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Semi-Blind Joint Channel Estimation and Data
Detection on Sphere Manifold for MIMO with

high-order QAM Signaling
Xia Hong, Junbin Gao and Sheng Chen

Abstract—A low-complexity semi-blind scheme is proposed for
joint channel estimation and data detection on sphere manifold
for multiple-input multiple-output (MIMO) systems with high-
order quadrature amplitude modulation signaling. Specifically,
the optimal channel estimator is expressed in the least squares
form in terms of the received signals and unknown transmitted
data, and by splitting the channel and transmitted data into their
real parts and imaginary parts, the data detection becomes a
problem defined on a scaled sphere manifold in the real domain.
Our semi-blind algorithm consists of three stages: (i) a few
training symbols are employed to provide a rough initial MIMO
channel estimate which in turn yields the initial zero-forcing (ZF)
estimate of data samples; (ii) the Riemannian conjugate gradient
algorithm is used to estimate the data samples in real domain, and
the detected data samples are used to estimate the final MIMO
channel matrix; and (iii) the final ZF data detection is carried
out based on the final MIMO channel estimate. In particular,
we present the first order Riemannian geometry of the sphere
manifold which is utilized in the Riemannian conjugate gradient
algorithm for solving (ii). Simulation results are employed to
demonstrate the effectiveness of the proposed approach.

Index Terms—Multiple-input multiple-output, high-order
quadrature amplitude modulation, channel estimation, data de-
tection, sphere manifold, Riemannian conjugate gradient algo-
rithm

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology is capa-
ble of dramatically enhancing system’s reliability and capacity
[1]–[4]. In order to fully utilize the MIMO capacity, accurate
channel estimation is necessary. MIMO channel estimation
methods can be classified into three categories: training-based
methods, blind methods, and semi-blind methods. For pure
training-based schemes, a large training overhead is necessary
in order to obtain a reliable MIMO channel estimate, which
reduces the system’s effective throughput considerably. Blind
methods do not require any training symbols and are capable
of maintaining high system throughput at the expense of high
computational complexity. In addition, pure blind methods
suffer from an intractable ambiguity problem in MIMO es-
timation and detection. Semi-blind schemes are attractive for
practical implementation, since they are capable of resolving
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the ambiguity problem otherwise unsolvable by blind methods
as well as require less computational complexity than blind
methods and fewer training symbols than training-based meth-
ods.

Joint blind channel estimation and data detection has been
proposed based on the iterative least squares (LS) with
projection [5]–[7]. In this approach, the channel and data
are estimated iteratively but the convergence of the iterative
process depends on the initialization of the channel model.
A pure blind approach is often computationally prohibitive,
particularly for high-dimensional MIMO. Moreover, unlike
the usual phase ambiguity in blindly detected data symbols,
which may be resolved by differential encoding, in blind joint
MIMO channel estimation and data detection, permutation
ambiguity corresponding to reordering the detected transmitted
data and estimated channel matrix columns cannot be easily
resolved. One way of solving this permutation ambiguity is
to employ a few pilot training symbols, leading to semi-blind
schemes. In the context of MIMO, semi-blind schemes have
been developed [8]–[15], which use a few training symbols
to provide the initial MIMO channel estimation and then
exchange the information between the data detector and the
decision-directed (DD) channel estimator iteratively. Typically,
5 to 10 iterations are required for the iterative MIMO data
detector and DD channel estimator to converge.

Given the MIMO channel matrix, the optimal data detector
is the maximum likelihood (ML) detector. Therefore, given the
initial rough training-based channel estimate, the optimal semi-
blind scheme, in terms of achievable performance, is based on
the iterative procedure between the ML data detector and DD
channel estimator [12]–[14]. However, such an optimal proce-
dure is impractical to implement, owing to the prohibitively
high complexity of the ML detector, particularly for high-
dimensional MIMO with spectral efficient high-order signaling
schemes. For example, for 6 by 6 MIMO with 64-quadrature
amplitude modulation (QAM), the ML detector needs to search
the candidate data set of the size 646 ≈ 7 × 1010, which is
difficult if not impossible to realize. Therefore, low-complexity
suboptimal detection schemes must be adopted in practice
[15]. A low-complexity semi-blind scheme suitable for MIMO
systems with high-order QAM signaling is the semi-blind
iterative zero-forcing (ZF) data detection and DD LS channel
estimation, which achieves good performance. In this paper,
we advocate a low-complexity semi-blind alternative for high-
dimensional MIMO with high-order QAM signaling based on
sphere manifold.

