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Abstract

In this paper, a robust fault tolerant control, which provides a global fixed-time stability,

is proposed for robot manipulators. This approach is constructed based on an integra-

tion between a fixed-time second-order sliding mode observer (FxTSOSMO) and a

fixed-time sliding mode control (FxTSMC) design strategy. First, the FxTSOSMO is

developed to estimate the lumped disturbance with a fixed-time convergence. Then,

based on the obtained disturbance estimation, the FxTSMC is developed based on a

fixed-time sliding surface and a fixed-time reaching strategy to form a global fixed-

time convergence of the system. The proposed approach is then applied for fault toler-

ant control of a PUMA560 robot and compared with other state-of-the-art controllers.

The simulation results verify the outstanding fault estimation and fault accommodation

capability of the proposed fault diagnosis observer and fault tolerant strategy, respec-

tively.
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1. Introduction

In order to enhance the quality and quantity of the products in manufacturing, robot

manipulators have been widely applied in many sectors [1], [2]. Recently, it is highly

demanded that robot and human can work collaboratively to strengthen the advantages

of both in manufacturing environment, and a new concept named ’cobot’ has been5

initialized [3]. One of the most important issues in human-robot collaboration is of

safety issue [4], [5]. To enhance safety and reliability of robots, fault diagnosis (FD)

and fault tolerant control (FTC) have been extensively investigated recently [6], [7],

[8]. The goal of the FD is to detect and identify the presence of faults, while the goal

of the FTC is to accommodate the effects of faults so that the system can still obtain10

the desirable tracking performance despite the existing of the faults.

Fault diagnosis (FD) and Fault Tolerant Control (FTC) of robot manufacturing

cell which include robot manipulators are significant enablers of Industry 4.0 and can

provide an important framework integrating facilitators such as big data, in-line/in-

process monitoring, robotics and control/AI algorithms towards achieving near-zero-15

defect manufacturing and providing human-robot collaboration capability [9]. There

is an increasing number of applications which can significantly benefit from having

advanced FD/FTC approaches to increase robot availability and reduce the risk of

quality problem and safety hazards in manufacturing. Often these applications require

robotic trajectory planning and control under various local faults which can be pre-20

vented from developing into product quality/six-sigma failures through the application

of advanced FD/FTC approaches. For example, FD/FTC approaches can help in case

of (i) robotic laser welding process guided by real-time seam tracking (welding on the

fly) as the weld quality depends on integrated control of robotic trajectory planning,

laser power and beam modulation parameters [10], [11]; (ii) robotic-inspection with25

3D optical/laser scanners placed as in-line measurements conducted within the flow-

through of the production line as the measurement coverage, accuracy, repeatability

and cycle time depends on control of robotic path planning [12], [13]; or, (iii) robotic

handling of deformable sheet metal parts in multi-press stamping line [14] as the cycle

time depends on optimization and control of robotic trajectory planning. One of the30
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key requirements of the aforementioned applications is that stability and convergence

of the system need to be guaranteed within a fixed and predefined time which often

depends on production cycle time and tasks which need to be conducted within the

cycle time. Additionally, the stability and convergence time should not depend on the

initial state values and it can be computed in advance. However, the current FD/FTC35

approaches encounter significant limitations as discussed below.

Generally, FTC system can be performed by using either active or passive approach

[15]. In the passive approach, i.e., passive fault tolerant control (PFTC), a robust con-

troller is used for both normal and fault operations without requiring an online fault

information feedback [16], [17]. The major merit of the PFTC is that it is simpler in40

design and can compensate the effects of faults quicker. However, it requires a prior

knowledge of the bounded value of the fault function. In contrast, in the active ap-

proach, i.e., active fault tolerant control (AFTC), the nominal controller of the system is

reconfigured based on the fault information, which is obtained based on a fault diagno-

sis observer [18], [19]. Based on the principle operation of the AFTC, its performance45

surpasses the PFTC when the fault diagnosis observer provides high precision of fault

information. Therefore, several fault diagnosis observers have been developed to ac-

curately estimate fault information, including linear observer [20], high gain observer

(HGO) [21], neural network observer (NNO) [22], fuzzy logic observer [23, 24] or slid-

ing mode observer (SMO) [25], etc. Among them, SMO usually provides higher es-50

timate accuracy due to its higher robustness property. Unfortunately, the conventional

SMO provides chattering and therefore, it usually requires a low-pass filter to extract

the useful information of fault [25]. Nevertheless, the use of the filtration process would

destroy the shape of the fault estimation if the filter’s parameters are not appropriately

selected. Consequently, the system provides lower accuracy of the fault estimation. In55

order to eliminate the chattering, higher-order sliding mode observer (HOSMO) has

been developed for the design of fault diagnosis observer [26]. Unfortunately, the con-

ventional HOSMO does not provide fixed-time convergence. Futhermore, according

to the author’s knowledge, there have been no fault diagnosis observers in the litera-

ture that provide fixed-time convergence for robot manipulators. This motivates us to60

develop a fault diagnosis observer which can reconstruct the fault information without
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using any filters and guarantee a fixed-time convergence.

