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Abstract

In this paper we first define a new kind of potential games, called coset weighted potential game, which is a generalized form

of weighted potential game. Using semi-tensor product of matrices, an algebraic method is provided to verify whether a finite

game is a coset weighted potential game, and a simple formula is obtained to calculate the corresponding potential function.

Then some properties of coset weighted potential games are revealed. Finally, by resorting to the vector space structure of

finite games, a new orthogonal decomposition based on coset weights is proposed, the corresponding geometric and algebraic

expressions of all the subspaces are given by providing their bases.
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1 Preliminaries

A finite normal game can be described byG = (N,S,C),

where N = {1, 2, · · · , n} is the set of players; S =∏n
i=1 Si is the strategy profile, and the set of strategies

for player i is Si = {1, 2, · · · , ki}. S−i =
∏
j 6=i Sj de-

notes the strategies of all players except the i-th one;

C = (c1, · · · , cn) ∈ Rn with ci : S → R is the pay-

off function of player i. For statement ease, the set of

finite games with |N | = n, |Si| = ki, i = 1, · · · , n, is de-

noted by G[n;k1,··· ,kn]. As a special class of finite normal

games, the potential game imposes restriction on the

players’ payoff functions. Potential game was first pro-

posed by Rosenthal [18]. Monderer and Shapley system-

atically investigated potential games and proved several

useful properties in [16], such as best response dynam-

ics and fictitious play, converging to a Nash equilibrium,

etc. Since then it has been applied to many engineering

problems, including computer networks [11], distributed

coverage of graphs [22], and congestion control [10], etc.
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Several classes of potential games are described as fol-

lows.

A function P : S → R is called an ordinal potential for

G, if for any x, y ∈ Si, and any s−i ∈ S−i, i ∈ N ,

ci(x, s−i)− ci(y, s−i) > 0⇔ P (x, s−i)− P (y, s−i) > 0,

then G is called an ordinal potential game.

In an ordinal potential game, only the signs of the differ-

ence in individual payoffs for each player, and the differ-

ence in potential function, have to be the same. In fact,

the really useful model in some physical applications is

not the ordinal potential game, but the weighted (or ex-

act) potential game [16]. Let w = (wi)i∈N be a vector

of positive weights, if there exists a function P : S → R,

called the weighted potential function, such that for any

x, y ∈ Si, and any s−i ∈ S−i, i ∈ N ,

ci(x, s−i)− ci(y, s−i) = wi (P (x, s−i)− P (y, s−i)) ,

then G is called a weighted potential game. Especially,

G is called an exact potential game if wi = 1, ∀i ∈ N .

However, the weighted (or exact) potential games only

cover a few class of games in practice. Moreover, a
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weighted potential game is essentially an exact potential

game, because if we replace the payoffs ci by ci/wi, then

a weighted potential game becomes an exact potential

game. This fact stimulates us to find a more general

weighted potential game, which is between the ordinal

potential game and classical weighted potential game.

In this paper, we propose a new kind of weighted po-

tential games, called the coset weighted potential game.

Its relationship with classical kinds of potential games is

depicted by Figure 1. After a rigorous definition, we pro-

Fig. 1. Some classes of potential games

vided a simple method to verify whether a finite game is a

coset weighted potential game. We show that though it is

a generalization of classical weighted potential game and

it can not be converted easily to exact potential game, it

still has all the nice properties of classical (weighted) po-

tential games. For instance, the existence of pure Nash

equilibrium, the convergence to an equilibrium point un-

der certain learning process, etc.

Another interesting topic for finite games is their vector

space structure. In addition to (exact) potential games

there are some other important kinds of finite games,

which are necessary for investigating the vector space

structure of G[n;k1,··· ,kn].

Definition 1 [1,14] Let G ∈ G[n;k1,··· ,kn].

(1) G is called a non-strategic game if for any x, y ∈ Si,
and any s−i ∈ S−i,

ci(x, s−i) = ci(y, s−i), i = 1, · · · , n.

(2) G is called a harmonic game, if for any s ∈ S, and

any s−i ∈ S−i,

n∑
i=1

(ci(s)−
1

ki

∑
xi∈Si

ci(xi, s−i)) = 0.

(3) G is called a pure harmonic game, if for any s ∈ S,

and any s−i ∈ S−i,

n∑
i=1

ci(s) = 0;
∑
x∈Si

ci(x, s−i) = 0, i = 1, · · · , n.

Without the weights, by using the Helmholtz decom-

position theorem, an orthogonal decomposition of

G[n;k1,··· ,kn], briefly denoted by G, was first proposed in

[1], which is described as follows.

G = ︸ ︷︷ ︸
potential games

P ⊕
harmonic games︷ ︸︸ ︷
N ⊕ H , (1)

whereP is the subspace of pure potential games,N is the

subspace of non-strategic games, and H is the subspace

of pure harmonic games. An alternatively simplified ap-

proach was provided in [3] to precisely express the bases

of these orthogonal subspaces, by using the conventional

inner product of Euclidean space. As a generalization of

(1), in this paper we are ready to proved a new orthogo-

nal decomposition based on coset-depending weights for

G, which is described as follows.