Recent years have witnessed great development in Rie-
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TABLE I
NOTATIONS FOR SPHERE MANIFOLD{

SM ′·N−1, g
}

Sphere manifold for parameter matrix X and the inner product of the manifold
TXSM ′·N−1 Tangent space of the sphere manifold
UX , VX Tangent matrices at X
ProjX(Z) Orthogonal projector from matrix Z in ambient space onto the tangent space at X

gradF (X) Riemannian gradient of F (X) on the manifold SM ′·N−1

GradF (X) Classical gradient of F (X) as seen in Euclidean space
ExpX Retraction mapping
TXk+1←Xk

(UXk
) Matrix transport

mannian optimization algorithms on many types of matrix
manifolds, such as Stiefel manifold, Grassmann manifold and
the manifold of positive definite matrices, see for example
[16]. Since Riemannian optimization is directly based on
the curved manifolds, one can eliminate those constraints
such as orthogonality to obtain an unconstrained optimization
problem that, by construction, will only use feasible points.
This allows one to incorporate Riemannian geometry in the
resulting optimization problems, thus producing far more
accurate numerical results. The recent successful applications
of Riemannian optimization in machine learning, computer
vision and data mining, citing a few, include fixed low rank
optimization [17], Riemannian dictionary learning [18]–[21],
and computer vision tasks [22].

Against this background, in this paper we propose a low-
complexity semi-blind scheme for joint channel estimation and
data detection for MIMO systems with spectral efficient high-
order QAM signaling. By representing the LS channel estima-
tor in terms of the received signals and unknown transmitted
data, the variables of the optimization cost function for blind
data detection become the transmitted symbols alone which
must satisfy the constraint of the known modulation scheme
whose symbol constellation is symmetric in real and imaginary
parts. Furthermore, we formulate our blind data detection
problem into an equivalent one by splitting the channel and
data into their real parts and imaginary parts, so that under
the reasonable assumption of a sufficient long data block, the
constraint on the data samples becomes a scaled sphere man-
ifold in the real domain. This allows us to apply Riemannian
optimization technique to solve the resulting data detection
problem. More specifically, our proposed algorithm consists of
three parts: i) a few training symbols are employed to yield an
initial LS MIMO channel estimate in order to provide a rough
ZF detected data samples for initializing the data detection;
ii) the Riemannian conjugate gradient algorithm is used for
solving the corresponding blind data detection problem to
estimate the date samples, and the detected data symbols are
then used to provide the final DD LS MIMO channel estimate;
and iii) the data samples are re-estimated using the ZF detector
based on the final MIMO channel estimate. In particular,
in terms of stage ii), the first order Riemannian geometry
of the sphere manifold is presented and then utilized in the
Riemannian trust-region algorithm on the sphere manifold.

The remaining paper is organized as follows. Section II
introduces the concept of sphere manifold and necessary
notations for Riemannian optimization. Section III details

the proposed semi-blind scheme for joint MIMO channel
estimation and data detection on sphere manifold, including
novel signal detection using Riemannian conjugate gradient
algorithm. Simulation results are provided in Section IV to
demonstrate the effectiveness of the proposed approach. Our
conclusions are drawn in Section V.

Throughout our discussions, a complex-valued (CV) number
x ∈ C is represented by x = x(R) + j · x(I), where j =

√
−1,

while x(R) and x(I) are the real and imaginary parts of x,
respectively. The transpose and conjugate transpose operators
are denoted by ( )T and ( )H, respectively, and ( )∗ denotes
the conjugate operation, while ( )−1 stands for the inverse
operation and the expectation operator is given by E{ }. Matrix
trace operator is denoted by trace( ), and I denotes the identity
matrix with an appropriate dimension, while B[a : b; : ] is the
matrix consists of the ath to bth rows of B.

II. SPHERE MANIFOLD

This section briefly introduces the concept of sphere mani-
fold and the necessary ingredients used in the retraction based
framework of Riemannian optimization. As a reference, the
main notations on Riemannian geometry on sphere manifold
in this section is summarized in Table I. We refer the readers
to [16] for the general concepts of manifolds.

The sphere manifold is the set of unit Frobenius norm
matrices of size M ′ × N , denoted as

SM ′·N−1 =
{
X ∈ RM ′·N : ∥X∥F = 1

}
. (1)

It is endowed with a Riemannian manifold structure by con-
sidering it as a Riemannian submanifold of the embedding
Euclidean space RM ′·N endowed with the usual inner product

g(UX , VX) =trace
(
UT

XVX

)
, (2)

where UX , VX ∈ TXSM ′·N−1 ⊂ RM ′·N are tangent ‘vectors’
or matrices1 to SM ′·N−1 at X . The inner product on SM ′·N−1

determines the geometry such as distance, angle, curvature on
SM ′·N−1. Note that the tangent space TXSM ′·N−1 at element
X can be described by

TXSM ′·N−1 =
{
UX : trace

(
UT

XX
)

= 0
}
. (3)

Riemannian gradient: Let the Riemannian gradient of a
scalar function F (X) on SM ′·N−1 be denoted by gradF (X),

1Here we change the notion tangent ‘vector’ in Riemannian geometry to
tangent ‘matrix’, as it is in the same matrix form as seen in classical Euclidean
geometry. Similarly, the notion ‘vector’ in Riemannian geometry is changed
to ‘matrix’.
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and its classical gradient as seen in the Euclidean space as
GradF (X). Then we have

gradF (X) = ProjX
(
GradF (X)