After a fault is detected by a FD observer, it is expected that the controller of the

system can be reconfigured to handle the unexpected motions of the robot due to the

effects of the fault so as to maintain the desired performance of the system. For robotic65

systems, several control methododologies have been extensively developed to enhance

tracking performance. For example, in [27] and [28], the modified computed torque

controllers (CTCs) have been developed. In [29], a backstepping neural network has

been developed for the design of FTC system. In [30], an adaptive controller based

on fuzzy neural network (FNN) has been developed. In [31], a FTC is designed based70

on the measurement of position only. A new FTC, which is an integration between an

adaptive control reconfiguration approach and a control reallocation mechanism, has

been proposed in [32]. Recently, conventional sliding mode control (SMC) has been

employed to the design of FTC systems due to its high robustness against the sys-

tem uncertainties and disturbances [33], [34], [35], [36]. In [37], a new FTC scheme75

based on an integral sliding mode controller has been developed. However, the con-

ventional SMC does not provide finite time convergence. In order to obtain finite time

stability characteristic, terminal sliding mode controllers (TSMCs) have been devel-

oped [38], [39]. Unlike the conventional SMC, which uses a linear sliding surface in

the design, the TSMC uses a nonlinear sliding surface so that the system can obtain80

a finite time convergence. This merit feature of the TSMC has been employed in the

design of FTC for robot manipulators in our previous works [40] and [41]. As the

results reported in [40] and [41], the uses of the TSMCs for the FTC system preserve

many outstanding features than that of the conventional SMC, such as higher tracking

precision, faster transient response and faster convergence. However, the convergence85

speed of the conventional TSMC depends on the initial state values, which provides

a longer convergence time when the initial state values are big. In order to circum-

vent this shortcoming, a new advanced SMC, namely fixed-time sliding mode control

(FxTSMC), has been proposed recently [42, 43, 44]. The advantage of the FxTSMC is

that the stability and convergence of the system can be guaranteed within a fixed-time,90

which does not depend on the inital state values and can be computed in advance. This

property is motivated by many practical applications, which requires a faster conver-
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gence and the operators need to know the bound of the convergence time in advance.

Unfortunately, there have been no approaches in the literature to design a fixed-time

convergence controller for the FTC system of robot manipulators, which motivates us95

to develop a new FTC scheme, which can guarantee a fixed-time convegence for robot

systems.

In summary, two motivations inspire this work: (i) it is neccessary to develop a

fault diagnosis observer, which can guarantee the observation error converged within

a fixed-time, to estimate the fault information directly without the use of any filters;100

(ii) it is neccessary to develop a FTC system, which can provide a fixed-time conver-

gence. In addition, it is desirable that the closed-loop observer-controller error signals

can be convergent within a fixed-time. In this paper, a new FTC scheme, which guaran-

tees a global fixed-time convergence, is proposed for robot manipulators. The proposed

scheme includes two new fixed-time sliding mode schemes. In the first scheme, a fixed-105

time super-twisting sliding mode observer is developed to obtain an exact fault infor-

mation after a fixed time, where the convergence time can be calculated and bounded

by a constant. The estimated fault information can be utilized to detect and isolate

the fault location. Then, a fixed-time FTC is designed based on the obtained fault

information to compensate the effects of faults in the system. The fixed-time stabil-110

ity and convergence of the closed-loop system is guaranteed and can be computed in

advance. Finally, the proposed fault diagnosis observer and FTC are applied for a

PUMA560 robot and compared with other state-of-the-art methods. The comparison

results demonstrate the superiority performance of the proposed method.

In summary, the main contributions and novelties of this paper can be highlighted115

as follows:

• Compared to the existing fault diagnosis observers such as linear observer [20],

high gain observer (HGO) [21], neural network observer (NNO) [22] or slid-

ing mode observer (SMO) [25], a new fixed-time super-twisting sliding mode

observer is propropsed. The proposed observer provides many outstanding fea-120

tures, such as higher estimation precision is obtained and the estimation error of

the proposed observer is converged within a fixed time, which can be computed
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in advance.

• Compared to the existing FTCs, e.g. [40] and [41], for robot manipulators, a new

fixed time FTC based on a nonsingular fixed-time sliding mode control, which125

can guarantee a fixed-time convergence of the tracking errors, is proposed.

• The stability and convergence of the closed-loop system are guaranteed after a

fixed time, which is unprecedented for the FTC systems of robot manipulators.