G = ︸ ︷︷ ︸
coset weighted potential games Gcw

P

Pcw ⊕
coset weighted harmonic games︷ ︸︸ ︷
N ⊕ Hcw , (2)

where Pcw is called the coset weighted pure potential

subspace, andHcw is called the coset weighted pure har-

monic subspace. For each subspace, we give its geometric

expression by providing the basis. Based on these bases,

we also give an algebraic expression for each subspace,

that is, the algebraic equation for the payoffs of the cor-

responding games to be satisfied. Meanwhile, some for-

mulas are presented to calculate all the decomposed sub-

spaces.

For statement ease, we first introduce some notations:

• Mm×n: the set of m× n real matrices.

• Col(M): the set of columns of M . Coli(M): the i-th

column of M .

• Dki := {1, 2, · · · , ki} , ki ≥ 2.

• δin: the i-th column of the identity matrix In.

• ∆n := {δin|i = 1, · · · , n}.
• 1` = (1, 1, · · · , 1︸ ︷︷ ︸

`

)T ; 0` = (0, 0, · · · , 0︸ ︷︷ ︸
`

)T .

• 0p×q: a p× q matrix with zero entries.
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• [i, j] := {i, i+ 1, · · · , j}, where i, j are integers and

i < j.

• A matrix L ∈Mm×n is called a logical matrix if the

columns of L are of the form δkm. Denote by Lm×n
the set of m × n logical matrices. If L ∈ Ln×r, by

definition it can be expressed as L = [δi1n , δ
i2
n , · · · , δirn ].

It is briefly denoted as L = δn[i1, i2, · · · , ir].
• Span{A1, · · · , As}: The subspace spanned by

{Col(Ai) | i = 1, · · · , s}.
• U ⊕ V 4: orthogonal sum of two vector spaces, i.e.,

u ⊥ v, ∀ u ∈ U, v ∈ V .

The semi-tensor product (STP) of matrices is a general-

ization of conventional matrix product, which is defined

as follows [4]:

Definition 2 Let M ∈Mm×n, N ∈Mp×q, and t =

lcm{n, p} be the least common multiple of n and p. The

STP of M and N is defined as

M nN := (M ⊗ It/n)(N ⊗ It/p) ∈Mmt/n×qt/p, (3)

where ⊗ is the Kronecker product.

The STP keeps all the properties of the conventional ma-

trix product. Hence we can omit the symbol n mostly.

This method has been widely used to study the logi-

cal dynamic systems [5,8,12,13,15,20], and game theory

[6,9], etc. Next we give some properties of STP used in

this paper.

Proposition 3 Let X ∈ Rn be a column and M be a ma-

trix. Then X nM = (In ⊗M)X.

Proposition 4 Let X ∈ ∆p and define a power reduc-

ing matrix ORp := δp2 [1, p+ 2, 2p+ 3, · · · , p2] ∈ Lp2×p. Then

X2 = ORp X.

To use matrix expression for finite games, we identify

each strategy j ∈ Dki by δjki , that is, j ∼ δjki , j =

1, · · · , ki, then Si ∼ ∆ki , i = 1, · · · , n. It follows that

the payoff functions can be expressed as

ci(x1, · · · , xn) = V ci nnj=1 xj , i = 1, · · · , n, (4)

where V ci ∈ Rk (k =
∏n
i=1 ki) is a row vector, called the

structure vector of ci. Define the structure vector of a

given game G as

VG = [V c1 , V
c
2 , · · · , V cn ] ∈ Rnk. (5)

It is clear that G has a natural vector space structure

as G ∼ Rnk. For a given game G ∈ G, its structure

vector VG completely determines G. So the vector space

structure is very natural and reasonable.

The rest of this paper is organized as follows: In Section

2 we give an algebraic verified method for coset weighted

potential games. The results are used to verify the two-

player Boolean game. Moreover, we present some impor-

tant properties of coset weighted potential games. Sec-

tion 3 derive a new orthogonal decomposition of finite

games based on coset-depending weights. The geomet-

ric and algebraic expressions of all the subspaces are ob-

tained by providing their bases. Based on these bases,

some numerical formulas are provided for calculating all

the decomposed components. Section 4 is a conclusion.

2 Algebraic Verification of coset weighted po-

tential games

2.1 Coset weighted potential equation

We define coset weighted potential games as follows.

Definition 5 A finite game G = (N,S,C) is called a

coset weighted potential game, if there exists a function

P : S → R, called the coset weighted potential function,

and a set of weights wi(s−i) depending on s−i, such that

for any x, y ∈ Si, and any s−i ∈ S−i, i ∈ N ,

ci(x, s−i)− ci(y, s−i) = wi(s−i) (P (x, s−i)− P (y, s−i)) .