)
, (4)

where ProjX(Z) is the orthogonal projection onto the tangent
space, which can be computed as

ProjX(Z) = Z − trace
(
XTZ

)
X (5)

in which Z represents a matrix in the ambient space.
Retraction mapping: An important concept in the recent

retraction-based framework of Riemannian optimization is the
retraction mapping, see Section 4.1 of [16]. The exponential
map ExpX , defined by

ExpX

(
αUX

)
=cos

(
∥αUX∥F

)
X

+
sin(∥αUX∥F )

∥UX∥F
UX , (6)

is the canonical choice for the retraction mapping, where the
scalar α is a chosen step size. The retraction mapping is used
to locate the next iterate on the manifold along a specified
tangent matrix, such as a search direction in the line search
of Newton’s algorithm or the suboptimal tangent direction in
the trust-region algorithm, see Chapter 7 of [16]. For example,
the line search algorithm is simply given by

Xk+1 = ExpXk

(
αkUXK

)
(7)

in which the search direction UXK ∈ TXk
SM ′·N−1 and αk is

a chosen step size at iteration step k.
Matrix Transport: In Riemannian optimization algorithms,

the second derivatives can be approximated by compar-
ing the first-order information (tangent matrices) at distinct
points on the manifold. The notion of matrix transport
TXk+1←Xk

(
UXk

)
on a manifold, roughly speaking, specifies

how to transport a tangent matrix UXk
from a point Xk to

another point Xk+1 on the manifold. The matrix transport for
the sphere manifold is calculated as

TXk+1←Xk

(
UXk

)
= ProjXk+1

(
UXk

)
. (8)

III. THE PROPOSED SEMI-BLIND SCHEME FOR MIMO ON
SPHERE MANIFOLD

In this section, we begin by introducing the MIMO system
model and the existing low-complexity semi-blind iterative ZF
data detection and DD LS channel estimation scheme for high-
dimensional MIMO with high-order QAM signaling [8]–[15].
Then our alternative low-complexity semi-blind scheme for
MIMO on sphere manifold is detailed .

A. System Model and Existing Low-Complexity Semi-blind
Scheme

Consider a MIMO system with nT transmit antennas and
nR receive antennas. It is assumed that the channel coherence
bandwidth is larger than the transmitted signal bandwidth
so that the channel can be considered as narrowband or
flat fading. The sampled received signal vector y(k) =

[
y1(k) y2(k) · · · ynR

(k)
]T at symbol index k is given by the

well-known MIMO model

y(k) = Hs(k) + ε(k), (9)

where s(k) =
[
s1(k) s2(k) · · · snT (k)

]T
and sm(k) is

the kth transmitted symbol from transmit antenna m with
E

{
|sm(k)|2

}
= E

{
sm(k)s∗m(k)

}
= σ2

s for 1 ≤ m ≤
nT , and the additive white Gaussian noise (AWGN) vector
ε(k) =

[
ε1(k) ε2(k) · · · εnR

(k)
]T with E

{
|εl(k)|2

}
= 2σ2

ε

for 1 ≤ l ≤ nR, while H ∈ CnR·nT denotes the MIMO
channel matrix whose lth row and mth column element hl,m

is the channel coefficient connecting transmit antenna m to
receive antenna l. Furthermore, the channel is assumed to be
quasi-static. Specifically, over the transmission period of a data
frame, which contains Nf symbols, all the entries of H remain
unchanged. From frame to frame, hl,m obeys the CV zero-
mean Gaussian distribution CN (0, 1) with a variance of 1/2
per dimension. The modulation scheme adopted is L-ary QAM
(L-QAM), which is defined by the symbol constellation set

S =
{
s(i), 1 ≤ i ≤ L

}
. (10)

Thus, the transmitted data sm(k) ∈ S, ∀m, k.
By collecting the received data, the transmitted data and the

channel noise over a frame of 1 ≤ k ≤ Nf respectively as

Y =
[
y(1) y(2) · · ·y(Nf )] ∈ CnR·Nf , (11)

S =
[
s(1) s(2) · · · s(Nf )] ∈ CnT ·Nf , (12)

E =
[
ε(1) ε(2) · · · ε(Nf )] ∈ CnR·Nf , (13)

the overall MIMO system can be represented by

Y = HS + E. (14)

If the channel H is known, the low-complexity ZF data
detection solution is given by

S̃ZF = WZFY , (15)

with the detector weight matrix given by

WZF =
(
HHH

)−1
HH. (16)

Every element of S̃ZF is then quantized to the nearest symbol
point in S to yield the hard-decision detected symbol matrix
ŜZF. On the other hand, if the data S is known, the LS channel
estimate is readily given by

ĤLS = Y SH
(
SSH

)−1
. (17)

Blind joint channel estimation and data detection is to find
H and S purely based on the received Y , and this task suffers
from the well-known scaling and permutation ambiguity. For
example, (14) can also be represented as

