i = 1, 2, · · · ,

V̇s(x(t)) ≤

 −λVs(x(t)),∀t ∈ T↓[ti, ti+1),

αVs(x(t)),∀t ∈ T↑[ti, ti+1),
(21)

∀(σ(ti) = p, σ(t−i ) = q) ∈ S × S,

Vp(x(ti)) ≤ µVq(x(ti)). (22)

Then the system is globally uniformly asymptotically stable for any switching signals with average

dwell time

τa ≥ τ∗a =
Tmax↑(λ+ α) + lnµ

λ
, (23)

where Tmax↑,max
i
T↑(ti, ti+1), ∀i ∈ Z+.

Proof :

For Theorem 1, one gives the values that :

(a) α[p|q] = α > 0, for all p, q ∈ S, p 6= q;

(b) λp = λ > 0, for all p ∈ S;110

(c) µ[p|q] = µ > 1, for all p, q ∈ S, p 6= q.

According to the above given values, the conditions (6), (7) and (8) are equal to (20), (21) and

(22), respectively.

For Theorem 1, Tmax↑, τa, τ∗a are defined as follows

(d)Tmax↑ , max
p,q
{T[p|q] max↑}, for all p, q ∈ S, p 6= q;115

(e)τa , max
p,q
{τa(p,[p|q])};

(f)τ∗a ,
Tmax↑(λ+α)+lnµ

λ .

On the basis of (9) and above definitions, it can be seen

τa , max
p,q
{τa(p,[p|q])} ≥ max

p,q
{
T[p|q] max↑(λp + α[p|q]) + lnµ[p|q]

λp
}

= max
p,q
{
T[p|q] max↑(λ+ α) + lnµ

λ
}

=
max
p,q
{T[p|q] max↑}(λ+ α) + lnµ

λ

=
Tmax↑(λ+ α) + lnµ

λ
, τ∗a .

(24)

This completes the proof. �

8



Remark 4. The relationship between Corollary 1 and Theorem 1 demonstrates that the existing

ADT methods are special cases of the sequential ADT. Corollary 1 is a conventional result based120

on conventional ADT methods[2].

Theorem 2. For a discrete switched system

x(k + 1) = fσ(k)(x(k)), (25)

let 1 > λp > 0, 1 > λq > 0, α[p|q] > −1, µ[p|q] ≥ 1 be given constants. For every s ∈ S, suppose

there exist functions k1s, k2s of class K∞ and C1 fuctions Vs : Rn → R, such that

k1s(‖x(k)‖) ≤ Vs(x(k)) ≤ k2s(‖x(k)‖), (26)

∀i = 1, 2, · · · , ∀(σ(ki) = p, σ(ki − 1) = q) ∈ S × S, p 6= q,

Vp(x(k+1))−Vp(x(k))≤

−λpVp(x(k)),∀t∈T↓[ti, ti+1),

α[p|q]Vp(x(k)),∀t∈T↑[ti, ti+1),
(27)

and

Vp(x(ti)) ≤ µ[p|q]Vq(x(ti)), (28)

then the system is globally uniformly asymptotically stable for any switching signals with SBASDT

τa(p,[p|q]) ≥ τ∗a(p,[p|q]) = −
(T[p|q] max↑(ln(1 + α[p|q])− ln(1−λp)) + lnµ[p|q])

ln(1− λp)
. (29)

Proof : By using the technique similar to the proof of Theorem 1, this theorem can be proved.