(6)

Obviously, (6) is equivalent to that there exists a func-

tion di, which is independent of x ∈ Si, such that for

any x ∈ Si and any s−i ∈ S−i,

ci(x, s−i)− wi(s−i)P (x, s−i) = di(s−i). (7)

Using (4), we express (7) in its vector form as

V ci nnj=1 xj − V wi nj 6=i xjV P nnj=1 xj = V di nj 6=i xj , (8)

where V ci , V
P ∈ Rk, and V wi ∈ Rk/ki+ , V di ∈ Rk/ki are the

row vectors. Now verifying whether G is coset weighted

potential is equivalent to checking whether the solution

of (8) for unknown vectors V P and V di exists. Define a

matrix operator as

Ei := Ik[1,i−1] ⊗ 1ki ⊗ Ik[i+1,n] ∈Mk×k/ki , i = 1, · · · , n, (9)
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where

k[p,q] :=

{∏q
j=p kj , q ≥ p,

1, q < p,

then (8) becomes

V ci nnj=1 xj − V wi ETi nnj=1 xjV
P nnj=1 xj = V di E

T
i nnj=1 xj .

Using Proposition 3 and 4, we have

V ci nnj=1 xj − V wi ETi (Ik ⊗ V P )ORk nnj=1 xj = V di E
T
i nnj=1 xj .

It follows that

V ci − V wi ETi (Ik ⊗ V P )ORk = V di E
T
i , i = 1, · · · , n. (10)

Next we give a simple lemma.

Lemma 6 Let X, Y ∈ Rn be two rows, then

X(In ⊗ Y ) = Y (X ⊗ In).

Proof. Set X = [x1, · · · , xn] and Y = [y1, · · · , yn], a

straight forward calculation shows that

X(In ⊗ Y ) = [x1, x2, · · · , xn](In ⊗ [y1, y2, · · · , yn])

= [x1y1, x1y2, · · · , x1yn, · · · , xny1, · · · , xnyn],

and

Y (X ⊗ In) = [y1, y2, · · · , yn]([x1, x2, · · · , xn]⊗ In)

= [x1y1, x1y2, · · · , x1yn, · · · , xny1, · · · , xnyn].

Hence, X(In ⊗ Y ) = Y (X ⊗ In). 2

Using Lemma 6, (10) becomes

V P (V wi E
T
i ⊗ Ik)ORk = V ci − V di ETi , i = 1, · · · , n. (11)

Since V wi ∈ Rk/ki+ , then V wi E
T
i ∈ Rk+. Denote V wi E

T
i =

[w1
i , w

2
i , · · · , wki ], according to Definition 2, we have

(V wi E
T
i ⊗ Ik)ORk = V wi E

T
i nORk = diag(w1

i , w
2
i , · · · , wki ).

Denote Λi = V wi E
T
i nORk , i = 1, 2, · · · , n. Obviously, the

diagonal matrix Λi is reversible. Solving V P from the

first equation of (11) yields

V P= (V c1 − V d1 ET1 )(V w1 E
T
1 nORk )−1 = (V c1 − V d1 ET1 )Λ−1

1 .

Plugging it into the rest equations of (11) yields

(V c1 − V d1 ET1 )Λ−1
1 Λi = V ci − V di ETi , i = 2, · · · , n.

It follows that

(V c1 − V d1 ET1 )Λ−1
1 = (V ci − V di ETi )Λ−1

i , i = 2, · · · , n.

Taking transpose, we have

Λ−1
1

[
(V c1 )T − E1(V d1 )T

]
= Λ−1

i

[
(V ci )T − Ei(V di )T

]
.

It can be rewritten as

−Λ−1
1 E1(V d1 )T + Λ−1

i Ei(V
d
i )T = Λ−1

i (V ci )T − Λ−1
1 (V c1 )T .

Since Λi are all diagonal matrices, they are mutually

commutative. For the above equation, we first left mul-

tiply both sides by Λ1 and Λi, we have

−ΛiE1(V d1 )T + Λ1Ei(V
d
i )T = Λ1(V ci )T − Λi(V

c
1 )T ,

i = 2, · · · , n.
(12)

Define ξwi :=
(
V di
)T ∈ Rk/ki , i = 1, · · · , n, and

bwi := Λ1(V ci )T − Λi(V
c
1 )T ∈ Rk, i = 2, · · · , n.

(12) can be expressed as a linear system:

Ψwξ
w = bw, (13)

where ξw = [ξw1 , ξ
w
2 , · · · , ξwn ]T , bw = [bw2 , b

w
3 , · · · , bwn ]T ,

and

Ψw =

 −Λ2E1 Λ1E2 0 ··· 0
−Λ3E1 0 Λ1E3 ··· 0

...
...

...
. . .

...
−ΛnE1 0 0 ··· Λ1En

 .
Eq.(13) is called the coset weighted potential equation

and Ψw is called the coset weighted potential matrix.

Then we have the following result.

Theorem 7 A finite normal game G ∈ G is a coset

weighted potential game with a set of coset-depending

weights wi(s−i) > 0, if and only if Eq.(13) has solutions.

