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Abstract

This paper introduces a multiple-input discrete Urysohn operator for modelling non-

linear control systems and a technique of its identification by processing the observed

input and output signals. It is shown that, due to the nature of the discrete Urysohn

operator, the identification problem always has an infinity of solutions, which ex-

actly convert the inputs to the output. The suggested iterative identification pro-

cedure, however, leads to a unique solution with the minimum norm, requires only

few arithmetic operations with the parameter values and is applicable to a real-time

identification, running concurrently with the data reading. The efficiency of the pro-

posed modelling and identification approaches is demonstrated using an example of

a non-linear mechanical system, which is represented by a differential equation, and

an example of a complex real-world dynamic object.

Keywords: Urysohn model; Hammerstein model; Kaczmarz method; LMS algo-

rithm; system identification; real-time identification.

1 Introduction

There is a variety of models used in control system identification [1], e.g. the Volterra series, the Hammer-
stein, the Wiener-Hammerstein, the Urysohn, the neural network models or the NARMAX model. The
Urysohn model is a generalisation of the well-known Hammerstein model1 and is based on the integral
operator of the Urysohn type. These models are the so-called grey-box models and are often differentiated
from the physics-based models [2–4], as they lack description of the underlying physics of the modelled
systems. Nevertheless, these models are often used for a large range of engineering applications.

The major problem with using any generic model of a control object is the identification of the
model parameters. There is a number of papers dedicated to different aspects of solving the Urysohn
integral equation for a given kernel, e.g. [5–8]. However, literature on the identification of the kernel
based on known input and output data is very limited. To identify the kernel, the Urysohn model is
usually approximated by parallel Hammerstein blocks, e.g. [9–13], by Lagrange polynomials [14] or by
Stancu polynomials [15]. Application-oriented papers, where the Urysohn model identification has been
performed, include [16–20].

In contrast to identification of the Urysohn systems, literature on the identification of the Hammerstein
systems is vast and most well-known methods include [21–23]. However, a detailed discussion of the
Hammerstein systems’ identification is out of the scope of this paper.

In [24], it has been suggested to use a discrete Urysohn kernel and to identify it as a grid. Although
the idea behind the discrete Urysohn operator is relatively simple, surprisingly, it has not been used
in literature since then (to the best knowledge of the authors). This paper picks up the idea of using
the discrete Urysohn operator for modelling non-linear control systems and aims at demonstrating that

1This is further discussed in appendix D.1 of this paper.
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it is an extremely efficient engineering tool — it describes highly non-linear objects (e.g. with non-
monotonous steady-state characteristics) and can be easily identified. This paper builds on [24] by
generalising the discrete Urysohn model, which originally has been proposed for a quantised single input
only, and by suggesting a more versatile identification technique based on the Kaczmarz iterative method
[25]. Furthermore, in this paper, the identification problem for the discrete Urysohn operator is considered
in detail and the theorem on non-uniqueness of the Urysohn operator (and the structure of the operator
with respect to free parameters) is proved.

In [24], the discrete Urysohn model has been used for modelling the dynamic behaviour of diesel engines
and an excellent match with the experimental data has been achieved. However, the identification has
been relatively complex, computationally expensive and required the gradual change of the elements of
the operator. In this paper, the proposed method identifies the Urysohn kernel based on the observable
input-output data only, where the input sequence can be arbitrary, although still covering the desired
input range. The proposed method has low computational complexity and can be implemented in a few
lines of code.

This paper is organised as follows. In section 2, the description of the continuous and the discrete
Uryshon models is summarised. Section 3 holds the major results regarding the solution of the identifica-
tion problem, with details provided in the appendices. Generalisations of the discrete Urysohn operator
and some properties of the Urysohn systems are discussed in section 4. Finally, the numerical examples
are presented in section 5.

2 Urysohn operator for control systems

The general form of the Urysohn model is a multiple-input multiple-output (MIMO) model [26]. However,
this paper focuses mainly on single-input single-output (SISO) simplification of the model. The extension
of the proposed modelling and identification techniques to the MIMO case is considered separately in
section 4.2. The relation of the Urysohn model to the linear, the Hammerstein, the Volterra series and
the NARMAX models is discussed in appendix D to indicate the place of the Urysohn model in the
hierarchy of control systems’ models.

2.1 Continuous-time form of the model

The continuous-time Urysohn operator is an integral operator, which transforms function x (t) to function
y (t) in the following way [26, 27]:

y (t) =

∫ T

0

V (s, x (t− s)) ds, (1)

where x : [−T,+∞) → [xmin, xmax], y : [0,+∞) → R, V : [0, T ] × [xmin, xmax] → R are continuous
almost everywhere functions, t ≥ 0, T ≥ 0 and xmin, xmax ∈ R. Function V (s, x) is the kernel of the
continuous-time Urysohn operator1.

In the case of control systems, x (t) is the time-dependent input of the control system, y (t) is the
time-dependent output of the control system. Argument (t− s) in equation (1) describes the causality
between action x (t) and reaction y (t) of the object. Parameter T is the time interval, which is sufficiently
large for each y (t) to be determined by the input within the interval between (t− T ) and t.

2.2 Discrete-time form of the model

The discrete-time Urysohn operator is given by [27, 28]:

yi =

m
∑

j=1

gj (xi−j+1) , i ∈ N, (2)

where xi ∈ [xmin, xmax] is the series of input values, yi ∈ R is the series of output values, m is the memory
depth of the operator and gj : [xmin, xmax] → R are continuous almost everywhere functions. The set of

1In the original literature, the operator with an infinite memory is considered, y (t) =
∫ t

−∞
V (t− ξ, x (ξ)) dξ. In this

paper, following [24], the operator with a finite memory is considered, i.e. it is assumed that y (t) is defined completely by
x (ξ), where t− T ≤ ξ ≤ t. By substitution s = t− ξ, equation (1) is obtained.
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functions gj can be called the kernel of the discrete-time Urysohn model. It can be seen that equation
(2) results from a numerical quadrature1 of equation (1).

The discrete-time Urysohn model, equation (2), contains non-linear functions gj that must be repre-
sented in some parametric form before the model can be identified and used to reproduce the input-output
relation of a control system. For example, it is possible to represent them by known polynomials with
some coefficients [14, 15]. In [24], it has been proposed to take functions gj to be piecewise constant —
the input range [xmin, xmax] is divided into n intervals and functions gj are constant within each interval.
Such model can be conveniently rewritten using the following matrix notation2:

yi =
m
∑

j=1

U [j, ki−j+1] , (3)

ki = 1 + round

(

(n− 1) (xi − xmin)

xmax − xmin

)

, (4)

where U is the matrix with indices shown in [·, ·] and operator round (·) is the rounding to the nearest
integer. Matrix U is referred to as the Urysohn matrix in the rest of the paper.

Model (3)-(4) can be called the quantised-input discrete-time Urysohn model, as equation (4) performs
the quantisation of the input into n levels, before it is used for the calculation of the output. Here, integer
ki is the quantised input. In the rest of the paper, this model is referred to as the discrete Urysohn model
for simplicity, and the operator in equation (3) that transforms sequence ki to sequence yi is referred to
as the discrete Urysohn operator. In section 4.1, a more general case of a piecewise-linear representation
of gj , i.e. the case of a non-quantised input, is introduced.

It should be noted that model (3)-(4) is not a classical lookup table linking the input and the output
of a system, but rather a grid (with matrix U containing the grid point values) with a certain rule for
selecting a subset of elements from it, sum of which forms the output. Furthermore, for the case of a
non-quantised input, section 4.1, certain weights are introduced in the sum. In the case of a classical
lookup table, each distinct input sequence is associated with a single distinct output taken directly from
a lookup table. Such models are also referred to as non-parametric models [4], and further discussion of
these models can be found in textbooks, e.g. [29].

3 Identification of the discrete Urysohn operator

The identification problem for the discrete Urysohn operator consists in finding the unknown elements
of matrix U using known input and output sequences. The Urysohn matrix, however, has an important
property — any given input and output sequences do not uniquely determine matrix U . More specifically,
the Urysohn matrix of sizem×n contains (m− 1) elements that can be selected arbitrarily. This property
can be formulated into the following theorem.