�

Theorem 3. For the switched system (5), let λq > 0, λp > 0, µ[p|q] > 1 be given constants. For

every s ∈ S, suppose there exist functions k1s, k2s of class K∞ and C1 fuctions Vs : Rn → R, such

that

k1s(‖x(t)‖) ≤ Vs(x(t)) ≤ k2s(‖x(t)‖), (30)

∀i = 1, 2, · · · , ∀(σ(ti) = p, σ(t−i ) = q) ∈ S × S, p 6= q,

V̇q(x(t)) ≤ −λqVq(x(t)),∀t ∈ T↓[ti−1, ti), (31)

V̇p(x(t)) ≤ α[p|q]Vp(x(t)),∀t ∈ T↑[ti, ti+1). (32)

and

Vp(x(ti)) ≤ µ[p|q]Vq(x(ti)). (33)
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Then the system is globally uniformly asymptotically stable for any switching signals with SBAPDT

τa(q,[p|q])≥τ∗a(q,[p|q])=
T[p|q] max↑(λq+α[p|q])+lnµ[p|q]

λq
. (34)

Proof : Let t0 = 0, and for any t > 0, t ∈ [tl, tl+1), l ∈ Z+. We use Tq,[p|q](k)(0, t) to represent

the sum of dwell time of the qth subsystems for the kth union of the set S ′′ in the time interval125

[0, t).

According to (10) and (31)-(33), one can rewrite (11) as

Vσ(t)(x(t))

≤


l∏

j=1

µσ(tj)|σ(t−j )

 exp
{
−λσ(0)T↓(0, t1) + ασ(t1)T↑(t1, t2)

}
× exp

{
−λσ(t1)T↓(t1, t2) + ασ(t2)T↑(t2, t3)

}
· · ·

× exp
{
−λσ(tl−1)T↓(tl−1, tl) + ασ(tl)T↑(tl, t)

}
× exp

{
−λσ(t1)T↓(t1, t2)

}
Vσ(0)(x(0)).

(35)

According to (12), it holds that

Vσ(t)(x(t))

≤


s′′∏
k=1

µ
N[p|q](k)

(0,t)

[p|q](k)

 exp


s′′∑
k=1

−λqTq,[p|q](k)↓(0, tl) + α[p|q](k)T[p|q](k)↑(0, t)


× exp

{
−λσ(tl)T↓(tl, t)

}
Vσ(0)(x(0)).

(36)

For the second part in (36), one has

s′′∑
k=1

−λqTq,[p|q](k)↓(0, tl) + α[p|q](k)T[p|q](k)↑(0, t)

=

s′′∑
k=1

−λqTq,[p|q](k)↓(0, t) + α[p|q](k)T[p|q](k)↑(0, t)

=

s′′∑
k=1

−λqTq,[p|q](k)↓(0, t)− λqTq,[p|q](k)↑(0, t) +

s′′∑
k=1

λqTq,[p|q](k)↑(0, t) + α[p|q](k)T[p|q](k)↑(0, t)

=

s′′∑
k=1

−λqTq,[p|q](k)(0, t) +

s′′∑
k=1

λqTq,[p|q](k)↑(0, t) + α[p|q](k)T[p|q](k)↑(0, t).

(37)
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It follows from (16) that

s′′∑
k=1

−λqTq,[p|q](k)↓(0, t) + α[p|q](k)T[p|q](k)↑(0, t)

≤
s′′∑
k=1

−λqTq,[p|q](k)(0, t) +

s′′∑
k=1

(λq + α[p|q](k))Nσ[p|q](k)(0, t)T[p|q](k) max↑.

(38)

According to (4), one can obtain

Vσ(t)(x(t))

≤


s′′∏
k=1

µ
N0[p|q](k)

+
Tq,[p|q](k)

(0,t)

τa(q,[p|q](k))

[p|q](k)

 exp

{
s′′∑
k=1

−λqTq,[p|q](k)(0, t)

}

× exp

{
s′′∑
k=1

(λq+α[p|q](k))(N0[p|q](k)+
Tq,[p|q](k)

(0,t)

τa(q,[p|q](k))
)T[p|q](k) max↑

}
exp

{
−λσ(tl)T↓(tl, t)

}
Vσ(0)(x(0))

= exp

{
s′′∑
k=1

N0[p|q](k) lnµ[p|q](k)

}
exp

{
s′′∑
k=1

(
lnµ[p|q](k)
τa(q,[p|q](k))

− λq)Tq,[p|q](k)(0, t)

}

× exp

{
s′′∑
k=1

(λq + α[p|q](k))N0[p|q](k)T[p|q](k) max↑

}
exp

{
s′′∑
k=1

(λq + α[p|q](k))
Tq,[p|q](k)

(0,t)

τa(q,[p|q](k))
T[p|q](k) max↑

}
× exp

{
−λσ(tl)T↓(tl, t)

}
Vσ(0)(x(0)).