Moreover, the coset weighted potential is

V P = (V c1 − V d1 ET1 )Λ−1
1 . (14)

Remark 8 In [2], the potential matrix Ψ depends on n

and ki = |Si|, while b depends on the payoffs, so only the

payoffs determines whether a game is an exact potential

4



game. However, the matrix Ψw in (13) not only depends

on n and ki = |Si|, but coset-depending weights wi(s−i),

while bw depends on the payoffs and wi(s−i), then if G is

not an exact potential game, choosing its coset-depending

weights can make it a coset weighted potential game.

2.2 Two-player Boolean game

As a simple application, we consider a game of two play-

ers with two strategies for each player, which is called a

two-player Boolean game [23]. Denote G[2;2,2] as the set

of two-player Boolean games.

Example 9 Consider a two-player Boolean game G ∈
G[2;2,2]. Its payoffs can be expressed in Table 1. Using

Table 1

Payoffs of a two-player Boolean game

P1\P2 1 2

1 (a, e) (b, f)

2 (c, g) (d, h)

the potential equation in [19], it is easy to verify that

G is a weighted potential game when its payoffs satisfy

(a− b− c+ d)(e− f − g+ h) > 0, otherwise it is not. If

yes, its weights satisfy

w1

w2
=
a− b− c+ d

e− f − g + h
.

Particularly, G becomes an exact potential game when

a− b− c+ d = e− f − g + h. Consider a = −1, b = 2,

c = 0, d = 3, e = 3, f = 3, g = 5, h = 4. it follows that

(a−b−c+d) = 0, (e−f−g+h) 6= 0. Obviously, it is not a

weighted potential game. However, we can choose suitable

coset-depending weights wi(s−i) for player i, i = 1, 2,

which makes G a coset weighted potential game.

Assume V wi = [αi, βi], αi, βi > 0, i = 1, 2, then we have

Λ1 = V w1 E
T
1 nORk = diag(α1, β1, α1, β1),

Λ2 = V w2 E
T
2 nORk = diag(α2, α2, β2, β2).

According to (13), we obtain that[−α2 0 α1 0
0 −α2 β1 0
−β2 0 0 α1

0 −β2 0 β1

] [
ξw1
ξw2

]
=

[
3α1+α2

3β1−2α2

5α1

4β1−3β2

]
.

Choose α1 = 1, β1 = 2, α2 = 3, β2 = 2, the above

equation has solutions and one of solutions can be solved

out as

ξw1 =
(
V di
)T

= [−2.5,−1]T .

Using (14), the coset weighted potential is calculated as

V P = (V c1 − V d1 ET1 )Λ−1
1 = [1.5, 1.5, 2.5, 2].

Hence, by choosing coset-depending weights wi(s−i), the

two-player Boolean game G becomes a coset weighted po-

tential game.

From Example 9, it is shown that the coset weighted

potential games is more general than the weighted po-

tential games. Moreover, using (13), the coset weighted

potential equation can be expressed as[−α2 0 α1 0
0 −α2 β1 0
−β2 0 0 α1

0 −β2 0 β1

] [
ξw1
ξw2

]
=

[
α1e−α2a
β1f−α2b
α1g−β2c
β1h−β2d

]
. (15)

Since rank(Ψw) = rank(Ψw, b
w), by the straightforward

computation, we have the following result.

Proposition 10 A two-player Boolean game G ∈
G[2;2,2], with coset-depending weightswi(s−i) = [αi, βi]nj 6=i
xj, αi, βi > 0, i = 1, 2, is a coset weighted potential

game, if and only if Eq. (15) has solutions, that is, the

payoffs and coset-depending weights satisfy

1
α1

(c− a) + 1
α2

(e− f) + 1
β1

(b− d) + 1
β2

(h− g) = 0.

Moreover, assume [A,B,C,D]T is a particular solution

of (15), the coset weighted potential function can be ob-

tained as

P (x1, · · · , xn) = V P nnj=1 xj + c0, ∀c0 ∈ R, (16)

where

V P = ([a, b, c, d]− [A,B,A,B]) Λ−1
1

=
[
a−A
α1

, b−Bβ1
, c−Aα1

, d−Bβ1

]
.

2.3 Properties of coset weighted potential games

For an exact potential game G, it was proved in [16]

that the potential function P is unique up to a constant

number. That is, ifP1 andP2 are two potential functions,

then P1−P2 = c0 ∈ R. A coset weighted potential game

has the same property, which is described as follows.
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Proposition 11 Consider a coset weighted potential

game G. Let P1 and P2 are two coset weighted potential

functions for G, then there exists a constant c such that

for every s ∈ S,

P1(s)− P2(s) = c ∈ R. (17)

Proof. From (6) and (7), if P1 and P2 are two potential

functions for a coset weighted potential game G, then

we have

ci(s)− wi(s−i)P1(s) = di(s−i),

ci(s)− wi(s−i)P2(s) = d′i(s−i),

Set c = P1(s)− P2(s), then

c =
d′i(s−i)− di(s−i)

wi(s−i)
.

d′i(s−i), di(s−i) and wi(s−i) are all independent of x ∈
Si, so c is independent of x ∈ Si. But player i is arbitrary,

hence, c is a constant. 2

According to Definition 5, for a fixed coset-depending

weights wi(s−i), it is easy to see that, in a coset weighted

potential game, any strategy profile s ∈ S maximizing

the potential function P is a pure strategy equilibrium.