The remaining of the paper is organized as follows. In section 2, problem statement

and some definitions about finite-time stability and fixed-time stability are introduced.130

The fixed-time sliding mode observer and the fixed-time second-order sliding mode

observer for fault diagnosis are presented in section 3. In section 4, the design of FTC

based on a fixed-time sliding mode controller is described. The simulation results are

shown to demonstrate the effectiveness of the proposed algorithm, in section 5. Section

6 provides conclusions.135

2. Problem Statement and Definitions

2.1. Problem statement

Without loss of generality, the following robot dynamics is considered:

q̈ = M−1(q)(τ−C(q, q̇)q̇−F(q̇)−G(q)− τd)+ γ(t−Tf )φ(q, q̇,τ) (1)

where q ∈ℜn, q̇ ∈ℜn and q̈ ∈ℜn represents the position, velocity and acceleration of

the robot, respectively. τ ∈ℜn is the actuation inputs. The inertia matrix M(q) ∈ℜnxn

is positive and definite. C(q, q̇) ∈ ℜn consists of the Coriolis and Centripetal forces.140

F(q̇) ∈ℜn is the friction matrix. τd stands for load disturbance matrix and G(q) ∈ℜn

indicates the vector of gravity terms. The vector φ(q, q̇,τ)∈ℜn represents the possible

fault components in the system. The vector γ(t −Tf ) denotes the time profile of the

faults, in which Tf is the time of occurrence of the faults.

The robot dynamics considered in (1) is assumed to satisfy the following standard

property :

0 < λm{M(q)} ≤ ‖M(q)‖ ≤ λM{M(q)} ≤ ϒ,ϒ > 0 (2)
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In the above equation, λm{M} and λM{M} indicates the minimum and maximum145

eigenvalues of matrix M, respectively.

The matrix γ(·) is configured as

γ(t−Tf ) = diag{γ1(t−Tf ),γ2(t−Tf ), ...,γn(t−Tf )} (3)

where γi represents the fault component existing in the ith state equation.

The time profile of each state equation is introduced by [41]:

γi(t−Tf ) =

0, if t < Tf

1− e−ιi(t−Tf ), if t ≥ Tf

(4)

where ιi > 0 indicates the development of the fault. When the value of ιi is small,

incipient faults are presumed. In contrast, when the value of ιi is large, the time profile

γi represents abrupt faults.150

The model (1) can be rearranged as follows:

q̈ = M−1(q)τ +M−1(q)(−C(q, q̇)q̇−G(q))

+M−1(q)(−F(q̇)− τd)+ γ(t−Tf )φ(q, q̇,τ)
(5)

The following state space model can be obtained from (5) by introducing x1 = q

and x2 = q̇:

ẋ1 = x2

ẋ2 = Λu+ f (x1,x2)+δ (x1,x2,u)+Ξ

(6)

where Λ=M−1(q), f (x1,x2) =M−1(q)(−C(q, q̇)q̇−G(q)) denotes the lumped known

component, δ (x1,x2,u) = M−1(q)(−F(q̇)) + γ(t − Tf )φ(q, q̇,τ) denotes the lumped

uncertainty and Ξ = M−1(q)τd denotes the lumped disturbance component in the sys-

tem.

The objective of this paper is to design a FTC input u such that the system can155

tolerate the effects of the uncertainties, disturbances and faults well and guarantee that

the desirable tracking performance of the system can be achieved.

Assumption 1. The unknown function is bounded by

|Ω(x1,x2,u, t)|= |δ (x1,x2,u)+Ξ| ≤ ρ (7)
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where ρ is a known positive constant.

Assumption 2. The derivative of the unknown function is bounded by

|Ω̇(x1,x2,u, t)| ≤ L (8)

where L is a known positive constant.

The above two assumptions are widely utilized in the design of FTC system in the160

literature [45], wherein the Lipschitz condition is assumed to be practically satisfied

in the bounded region of the state space. In practice, the above two assumptions are

somehow true for incipient faults. For abrupts faults, we expect that, due to the high

robustness property of the controller, the effects of faults in the system can be miti-

gated gradually and hence, the above two assumptions can be satisfied. It should be165

mentioned that if the faults function cannot be bounded as in Assumptions 1 and 2,

then it is really challenging to design a fault tolerant controller. These fault conditions

are beyond the scope of this paper.

2.2. Finite-time stability and fixed-time stability and Lemmas

Consider the following differential equation system:

ẋ(t) = f (x(t)), x(0) = x0 (9)

where x ∈ ℜn and f : ℜn→ ℜn is a nonlinear function. Suppose that the origin is an170

equilibrium point of (9).

Definition 1. [43] The equilibrium point of system (9) is said to be a finite time stable

equilibrium if the origin is Lyapunov stable and any solution x(t) starting from x0

satisfies limx→∞ x(t,x0) = 0 for all t ≥ T (x0), where T : ℜn→ℜ+ is called the settling

time function.175

Definition 2. [43] The equilibrium point of system (9) is said to be a fixed-time stable

equilibrium point if it is globally finite time stable and its bounded convergence time

T (x0) satisfies T (x0)< Tmax, where Tmax > 0 is a positive number.
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Lemma 1. Consider a scalar differential equation [43] below:

ż =−k1[z]α − k2[z]γ (10)

where k1 > 0,k2 > 0,α > 1 and 0 < γ < 1. Then, the equation (10) admits a finite time

settling time T0 uniform with respect to the initial condition z(0) and bounded by

T0 ≤ T (α,γ,k1,k2) :=
1

k1(α−1)
+

1
k2(1− γ)

(11)

Lemma 2. For 0 < κ < 1, the following inequality holds [42]

n

∑
1
|xi|1+κ ≥

(
n

∑
1
|xi|2

) 1+κ
2

(12)