Y = H∗S∗ + E, (18)

where H∗ = HT and S∗ = T HS, and T is the unitary
nT ×nT permutation and scaling matrix with only one nonzero
element in each row and in each column. In order to resolve
this ambiguity problem, a semi-blind approach is desirable
in which a few training symbols of Nt ≪ Nf are used to
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provide an initial estimate of the channel H . For convenience,
collecting the Nt training data together as

St =
[
s(1) s(2) · · · s(Nt)

]
∈ CnT ·Nt , (19)

Yt =
[
y(1) y(2) · · ·y(Nt)

]
∈ CnR·Nt . (20)

The LS channel estimate based on the initial training data
{St, Yt} is readily given by

Ĥ
(t)
LS = YtS

H
t

(
StS

H
t

)−1
. (21)

In order to maintain the system throughput, Nt should be
as small as possible. On the other hand, to guarantee StS

H
t

having a full rank, it is necessary that Nt ≥ nT .
Existing Practical Semi-Blind Scheme: In the existing

semi-blind scheme of iterative ZF data detection and DD LS
channel estimation (LSCE), e.g., [15], a minimum number of
training data with Nt = nT or very close to it, are employed to
provide the initial training based LS channel estimate of (21).
With this rough LS channel estimate, the ZF data detection
is carried out, and the detected data matrix is employed in
the DD LSCE. The improved channel estimate is then used
for the next ZF data detection. A few iterations, typically 5
to 10, between the ZF data detector and the DD LS channel
estimator are sufficient for this semi-blind scheme to converge
to the ZF detection solution associated with the perfect channel
state information (CSI) H , provided that the MIMO system’s
signal to noise ratio (SNR) is over certain threshold. This
low-complexity semi-blind scheme offers a practical means
suitable for implementation in MIMO systems with high-
order QAM signaling, and it will be used as a benchmark
for comparison with our proposed semi-blind scheme based
on sphere manifold.

B. Proposed Semi-blind Scheme

Our alternative semi-blind scheme also offers a low-
complexity solution suitable for MIMO systems with high-
order QAM signaling by exploiting Riemannian optimization
on sphere manifold. We begin by noting that the probability
density function of the received signal matrix Y conditioned
on the MIMO channel matrix H and the transmitted data
matrix S is given by

p(Y |H, S) =
1(

2πσ2
e

)nR·Nf
exp

(
− 1

(2πσ2
e)
∥Y − HS∥2

F

)
.

(22)
The joint ML estimation of S and H is obtained in theory
by maximizing p(Y |H, S) jointly over the continuous space
for H and the discrete space for S, which is computationally
impossible to achieve. Hence, suboptimal solution has to be
sought.

Note that maximizing p(Y |H,S) is equivalent to minimiz-
ing the cost function

J(H, S) = ∥Y − HS∥2
F = ∥Ȳ − H̄S̄∥2

F , (23)

where

H̄ =
[

H(R) −H(I)

H(I) H(R)

]
∈ Rn̄R·n̄T (24)

in which n̄T = 2nT , n̄R = 2nR and H = H(R) + j · H(I),
while Ȳ ∈ Rn̄R·Nf with

Ȳ =
[

Y (R)

Y (I)

]
=

[
y(R)(1) y(R)(2) · · · y(R)(Nf )
y(I)(1) y(I)(2) · · · y(I)(Nf )

]
(25)

in which y(k) = y(R)(k) + j · y(I)(k), and S̄ ∈ Rn̄T ·Nf with

S̄ =
[

S(R)

S(I)

]
=

[
s(R)(1) s(R)(2) · · · s(R)(Nf )
s(I)(1) s(I)(2) · · · s(I)(Nf )

]
(26)

in which s(k) = s(R)(k) + j · s(I)(k). The minimizer of
J(H,S) given S̄ is readily expressed by the closed-form LS
solution

H̄ = Ȳ S̄T
(
S̄S̄T

)−1
, (27)

which is plugged back to (23) to yield

J(S̄) =
∥∥Ȳ − Ȳ S̄T

(
S̄S̄T

)−1
S̄

∥∥2

F

= trace
((

Ȳ −Ȳ S̄T
(
S̄S̄T

)−1
S̄

)(
Ȳ −Ȳ S̄T

(
S̄S̄T

)−1
S̄

)T
)

= trace
(
Ȳ Ȳ T

)
− trace

(
Ȳ S̄T

(
S̄S̄T

)−1
S̄Ȳ T

)
. (28)

Since the first term in the righthand side of (28) does not
depend on S̄, minimizing J(S̄) is equivalent to minimizing
the following cost function

F (S̄) = − 1
2

trace
(
Ȳ S̄T

(
S̄S̄T

)−1
S̄Ȳ T

)
= − 1

2
trace

(
Ȳ TȲ S̄T

(
S̄S̄T

)−1
S̄

)
. (29)

Note that the CV constellation set S = S(R) + j · S(I) of (10)
is symmetric in both real and imaginary dimensions, which
means that S(R) and S(I) are identical, both containing the
same

√
L real-valued (RV) constellation symbol points. Let

us define the RV constellation set D that contains these
√

L
RV symbol points, namely,

D = S(R) = S(I). (30)

Since s
(R)
m (k) ∈ D and s

(I)
m (k) ∈ D ∀m, k, we have

S̄ ∈ Dn̄T ·Nf . The above optimization problem can then be
expressed as

min
S̄

{
F

(
S̄

)
= −1

2 trace
(
Ȳ TȲ S̄T

(
S̄S̄T

)−1
S̄

)}
,

s.t. S̄ ∈ Dn̄T ·Nf ,
(31)

which is of course computationally prohibitive to solve di-
rectly.