Hence, we have the following property.

Proposition 12 Consider a coset weighted potential

game G with fixed coset-depending weights wi(s−i) > 0.

The gameG possesses at least one pure Nash equilibrium.

Because of the existence of pure Nash equilibrium,

there are many learning algorithms which lead a coset

weighted potential game to a pure Nash equilibrium.

For instance, it is easily proved that the Myopic Best

Response Adjustment [21], Fictitious Play [17], etc,

will all guarantee the convergence of a coset weighted

potential game to one of pure Nash equilibria.

3 Decomposition of finite games with coset-

depending weights

In this section, we respectively discuss the geometric and

algebraic expressions of all the subspaces in (2) by pro-

viding their bases. Based on these bases, (2) is proved to

be hold and some formulas are provided for calculating

all the decomposed components.

3.1 Subspace of coset weighted potential games GcwP

According to Theorem 7, we can derive that G ∈ G
is a coset weighted potential game with a set of coset-

depending weights wi(s−i), if and only if

bw ∈ Span(Ψw). (18)

Observing that in (18) we have freedom to choose arbi-

trarily V c1 , then (18) can be rewritten as
(V c

1 )T

Λ1(V c
2 )T−Λ2(V c

1 )T

...
Λ1(V c

n )T−Λn(V c
1 )T

 ∈ Span(Eecw),

where Eecw =
[
Ik 0
0 Ψw

]
. It is equivalent to

 Ik 0 ··· 0
−Λ2 Λ1 ··· 0

...
...

. . .
...

−Λn 0 ··· Λ1




(V c
1 )T

(V c
2 )T

...
(V c

n )T

 ∈ Span(Eecw).

It follows that V TG ∈ Span(EPcw), where

EPcw =

 Ik 0 ··· 0
−Λ2 Λ1 ··· 0

...
...

. . .
...

−Λn 0 ··· Λ1

−1

Eecw

=


Ik 0 0 ··· 0

Λ2Λ−1
1 −Λ−1

1 Λ2E1 E2 ··· 0

...
...

. . .
...

ΛnΛ−1
1 −Λ−1

1 ΛnE1 0 ··· En



= Dw

 Λ1 0 0 ··· 0
Λ2 −Λ2E1 Λ1E2 ··· 0

...
...

. . .
...

Λn −ΛnE1 0 ··· Λ1En


whereDw = diag(Λ−1

1 ,Λ−1
1 , · · · ,Λ−1

1 ).Assume V wi = 1Tk/ki
for any i, then the coset weighted potential games be-

come the (exact) potential games. Similar to the argu-

ments in [2] and [19], we construct EP
0

cw from EPcw via

deleting the last column of Λ1En, then EP
0

cw has full col-

umn rank. Hence, we have the following result.

Theorem 13 The subspace of coset weighted potential

games is

GcwP = Span(EPcw), (19)

which has Col(EP
0

cw ) as its basis.
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Remark 14 The equation (6) provides the algebraic

condition for the payoff functions to satisfy, so (6) is

called the algebraic expression of coset weighted potential

games. Moreover, (19) is called the geometric expression

of coset weighted potential games, because it gives the

basis of the corresponding subspace.

3.2 Subspace of coset weighted pure potential games

Pcw

Define

ẼPcw : =

 Λ1 Λ1E1 0 ··· 0
Λ2 0 Λ1E2 ··· 0

...
...

...
. . .

...
Λn 0 0 ··· Λ1En

 . (20)

Compared (20) and EPcw, we can verify that

GcwP = Span(EPcw) = Span(ẼPcw).

The subspace of non-strategic games [3] is defined as

N := Span(BN ), where

BN =

[
E1 0 ··· 0

...
. . .

...
0 0 ··· En

]
. (21)

Similar to the argument in [3], we define

BPcw =


Λ1− 1

k1
Λ1E1E

T
1

Λ2− 1
k2

Λ2E2E
T
2

...
Λn− 1

kn
ΛnEnE

T
n

 ∈ Mnk×k. (22)

According to (21) and (22), it is easy to verify that

GcwP = Span
{
BPcw, B

N
}
. Moreover, we can verify that(

BPcw
)T
BN = 0. Hence, we have an orthogonal decom-

position as GcwP = Span
{
BPcw

}
⊕N . Obviously, the coset

weighted pure potential subspace can be expressed as

Pcw := Span
{
BPcw

}
. (23)

Since dim(Pcw) = k − 1, and BPcw1k = 0nk, similar to the

argument in [3], we can delete any one column of BPcw,

say, the last column, and denote the remaining matrix

by BP
0

cw , then we have

Pcw := Span
{
BPcw

}
= Span

{
BP

0

cw

}
, (24)

where Col(BP
0

cw ) is a basis of Pcw.

According to (22), we have the following result.