Theorem 1. For any given quantised input sequence ki and output sequence yi of an Urysohn system
(3), when m > 1, there are infinitely many Urysohn matrices, for which the input sequence is converted
exactly to the output sequence. Moreover, when (m− 1) elements of the Urysohn matrix are prescribed,
selected such that not more than one element from each row of the Urysohn matrix is prescribed, there
is a unique set of remaining (mn−m+ 1) elements, such that the discrete Urysohn operator exactly
converts the input sequence to the output sequence. In this case, these remaining (mn−m+ 1) elements
linearly depend on the values of the prescribed (m− 1) elements.

Proof. See appendix A.

Remark 1. It must be emphasised that the theorem is formulated for the input and output sequences
of an Urysohn system (3), i.e. the input is quantised and the output is formed by the discrete Urysohn
operator. Thus, there is at least one solution of the identification problem.

1For example, by defining xi = x (i∆t) and yi = y (i∆t), where ∆t = T/ (m− 1) is the time step, and by using the
composite trapezoidal rule, equation (1) becomes

yi = y (i∆t) =

∫ T

0

V (s, x (i∆t− s)) ds ≈
1

2
∆t (V (0, x (i∆t)) + 2V (∆t, x ((i− 1)∆t)) + . . .+

+ 2V ((m− 2)∆t, x ((i−m + 2)∆t)) + V ((m − 1)∆t, x ((i−m+ 1)∆t))) .

Equation (2) is obtained by defining g1 (x) =
∆t
2
V (0, x) , . . . , gm (x) = ∆t

2
V ((m− 1)∆t, x).

2Here, the j-th row of matrix U contains all n values that piecewise-constant function gj can take.
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Remark 2. In the theorem, it is implied that the input and the output sequences have the same length;
however, first (m− 1) elements of the output sequence are not defined as the output of the discrete
Urysohn operator.

To reduce the infinity of possible solutions of the identification problem to a unique solution, additional
constraints must be introduced. One of such possible constraints is the minimum Frobenius norm of the
Urysohn matrix. In section 3.1, the iterative identification method is proposed, which converges to the
unique solution with such minimum norm.

3.1 The iterative identification method

The proposed algorithm for identifying the discrete Urysohn operator is based on the Kaczmarz algorithm
[25, 30] for solving linear systems of equations. The key step that allows using the Kaczmarz algorithm
is the assembly of the linear system of equations with respect to parameters of the discrete Urysohn
operator. This is done by performing a logical operation on the input of non-linear system (3)-(4). The
details are given in section 3.2.

The proposed algorithm can be summarised as follows:

1. Assume an initial approximation of matrix U . It can be arbitrary, including the all-zero matrix.

2. Start with i = m.

3. Calculate model output ŷi based on actual input xi and the current approximation of matrix U
according to equations (3)-(4).

4. Calculate difference D = yi− ŷi, where yi is the actual recorded output and ŷi is the model output.

5. Modify matrix U , such that αD/m is added to each element that was involved in the calculation
of ŷi.

6. Increase index i by 1 and repeat steps 3-5 until D becomes sufficiently small for sufficiently large
number of iterations consecutively.

In step 5 of the algorithm, αD/m is added to elements [j, ki−j+1] of matrix U , where j = 1, . . . ,m.
Parameter α is the stabilisation parameter from interval (0, 1] for suppressing the noise. For near exact
data, α can be 1, while for a very noisy data, it must be relatively low. Parameter α is further discussed
in sections 5.2.3 and 5.2.4, where numerical examples are provided.

The theorem on the uniqueness of the solution is formulated below. Furthermore, an independent
proof of the theorem (without using the relation to the Kaczmarz algorithm) is given.

Theorem 2. For exact input-output data of an Urysohn system, when the input sequence covers all
possible inputs within the desired range and the values of the input sequence from (i−m+ 1) to i
almost always change1 with iteration number i, the proposed algorithm presented above converges to a
unique solution. If the initial approximation for matrix U is the all-zero matrix, the proposed algorithm
converges to matrix U with the minimum Frobenius norm.

Proof. See appendix B.

The entire block of adjustment operations is computationally inexpensive and can be applied as a
real-time process in an interval between automatic reading of the measurements of the input and the
output of the physical control system. In an automatic identification, it is easy to trace the number of
times each element of matrix U has been modified, which can be an important information for assessing
whether the algorithm has converged.

1When fragment of the input sequence from (i−m+ 1) to i does not change with the iteration number, matrix U is
not updated, i.e. the repeated sequences are just ignored by the algorithm.
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3.2 Relation to the Kaczmarz iterative method

The Kaczmarz iterative method for solving linear system of equations AX = B, where A is a known
matrix, B is a known vector-column and X is an unknown vector-column, is given by the following
sequence [25, 30]:

X i+1 = X i +
Bp −ApX

i

|Ap|2
Ap

T, (5)

where Ap is the p-th row of A, Bp is the p-th element of B and X i is the approximation of the solution
at step i. Integer variable p changes with the iteration number.

In the case of the discrete Uryshon operator, each value of the output is the sum of the specifically
selected subset of elements of matrix U . This allows building a system of linear algebraic equations for
the identification of matrix U by rearranging its elements into an unknown vector-column

Z =
[

U11 . . . U1n U21 . . . U2n . . . Um1 . . . Umn

]T
.

Recorded output sequence yi is also rearranged into a vector-column

Ỹ =
[

ym ym+1 . . . ym+N

]T
,

where N is the number of elements in the recorded output sequence. Matrix M̃ is introduced, elements
of which are determined using known ki as

M̃iq =

{

1, if q = n (j − 1) + ki−j+1 where j ∈ {1, 2, . . . ,m}
0, otherwise.

In this case, the discrete Urysohn system (3) can be represented by the following system of algebraic
equations:

M̃Z = Ỹ. (6)

Thus, in order to find unknown Z, the system of linear equations (6) must be solved. The rank of matrix
M̃ is (mn−m+ 1) or less, due to theorem 1. The rank of M̃ is strictly less than (mn−m+ 1) when
the input sequence does not cover all possible input values.

It can be seen that by applying the Kaczmarz method to system (6) and by introducing a multiplier
α in equation (5), the algorithm of section 3.1 is obtained. The norm of the each row of M̃ is

√
m and,

at each iterative step, only those elements of Z are modified that were involved in the calculation of the
corresponding element of Ỹ .

The Kaczmarz method is also sometimes called the projection descent method [31], which results from
its geometrical interpretation. The solution of a linear system of equations can be interpreted as finding
an intersection point of hyperplanes in a multidimensional space. Initially, an arbitrary point is taken
and, at each iteration, the point is projected onto a different hyperplane. Each projection operation
brings the point closer to the solution.

The actual convergence rate depends significantly on the angles between the hyperplanes [32]. For close
to orthogonal set of hyperplanes, the convergence is relatively fast, while for hyperplanes intersecting at
sharp angles, the convergence is relatively slow. The convergence of the Kaczmarz method in application
to system (6) is relatively fast due to rows of matrix M̃ being either orthogonal or relatively close to
being orthogonal, since, for each new input/output element, most non-zero input values of matrix M̃ are
expected to be shifted to neighbouring positions in the matrix1.

The identification of a discrete Urysohn system has already been considered in [24], where the iden-
tification of the operator has been performed by a direct solution of system (6) using the Tikhonov
regularisation. To avoid dealing with the degenerate matrix, (m− 1) values of the Urysohn matrix have

1This can be illustrated by the following example. Assume m = 3, n = 3 and k1 = 1, k2 = 2, k3 = 1, k4 = 3. Then
rows of M̃ corresponding to y3 and y4 are

[

1 0 0 0 1 0 1 0 0
]

,
[

0 0 1 1 0 0 0 1 0
]

,

respectively, which are orthogonal.
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been fixed. The disadvantage of such method is that in the case of noisy data, elements of matrix M̃ are
slightly misplaced and may be located at adjacent positions, which complicates the solution of system
(6) even when the regularisation is utilised. Furthermore, as the method of [24] operates with the fully
assembled matrices, it requires significantly larger memory and cannot be used in real time for model
identification, in contrast to the method proposed above.