(39)

It can be rewritten as

Vσ(t)(x(t))

≤ exp

{
s′′∑
k=1

N0[p|q](k) lnµ[p|q](k)

}
exp

{
s′′∑
k=1

(λp + α[p|q](k))N0[p|q](k)T[p|q](k) max↑

}

× exp

{
s′′∑
k=1

{
(

lnµ[p|q](k)
τa(q,[p|q](k))

− λq)Tq,[p|q](k)(0, t)
}}

exp

{
s′′∑
k=1

{
T[p|q](k) max↑

(λq+α[p|q](k)
)

τa(q,[p|q](k))
Tq,[p|q](k)(0, t)}

}
× exp

{
−λσ(tl)T↓(tl, t)

}
Vσ(0)(x(0)).

(40)

We define

C2
∆
= exp

{
s′′∑
k=1

N0[p|q](k) lnµ[p|q](k)

}
exp

{
s′′∑
k=1

(λp + α[p|q](k))N0[p|q](k)T[p|q](k) max↑

}
.

If there exist constants

τa(q,[p|q](k)) >
(T[p|q](k) max↑(λq+α[p|q](k) )+lnµ[p|q](k) )

λq
,

then one has

Vσ(t)(x(t))

≤ C2 exp
{
value2× (tl−0)−λσ(tl)T↓(tl, t)

}
Vσ(0)(x(0))

≤ C2 exp
{
max

{
−λσ(tl), value2

}
t
}
Vσ(0)(x(0)),

(41)
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where

value2 , max
k

{
lnµ[p|q](k)+T[p|q](k) max↑(λq+α[p|q](k) )

τa(q,[p|q](k))
− λq

}
< 0.

Therefore, it is concluded that Vσ(t)(x(t)) converges to 0 as t→ +∞. Then, the asymptotic stability130

can be deduced. �

Theorem 4. For the discrete switched system (25), let 1 > λp > 0, 1 > λq > 0, α[p|q] > −1,

µ[p|q] ≥ 1 be given constants. For every s ∈ S, suppose there exist functions k1s, k2s of class K∞
and C1 fuctions Vs : Rn → R, such that

k1s(‖x(k)‖) ≤ Vs(x(k)) ≤ k2s(‖x(k)‖), (42)

∀i = 1, 2, · · · , ∀(σ(ki) = p, σ(ki − 1) = q) ∈ S × S, p 6= q,

Vq(x(k+1))−Vq(x(k))≤−λqVq(x(k)),∀t∈ T↓[ti−1, ti) (43)

Vp(x(k+1))−Vp(x(k)) ≤ α[p|q]Vp(x(t)),∀t ∈ T↑[ti, ti+1), (44)

and

Vp(x(ti)) ≤ µ[p|q]Vq(x(ti)), (45)

then the system is globally uniformly asymptotically stable for any switching signals with SBAPDT

τa(q,[p|q]) ≥ τ∗a(q,[p|q]) = −
(T[p|q] max↑(ln(1 + α[p|q])− ln(1− λq)) + lnµ[p|q])

ln(1− λq)
. (46)

Proof : By using the technique similar to the proof of Theorem 5, this theorem can be proved.�

Remark 5. Comparing Theorem 3 (or 4) with 1 (or 2) or with the existing methods, we can see that

the SBAPDT approach counterbalances the energy functions by prolonging the preceding rather than

subsequent subsystems. This approach provides a novel direction for solving the stability problem of135

asynchronous switched systems.