Lemma 3. For κ > 1, the following inequality holds [42]

n

∑
1
|xi|κ ≥ n1−κ

(
n

∑
1
|xi|

)κ

(13)

3. Design of disturbance observer using fixed-time second-order sliding mode ob-

server180

3.1. Fixed-time sliding mode observer for disturbance observer

Based on the dynamic model (6), a fixed-time sliding mode observer (FxTSMO)

can be designed as

υ̇ = Λu+ f (x1,x2)+(ρ + ε)sign(e)+κ1[e]γ1 +κ2[e]γ2 (14)

where e= x2−υ , [e]αi = |e|αisign(e), υ is an estimate of the velocity x2, κi(i= 1,2)> 0

and 0 < γ1 < 1 and γ2 > 1. ρ is a constant value, which is selected based on Assump-

tion 1, and ε is a small positive constant. The term zeq = (ρ + ε)sign(e) is used to

approximate the lumped disturbance Ω(x1,x2,u, t).185

Theorem 1. Consider the system dynamics described in (6), if the disturbance ob-

server in (14) is used to observe the lumped disturbance component, which includes un-

certainties, disturbances and faults, then the stability and convergence of the observer’s

error is guaranteed and the convergence time is bounded by T0 ≤ 1

2
γ1+1

2 κ1(
γ1+1

2 −1)
+

1

2
γ2+1

2 κ2(1−
γ2+1

2 )

.190
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Proof: From (6) and (14), the estimation error can be computed as

ė = Ω(x1,x2,u, t)− (ρ + ε)sign(e)−κ1[e]γ1 −κ2[e]γ2 (15)

Consider a Lyapunov function candidate V = 1
2 e2. The derivative of the Lyapunov

function with respect to time can be obtained as

V̇ = eė = e(Ω(x1,x2,u, t)− (ρ + ε)sign(e)−κ1[e]γ1 −κ2[e]γ2)

= eΩ(x1,x2,u, t)− (ρ + ε)|e|−κ1|e|γ1+1−κ2|e|γ2+1

≤−2
γ1+1

2 κ1

(
1
2

e2
) γ1+1

2
−2

γ2+1
2 κ2

(
1
2

e2
) γ2+1

2

(16)

From (16):

V̇ +2
γ1+1

2 κ1V
γ1+1

2 +2
γ2+1

2 κ2V
γ2+1

2 ≤ 0 (17)

Therefore, according to Lemma 1, the observer’s error e has a finite settling time,

and the settling time T0 is bounded by

T0 ≤
1

2
γ1+1

2 κ1(
γ1+1

2 −1)
+

1

2
γ2+1

2 κ2(1− γ2+1
2 )

(18)

This completes the proof.

When the estimation error e converges to zero, from (15):

Ω(x1,x2,u, t) = (ρ + ε)sign(e) = zeq (19)

Therefore, the unknown component Ω, which contains fault function, can be recon-

structed based on the equivalent output injection (EOI) zeq in (19). However, the EOI

contains the discontinuous term (ρ + ε)sign(e), which causes chattering. To eliminate

the chattering, a low-pass filter can be employed as

ϕ ż f (t)+ z f (t) = zeq(t) (20)

where ϕ is the filter time constant, and z f (t) is the output of the filter. By adding

the results in (14) into (20), the filter’s output z f (t) will provide the estimation of the

lumped disturbance Ω(x1,x2,u, t).
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3.2. Fixed-time second-order sliding mode observer for disturbance observer195

In the observer (14), the exist of sign function provides chattering when construct-

ing the unknown fault function. Therefore, a low-pass filter is usually required to re-

construct the means of the fault information. To eliminate the needs of the filter in the

design, a fixed time second-order sliding mode observer (FxTSOSMO) is introduced in

this subsection. The observer is designed based on a super-twisting high-order sliding

mode algorithm, as follows:

υ̇ = Λu+ f (x1,x2)+ustw +κ1[e]γ1 +κ2[e]γ2 (21)

where e = x2−υ , [e]γi = |e|γisign(e), υ is an estimate of the velocity x2, γ1 =
1
2 , γ2 > 2,

ustw is used to approximate the unknown component Ω, and it is designed based on a

super-twisting algorithm [46]:

ustw = µ1|e|
1
2 sign(e)+ξ

ξ̇ = k(t)sign(e)
(22)

where the gain µ1 > 0 is selected large enough.

Theorem 2. Consider the system dynamics described in (6), if the disturbance ob-

server in (14) is used to observe the lumped disturbance component, which includes

uncertainties, disturbances and faults, then the stability and convergence of the ob-

server’s error is guaranteed and the convergence time is bounded by

T0 ≤

(
1

κ2(γ2−1)cγ−2 +
2c1/2

λ1

)
×
(

1+
1

m((1/M)−h(λ1)/(λ1))

)
(23)

where λ1 = κ1 + µ1, c > 0, M = k+L, m = k−L, h(λ1) = 1/λ1 +(2el/,λ1)
1/2, and

el is the base natural logarithms, and the control gains satisfied the conditions: k > L,

λ1h−1(λ1)> M. The minimum value of Tf (c) is reached for c = (λ1/κ2)
1/(γ2+1/2).