It should be noted that the proposed algorithm is similar to the well-known Least Mean Squares (LMS)
algorithm [33,34] for identification of linear control systems. The similarity comes from the fact that the
Normalised Least Mean Squares (NLMS) algorithm is the Kaczmarz algorithm1 applied to matrix form of
the linear control system [35]. The major difference between the proposed algorithm and the LMS/NLMS
algorithms is a set of logical operations preceding the model update. As seen form the structure of the
discrete Urysohn model, the input sequence defines the addresses of a subset of elements of the identified
grid structure. The elements of the grid structure, in turn, form the output of the model. This contrasts
with the LMS/NLMS algorithms for linear systems, where a linear combination of the elements of the
input is equal to the output, and the coefficients of this linear combination are identified.

4 Some generalisations and properties of the discrete Urysohn

operator

4.1 Generalisation for non-quantised input

The discrete Urysohn model, which has been introduced in section 2.2, involves the quantisation of the
input. Model (3)-(4) is based on piecewise-constant representation of gj in equation (2). A piecewise-
linear representation of gj, on the other hand, leads to a more general model, where the quantisation of
the input is not required. For simplicity of the presentation, the input range [xmin, xmax] is divided into n
equal intervals and functions gj are taken to be linear within each interval. In this case, the discrete-time
Urysohn operator is still represented by a matrix2; however, the rule for calculating the output changes,
as is shown in this section.

First, a rescaling of the input is introduced — an additional variable bi is constructed in the following
way:

bi = 1 + (n− 1)
xi − xmin

xmax − xmin

. (7)

This variable and takes all real values from interval [1, n], as xi takes all real values from interval
[xmin, xmax]. Next, rounding to the nearest integer values is introduced:

kLi = ⌊bi⌋ , kRi = ⌈bi⌉ , (8)

where ⌊·⌋ and ⌈·⌉ are the floor and the ceiling functions, respectively. These integers are needed to address
the elements of the Urysohn matrix. Finally, the generalised form of the operator can be introduced:

yi =

m
∑

j=1

(

(1− ψi−j+1)U
[

j, kLi−j+1

]

+ ψi−j+1U
[

j, kRi−j+1

])

, ψi = bi − kLi . (9)

It can be seen that in the above representation, each term of the sum changes piecewise-linearly as a
function of bi, hence as a function of xi, and the nodal values (i.e. the values at the points where the
slope changes) are taken from the j-th row of matrix U .

The identification procedure for the non-quantised case also changes. Following the general formula
of the Kaczmarz method, equation (5), the following norm is introduced:

χi =

m
∑

j=1

(

(1− ψi−j+1)
2
+ ψi−j+1

2
)

. (10)

In the non-quantised case, only step 5 of the algorithm of section 3.1 changes. Now, at this step,
αD (1− ψi−j+1) /χi is added to elements

[

j, kLi−j+1

]

of matrix U and αDψi−j+1/χi is added to elements
[

j, kRi−j+1

]

of matrix U . It should be emphasised that each element of matrix U is modified by a different
value, which contains the corresponding weight.

1With a possible difference that NLMS can include a variable step size [34].
2In the case of such piecewise-linear representation of gj , these functions are fully defined by the nodal values of gj , i.e.

the values of the functions where the slope changes. In the proposed generalisation, the j-th row of matrix U contains all
nodal values of gj .
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4.2 Multiple inputs and multiple outputs

The general form of the Urysohn model is a MIMO model [26]. The approach of section 4.1 can easily be
generalised to the MIMO case. For simplicity of the presentation, first, a two-input single-output system
is considered. The continuous-time form of the model is given by [26]

z (t) =

∫ T

0

V (s, x (t− s) , y (t− s)) ds, (11)

where x (t) and y (t) are the inputs and z (t) is the output. The corresponding discrete-time form is given
by [28]

zi =
m
∑

j=1

gj (xi−j+1, yi−j+1) , (12)

where xi and yi are the input sequences and zi is the output sequence. Following the idea of piecewise-
linear representation of functions for the single-input case, as gj are now functions of two variables, a
piecewise-bilinear representation can be used. Following similar steps as in section 4.1, results in the
following model:

zi =
m
∑

j=1

(

(1− ψi−j+1) (1− φi−j+1)U
[

j, kLi−j+1, k
D
i−j+1

]

+

ψi−j+1 (1− φi−j+1)U
[

j, kRi−j+1, k
D
i−j+1

]

+

(1− ψi−j+1)φi−j+1U
[

j, kLi−j+1, k
U
i−j+1

]

+

ψi−j+1φi−j+1U
[

j, kRi−j+1, k
U
i−j+1

])

, (13)

ψi = bi − kLi , φi = ci − kDi ,

kLi = ⌊bi⌋ , kRi = ⌈bi⌉ , kDi = ⌊ci⌋ , kUi = ⌈ci⌉ , (14)

bi = 1 + (n− 1)
xi − xmin

xmax − xmin

, ci = 1 + (n− 1)
yi − ymin

ymax − ymin

, (15)

where U is now the three-dimensional matrix with indices shown in [·, ·, ·]; variables bi and ci are scaled
inputs xi and yi; integers k

L
i and kRi are rounding of variable bi down and up, respectively; integers kDi

and kUi are rounding of variable ci down and up, respectively. These integers are used to address elements
of matrix U .

To perform the identification procedure, following equation (5) and steps of section 3.2, the following
norm is introduced:

χi =
m
∑

j=1

(

(1− ψi−j+1)
2 (1− φi−j+1)

2 + ψi−j+1
2 (1− φi−j+1)

2 +

(1− ψi−j+1)
2
φi−j+1

2 + ψi−j+1
2φi−j+1

2
)

.

Again, only step 5 of the algorithm of section 3.1 changes. Now, at this step, αD (1− ψi−j+1) (1− φi−j+1) /χi

is added to elements
[

j, kLi−j+1, k
D
i−j+1

]

of matrix U , αDψi−j+1 (1− φi−j+1) /χi is added to elements
[

j, kRi−j+1, k
D
i−j+1

]

of matrix U , etc.
It easy to see that the presented above approach can be trivially generalised for multiple-input

single-output (MISO) system by representing corresponding functions gi using piecewise-multilinear (e.g.
piecewise-trilinear for three inputs) representation. The MIMO case is obtained from the MISO case
by constructing an individual model for each output. The outputs may be correlated, but they are
independent by the definition of the Urysohn model, and they depend only on the inputs.

4.3 Describability of a system by the discrete Urysohn operator

The integral models have certain advantages over differential ones. For example, the convolution-type
linear integral equation can describe an object of any order with a pure delay. Thus, it is useful to provide
a criteria for a system to be describable by the Urysohn operator.
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Theorem 3. For a system with a quantised input to be describable by the discrete Urysohn operator,
it is necessary and sufficient that (a) the system has a finite memory (b) the system has additivity for
input sequences that are individual impulses, which do not coincide in time.

Proof. See appendix C.

Remark 3. Since the case of a quantised input is considered, an individual impulse means that all
elements of the input sequence are equal to xmin except one element, which can take an arbitrary quantised
value.

Remark 4. The condition that the impulses do not coincide in time is essential. Condition (b) is not
a linearity condition. If a system has additivity for impulses that coincide in time, this means that the
system is linear with respect to inputs. In the general form, the Urysohn systems are non-linear and,
therefore, do not have additivity for arbitrary inputs.

In the case of a non-quantised input, following equation (2), the Urysohn systems are such systems,
where the output is a sum of non-linear functions of elements of the input sequence. Systems, where the
output depends on products of time-shifted elements of the input sequence, cannot be exactly represented
by the Urysohn model.

In the case of real applications, it is easy to judge the applicability of the discrete Urysohn model
to a system. In the case when the above criteria are not strictly fulfilled, the error (the deviation from
the criteria) can give an indication of how accurate the discrete Urysohn model can describe the system.
However, such investigation requires an ability to impose arbitrary input signals (impulses), which is not
always possible. The identification algorithm of section 3.1, on the other hand, does not require this and
works with the observed signals. This means that from a practical point of view, in some cases, it can
be easier to apply the identification procedure and judge the applicability of the Urysohn model, based
on the accuracy of the representation rather that first check whether the system is of the Urysohn type.
In this case, it would also be desirable to show that a simpler model, such as the Hammerstein model,
cannot represent the system, i.e. the error is larger if the simpler model is used. Otherwise, the simpler
model is always preferable.