Theorem 15 Consider G ∈ G. The following three

statements are equivalent.

(1) G is a coset weighted pure potential game.

(2) there exists a function P : S → R and a set of coset-

depending weights wi(s−i) > 0, such that for any

s−i ∈ S−i,

ci(s) = wi(s−i)P (s)− wi(s−i)
∑
x∈Si

P (x, s−i). (25)

(3) there exists a function P : S → R and a set of coset-

depending weights wi(s−i) > 0, such that for any

s−i ∈ S−i, and x, y ∈ Si,

∑
x∈Si

ci(x, s−i) = 0, ∀s−i ∈ S−i; (26)

ci(x, s−i)− ci(y, s−i) = wi(s−i) (P (x, s−i)− P (y, s−i)) .

(27)

Proof. 1 ⇒ 2 : According to (23), if G is a coset

weighted pure potential game, there exists a column

γ ∈ Rk, such that V TG = BPcwγ. Set X = nnj=1xj , define

P (s) = γT nnj=1 xj = γTX , then we have

ci(s) = V ci nnj=1 xj = γT (Λi − 1
ki

ΛiEiE
T
i )X

= γT (V wi E
T
i ⊗ Ik)ORk X − 1

ki
γT (V wi E

T
i ⊗ Ik)ORk EiE

T
i X

= V wi E
T
i (Ik ⊗ γT )ORk X − 1

ki
V wi E

T
i (Ik ⊗ γT )ORk EiE

T
i X

= V wi E
T
i Xγ

TX − 1
ki
V wi E

T
i EiE

T
i Xγ

TEiE
T
i X

= wi(s−i)P (s)− 1
ki
V wi E

T
i ni−1

j=1 xj n 1ki nnj=i+1 xj

γT ni−1
j=1 xj n 1ki nnj=i+1 xj

= wi(s−i)P (s)− wi(s−i)γT ni−1
j=1 xj n 1ki nnj=i+1 xj

= wi(s−i)P (s)− wi(s−i)
∑
x∈Si

P (x, s−i).

2⇒ 3 : Plunging (25) into the left hand sides of (26) and

(27) respectively, it is easy to verify these two equations.

3⇒ 1 : According to Definition 5, (27) shows that G is

a coset weighted potential game, then we only need to

verify its orthogonality to N by using (26).

∑
x∈Si

ci(x, s−i) =
∑
x∈Si

V ci ni−1
j=1 xj n xnnj=i+1 xj

= V ci
∑
x∈Si

ni−1
j=1xj n xnnj=i+1 xj

= V ci ni−1
j=1 xj n 1ki nnj=i+1 xj

= V ci EiE
T
i nnj=1 xj = 0.
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Then we have V ci EiE
T
i = 0, which is equivalent to

V ci Ei = 0, it follows that [V c1 , V
c
2 , · · · , V cn ]BN = VGB

N = 0.

Hence G is is a coset weighted pure potential game,

which is orthogonal to N . 2

Remark 16 We call (24) the geometric expression of

coset weighted pure potential games, and (25)-(27) are

its algebraic expressions.

3.3 Subspace of coset weighted pure harmonic games

Hcw

From the construction of EP
0

cw , we have the di-

mension of coset weighted potential subspace as

dim (GcwP ) = k +
n∑
j=1

k
kj
− 1. Then the dimension of sub-

space Hcw is calculated as

dim (Hcw) = (n− 1)k −
n∑
j=1

k
kj

+ 1. (28)

Set ψcwn :=
(
ẼPcw

)T
, obviously, we have

Hcw =
(
ẼPcw

)⊥
= ker(ψcwn ). (29)

Similar to the arguments in [19], we can construct

ψcw2 =

[
Λ1 Λ2

ET
1 Λ1 0

0 ET
2 Λ1

]
.

Set

xi1,i2 :=

[
Λ−1

1

(
δ1k1
−δi1

k1

)(
δ1k2
−δi2

k2

)
−Λ−1

2

(
δ1k1
−δi1

k1

)(
δ1k2
−δi2

k2

) ] ,
i1 = 2, 3, · · · , k1; i2 = 2, 3, · · · , k2.

It is easy to see that

xi1,i2 ∈ ker(ψcw2 ), i1 = 2, 3, · · · , k1; i2 = 2, 3, · · · , k2,

and {xi1,i2 | i1 = 2, 3, · · · , k1; i2 = 2, 3, · · · , k2} are

linearly independent. From (28), we calculate that

dim(Hcw2 ) = (k1 − 1)(k2 − 1), Hence, {xi1,i2 | i1 =

2, 3, · · · , k1; i2 = 2, 3, · · · , k2} form a basis of Hcw2 .

Next, we give an inductive method to construct ψcwn .

Lemma 17 The matrix ψcws , 2 ≤ s ≤ n, can be recur-

sively constructed by

ψcwp =

[
ψcw

p−1 βcw
p

0 k
kp

×(p−1)k
(I k

kp

⊗1kp )Λ1

]
, (30)

where βcwp = [Λp,0k× k
k1

, · · · ,0k× k
kp−1

]T , k =
∏p
i=1 ki.