We now seek approximation or suboptimal solution. Note
that although ∥S̄∥F is frame dependent, it can be approxi-
mated by a constant, specifically,

∥S̄∥F ≈
√

n̄T Nf
σ2

s

2
=

√
nT Nfσ2

s , (32)

where we have E
{(

s
(R)
m (k)

)2} = E
{(

s
(I)
m (k)

)2} = σ2
s

2 . The
above approximation is very accurate for a sufficiently large
Nf , since

{
sm(k) = s

(R)
m (k) + j · s(I)

m (k)}Nf

k=1 for 1 ≤ m ≤
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nT are independent sequences. Therefore, the solution of the
following optimization problem

min
S̄

{
F (S̄) = − 1

2 trace
(
Ȳ TȲ S̄T

(
S̄S̄T

)−1
S̄

)}
,

s.t. ∥S̄∥F =
√

nT Nfσ2
s ,

(33)

provides an approximate solution to (31). More specifically,
let the solution of (33) be ˜̄S. By mapping every element
of ˜̄S to the nearest point in D, the resulting hard-decision
solution ̂̄S is a suboptimal solution of (31). Noting that the
constraint ∥S̄∥F =

√
nT Nfσ2

s is equivalent to the scaled
version of the sphere manifold (1) by a factor of

√
nT Nfσ2

s ,
we propose a new algorithm utilizing a sphere manifold based
optimization algorithm, specifically, Riemannian conjugate
gradient algorithm, to efficiently solve the optimization (33),
which is detailed in Section III-C.

Using Riemannian conjugate gradient algorithm to solve the
optimization (33) requires an initial point S̄ini. In order to
resolve the permutation and scaling ambiguity as mentioned
in Section III-A, we adopt the training based scheme with
a minimum number of training samples Nt ≈ nT to obtain
the initial LS channel estimate of (21). Based on this initial
channel estimate Ĥ

(t)
LS , the ZF data detection can be carried out

according to (17), yielding the initial hard-decision solution
Ŝini which can be turned into S̄ini according to (26). Given
the initial point S̄ini, the proposed semi-blind scheme uses
Riemannian conjugate gradient algorithm of Section III-C to
obtain a solution of (33), denoted as ˜̄Ssmo. By quantizing
every element of ˜̄Ssmo, the resulting hard-decision solution̂̄Ssmo is an approximate solution of the optimization problem
(31). Then the data detection solution is constructed as

Ŝsmo = ̂̄Ssmo[1 : nT ; : ] + j · ̂̄Ssmo[nT + 1 : n̄T ; : ], (34)

which is a suboptimal data detection solution. The final
channel estimate is then given by the DD LS estimate based
on Ŝsmo as

Ĥfin = Y ŜH
smo

(
ŜsmoŜ

H
smo

)−1
. (35)

To take the advantage of improved accuracy of the final
channel estimate Ĥfin over the initial rough channel estimate
Ĥ

(t)
LS , we may utilize Ĥfin to carry out the final ZF detection

to yield the final data detection solution Ŝ
(f)
ZF. This semi-blind

scheme is summarized in Algorithm 1.

C. Riemannian Conjugate Gradient Algorithm for Data De-
tection

Recall that the constraint ∥S̄∥F =
√

nT Nfσ2
s of the

optimization problem (33) is the scaled version of the sphere
manifold (1) by a factor of

√
nT Nfσ2

s . Thus, the solution
of (33) can be found via an equivalent Riemannian optimiza-
tion problem. Specifically, let the solution of this equivalent
Riemannian optimization problem be Xsmo, i.e.,

Xsmo =arg min
X∈Sn̄T ·Nf −1

{
F (X) =

− 1
2

trace
(
Ȳ TȲ XT

(
XXT

)−1
X

)}
. (36)

Algorithm 1 Proposed semi-blind scheme for MIMO
Initialize: Training data {St, Yt}, observation data Y ;
Output: Ŝ

(f)
ZF and Ĥsmo are suboptimal joint data detection

and channel estimation solution.
1: Stage i)-Initialization. Given {St, Yt},
2: Calculate initial training-based LS channel estimate Ĥ

(t)
LS

according to (21);
3: Calculate initial ZF soft data detection solution S̃ini =((

Ĥ
(t)
LS

)H
Ĥ

(t)
LS

)−1(
Ĥ

(t)
LS

)H
Y ;

4: Quantize every element of S̃ini to produce hard-decision
data detection solution, denoted as Ŝini = Ŝ

(R)
ini + j · Ŝ(I)

ini ;
5: Obtain

S̄ini =

[
Ŝ

(R)
ini

Ŝ
(I)
ini

]
.