3.2. Linear Systems

In this subsection, we extend the results in the last subsection to linear asynchronous switched

systems and present the following theorems for their stability analysis.

Theorem 5. For system (1) and the given constants α[p|q] > 0, λp > 0, µ[p|q] > 1, if there exist

matrices Pp > 0, Pq > 0, and ∀(σ(ti) = p, σ(t−i ) = q) ∈ S × S, p 6= q, such that

(Ap +BpKp)
TPp + Pp(Ap +BpKp) ≤ −λpPp, (47)

12



(Ap +BpKq)
TPp + Pp(Ap +BpKq) ≤ α[p|q]Pp, (48)

Pp ≤ µ[p|q]Pq, (49)

then the system is globally uniformly asymptotically stable for any switching signals under the140

SBASDT switching condition (9).

Proof : For system (1), the multiple Lyapunov functions are given by

Vs = xTPsx, ∀s ∈ S. (50)

According to (7), one has (47) and (48).

The condition for (49) can be given in terms of (8).

Now, the proof of Theorem 5 is completed. �

Theorem 6. For the discrete-time system (2) and the given constants 1 > λp > 0, α[p|q] > −1,

µ[p|q] ≥ 1, if there exist matrices Pp > 0, Pq > 0, p, q ∈ S, ∀(σ(ki) = p, σ(ki−1) = q) ∈ S×S, p 6= q

such that  −Pp PpAp + PpBpKp

∗ −(1− λp)Pp

 ≤ 0, (51)

 −Pp PpAp + PpBpKq

∗ −(1 + α[p|q])Pp

 ≤ 0, (52)

Pp ≤ µ[p|q]Pq, (53)

then the system is globally uniformly asymptotically stable for any switching signals under the145

SBASDT switching condition (29).

Proof : According to Theorem 2, Theorem 6 can be proved by using the technique similar to the

proof of Theorem 5. �

Theorem 7. For system (1) and the given constants α[p|q] > 0, µ[p|q] > 1 and λq > 0, if there exist

matrices Pp > 0, Pq > 0,and ∀(σ(ti) = p, σ(t−i ) = q) ∈ S × S, p 6= q, such that

(Aq +BqKq)
TPq + Pq(Aq +BqKq) ≤ −λqPq, (54)

(Ap +BpKq)
TPp + Pp(Ap +BpKq) ≤ α[p|q]Pp, (55)
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Pp ≤ µ[p|q]Pq, (56)

then the system is globally uniformly asymptotically stable for any switching signals under the

SBAPDT switching condition (34).150

Proof : According to Theorem 3, Theorem 7 can be proved by using the technique similar to the

proof of Theorem 5. �

Theorem 8. For the discrete-time system (2) and the given constants 1 > λq > 0, α[p|q] > −1,

µ[p|q] ≥ 1, if there exist matrices Pp > 0, Pq > 0, p, q ∈ S, ∀(σ(ki) = p, σ(ki−1) = q) ∈ S×S, p 6= q

satisfying  −Pq PqAq + PqBqKq

∗ −(1− λq)Pq

 ≤ 0, (57)

 −Pp PpAp + PpBpKq

∗ −(1 + α[p|q])Pp

 ≤ 0, (58)

Pp ≤ µ[p|q]Pq, (59)

then the system is globally uniformly asymptotically stable for any switching signals under the

SBAPDT switching condition (46).

Proof : According to Theorem 4, Theorem 8 can be proved by using the technique similar to the155

proof of Theorem 5. �

Figure 1: Subsystems and switching in example 1
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Table 1: Comparison between ADT and SBAPDT asynchronous switching for example 1

theorems in [2] SBAPDT results in this paper

parameters λ=0.3200; λ1 = λ2 = λ3=0.3200;

µ = 3.800; µ[3|1] = µ[2|3] = µ[1|2] = µ[2|1] = µ[2|1]=3.800;

α = 4.400. α[3|1] = α[2|3] = α[1|2] = α[2|1] = α[2|1]=4.400;

switching τ∗a(2,[1|2]) = 4.172; τ∗a(1,[2|1]) = 5.647;

signals Not feasible. τ∗a(1,[3|1]) = 5.647 ; τ∗a(2,[3|2]) = 5.647;

τ∗a(3,[2|3]) = 5.647.