Proof: From (6) and (21), the estimation error can be computed as

ė = Ω(x1,x2,u, t)−ustw−κ1[e]γ1 −κ2[e]γ2 (24)

The formulation (24) has a form of general system described in equation (5) in the200

reference [44]. Therefore, the result of Theorem 2 can be proved as a similar way as in

[44]. This completes the proof.
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When the estimation error e converges to zero, from (22) and (24), it yields

Ω(x1,x2,u, t) = ξ

ξ̇ = k(t)sign(e)
(25)

Therefore, the unknown function Ω can be reconstructed directly from the continuous

function ξ without requiring a low-pass filter. Therefore, theoretically, the design of

the fault diagnosis observer based on the SOSM observer is generally better than that205

of the first-order sliding mode observer.

Remark 1. The sliding gain k(t) in (22) was selected based on Assumption 2. How-

ever, if the condition in Assumption 2 is not satisfactory (i.e., the bounded value is

unknown), the gain can be adapted based on the two-layer adaptive scheme given by

[47]:

δ (t) = k(t)− 1
υ1
|weq(t)|−υ0,υ0,υ1 > 0

k̇(t) =−(ρ0 +ρ(t))sign(δ (t)) ,ρ0 > 0

ρ̇ = β |δ (t)|,β > 0

(26)

where weq(t) is obtained by low-pass filtering (LPF) of k(t)sign(e), and υ0,υ1,ρ0,β >

0 are control parameters.

Remark 2. The design of the fixed-time super-twisting second-order sliding mode ob-210

server, which can provide a fixed-time convergence of the observer error and provide

fault estimation without requiring the use of a low-pass filter, is one of the main contri-

bution of this paper.

Remark 3. The proposed disturbance observer in (21) is used to estimate the lumped

disturbance Ω(x1,x2,u, t), which includes uncertainties, disturbances and faults. There-215

fore, when the effects of uncertainties and disturbances are smalll, the proposed dis-

turbance observer tends to approximate the fault function accurately. In this case, the

proposed disturbance observer can be considered as a ’fault diagnosis observer’. In

practice, a suitable threshold is usually selected to distinguish between the effects of

12



the uncertainties, disturbances and faults. This approach has been discussed in our220

previous work [28].

4. Design of fault tolerant control based on fixed-time sliding mode control

4.1. Fixed-time sliding mode control

Based on (6) and (21), the dynamic system can be rewritten as

ẋ1 = x2

ẋ2 = Λu+ f (x1,x2)+ustw + ε

(27)

where ε = δ (x1,x2,u)+Ξ−ustw is the fault estimation error.

Assumption 3. The fault estimation error ε is bounded by

ε ≤ Γ (28)

where Γ is a positive constant.225

According to the above anaysis, the estimated output of the fault diagnosis observer

converges to the real fault function after a fixed time. Therefore, the condition stated

in Assumption 3 is satisfactory in the practical applications.

Let e = x1− xd and ė = x2− ẋd , where xd and ẋd are the desired trajectory and the

derivative of the desired trajectory, respectively. Then, in order to obtain a fixed-time

sliding mode controller, the following sliding surface is selected based on Lemma 1

[48]:

s = ė+ k1[e]α + k2[e]γ (29)

where 0 < α < 1 and γ > 1. The gains k1 and k2 are positive constants.

Differentiating (29) with respect to time, we have

ṡ = ẋ2− ẍd + k1α|e|α−1ė+ k2γ|e|γ−1ė (30)

Inserting the result in (27) into (30), one obtains

ṡ =Λu+ f (x1,x2)+ustw + ε− ẍd + k1α|e|α−1ė+ k2γ|e|γ−1ė (31)

13



From (31), the proposed controller is designed as

u = ueq +us (32)

where, the equivalent controller is designed as

ueq =Λ
−1(− f (x1,x2)−ustw + ẍd− k1α|e|α−1ė− k2γ|e|γ−1ė) (33)

And, the switching controller is selected as

us = Λ
−1 (−(Γ+a)sign(s)−λ1[s]m1 −λ2[s]m2) (34)

where Γ is selected as in Assumption 3 and a is a small positive constant, the constant230

parameters λ1,λ2 > 0, the parameters 0 < m1 < 1 and m2 > 1.

Inserting the composite controller (32), (33) and (34) into (31), yields

ṡ = ε− (Γ+a)sign(s)−λ1[s]m1 −λ2[s]m2 (35)

Consider a Lyapunov function candidate below

V =
1
2

n

∑
1

s2
i (36)

Based on (36), the time derivative of the Lyapunov V can be obtained as

V̇ =
n

∑
1

siṡi

≤
n

∑
1
(εsi−Γ|si|−λ1|si|m1+1−λ2|si|m2+1)

≤
n

∑
1
(−λ1|si|m1+1−λ2|si|m2+1)

(37)

Using Lemmas 2 and 3, we have

n

∑
1
|si|m1+1 ≥ n

1−m1
2

(
n

∑
1
|si|2

) 1+m1
2

(38)

n

∑
1
|si|m2+1 ≥

(
n

∑
1
|si|2

) 1+m2
2

(39)
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Inserting the results in (38) and (39) into (37), yields