According to Lemma 17, it is easy to verify the following

result by straightforward computations.

Lemma 18 If x ∈ ker(ψcwp−1), then[
xδ

ip
kp

0k

]
∈ ker(ψcwp ), ip = 1, · · · , kp; (31)



Λ−1
1 (δ1k1

−δi1
k1

)δ1k2
δ1k3
···δ1kp−1

Λ−1
2 δ

i1
k1

(δ1k2
−δi2

k2
)δ1k3
···δ1kp−1

...
Λ−1

p−1
δ
i1
k1
δ
i2
k2
δ
i3
k3
···(δ1kp−1

−δ
ip−1
kp−1

)

−Λ−1
p

(
δ1k1

δ1k2
···δ1kp−1

−δi1
k1
δ
i2
k2
···δ

ip−1
kp−1

)

 (δ1
kp
− δipkp)

∈ ker(ψcwp ), ij = 1, · · · , kj ; j = 1, 2, · · · , p.

(32)

Define an index set as I = {(i1, · · · , in) | ip ∈ [1, kp]}, p =

1, · · · , n. Using Lemma 18, we construct a set of vectors

as follows, which are in ker(ψn).

J1 =

{[
Λ−1

1 (δ1k1
−δi1

k1
)(δ1k2

−δi2
k2

)δ
i3
k3
···δin

kn

−Λ−1
2 (δ1k1

−δi1
k1

)(δ1k2
−δi2

k2
)δ

i3
k3
···δin

kn

0(n−2)k

] ∣∣∣∣∣
i ∈ I, i1 6= 1, i2 6= 1} ;

J2 =




Λ−1
1 (δ1k1

−δi1
k1

)δ1k2
(δ1k3
−δi3

k3
)δ

i4
k4
···δin

kn

Λ−1
2 δ

i1
k1

(δ1k2
−δi2

k2
)(δ1k3

−δi3
k3

)δ
i4
k4
···δin

kn

−Λ−1
3 (δ1k1

δ1k2
−δi1

k1
δ
i2
k2

)(δ1k3
−δi3

k3
)δ

i4
k4
···δin

kn

0(n−3)k


∣∣∣∣∣∣∣

i ∈ I, (i1, i2) 6= 1T2 , i3 6= 1
}

;

...

Jn−1 =





Λ−1
1 (δ1k1

−δi1
k1

)δ1k2
δ1k3
···δ1kn−1

(δ1kn
−δin

kn
)

Λ−1
2 δ

i1
k1

(δ1k2
−δi2

k2
)δ1k3
···δ1kn−1

(δ1kn
−δin

kn
)

...
Λ−1

n−1
δ
i1
k1
δ
i2
k2
δ
i3
k3
···(δ1kn−1

−δ
in−1
kn−1

)(δ1kn
−δin

kn
)

−Λ−1
n (δ1k1

···δ1kn−1
−δi1

k1
···δ

in−1
kn−1

)(δ1kn
−δin

kn
)



∣∣∣∣∣∣∣∣∣∣∣∣
i ∈ I, (i1, · · · , in−1) 6= 1Tn−1, in 6= 1

}
.

Define a matrix as

BHcw := [J1, J2, · · · , Jn−1] . (33)

Similar to the arguments in [3,19], we have the following

result.
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Theorem 19 BHcw has full column rank and the subspace

of coset weighted pure harmonic games is

Hcw = Span
(
BHcw

)
, (34)

where Col(BHcw) is a basis of Hcw.

Next, we provide the algebraic expression of coset

weighted pure harmonic games.

Theorem 20 Consider G ∈ G. G is a coset weighted

pure harmonic game, if and only if, there exists a set of

coset-depending weights wi(s−i) > 0, such that for any

s−i ∈ S−i, and any s−j ∈ S−j =
∏
q 6=j
q 6=1

Sq,

∑n
i=1 wi(s−i)ci(s) = 0; (35)∑

xj∈Sj

j 6=1

w1(xj , s−j)
∑
x∈Si

ci(x, s−i) = 0. (36)

Proof. (Necessary) Assume the structure vector of G is

VG = [V c1 , V
c
2 , · · · , V cn ]. According to the orthogonality of

(29), we have V TG ∈ ker
(
ẼPcw

)T
. It follows that

VGẼ
P
cw = [

∑n
i=1 V

c
i Λi, V

c
1 Λ1E1, V

c
2 Λ1E2, · · · , V cnΛ1En] = 0.

(37)

Using Lemma 6, Proposition 3 and 4, we have

∑n
i=1 V

c
i Λi nnj=1 xj =

∑n
i=1 V

c
i (V wi E

T
i ⊗ Ik)ORk nnj=1 xj

=
∑n
i=1 V

w
i E

T
i (Ik ⊗ V ci ) nnj=1 xj nnj=1 xj

=
∑n
i=1 V

w
i E

T
i nnj=1 xjV

c
i nnj=1 xj

=
∑n
i=1 wi(s−i)ci(s) = 0.