6: Stage ii)-Riemannian optimization for data detection.
Given S̄ini,

7: Use Algorithm 2 of Section III-C to find the solution ˜̄Ssmo

of the optimization problem (33);
8: Quantize every element of ˜̄Ssmo to produce hard-decision

solution ̂̄Ssmo as an suboptimal solution to the optimiza-
tion problem (31);

9: Obtain the data detection solution Ŝsmo according to (34);
10: Obtain the final DD-LS channel estimate Ĥfin according

to (35).
11: Stage iii)-Final data detection. Given Ĥfin,
12: Obtain the final ZF data detection solution Ŝ

(f)
ZF according

to (
ĤH

finĤfin

)−1
ĤH

finY = S̃
(f)
ZF

quantize−−−−−→ Ŝ
(f)
ZF.

13: Return. Joint channel estimation and data detection solu-
tion

{
Ĥfin, Ŝ

(f)
ZF

}
.

We have ˜̄Ssmo =
√

nT Nfσ2
sXsmo.

Riemannian conjugate gradient algorithm generalizes the
classical conjugate gradient algorithm [23] to optimization
problems over Riemannian manifolds [24]. For our objective
function F (X), it is easy to check that Euclidean gradient,
GradF (X), can be calculated according to

GradF (X)= −
(
XXT

)−1
XȲ TȲ

+
(
XXT

)−1
XȲ TȲ XT

(
XXT

)−1
X. (37)

Based on GradF (X), Riemannian gradient of the objective
function F (X) and the matrix transport on the sphere mani-
fold can be calculated according to (4) and (5).

With all the ingredients available, we form the algorithm
for solving (33) in Algorithm 2, which can easily be imple-
mented using the Manifold Optimization Toolbox, Manopt,
available at: http://www.manopt.org, see [24]. We use
the default parameter settings in Manopt, so that in Step 4
of Algorithm 2, αk is based on the line search backtracking
procedure as described in p.63 of Section 4 in Chapter 4
of [16]. In Step 5 of Algorithm 2, βk is based on the
default option ‘Hestenes-Stiefel’s modified rule’ in Manopt.
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Algorithm 2 Riemannian conjugate gradient algorithm for
solving (33)
Initialize: Observation data Ȳ , initial point X0 =

S̄ini

/∥∥S̄ini

∥∥
F

which is on the sphere manifold Sn̄T ·Nf−1,
and default threshold ϖ, e.g., ϖ = 10−6;

Output: ˜̄S that yields the minimum F
(˜̄S)

.
1: Set η0 = −gradF (X0) and k = 0;
2: while ∥gradF (Xk)∥F < ϖ do
3: k = k + 1;
4: Compute a step size αk and set

Xk = ExpXk−1

(
αkηk−1

)
; (38)

5: Compute βk and set

ηk = −gradF (Xk) + βkTXk←Xk−1(ηk−1); (39)

6: end while
7: Return ˜̄S =

√
nT Nfσ2

sXk.

Specifically, we have

βk = max
{

0,
g
(
gradF (Xk),Γk

)
g
(
TXk←Xk−1(ηk−1),Γk

)}
, (40)

with

Γk = gradF (Xk) − TXk←Xk−1(gradF (Xk−1)). (41)

Remark 1. The solution (36) is an approximate or suboptimal
solution to the intractable optimization problem (31). It would
be desirable to examine how ‘close’ the solution (36) is to
the optimal solution of the problem (31). This is however
very challenging if not impossible to do analytically. It is
even difficult to compare the two solutions by simulation,
as it is intractable to realize the optimal solution for the
problem (31). As mentioned previously, for MIMO systems
with high-order QAM signaling, it is only practical to imple-
ment low-complexity suboptimal solutions, such as the semi-
blind scheme of iterative ZF data detection and DD LSCE,
described in Section III-A. Our proposed semi-blind scheme
based on sphere manifold offers an alternative to this existing
low-complexity practical semi-blind scheme. Thus, it is more
reasonable to compare our proposed semi-blind scheme based
on sphere manifold with this existing semi-blind scheme. This
is what we will do in the following simulation study.

Remark 2. Algorithm 2 is a local optimization algorithm that
aims to find a local minimum near the initial solution X0.
Whereas the convergence theory of linear conjugate gradient
algorithm is well understood, nonlinear conjugate gradient
methods have convergence properties that depend on the
choice of αk and βk. Theoretically analyzing the convergence
properties of this conjugate gradient algorithm is challenging.
However, the conjugate gradient algorithm of Manopt is
known to converge very fast [24]. In our application, we
observe that Algorithm 2 always converges in 2 to 4 iterations.
The convergence property of the existing semi-blind scheme
of iterative ZF data detection and DD LSCE is well known
[15]. As mentioned in Section III-A, typically 5 to 10 iterations

between the ZF data detector and the DD LS channel estimator
are sufficient for this semi-blind scheme to converge.