V̇ ≤−λ1n
1−m1

2

(
V

1+m1
2

)
−λ2

(
V

1+m2
2

)
(40)

From (40), according to Lemma 1, the Lyapunov function in (40) is stable and

converged by the time:

Tr ≤
1

λ1n
1−m1

2 ( 1+m1
2 −1)

+
1

λ2(1− 1+m2
2 )

(41)

Then, when the sliding surface, i.e., s, converges to zero, from (29):

ė =−k1[e]α − k2[e]γ (42)

Based on Lemma 1, it is provided that the estimation error e converges to zero and

the convergence time is bounded by

Ts ≤ T (α,γ,k1,k2) :=
1

k1(α−1)
+

1
k2(1− γ)

(43)

Theorem 3. Consider the dynamic system described in (6), if the controller is designed

as in (32) with the disturbance observer designed in (21), then the system is globally

fixed-time stable and the settling time is bounded by

T < Tmax = To +Ts +Tr (44)

where To, Ts and Tr are provided in (18), (41) and (43), respectively.

Proof: It is clear that the result of (44) can be obtained by integrating the results in

(17), (42) and (40) altogether. This completes the proof.

4.2. Nonsingular fixed-time sliding mode control235

According to (33), the term |e|α−1ė provides a singular problem when e = 0 and

ė 6= 0. In order to eliminate the singularity phenomenon, the following sliding surface

is proposed:

s = e+
1
kγ

2
[ė+ k1[e]α ]

1
γ (45)

where k1 > 0,k2 > 0,α > 1 and 1
2 < γ < 1.
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When the sliding surface converges to zero, the following equation is obtained

ė =−k1[e]α − k2[e]γ (46)

and therefore, the sliding surface (45) provides a fixed-time convergence as similar to

the sliding surface used in (29).

Differentiating the sliding surface (46) with respect to time, one obtains

ṡ = ė+
1
kγ

2
|T (e, ė)|

1
γ
−1(ë+ k1|e|α−1ė) (47)

where T (e, ė) = ė+ k1[e]α .

Inserting (27) into (47) yields

ṡ =ė+
1
kγ

2
|T (e, ė)|

1
γ
−1(Λu+ f (x1,x2)+ustw + ε− ẍd + k1|e|α−1ė) (48)

The proposed controller is designed as

u = u0 +uc +us (49)

where,

u0 = Λ
+(− f (x1,x2)−ustw + ẍd− k1|e|α−1ė) (50)

where Λ+ is the pseudo inverse of the Λ, and

uc =−Λ
+kγ

2|T (e, ė)|
1− 1

γ ė (51)

and,

us = Λ
+ (−(Γ+a)sign(s)−λ1[s]m1 −λ2[s]m2) (52)

where a is a small positive constant.240

Inserting the controller (49) into (48), yields

ṡ =
1
kγ

2
|T (e, ė)|

1
γ
−1 (ε− (Γ+a)sign(s)−λ1[s]m1 −λ2[s]m2)

= g(ε− (Γ+a)sign(s)−λ1[s]m1 −λ2[s]m2)

(53)

where g = 1
kγ

2
|T (e, ė)|

1
γ
−1.

In (51), there is a negative fractional power term |T (e, ė)|1−
1
γ ė exists, however this

term does not provide singularity phenomenon. Actually, when ė = 0,e 6= 0, we have

|ė|1−
1
γ ė≥ ė2− 1

γ , 2− 1
γ

is a positive power term.
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Theorem 4. Consider the system (6) and the proposed sliding surface (45). The system

states of the closed-loop system, which includes the proposed observer (21) and the

proposed controller (49), are stable and convergent to the origin within a fixed time

and the settling time T is bounded by

T < Tmax = To +Tr +Ts + ε(τ) (54)

where To, Ts and Tr are defined as in (44), and ε(τ) denotes a small time margin related245

to the boundary width τ = (kγ

2)
γ

γ−1 .

Proof: Consider a Lyapunov function candidate

V =
1
2

n

∑
1

s2
i (55)

Differentiating the Lyapunov function (55) with respect to time and combining with

(53), yields

V̇ =
n

∑
1

siṡi

≤ g
n

∑
1
(εsi−Γ|si|−λ1|si|m1+1−λ2|si|m2+1)

≤ g
n

∑
1
(−λ1|si|m1+1−λ2|si|m2+1)

≤ g
(
−λ1n

1−m1
2

(
V

1+m1
2

)
−λ2

(
V

1+m2
2

))
(56)

Next, we will show that (56) is fixed time stable. The idea of this proof is inspired

from [42].

For the case of T (e, ė) 6= 0, i.e, g > 0. For ease of the proof, the working state space

(e, ė) is divided into two different areas S1 = (e, ė)|g≥ 1 and S2 = (e, ė)|g < 1.250

(i) When the system states are in the region of S1, we have

V̇ ≤−λ1n
1−m1

2

(
V

1+m1
2

)
−λ2

(
V

1+m2
2

)
(57)

This implies that the system is fixed time stable and the convergence time is bounded

as in (41).