(38)

And we have

V ci Λ1EiE
T
i nnj=1 xj = V ci Λ1 ni−1

j=1 xj n 1ki nnj=i+1 xj

= V ci (V w1 E
T
1 ⊗ Ik)ORk ni−1

j=1 xj n 1ki nnj=i+1 xj

= V w1 E
T
1 ni−1

j=1 xj n 1ki nnj=i+1 xjV
c
i ni−1

j=1 xj n 1ki nnj=i+1 xj

=
∑
xj∈Sj

j 6=1

w1(xj , s−j)
∑
x∈Si

ci(x, s−i) = 0.

(39)

(Sufficiency) It is clear that (38) and (39) can be deduced

by (35) and (36) respectively. Because V ci Λ1EiE
T
i = 0 is

equivalent to V ci Λ1Ei = 0, hence, (38) and (39) can assure

(37), which leads to the conclusion. 2

Remark 21 Theorem 19 gives the geometric expression

of coset weighted pure harmonic games by providingBHcw.

(35) and (36) are its corresponding algebraic expressions.

3.4 Numerical formulas of decomposed subspaces

From the above arguments, the new orthogonal de-

composition (2) is established for every fixed coset-

depending weight wi(s−i), i = 1, · · · , n. Then construct

a basis matrix as Bcw := [BP
0

cw , B
N , BHcw]. Set d1 = k − 1,

d2 =
n∑
j=1

k/kj, and d3 = (n− 1)k −
n∑
j=1

k/kj + 1. Construct

a set of coefficients as XG
cw = [XP

cw, X
N , XH

cw]T , where

XP
cw ∈ Rd1 , XN ∈ Rd2 and XH

cw ∈ Rd3 . Assume the struc-

ture vector of G is VG, then we have

(VG)T = BcwX
G
cw = BP

0

cwX
P
cw ⊕BNXN ⊕BHcwXH

cw. (40)

Using (40), we can calculate all the decomposed compo-

nents of a given game G with fixed coset weights.

Proposition 22 Consider G ∈ G. Let

[
XP
cw, X

N , XH
cw

]T
= (Bcw)−1(VG)T , (41)

then

(1) its coset weighted pure potential projection is:

(V P
cw

G )T = Bcw
[
XP
cw 0 0

]T
; (42)

(2) its coset weighted pure harmonic projection is:

(V H
cw

G )T = Bcw
[
0 0 XH

cw

]T
; (43)

(3) its non-strategic projection is:

(V NG )T = Bcw
[
0 XN 0

]T
; (44)

(4) its coset weighted potential projection is:

(V cwGP )T = (V P
cw

G )T + (V NG )T ; (45)

(5) its coset weighted harmonic projection is:

(V cwGH )T = (V H
cw

G )T + (V NG )T . (46)

Example 23 Recall Example 9, we can calculate all the

decomposed components of G with respect to V w1 = [1, 2]

and V w2 = [4, 2]. According to (5), we have the structure
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vector of G as VG = [−1, 2, 0, 3, 3, 3, 5, 4]. Using (22), it is

easy to calculate that

BPcw =

[
Λ1− 1

k1
Λ1E1E

T
1

Λ2− 1
k2

Λ2E2E
T
2

]
=


0.5 0 −0.5 0
0 1 0 −1
−0.5 0 0.5 0

0 −1 0 1
2 −2 0 0
−2 2 0 0
0 0 1 −1
0 0 −1 1

 .
Construct BP

0

cw by deleting the last column of BPcw. Ac-

cording to (21) and (33), we have

BN =
[
E1 0
0 E2

]
,

and

BHcw = [1,−0.5,−1, 0.5,−0.25, 0.25, 0.5,−0.5]T .

Construct Bcw := [BP
0

cw , B
N , BHcw]. According to Propo-

sition 22, the coefficients can be calculated by (41) as

XP
cw = [−0.5, − 0.5, 0.5]T , XN = [−0.5, 2.5, 3, 4.5]T , and

XH
cw = 0. Using formulas (42)-(46), we have

V P
cw

G = [−0.5, − 0.5, 0.5, 0.5, 0, 0, 0.5, − 0.5];

V H
cw

G = 0T8 ;

V NG = [−0.5, 2.5, − 0.5, 2.5, 3, 3, 4.5, 4.5];

V cwGP = [−1, 2, 0, 3, 3, 3, 5, 4];

V cwGH = [−0.5, 2.5, − 0.5, 2.5, 3, 3, 4.5, 4.5] = V NG .

Hence, this game is a coset weighted potential game.

4 Conclusion

This paper investigates a more general potential game,

called a coset weighted potential game. Using the STP

method, a coset weighted potential equation is presented

to verify the coset weighted potential game, a corre-

sponding formula is obtained to calculate the potential

function. Some useful properties are explored. Finally,

a new orthogonal decomposition of G with respect to

fixed coset weights is obtained. The geometric and al-

gebraic expressions of all the subspaces are provided re-

spectively, and some formulas are given to calculate all

the decomposed components.
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