4.4 Partially identified Urysohn operator

The discrete Urysohn operator has a unique property — even a partially identified operator is still useful
and can be utilised. The operator will be identified partially when input values, which are used for the
identification, do not cover the entire range from xmin to xmax. Thus the notion of “identification range”
can be introduced as the range, within which the input varies during the identification. In this case, as
evident from the identification procedure, elements of the Urysohn matrix corresponding to the input
outside of this range will not be updated and will remain to be initial guesses. However, the “middle”
elements of the Urysohn matrix, which correspond to input values within the identification range, will
be identified.

Using the proposed identification procedure, it is easy to introduce the counter for every element of U ,
which stores the number of times the element has been updated. Such counter can be useful to determine
the identification range and to estimate the accuracy of the identified elements, since the error decreases
with the number of updates (due to the convergence of the identification procedure).

When such partially identified operator is applied to a different input sequence, it will still produce
a reliable output when the input is within the identification range. When the input temporarily takes
values outside of the identification range, the model does not produce an output; however, when the
input comes back into the identification range and stays there for a time period, which is greater than
the system memory, the model again starts producing a valid output.

5 Numerical examples

The goal of this section is to demonstrate the descriptive capabilities of the discrete Urysohn operator.
Two series of test studies are performed. For the first set of tests, a non-linear controllable mechanical
object, the dynamic behaviour of which is described by a non-linear differential equation, is considered.
Exact input and output sequences are generated using the numerical solution of the differential equation.
This allows systematic studying of the performance of the identification algorithm. The second set of
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Figure 1: A schematic representation of the considered mechanical system (a) and a
schematic representation of the change of the geometry of spring B due to the movement of
the object (b).

tests is conducted using real experimental data and aims at showing the readers that the discrete Urysohn
operator performs well in real-world scenarios.

5.1 Studied system

The considered mechanical system is shown in figure 1a. A bulky object is allowed to move in the
horizontal direction; the movement is affected by a friction force. The object is connected to a clamp by
a horizontal spring. A second spring is connected by a hinge to the object and by another hinge to a
platform, which can move vertically. The vertical displacement of the platform is the input of the system
(the control), while the horizontal displacement of the object is the output of the system (the observable
state variable).

Although the components of the system (the springs) are linear, the static input-output response of
the system (the steady-state characteristic) is significantly non-linear due to the geometry of the system.
In the static case, y decreases with the increase of x up to a point when platform C is parallel to the
object. Afterwards, y increases with the further increase of x.

The mechanical system is described by the following differential equation:

d2y

dt2
= −2ζω

dy

dt
+ f (y, x) , (16)

f (y, x) = −ω2y − ω2

(

√

L2 +H2 −
√

(L− y)2 + (H − x)2
)

L− y
√

(L− y)2 + (H − x)2
, (17)

y|t=0 = y0,
dy

dt

∣

∣

∣

∣

t=0

= v0, (18)

where y and x are the state variable of the system and the control function, respectively; 2ζω is the
friction coefficient divided by the mass of the object; ω2 is the stiffness of the springs divided by the mass
of the object; L and H are the initial horizontal and vertical distances, respectively, between the centres
of the object and the platform. The expression for the total force scaled by the mass, f (y, x), results
from the projection of the force in spring B onto the horizontal direction. The change of the geometry of
spring B is shown in figure 1b.

The numerical solution of equation (16) can be obtained using the Verlet method. It is easy to verify
that the discretisation of equation (16) using the Verlet method results in

yi+1 =

(

2yi − yi−1

(

1− 2ζω
∆t

2

)

+ f (yi, xi)∆t
2

)(

1 + 2ζω
∆t

2

)

−1

, (19)

y1 = y0 +∆tv0

(

1− 2ζω
∆t

2

)

+ f (y0, x0)
∆t2

2
, (20)

where ∆t is the time step and subscript i indicates that a quantity is taken a time step i.
For the purpose of this paper, all quantities in the equations are taken to be dimensionless. Since it

is possible to perform spatial and temporal scaling of the system, which does not affect the qualitative
behaviour of the system, parameters ω and L can be chosen arbitrarily. Parameter H/L controls the
degree of non-linearity, while parameter ζ controls the oscillatory nature of the system. Numerical
parameter ∆t must be chosen in such way that the numerical results maintain sufficient accuracy and,
for oscillatory systems, it is usually selected as a fraction of the period of undamped oscillations. The
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following values of the parameters are taken: ω = 1, ζ = 1, L = 1, H = 0.5, ∆t = 2π/128. Initially, the
system is at rest: y0 = 0, v0 = 0.

5.2 Results of identification

5.2.1 Discrete control function

Since the discrete Urysohn operator requires certain discretisation of the control function and also certain
discretisation in time, the simplest case for the identification is when the control function takes only
discrete values and is constant for periods of ∆τ . Thus, the following control function is considered:

x (t) = (k − 1)∆x for (j − 1)∆τ < t ≤ j∆τ, (21)

k ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . , Q} , Q = round (tmax/∆τ) .

Values ∆τ = 2π/8 and ∆x = 0.1 are selected for the numerical experiments based on the dynamic
properties of the system. The number of rows and columns of the Urysohn matrix is selected to be m = 8
and n = 11, respectively, which gives the maximum value of the control function xmax = 1.

Any proper benchmarking of any identification procedure requires two completely independent input-
output datasets — the first dataset for the identification of the model, the second dataset for the validation
and error calculation. Thus, the model is validated on the unseen data. This strategy is strictly followed
in all examples of this paper.

The input and the output sequences are generated as follows. Different realisations of the random
input signal x (t) are generated according to equation (21). The corresponding outputs of the system
y (t) are calculated using equations (19) and (20). For the purpose of this example, these outputs are
considered to be the exact object outputs and are referred to as the reference outputs. The total simulation
time is taken to be tmax = 104; however, as shown below, much smaller signal length is required for the
identification of the Urysohn matrix. A small fragment of the input and the output signals for one of the
realisations is shown in figure 2a.

The Urysohn matrices are identified for each realisation of the identification dataset using the algo-
rithm of section 3.1 with α = 1. The initial estimates for the Urysohn matrices are the all-zero matrices.
Since the computed matrix changes each iteration, it is recorded after each iteration for the subsequent
error analysis. An example of the Urysohn matrix, which is obtained after the identification procedure, is
illustrated in figure 2d. To validate the obtained Urysohn models and to calculate the errors, the obtained
Urysohn matrices are applied to the input signals of the validation dataset and the outputs, which are
referred to as the Urysohn outputs, are calculated.

The comparison of the reference output and the Urysohn output is shown in figure 2b. It can be seen
that the Urysohn output almost perfectly fits the reference output. The error can be characterised by
the scaled L1-norm of the difference between the solutions:

e =
1

Qysmax

Q
∑

j=m

|ỹj − ŷj | , ysmax =
1

2

(
√

L2 +H2 − L
)

, (22)

where ỹj is the reference output taken at points t = j∆τ and ŷj is the Urysohn output. The maximum
absolute static displacement ysmax is introduced to obtain the relative error. The major result of this
section is that the average output error of the considered system modelled by the discrete Urysohn
operator is e ≈ 0.4% across 8 different realisations.

Small fluctuations in the output error are related to the randomness of the input sequence. For α = 1,
which is used in the identification process, the Urysohn matrix resulting from the identification process
is highly affected by the last few iterations. To decrease the fluctuations of the output error, parameter
α should be decreased.

It is also possible to track the evolution of the error depending on the number of iterations used for
the identification of the Urysohn matrix. The Urysohn output and the error are calculated for different
Urysohn matrices, where number of iterations N is varied. The error as a function of N is obtained
for 8 different realisations. The results are plotted in figure 2c. The logarithm of the error decreases
linearly depending on N , until the error reaches a plateau. Since the input of the system is random, the
dependence of the error on the number of iterations varies for different realisations.
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Figure 2: Fragments of the dependence of the input signal and the output of the object
on time that were used for the operator identification (a) and validation (b). The Urysohn
output is plotted using diamond symbols (b). The dependence of the error of the Urysohn
solution on the number of iterations during the identification procedure (c). A visual repre-
sentation of the Urysohn matrix (d).