(ii) When the system states are in the region of S2 when T (e, ė) 6= 0, according to

(56), the terminal sliding surface s = 0 is still an attractor. What remains is to prove
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Figure (1) The block diagram of the proposed closed-loop FxTSOSMO-FxTSMC

that T (e, ė) = 0 is not attractive except for the origin. This can be done as a similar way255

as in [42].

Therefore, it can be concluded that the sliding surface s = 0 can be reached from

anywhere in the phase plane within fixed time Trε < Tr + ε(τ) [42]. Once the sliding

surface s = 0 is reached, it follows from (46), the system states will reach the origin

within the fixed time Ts. Hence, the total settling time T is bounded by (54). This260

completes the proof.

The block diagram of the proposed closed-loop FxTSOSMO-FxTSMC is illus-

trated in Fig. 1.

Remark 4. The results stated in Theorem 4 is one of the main contributions of this265

paper. That is the convergence of the closed-loop fault diagnosis-fault tolerant control

system can be convergent after a fixed-time, which is unprecedented.

Remark 5. In the controller in (52), the presence of the sign function provide chat-

tering in the system. In order to reduce the chattering, the boundary method can be

employed. Thus, the controller in (52) can be modified as

us = Λ
+

(
−(Γ+a)

s
|s|+ cs

−λ1[s]m1 −λ2[s]m2

)
(58)

where cs is a small positive constant.

Remark 6. From (24) and (25), the observer’s error of the proposed observer (21)

will converge to zero no matter what the control input is. It means that the design270
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of the observer does not depend on the control input. Therefore, the stability of the

closed-loop observer-controller in Theorem 4 can be guaranteed as in the proof.

Remark 7. In summary, in terms of tool, three novelties has been reported in this

paper compared to recent works in this domain. First, a fixed-time second-order sliding

mode observer is proposed for first time. This proposed technique is significant since it275

can provide faster convergence speed of the observer’s error. In addition, the bounded

value of the convergence time can be predicted in advance. Second, a fixed-time sliding

mode control is proposed. Actually, the theory of the fixed-time sliding mode control

is not new, but its applications for FTC of robot manipulators is really new. Third,

this is the first method to provide a global fixed time convergence of the closed-loop280

observer-controller for FTC systems.

5. Simulation and Results

In order to verify the performance of the system, we employ the proposed method

for fault diagnosis and fault tolerant control system of a PUMA560 robot. The PUMA560

robot is a well-known robot and it has been widely used as a benchmark platform for

research and development. The PUMA560 robot has six joints but for shortening the

presentation of the simulation results, only the first three joints are used in this study.

The kinematic and dynamic model of the robot are taken from [49]. The dynamic

model of the robot can be described as in (1) with the nominal parameters are taken

from [49]. To verify and compare the performance of the disturbance observer to ap-

proximate an unknown fault function and the effectiveness of the proposed fault tol-

erant controller, the friction term of the robot and external disturbance are neglected

first in this simulation section. Hence, the unknown component Ω contains the faults’

effects only. In order to illustrate the faults’ effects in the system, the following fault

function is selected:

φ1(q, q̇,τ) =


[9sin(0.5t)+8.5cos(0.5t)+12cos(0.5t)], t ≥ 10

−0.5τ2, t ≥ 20

−0.35τ3, t ≥ 20

 (59)
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The desired trajectory of the robot is defined in advance as

xd = [cos(t/5π)−1,cos(t/5π +
π

2
),sin(t/5π +

π

2
)−1]T (60)

In this section, the two major innovative schemes in this paper will be verified: the

proposed disturbance observer acted as a fault diagnosis observer, as discussed in Re-

mark 3, and the proposed fault tolerant control. First, the effectiveness of the proposed285

fault diagnosis observer is discussed. In this paper, we compare the performances of

the FxTSMO and the FxTSOSMO. Since the performances of the observers are depen-

dent on the selection of the sliding gain, to be fair in comparison, we use the adaptive

law described in (26) to tune the gain ρ in (14) of the FxTSMO (ρ = k(t)) and the gain

k(t) in (22) of the FxTSOSMO. The parameters of the two observers are selected as fol-290

lows. For the FxTSMO: κ1 = 20,κ2 = 20,γ1 = 0.75,γ2 = 1.5, and for the FxTSOSMO:

κ1 = 10,κ2 = 20,µ1 = 10,γ1 = 0.5,γ2 = 2.5. The parameters of the adaptive gains of

the fault diagnosis observer in (26) are selected as υ0 = 3,υ1 = 1.9,ρ0 = 3,β = 5.

Under the selections of the parameters, the fault estimation performances of the two

observers, i.e., FxTSMO and FxTSOSMO, are shown in Fig. 2. As the results shown295

in Fig. 2, it can be seen that the use of low-pass filter reduces the estimation accuracy

of the FxTSMO significantly. In contrast, the proposed FxTSOSMO provides very

high accuracy of fault estimation. Therefore, it can be concluded that the FxTSOSMO

provides better fault estimation accuracy than that of the FxTSMO. The time history

of the adaptive gain k(t) is shown in Fig. 3. From Fig. 3, it can be observed that the300

adaptive gains adapt to the variations of the fault functions very well.