TABLE II
COMPLEXITY ANALYSIS OF EVALUATING F (X).

multiplication XXT O
`

n̄T N2
f

´

inversion
`

XXT
´−1 O

`

n̄3
T

´

multiplication
`

XXT
´−1

X O
`

n̄2
T Nf

´

multiplication Ȳ TȲ O
`

n̄2
RNf

´

multiplication Ȳ TȲ XT O
`

N2
f n̄T

´

multiplication Ȳ TȲ XT
`

XXT
´−1

X O
`

n̄2
T Nf

´

D. Complexity Analysis

The main computational cost of the proposed scheme lies
in evaluating (36) and (37). Note that it is important to apply
matrix multiplication association rule to realize efficient im-
plementation. For example, the term

(
XXT

)−1
X ∈ Rn̄T ·Nf

is evaluated only once and can be used in both F (X) and
GradF (X). Also it is well-known that the number of oper-
ations (real-valued multiplications and/or additions) required
to compute matrix multiplication XXT is on the order of
n̄T N2

f , denoted as O
(
n̄T N2

f

)
, and the cost of matrix inversion(

XXT
)−1

is on the order of O
(
n̄3

T

)
.

Evaluation of F (X): The total computational cost of
evaluating F (X) is detailed in Table II. From Table II, we
conclude that the complexity of evaluating F (X) is on the
order of O

(
n̄T N2

f +
(
n̄2

T + n̄2
R

)
Nf + n̄3

T

)
.

Evaluation of GradF (X): Note that
(
XXT

)−1
X , Ȳ TȲ

and Ȳ TȲ XT
(
XXT

)−1
X have already been computed.

Hence, evaluating GradF (X) imposes an addition number of
operations on the order of O

(
n̄T N2

f

)
.

Complexity of proposed algorithm: The complexity of
Stage i)-Initialization is small by comparison. Also this
initialization is needed in the existing scheme and, therefore,
its complexity can be omitted in the comparison.

According to the above analysis, the number of operations
(real-valued multiplications and/or additions) required by each
iteration of Algorithm 2 is on the order of O

(
n̄T N2

f +
(
n̄2

T +
n̄2

R

)
Nf +n̄3

T

)
. Hence the complexity of Stage ii)-Riemannian

optimization for data detection is O
(
n̄T N2

f +
(
n̄2

T +n̄2
R

)
Nf+

n̄3
T

)
, scaled by the number of iterations for Algorithm 2.

Stage iii)-Final data detection is optional and is performed
at most once. By converting the complex-valued matrix multi-
plication and inversion into the equivalent real-valued ones, it
can be seen that the computational cost of this stage is smaller
than O

(
n̄T N2

f +
(
n̄2

T + n̄2
R

)
Nf + n̄3

T

)
.

Remark 3. The computational complexity of the proposed
algorithm is on the order of O

(
n̄T N2

f +
(
n̄2

T + n̄2
R

)
Nf + n̄3

T

)
,

scaled by the number of iterations for Algorithm 2, which is
2 to 4. By contrast, it is well known that the computational
complexity of the existing scheme of iterative ZF data detection
and DD LSCE is also on the order of O

(
n̄T N2

f +
(
n̄2

T +
n̄2

R

)
Nf + n̄3

T

)
, scaled by the number of iterations between the

ZF data detector and the DD LS channel estimator, which is
typically more than 4. It can be seen that the complexity per
iteration are roughly the same for the both schemes. Hence, the
proposed scheme offers some computational advantage as it
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requires a smaller number of iterations. This will be confirmed
by the simulation study.

IV. SIMULATION STUDY

Three MIMO systems employing high-order modulation
schemes were simulated with the length of data frame set to
Nf = 200 and the number of initial training samples Nt.
The proposed semi-blind scheme based on sphere manifold
was compared with the following schemes: (a) ‘initial LSCE’,
which is the ZF detection solution based on the initial training
based LS channel estimate Ĥ

(t)
LS , (b) ‘existing semi-blind

scheme’, which is the semi-blind scheme of iterative ZF
data detection and DD LSCE discussed in Section III-A, and
(c) ‘perfect channel knowledge’, which is the ZF detection
solution associated with the perfect CSI H . In addition to the
bit error rate (BER) performance, the mean absolute deviation
(MAD), defined as

MAD = E

{
nR∑
l=1

nT∑
m=1

∣∣ĥl,m − hl,m

∣∣} , (42)

was also used as a performance measure, where ĥl,m denotes
the estimate of the true channel coefficient hl,m, and the
expectation is approximated using the time average over
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Fig. 1. Bit error rate performance comparison for the MIMO system with
NT = NR = 6 employing 16-QAM modulation scheme.
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Fig. 2. Mean absolute deviation performance comparison for the MIMO
system with NT = NR = 6 employing 16-QAM modulation scheme.