5.2.2 Continuous control function

The case that has been considered in section 5.2.1 is the most simple case in terms of the discretisation
of the Urysohn operator. The control function takes only specific discrete values and changes its value at
specific moments of time, which are divisible by ∆τ . In reality, such systems are relatively rare and most
systems have a continuous-time control function. In this case, the Urysohn operator must be discretised
accordingly, such that a certain accuracy can be achieved.

For a given system, the discretisation of the Urysohn operator is characterised by two parameters —
the discretisation in time, ∆τ , which is responsible for the number of rows of the Urysohn matrix, and the
discretisation of the control function, ∆x, which is responsible for the number of columns of the Urysohn
matrix. The desired property of any discrete model is the convergence with respect to the discretisation
parameters. Therefore, the aim of this section is to study the accuracy of the discrete Urysohn model
depending on ∆τ and ∆x.

The convergence of the Urysohn model with respect to the discretisation parameters is verified using
the same object as before. At first, the fine-sampled inputs are generated and the corresponding fine-
sampled outputs of the system are calculated. For the purpose of this example, these inputs and outputs
are regarded as the exact behaviour of the system. After this, the coarse-sampled input and output
signals are calculated by local averaging of the fine-sampled signals. The Urysohn matrices are identified
based on these coarse-sampled signals. After this, using separate input-output replications, the Urysohn
matrices are used to reproduce the output signals. The final step is the comparison of the fine-sampled
exact outputs and the Urysohn outputs of the system. These steps are described in detail below.

The control function that corresponds to a random input is considered. Bounded continuous-time
function x (t) is obtained from the following SDE:

dx (t) = GdW (t) , 0 ≤ x (t) ≤ 1, x (0) = 0, (23)
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where W (t) is the Wiener process and G is the parameter controlling the rate of change of the control
function1. When x reaches the boundaries, it undergoes the perfect reflection. Numerically, equation
(23) results in the following discrete values of the control function:

pi = G
√
∆twi, i ≥ 1, (24)

qi =
i

∑

j=1

pj , (25)

xi =

{

qi − ⌊qi⌋ , if ⌊qi⌋ is even,

1− qi + ⌊qi⌋ , if ⌊qi⌋ is odd,
(26)

where wi ∼ N (0, 1) are normally distributed random numbers with zero mean and unit variance, ⌊·⌋ is
the floor function. The structure of equation (26) takes into consideration reflections from boundaries 0
and 1. Parameter G must be selected such that the system reveals its dynamic properties; value G = 0.05
is selected for the simulations.

Different realisations of input signal xi are generated according to equation (26). Afterwards, outputs
yi are calculated using equations (19) and (20). The total simulation time is taken to be tmax = 104.

To obtain the datasets for the identification and for the validation of the Urysohn matrices, the coarse
versions of the input and output signals are calculated for various ∆τ and ∆x. Local averaging is used
to obtain the coarse-sampled signals:

xCi = ∆x round





1

∆xNs

iNs
∑

j=iNs−Ns+1

xj



 , Ns =
∆τ

∆t
,

yCi =
1

Ns

iNs
∑

j=iNs−Ns+1

yj ,

where xCi and yCi are the coarse-sampled input and output signals, respectively. The Urysohn matrices
are identified based on xCi and yCi for various ∆τ and ∆x using the iterative identification procedure with
α = 1. The initial estimates for the Urysohn matrices are the all-zero matrices.

The scaled L1-norm of the difference between the exact and the Urysohn outputs, equation (22),
is again used as the measure for the validation. The results for different discretisation parameters are
presented in table 1, where m = T0/∆τ and n = 1/∆x + 1 are the number of rows and the number of
columns of the Urysohn matrix, respectively, and T0 = 2π. It can be seen that the error decreases with
the decrease of ∆τ and ∆x. The average error that is less than 1% can be achieved for small values of
the discretisation parameters.

In figure 3, fragments of the reference inputs and outputs are presented as well as the output of the
Urysohn model for the case of m = 16 and n = 41. It can be seen that the Urysohn model captures
accurately the dynamic behaviour of the system.

5.2.3 System with noisy output

The case that has been considered in section 5.2.1 is the ideal case when the output signal does not contain
an observation error. However, in real systems, the output signal is often affected by the noise. In this
case, the identification procedure should be robust and still identify the Urysohn matrix accurately.

To demonstrate the effect of the noise on the identification procedure, the same control function as
in section 5.2.1 is considered. Moreover, the same identification and the same validation procedures
are employed. However, after the output signal, which is subsequently used for the identification, is
calculated, it is mixed with the noise. Thus, the Urysohn matrices are identified based on the following
output:

ySi = yi + ysmaxσwi,

1In the case when the control function is unbounded and is described by dx (t) = GdW (t), the expected value of the
change of x within period T0 can be calculated using

∆X =

∫

∞

−∞

|z| f (z) dz,

where f (z) is the normal distribution function with variance G2T0. It is easy to verify that for T0 = 2π, ∆X = 2G.
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n = 11 n = 21 n = 41 n = 81
m = 32 4.44± 0.49 1.59± 0.15 0.83± 0.03 0.65± 0.03
m = 16 4.27± 0.68 1.82± 0.09 0.97± 0.06 0.83± 0.03
m = 8 4.10± 0.68 2.24± 0.21 1.27± 0.07 1.14± 0.03
m = 4 4.95± 0.32 2.77± 0.19 1.90± 0.06 1.78± 0.04

Table 1: The error of the discrete Urysohn model in % depending on the number of rows,m,
which corresponds to the discretisation of the integral operator in time, and the number of
columns, n, which corresponds to the discretisation of the control function, of the Urysohn
matrix. The averages and the 95% confidence interval are calculated based on 9 replications.

Figure 3: Fragments of the fine-sampled input and output signals, which were used for the
validation. The coarse-sampled Urysohn output for the case ofm = 16 and n = 41 is plotted
using the black line.

α = 0.01 α = 0.05 α = 0.25
σ = 0.05 0.44± 0.03 0.70± 0.03 1.50± 0.11
σ = 0.10 0.67± 0.05 1.34± 0.10 2.99± 0.24
σ = 0.20 1.18± 0.06 2.59± 0.16 5.95± 0.38

Table 2: The error of the discrete Urysohn model in % depending on the noise level, σ, and
the stabilisation parameter, α, for the system with the noisy output. The averages and the
95% confidence interval are calculated based on 9 replications.

where yi is the exact solution and wi ∼ N (0, 1) are normally distributed random numbers with zero
mean and unit variance. The total simulation time is taken to be tmax = 4 · 104. The identification of
the Urysohn matrices is performed with different values of stabilisation parameter α.

The results for different noise levels and different values of the stabilisation parameter are presented
in table 2. The noise levels are 5%, 10% and 20% of the maximum static value of the solution, ysmax.
It can be seen that even for relatively large noise levels, the resulting Uryshon matrix can capture the
system behaviour accurately and result in an error around 1% across the validation dataset. For large
noise levels, a relatively small value of α must be used to achieve high accuracy.

5.2.4 System with noisy input and output

The identification procedure of the discrete Urysohn operator can also be applied to systems with the noisy
input and output. The same control function, the same identification and the same validation procedures
as in section 5.2.2 are employed. However, before the coarse-sampled signals for the identification are
calculated, the noise is added to both input and output:

xSi = xi + xsmaxσvi,

ySi = yi + ysmaxσwi,
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α = 0.05 α = 0.20 α = 0.80
σ = 0.05 0.81± 0.02 1.03± 0.05 2.33± 0.15
σ = 0.10 1.44± 0.10 2.07± 0.11 4.72± 0.27
σ = 0.20 3.89± 0.16 4.77± 0.26 9.43± 0.44

Table 3: The error of the discrete Urysohn model in % depending on the noise level, σ,
and the stabilisation parameter, α, for the system with the noisy input and output. The
averages and the 95% confidence interval are calculated based on 9 replications.

where xi and yi are the exact input and output, respectively; vi ∼ N (0, 1) and wi ∼ N (0, 1) are normally
distributed random numbers with zero mean and unit variance; xsmax = 1 is the maximum value of the
control. The discretisation of the Urysohn operator with m = 32 and n = 81 is used. The total simulation
time is taken to be tmax = 4 · 104.