For the linear or nonlinear switched asynchronous systems, the stability conditions presented

in this paper are sufficient conditions which can guarantee the stability of switched asynchronous

systems.

4. NUMERICAL EXAMPLES160

In this section, we verify the validity of the two sequence-based approaches for switched sys-

tems. Owing to the similarities between continuous-time and discrete-time asynchronous switched

systems, here we only verify the results for the continuous-time cases. Other theorems and cases

can be verified similarly.

In this section, we give two examples. The first one is to verify the results on SBAPDT, and165

its switching situation is shown in Fig. 1. The results on SBASDT is verified in example 2, whose

switching situation is shown in Fig. 2.

In both examples, the asynchronous switched system (1) is with

A1 =

 0.3 −0.6

0.6 −0.4

, B1 =
[
−0.5 −1.9

]T
, K1 = [−1.4316 0.7373], A2 =

 0.3 0.3

−1.2 0.4

,

B2 =
[

1 −1.5
]T

, K2 = [−0.1760 0.5674], A3 =

 0.3 0.3

−1 0.4

, B3 =
[

0.2 1.5
]T

, K3 =170

[−1.6987 − 0.6626].

Example 1. In this example, the subsystems 1 and 2 can switch to other two subsystems

randomly. The subsystems 3 can only switch to subsystem 1.

It is hard to know T[p|q] max in practice. A common way is to estimate its value, e.g., as proposed

in [2]. T[p|q] max is not more than the asynchronous time “T[p|q]” in every sequence (p,q). As it175

comes from the time “T” in system (2). Therefore, the maximal asynchronous time “T[p|q]” is often

taken as T[p|q] max. We assume that all the asynchronous switching time is 0.1.
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Table 2: Comparison between ADT and SBASDT asynchronous switching for example 2

theorems in [2] SBASDT results in this paper

parameters λ=0.3000; λ1 = λ2 = 0.3000;λ3 = 0.6107;α[2|3]=2.560;α[1|2]=0.2678;

µ = 3.969; µ[2|1] = µ[1|2] = 3.969;µ[1|3] = µ[2|3] = µ[3|1] = µ[3|2]=1.001;

α = 4.456. α[1|3]=4.456;α[2|1]=0.2159;α[3|1]=4.455; α[3|2]=3.975.

switching τ∗a(1,[1|2]) = 4.595; τ∗a(2,[2|1]) = 5.455;

signals τ∗a=20.45. τ∗a(3,[3|1]) = 6.636; τ∗a(1,[1|3]) = 11.09 ;

τ∗a(2,[2|3]) = 9.533; τ∗a(3,[3|2]) = 6.758.

For the conventional ADT methods, it is not feasible for the Matlab LMIs toolbox to find

a solution according to the results in [2] when we set λ=0.3200, µ = 3.800, α = 4.400. But

for our SBAPDT method, the Matlab LMIs toolbox can find a solution if we set λ1 = λ2 =180

λ3=0.3200, µ[3|1] = µ[2|3] = µ[1|2] = µ[2|1] = µ[2|1]=3.800, α[3|1] = α[2|3] = α[1|2] = α[2|1] = α[2|1] =

4.400. Therefore, the SBAPDT method is superior for the discussed problems. The conditions and

numerical results for this example are shown in Table 1.

The design parameters are selected based on the desired system performance and parameters’

physical meaning discussed in [1, 5, 6, 23].185

Remark 6. The sequences in this papers are mainly referred to the set {(p, q) : (σ(ti) = p, σ(t−i ) =

q) ∈ S × S, p 6= q, i = 1, 2, · · · , } and its elements. As i → +∞, the sequence set is not related

to the time ti anymore. It can be obtained directly from the switching population rather than being

computed in real time. That is, it can be known in advance. For Example 1, all possible switching

events are shown in Fig. 1. According to the set {(p, q) : (σ(ti) = p, σ(t−i ) = q) ∈ S × S, p 6= q, i =190

1, 2, · · · , } and Fig. 1., one can obtain the sequences set as {(1, 2), (2, 1), (2, 3), (3, 1), (3, 2)}. A

sequence is one of its elements.