Next, the tracking performance of the proposed global fixed time sliding mode

control (GFxTSMC) is verified. To easily analyse the outstanding properties of the

GxFTSMC, we compare it with two popular fault tolerant control schemes: computed

torque control (CTC) and nonsingular fast terminal sliding mode control (NFTSMC).305

The designs of the CTC and the NFTSMC can be referred to [40]. The parameters

of the controllers are selected as follows. For the CTC, the gains are selected as Kp =

200,Kd = 10, and for the NFTSMC, the parameters are selected as k1 = 10,k2 = 5,λ =

1.4, p = 9,q = 7 [40]. The parameters of the proposed GFxTSMC are selected as

k1 = 3,k2 = 3,α = 1.75,γ = 0.75, and the gains Γ= 50,a= 1. To reduce the chattering,310
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the gain cs is selected as cs = 0.05.

The tracking performance of the three controllers, i.e., CTC, NFTSMC and GFxTSMC,

in cartesian space is illustrated in Fig. 4. For sake of comparison, the tracking errors of

the three controllers are also reported in Fig. 5. From Figs. 4 and 5, it can be seen that,

when the system in normal operation, the CTC provides an acceptable performance.315

However, when the fault occurs, the CTC fails to maintain the desired performance. In

contrast, the NFTSMC provides better fault accommodation capability than that of the

CTC. This is due to the high robustness property of the SMC compared to the CTC.

However, it does not provide high performance for some instances; for example, the

poor tracking response in the first joint shown in Fig. 5. It means the NFTSMC does320

not possess high robustness against a fault function with high magnitude. By using the

fault information obtained from the fault diagnosis observer, the proposed GFxTSMC

provides very good tracking precision in both normal and fault operations. As shown

in Figs. 4 and 5, the effects of faults are compensated very quickly. Therefore, it can

be concluded that, in this simulation, the robustness of the proposed FxTSMC is higher325

compared to the CTC and NFTSMC.

The control inputs of the CTC, NFTSMC and GFxTSMC are shown in Figs. 6, 7

and 8, respectively. It can be observed that, while the CTC provides smooth control

input because it does not contain the ‘sign’ function in the design, the NFTSMC and the

GFxTSMC also provide smooth control efforts by using the boundary method designed330

in (58). Therefore, from the results shown in the above figures, it can be concluded

that the proposed GFxTSMC provides outstanding fault tolerant capability and smooth

control efforts.

To futher show the effectiveness of the proposed method, we consider the effects

of the lumped disturbance, which includes the friction component F(q, q̇), the external

disturbance τd and the fault function φ2(q, q̇,τ):

F(q, q̇) =


1.5q̇1 + sin(3q1)+1.5sin(q̇1)

1.5q̇2−2sin(2q1)+1.3sin(q̇2)

−1.2q̇3−2sin(q3)+1.13sin(q̇3)

 (61)
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and the external disturbance component is assumed:

τd =


2.4cos(t)+1.5sin(t)cos(t)

1.5cos2(t)+3cos(t)

2.5sin(t)−2.2sin(t)cos(t)

 (62)

and, a new fault function is instroduced in the system:

φ2(q, q̇,τ) =


−0.7τ1, t ≥ 10

−0.7τ2, t ≥ 20

−0.7τ3, t ≥ 20

 (63)

Because the NFTSMC provided better performance than the CTC as shown in the

previous experiment, in this working condition, the performances of the NFTSMC335

and the proposed GFTSMC are compared. The tracking performance and the tracking

error of the system under the inputs of the NFTSMC and the proposed GFTSMC are

shown in Figs. 9 and 10, respectively. It can be seen from Figs. 9 and 10 that the

NFTSMC provides worst tracking performance for this severe condition. However, the

proposed GFTSMC provides very good tracking performance. It demonstrates the high340

robustness property of the proposed approach. The control inputs of the controllers are

omitted in this simulation to reduce the length of the paper.

6. Conclusions

A robust fault tolerant control with global fixed-time convergence has been pro-

posed for robot manipulators for the first time. The proposed method is constructed345

based on an integration between a fixed-time second-order sliding mode observer and

a fixed-time sliding mode controller. The global fixed-time convergence is guaranteed

and can be computed in advance. The stability of the closed-loop observer-controller is

proved rigorously. The simulation results on a PUMA560 robot and the comprehensive

comparison results with other state-of-the-art observers and controllers verified that the350

proposed method estimated and tackled the effects of the faults very well.

In this paper, the constraints of the control inputs and outputs of the system have

not been considered yet. In addition, the effects of other faults such as sensor faults
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Figure (2) Fault estimations using the fixed-time SMO and fixed-time SOSMO

were neglected when designing the proposed observer and controller. These issues will

be further studied in our future works.355
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Figure (3) Time history of the adaptive gain k(t)of the fixed-time SOSMO

Figure (4) Tracking performances of the controllers under the effects of the fault
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