The results for different noise levels and different values of the stabilisation parameter are presented in
table 3. The noise levels are 5%, 10% and 20%. As for the case of the system with the noisy output, the
result indicates that the accuracy of the identified Urysohn model can easily be controlled by parameter
α and the error decreases with the decrease of α.

5.3 Identification of real objects using experimental data

The performance of the discrete Urysohn model and the proposed identification procedure has also been
tested on real, experimentally-obtained data. Due to the scope of this paper, only the major results of
this identification are briefly summarised in this section.

The identification of real objects has been conducted using publicly available datasets [36], which were
specifically collected and published for benchmarking identification algorithms. The most challenging task
for the identification has been F-16 ground vibration test [37], for which the experimental data had been
acquired on a full-scale F-16 aircraft. The tested object has non-linearities of clearance and friction type.
Furthermore, the object has two inputs and multiple outputs.

The recorded data represent long series (73K to 116K values), which is divided into two subsets —
the first subset has been recommended for the identification, the second subset has been recommended
for the validation of the accuracy of the model on the unseen data. In contrast to the first example
considered in this paper, this object has two inputs; therefore, a three-dimensional Urysohn kernel must
be used to describe it. The identification procedure has been performed on several separate datasets.
The number of time layers of the discrete Urysohn operators was taken between 160 and 200, while the
number of quantisation levels for both inputs was taken from 80 to 100.

The validation of the obtained discrete Urysohn models has been performed on separate datasets,
which were not involved in the identification process. The major result of the validation tests is that the
observed error for different outputs has been between 1.2% and 2.5%. For this comparison, the error is
defined as the L2-norm of the difference between the vector-columns of the recorded and the modelled
outputs, which is divided by the difference between the maximum and the minimum values of the output
and

√

Np, where Np is the number of data points. Other details are omitted here and can be obtained
directly from the C# source code for this example, which is available as the supplementary information
at [38].

6 Conclusions

The discrete Urysohn operator is a very efficient tool for modelling non-linear control systems due to
its descriptive capabilities, low computational complexity, simplicity of identification and possibility of
implementation in a few lines of code. The discrete model is an approximation of the continuous Urysohn
model by certain quadrature rules. In this paper, the convergence has been demonstrated using a nu-
merical example — the modelling error decreased with the decrease of the discretisation step.

It has been shown that the model can be identified using an iterative algorithm based on the Kaczmarz
method for solving linear systems of equations. The identification algorithm is simple and computationally
inexpensive. Furthermore, the identification can be preformed using only observable data, i.e. the
prescription of a specific input function is not required. The method improves the model as new input-
output data points become available, without collecting long input and output sequences, and thus making
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the algorithm suitable for a real-time identification. The method does not require computational power
for solving linear systems either. Therefore, the method is ideal for implementation in microelectronic
systems with limited resources, such as battery management systems (BMS).

The noise of the input and the output data can be filtered out using the stabilisation parameter, which
has been introduced in the identification procedure. Using a numerical example, it has been shown that
by reducing the value of this parameter, the accuracy of the obtained Uryshon matrix increases, although
the number of iterations that are required to obtain the accurate matrix also increases.

Since the Urysohn model is a general case of the Hammerstein and the linear models, the proposed
identification method also covers all three nested models — the Urysohn, the Hammerstein and the
linear models. Usually, the suitability criteria for the choice of the model is built on the comparison
of the computed and the measured outputs. In the case of the Uryshon model, the judgement can be
made based on the values of the Urysohn matrix, from which it can be verified whether the system is
describable by either the Hammerstein or the linear model1.

This paper focused mainly on the simplest case — the discrete operator with a quantised input.
However, a generalisation of the model and the identification method for the case of a non-quantised
input were also proposed. In this case, the number of parameters required to describe the system can be
significantly reduced.

The C# implementation of the MISO model and the identification algorithm, as well as the demo
programme for the computational example of section 5.3 are available at [38]. The minimalistic Matlab
codes for the SISO model and its identification are provided in appendix E.

Appendix A Non-uniqueness of the Urysohn matrix

Proof. The discrete Urysohn operator is always applied to m successive elements of the input sequence
and results in a single element of the output sequence. Therefore, the consideration of the single arbi-
trary input sequence and the corresponding output sequence of an Urysohn system is equivalent to the
consideration of all possible inputs and outputs of the discrete Urysohn operator.

According to (3), the input sequence of the discrete Urysohn operator consists of m integer numbers,
each of which can take a value from 1 to n. The output of the discrete Urysohn operator is a single value.
All possible outputs of the operator are denoted as y∗i and all possible inputs of the operator are denoted
as sequences Ki. Elements of these sequences are denoted as Ki

j . Here i ∈ {1, 2, . . . , N}, where N = nm.
Elements of U and y∗i are rearranged into columns:

Z =
[

U11 . . . U1n U21 . . . U2n . . . Um1 . . . Umn

]T
, (27)

Y =
[

y∗1 y∗2 . . . y∗N
]T
. (28)

In this case, Y is the product of matrix Mm and column Z:

MmZ = Y, (29)

where the elements of Mm are given by

Mm
iq =

{

1, if q = n (j − 1) +Ki
m−j+1 where j ∈ {1, 2, . . . ,m}

0, otherwise.
(30)

Such structure of matrix Mm results directly from (3) and (27). Matrix Mm is formed by all possible
input sequences and has mn columns. Superscript m in Mm indicates the size of the input sequences.
To prove the theorem, it must be proved that (I) rank of Mm is (mn−m+ 1) and (II) for a selection
of (mn−m+ 1) columns of Mm to be linearly independent, it is necessary that at least (n− 1) columns
are taken from each block of columns (nj − n+ 1) , . . . , nj, where j ∈ {1, 2, . . . ,m}. From statement (I),
it follows that the Urysohn matrix is non-unique and has (m− 1) free parameters, as the elements of U
form the solution of (29). From statement (II), it follows that each row of the Urysohn matrix cannot
contain more than 1 free parameter2. The linear dependence of remaining (mn−m+ 1) elements of U
on (m− 1) parameters follows from linear system (29).

1Discussed in appendix D.1
2Suppose row b of the Urysohn matrix contains 2 free parameters out of (m− 1), which implies that the corresponding

columns of Mm are linearly dependent on the other columns. Then, for a selection of (mn−m+ 1) linearly independent
columns of Mm, the maximum of (n− 2) columns can be taken from block (nb− n+ 1) , . . . , nb. This contradicts statement
(II).
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Statement (I) is proved by induction. If m = 1, the input sequences for the discrete Urysohn operator
consist of a single integer number. Moreover, all possible input sequences are just numbers from 1 to n.
Thus, according to (30), M1 is either the identity matrix of size n or matrix, which is obtained from the
identity matrix by the rearrangement of rows. Therefore, for m = 1, matrix Mm has rank n.

Now it must be shown that if matrixMm has exactly (mn−m+ 1) independent rows for the Urysohn
matrix of size m × n, which was denoted above as U , then matrix Mm+1 has exactly (mn−m+ n)
independent rows for the Urysohn matrix of size (m+ 1)× n, which is denoted as Ū .

Due to the inductive assumption, it can also be assumed that matrix Mm that corresponds to all
possible inputs of the operator with matrix U is already assembled. It is useful to define Gq to be a
rectangular matrix where elements of column q are equal to 1, while all other elements are equal to 0.
Matrix Gq has n columns and the same number of rows as matrix Mm.

For the operator with matrix Ū , the input sequences are longer by one number. Obviously, if Ki are
all possible inputs of the operator with matrix U , then

[

s Ki
]

, s ∈ {1, 2, . . . , n}

are all possible inputs of the operator with matrix Ū . Therefore, according to (30), matrix Mm+1 that
contains all possible inputs of the operator with matrix Ū is given by

Mm+1 =











G1 Mm

G2 Mm

...
...