Remark 7. In some switched systems, certain sequences, which belong to S ′ , {(p, q); p ∈ S, q ∈

S, p 6= q}, may not exist in practice. For these sequences, we do not need to check whether they

satisfy the conditions (47)-(49), (51)-(53), (54)-(56), (57)-(59). That is, only the sequences in the195

set {(p, q) : (σ(ti) = p, σ(t−i ) = q) ∈ S × S, p 6= q, i = 1, 2, · · · , } need to be checked to determine

whether they satisfy these conditions. In example 1, the set {(p, q) : (σ(ti) = p, σ(t−i ) = q) ∈

S × S, p 6= q, i = 1, 2, · · · , }={(1, 2), (2, 1), (2, 3), (3, 1), (3, 2)}. The sequence {1, 3} does not

exist. Therefore, we do not need to check any condition in terms of µ[1|3] or α[1|3].
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Figure 2: Subsystems and switching in example 2
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Figure 3: Lyapunov function value and switching signals

Although the sequence-based methods and LMIs algorithms lead to much more LMIs and pa-200

rameters, they do not dramatically increase the computational complexity for calculating LMIs’

feasible solutions. Meanwhile, as the stability analysis is off-line, the computing time is not a major

issue.

Example 2. In this example, each subsystem can switch to the other two subsystems randomly

as shown in Fig. 2.205

We assume that asynchronous switching time is not more than 0.5000, 0, 0.7000, 0.8000, 0.9000,

and 1.000 when [p|q] = [2|1], [p|q] = [1|2], [p|q] = [1|3], [p|q] = [3|1], [p|q] = [3|2], and [p|q] = [2|3],

respectively. For the conventional ADT methods [2], the Matlab LMIs toolbox can find a feasible

solution only if λ ≤0.3000 or µ ≥ 3.969 or α ≥ 4.456. When λ =0.3000, µ = 3.969, and α = 4.456,
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Figure 4: States and switching signals

we obtain τ∗a=20.45. But for the SBASDT method, the Matlab LMIs toolbox can find a solution210

even if we set λ1 = λ2 = 0.3000, λ3 = 0.6107, α[2|3]=2.560, α[1|2]=0.2678, µ[2|1] = µ[1|2] = 3.969,

µ[1|3] = µ[2|3] = µ[3|1] = µ[3|2]=1.001, α = 4.456, α[1|3]=4.456, α[2|1]=0.2159, α[3|1]=4.455, and

α[3|2]=3.975. The conditions and results for this example are shown in Table 2.

It can be seen that the sequence-based approach makes the threshold of average dwell time

decrease significantly. Therefore, the SBASDT method has considerable advantage compared with215

traditional ADT methods.

In order to show the global asymptotic stability, the states x1 and x2 of the second order

switched system is shown in Fig. 4, and its Lyapunov function value is given in Fig. 3, where σ′ is

the asynchronous switching signal.

5. CONCLUSIONS220

We have presented two novel methods for the stability analysis of asynchronous switching by

discriminating the switching sequences of subsystems. Several less conservative conditions are de-

rived. Unlike existing methods, the proposed approaches consider and exploit the differences among

different switching sequences of subsystems, such as the maximal asynchronous switching time, the

energy changing degree at switching times, and the increasing speed of energy functions in asyn-225

chronous time intervals. The SBAPDT approach counterbalances the increasing of energy functions

in asynchronous time intervals by prolonging the preceding rather than subsequent subsystems. Nu-

merical results verify the effectiveness of the proposed approaches, especially when sequences have

small asynchronous switching time.
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