100 random realizations of the MIMO channel. The average
symbol power was set to σ2

s = 1 and the system’s SNR
was defined as SNR = Eb/No, where Eb = σ2

s/ log2 L is
the average energy per bit and No = 2σ2

ε . The number of
iterations for Algorithm 2 was set to 2, as this was observed to
be sufficient for the conjugate gradient algorithm to converge.

Example 1: The system employed nT = 6 transmit anten-
nas and nR = 6 receive antennas with 16-QAM signaling,
i.e., L = 16. The number of initial training data was Nt =
nT +2 = 8. Fig. 1 compares the BER achieved by the proposed
semi-blind scheme on sphere manifold with those of the initial
LSCE based detection, the existing semi-blind scheme with 2
iterations and 10 iterations, as well as the detection based on
perfect CSI. The achievable MAD of the proposed semi-blind
scheme on sphere manifold is depicted in Fig. 2 in comparison
with the MAD performance of the initial LSCE based scheme
as well as the existing semi-blind scheme with 2 iterations and
10 iterations, respectively. From the results of Figs. 1 and 2, it
can be seen that the performance of the proposed semi-blind
scheme on sphere manifold is better than that of the existing
semi-blind scheme with 2 iterations, while the performance
of the existing semi-blind scheme with 10 iterations is better
than the proposed semi-blind scheme. This is significant, as
the complexity of the proposed semi-blind scheme on sphere
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Fig. 3. Bit error rate performance comparison for the MIMO system with
NT = NR = 8 employing 16-QAM modulation scheme.
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Fig. 4. Mean absolute deviation performance comparison for the MIMO
system with NT = NR = 8 employing 16-QAM modulation scheme.
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manifold is roughly comparable to that of the existing semi-
blind scheme with 2 iterations but lower than that of the
existing semi-blind scheme with 10 iterations.

Example 2: The system employed nT = 8 transmit an-
tennas and nR = 8 receive antennas with 16-QAM signal-
ing, i.e., L = 16. The number of initial training data was
Nt = nT + 2 = 10. Fig. 3 compares the BER achieved
by the proposed semi-blind scheme on sphere manifold with
those of the initial LSCE based detection, the existing semi-
blind scheme with 2 iterations and 10 iterations, as well as
the detection based on perfect CSI. The achievable MAD
of the proposed semi-blind scheme on sphere manifold is
depicted in Fig. 4 in comparison with the MAD performance
of the initial LSCE based scheme as well as the existing semi-
blind scheme with 2 iterations and 10 iterations, respectively.
Again the results obtained show that the performance of the
proposed semi-blind scheme on sphere manifold is better
than that of the existing semi-blind scheme with 2 iterations,
while the performance of the existing semi-blind scheme with
10 iterations is better than the proposed semi-blind scheme.
Furthermore, the achievable BER performance is better than
Example 1, since there are more antennas in this example.

Example 3: The system employed 64-QAM signaling and
had nT = 6 transmit antennas and nR = 6 receive antennas.
The number of initial training data was set to Nt = nT +2 = 8.
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Fig. 5. Bit error rate performance comparison for the MIMO system with
NT = NR = 6 employing 64-QAM modulation scheme.
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Fig. 6. Mean absolute deviation performance comparison for the MIMO
system with NT = NR = 6 employing 64-QAM modulation scheme.

Fig. 5 compares the BER performance of the proposed semi-
blind scheme on sphere manifold with those of the initial
LSCE based scheme, the existing semi-blind scheme with 2
iterations and 10 iterations, as well as the scheme based on
perfect CSI, while the MAD performance of the proposed
semi-blind scheme on sphere manifold, the initial LSCE based
scheme as well as the existing semi-blind scheme with 2
iterations and 10 iterations, respectively, are shown in Fig. 6.
Based on the results of Figs. 5 and 6, we can draw the same
conclusions as those observed in Example 1 and Example 2.

V. CONCLUSIONS

In this paper we have introduced a new approach of semi-
blind joint channel estimation and data detection on sphere
manifold for MIMO systems employing high-order QAM
signaling schemes, which consists of three stages. Specifically,
in stage (i), a few training symbols are employed to provide a
rough initial MIMO channel estimate which yields the initial
ZF estimate of data samples; in stage (ii), the Riemannian
conjugate gradient algorithm is used to estimate the data
samples in real domain, and the detected data samples are
used to estimate the final MIMO channel matrix; and in stage
(iii), the final ZF data detection is carried out based on the final
MIMO channel estimate. Our novel contributions include the
derivation of the first order Riemannian geometry of sphere
manifold that is necessary for solving stage (ii) of blind
data detection. Our proposed semi-blind scheme on sphere
manifold offers a viable and practical alternative to existing
low-complexity semi-blind joint channel estimation and data
detection schemes for high-dimensional MIMO with high-
order QAM signaling. Simulation results have been provided
to demonstrate the effectiveness of the proposed semi-blind
scheme on sphere manifold.
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