Gn Mm











. (31)

The first block row (which contains matrices G1 and Mm) has the number of independent rows of
(mn−m+ 1) due to the inductive assumption. The second block row (which contains matrices G2 and
Mm) adds only one independent row, which is obvious from subtraction of the first block row from the
second block row. The same is true for all remaining block rows. This results in

(mn−m+ 1) + (n− 1) = mn−m+ n

independent rows of matrix Mm+1.
Thus, by induction, it has been proved that Mm has exactly (mn−m+ 1) independent rows. By

the fundamental theorem of linear algebra, this is also the rank of Mm. This concludes the proof of
statement (I).

To prove statement (II), all columns of matrix Mm are grouped into blocks (nj − n+ 1) , . . . , nj,
where j ∈ {1, 2, . . . ,m}. Suppose (mn−m+ 1) columns of Mm are linearly independent and selected
such that less than (n− 1) columns are taken from some block j. Since the total number of blocks is
m, there are at least 2 blocks, from which n columns are taken. Without loss of generality, it can be
assumed that these two blocks are the last two (otherwise, this can be achieved by a rearrangement of
the corresponding blocks in Z).

When the linear dependence of a set of columns of Mm is considered, the order of rows in Mm is
irrelevant. In this case,Mm can be formed incrementally according to equation (31), i.e. Mm formed from
Mm−1, Mm−1 fromMm−2, etc. Thus, the block of the last two columns ofMm isM2 repeated vertically
nm−2 times. By statement (I), the rank of M2 is (2n− 1). This contradicts the assumed proposition, as
the columns of the last two blocks (i.e. 2n columns) are supposed to be linearly independent. Therefore,
the proposition is untrue, which concludes the proof of statement (II).

Remark 5. System (29) is consistent, i.e. rank of

[

Mm Y
]

is also (mn−m+ 1), due to the conditional statement of the theorem — the outputs are of the Urysohn
system.

Appendix B Convergence of the iterative method

Proof. As was shown in section A, the Urysohn matrix contains (m− 1) free parameters and the solution
of the identification problem is non-unique. Within this proof, U stands for any Urysohn matrix that
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exactly transforms the input sequence to the output sequence. The consequences of the existence of
multiple solutions of the identification problem are unravelled closer to the end of the proof.

First of all, additional notation is introduced. Since the estimated Urysohn matrix changes each
iteration, the iteration subscript is added to the estimated matrix and the model output is denoted as ŷi
to make the notation consistent with the description of the iterative algorithm,

ŷi =

m
∑

j=1

U i [j, ki−j+1] .

The actual recorded output is yi, while ki is the input, which can be used instead of xi without loss of
generality, according to (4).

Elements of matrices U and U i are rearranged into columns:

Z =
[

U11 . . . U1n U21 . . . U2n . . . Um1 . . . Umn

]T
,

Zi =
[

U i
11 . . . U i

1n U i
21 . . . U i

2n . . . U i
m1 . . . U i

mn

]T
.

The L2-norm of Z − Zi is introduced and denoted as ei,

ei
2 =

(

U11 − U i
11

)2
+
(

U12 − U i
12

)2
+ . . .+

(

Umn − U i
mn

)2
. (32)

At each iteration i only a subset of Zi changes. Therefore, to simplify the notation,

aj = U [j, ki−j+1] ,

aij = U i [j, ki−j+1] ,

are introduced. Elements aij are the only elements of Zi, which are modified at iteration i.
By the iterative algorithm

ai+1
q = aiq +

α

m
(yi − ŷi) = aiq −

α

m





m
∑

j=1

aij −
m
∑

j=1

aj



 , q ∈ {1, 2, . . . ,m} . (33)

This leads to

m
∑

q=1

(

ai+1
q − aq

)2
=

=

m
∑

q=1







(

aiq − aq
)2 − 2

α

m





m
∑

j=1

aij −
m
∑

j=1

aj





(

aiq − aq
)

+
α2

m2





m
∑

j=1

aij −
m
∑

j=1

aj





2





=

=

m
∑

q=1

(

aiq − aq
)2

+
α2 − 2α

m





m
∑

j=1

aij −
m
∑

j=1

aj





2

. (34)

Finally, since aij are the only elements of Zi, which are modified at iteration i, equation (34) leads to

ei+1
2 = ei

2 − 2α− α2

m
(ŷi − yi)

2 . (35)

This means that for α ∈ (0, 2), if the model output is not equal to the exact output, the error ei necessarily
decreases. Moreover, it can be seen that the fastest error decrease is achieved at α = 1.

Up to now, the non-uniqueness of U has not been used. Due to theorem 1, all elements of matrix
U depend linearly on free (m− 1) parameters. Therefore, all possible solutions Z of the identification
problem form a flat (m− 1)-size subspace of the mn-dimensional space. A numerical solution Zi is a
particular point in the mn-dimensional space. Equation (35) shows that the distance between Zi and all
points of the flat subspace Z decreases at each iteration, as long as ŷi 6= yi. This could only mean that
at each iteration, if ŷi 6= yi then Z

i moves towards Z in a direction, which is perpendicular to Z. This is
schematically illustrated in figure 4.
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Figure 4: A schematic illustration of the convergence of the iterative method. For explana-
tory purposes, Z of size 2 is taken. A flat (m− 1)-size subspace is shown in red colour. An
initial guess for Zi is shown in blue colour. The distances between Zi and two arbitrarily
selected points of the flat subspace are shown in green colour. Since distances to all points of
the flat subspace decrease at each iteration, Zi can move only in the perpendicular direction
to the flat subspace.

Due to the conditional statement of the theorem, the input sequence for the discrete Urysohn operator
changes almost always. Thus, ŷi 6= yi almost always, since the exact input and output sequences are
considered. Therefore, the iterative method converges to a solution, which has the minimum possible
distance to the initial approximation, Um, in the mn-dimensional space. Thus, when the starting point
for the iterative algorithm is the all-zero matrix, the method converges to a unique solution, for which Z
has the minimum L2-norm.

Appendix C Describability by the discrete Urysohn operator

Proof. To prove the theorem, the notation is extended in the following way:

yi = yi
(

X i
)

, X i =
[

xi−m+1 . . . xi−1 xi
]

, (36)

where yi is denoted as a function of m quantised input values from xi−m+1 to xi. Additional vector-rows
are introduced: X∗ is the vector-row of size m, in which all elements are equal to xmin, and X

∗p is the
vector-row of sizem, in which all elements are equal to xmin except element p, which can take an arbitrary
quantised value. Using this notation, part (b) implies the following:

yi (X
∗) + yi (X

∗p +X∗q − xmin) = y (X∗p) + y (X∗q) , ∀p, q, p 6= q. (37)

Necessary condition. Part (a) directly follows from the structure of the discrete model, equation
(3), since output yi is completely determined by input xi and preceding (m− 1) input values.

Part (b) follows from theorem 1. Indeed, (m− 1) elements of the Urysohn matrix, selected such that
not more than one from each row is taken, can be prescribed arbitrary values. This means that, without
loss of generality, elements [2, 1] to [m, 1] of the Urysohn matrix can be prescribed to be equal to element
[1, 1]. Furthermore, following the definition of X∗p and definition (4) of the quantised input, the p-th
element of X∗p can be expressed as

xmin + (k∗p − 1)
xmax − xmin

n− 1
,

where k∗p is an integer from 1 to n. Analogously, an expression for the q-th element of X∗q can be
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written. Without loss of generality p < q can be taken. Finally, it can be seen that

yi (X
∗) + yi (X

∗p +X∗q − xmin) =

m
∑

j=1

U [j, 1] +

m−p
∑

j=1

U [j, 1]+

+ U [m− p+ 1, k∗p] +

m−q
∑

j=m−p+2

U [j, 1] + U [m− q + 1, k∗q] +

m
∑

j=m−q+2

U [j, 1] =

= (2m− 2)U [1, 1] + U [m− p+ 1, k∗p] + U [m− q + 1, k∗q] =

=

m−p
∑

j=1

U [j, 1] + U [m− p+ 1, k∗p] +
m
∑

j=m−p+2

U [j, 1]+

+

m−q
∑

j=1

U [j, 1] + U [m− q + 1, k∗q] +

m
∑

j=m−q+2

U [j, 1] = y (X∗p) + y (X∗q) . (38)

Sufficient condition. The sufficiency can be proved by first constructing an Urysohn matrix and
then showing that any output will be described by an operator with such matrix. Given condition (a)
and using the fact that the input is quantised, it follows that the system must be described by at most
mn parameters. Assume the following values for matrix U . The first column of matrix U is assigned to
be

U [1, 1] = . . . = U [m, 1] = yi (X
∗)

1

m
.

Using expression for the p-th element of X∗p, which was introduced in the first part of the proof, all other
elements are assigned to be

U [m− p+ 1, k∗p] = yi (X
∗p)− yi (X

∗)
m− 1

m
, k∗p ∈ {2, . . . , n} , p ∈ {1, . . . ,m} .

Now any input/output relationship of the system can be described by the constructed Urysohn operator.
Indeed, consider output yi and input sequence X i given by

yi = yi
(

X i
)

, X i =
[

xi−m+1 . . . xi−1 xi
]

.

Input sequence can be rewritten as

X i =



















xi−m+1

xmin

xmin

...
xmin

xmin



















T

+



















xmin

xi−m+2

xmin

...
xmin

xmin



















T

+ . . .+



















xmin

xmin

xmin

...
xmin

xi



















T

− (m− 1)xmin.

By applying condition (b) m− 1 times, the following is obtained

yi
(

X i
)

= yi























xi−m+1

xmin

...
xmin











T












+ . . .+ yi























xmin

xmin

...
xi











T












− (m− 1) yi (X
∗) =

= U [m, ki−m+1] + . . . + U [1, ki] .

This shows that the input/output relationship is of the Urysohn system (3).
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Appendix D Relation of the Urysohn model to other control

systems’ models

D.1 Relation to the Hammerstein and the linear models

One of the most well-known non-linear models of control systems is the Hammerstein model [39]:

y (t) =

∫ T

0

h (s)H (x (t− s)) ds. (39)

In the case of block-model representation, the Hammerstein model is usually described by two blocks —
the first corresponding to a non-linear static part and the second corresponding to a linear dynamic part.
By comparing equations (1) and (39), it can be seen that an Urysohn model, kernel V (s, x) of which
can be decomposed into a product of functions h (s) and H (x), is the Hammerstein model. When, in
addition to that, function H (x) is linear, the operator turns into the well-known convolution-type linear
integral operator:

y (t) =

∫ T

0

h (s)x (t− s) ds. (40)

For control systems described by the convolution-type linear integral operator, function h (s) is the
impulse response function.

It is useful to note that for a differentiable Urysohn kernel, it is possible to construct a linear approx-
imation with respect to x within a small variation of input x. Kernel smoothness is a usual property
of many physical objects; therefore, in the case of a variation of the input within a small interval, the
Urysohn model can be approximated by the linear model.

In the case of the discrete Urysohn model, it is easy to verify when the discrete Urysohn model
becomes the discrete-time Hammerstein model or the discrete-time linear model. Matrix U can always
be expressed as a sum of matrices of the first rank, each of which is an outer product of two vectors. If
such sum has only one significant term, i.e. all other terms can be neglected due to their order, matrix U
becomes the outer product of two vectors. For model (3), U [j, ki−j+1] becomes h̃ [j] H̃ [ki−j+1], where h̃

and H̃ are vector-columns, indices of which are shown in [·]. Such model is the discrete-time quantised-
input Hammerstein model, analogously to equation (39). If elements of H̃ linearly change with the index,
the model becomes the discrete-time quantised-input linear model, analogously to equation (40).

D.2 Relation to the Volterra series

The continuous Urysohn operator is a particular case of the continuous-time Volterra series. Indeed, the
general form of the continuous-time Volterra series is given by

y (t) = h0 +

P
∑

q=1

∫ b

a

. . .

∫ b

a

hq (τ1, . . . , τq)x (t− τ1) . . . x (t− τq) dτ1 . . . dτq. (41)

If function V (s, x) is smooth, V in (1) can be Taylor-expanded with respect to the second variable, which
leads to

y (t) =

∫ T

0

∞
∑

q=0

1

q!

∂qV (s, u)

∂uq

∣

∣

∣

∣

u=0

(x (t− s))q ds. (42)

This means that when

hq (τ1, . . . , τq) =
1

q!

∂qV (τ1, u)

∂uq

∣

∣

∣

∣

u=0

δ (τ1 − τ2) . . . δ (τ1 − τq) , q ≥ 1, (43)

h0 =

∫ T

0

V (s, 0) ds, a = 0, b = T, (44)

and P is infinity, the continuous-time Volterra model (41) becomes the continuous Urysohn model (1).
The major limiting factor for efficient identification of the Volterra series model is its size. Usually,

the model is limited to a relatively small number of terms (either in time domain or in frequency domain).
Moreover, additional simplifications are often introduced (i.e. reduction of the number of the parameters
to be identified), e.g. [40]. For the exhaustive overview of the methods the reader is referred to [41].
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D.3 Relation to the NARMAX model

The discrete Urysohn operator is a particular case of the NARMAX model [42]. Indeed, the general form
of the NARMAX model is given by

yi = F (yi−1, . . . , yi−p, xi−d, . . . , xi−d−m+1, ei−1, . . . , ei−g) + ei, (45)

where x, y, and e are the input, the output and the error sequences, respectively; F is a non-linear
function. It is easy to verify that when d = 0, F does not depend on y and e, and F is given by

F (xi, . . . , xi−m+1) = F1 (xi) + . . .+ Fm (xi−m+1) , (46)

Fj (xi−j+1) = U

[

j,
xmax − nxmin + (n− 1)xi−j+1

xmax − xmin

]

, (47)

the NARMAX model becomes the discrete Urysohn operator.
Although the discrete Urysohn model is only a particular case of the general NARMAX model,

the latter is often simplified and polynomial expansions of the NARMAX model are usually used for
identification/modelling purposes. Moreover, as in the case of the Volterra series, the set of the unknown
parameters is often narrowed down (so-called “structure detection”). Thus, identification methods may
require intervention into the algorithms and expert knowledge of the underlying modelling system.

Appendix E Matlab codes

The implementation of the discrete Urysohn model is relatively simple. The following Matlab function
calculates the output of the Urysohn model based on the input:

1 function [ y_ury ] = modelUrysohn( x, U, x_min , x_max )

2 %MODELURYSOHN Calculate the output of the Urysohn system based on the input

3 m = size(U ,1);

4 n = size(U ,2);

5 k = 1 + round( (n -1)*( x - x_min )/( x_max - x_min ) );

6 N = max (size(x));

7 y_ury = zeros(size(x));

8 for ii=m:N

9 ctrl = k( ii :( -1):( ii -m+1) );

10 ind = sub2ind ( size(U), 1:m, ctrl );

11 y_ury (ii) = sum ( U(ind) );

12 end

13 end

Here x is the input sequence; U is the Uryshon matrix; x_min and x_max are the maximum and the
minimum values of the input variable, respectively; and y_ury is the calculated output sequence.

The iterative procedure for identifying the Urysohn matrix, which is suggested in section 3.1, can be
implemented in the following way:

1 function [ U ] = identUrysohn( x, y, m, n, alpha , x_min , x_max )

2 %IDENTURYSOHN Identify the Urysohn matrix based on the input and the output

3 U = zeros (m,n);

4 k = 1 + round( (n -1)*( x - x_min )/( x_max - x_min ) );

5 N = max (size(x));

6 for ii=m:N

7 y_real = y(ii);

8 ctrl = k( ii :( -1):( ii -m+1) );

9 ind = sub2ind ( size(U), 1:m, ctrl );

10 y_ury = sum ( U(ind) );

11 dy = y_real - y_ury;

12 U(ind ) = U(ind ) + alpha *dy/m;

13 end

14 end

Here x and y are the input and the output sequences, respectively; m and n are the number of rows and
columns of the Uryshon matrix, respectively; alpha is the stabilisation parameter; x_min and x_max are
the maximum and the minimum values of the input variable, respectively; and U is the Uryshon matrix.
For simplicity, the stopping criteria is not used in this implementation, and the iterative procedure loops
until the end of the input sequence. Obviously, the stopping criteria can be added based on values of dy
for multiple consecutive iterations.
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