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Abstract

This paper presents a novel mutual information (MI) matrix based method for fault

detection. Given a m-dimensional fault process, the MI matrix is a m ×m matrix in

which the (i, j)-th entry measures the MI values between the i-th dimension and the

j-th dimension variables. We introduce the recently proposed matrix-based Rényi’s

α-entropy functional to estimate MI values in each entry of the MI matrix. The new

estimator avoids density estimation and it operates on the eigenspectrum of a (normal-

ized) symmetric positive definite (SPD) matrix, which makes it well suited for indus-

trial process. We combine different orders of statistics of the transformed components

(TCs) extracted from the MI matrix to constitute the detection index, and derive a sim-

ple similarity index to monitor the changes of characteristics of the underlying process

in consecutive windows. We term the overall methodology “projections of mutual in-

formation matrix” (PMIM). Experiments on both synthetic data and the benchmark

Tennessee Eastman process demonstrate the interpretability of PMIM in identifying

the root variables that cause the faults, and its superiority in detecting the occurrence

of faults in terms of the improved fault detection rate (FDR) and the lowest false alarm

rate (FAR). The advantages of PMIM is also less sensitive to hyper-parameters. The

advantages of PMIM is also less sensitive to hyper-parameters. Code of PMIM is avail-

able at https://github.com/SJYuCNEL/Fault_detection_PMIM.
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1. Introduction

With the growing demand for security equipments and high-quality products, pro-

cess monitoring has received tremendous attention in both academia and industry in the

past decades. Fault detection, defined as the identification of abnormal operating con-

ditions in real time, is an active topic in process monitoring. Data driven approaches

have been the main stream for fault detection and control in recent years because they

don’t require neither a model not a priori information [1, 2]. The multivariate statisti-

cal process monitoring (MSPM) is a well-known data-driven approach, and has been

widely used in complex industrial environments [3, 4, 5].

Traditional MSPM methods, e.g., principal component analysis (PCA) [6], partial

least squares (PLS) [7] and independent component analysis (ICA) [8], take advantage

of the Hotteling T 2 statistic in principal component subspace or the squared predic-

tion error (SPE) statistic in residual subspace to monitor the sample stream [9, 10].

Although this kind of methods perform satisfactorily in the case of highly correlated

multi-modal variables, they always neglect the temporal correlation between consecu-

tive samples. Consequently, they cause a large Type-II error (i.e., fails to reject a false

null-hypothesis).

To circumvent this limitation, the dynamic PCA (DPCA) [11, 12], the modified

ICA (MICA) [13, 14, 15] and various other recursive MSPM methods (e.g., [16, 17, 18,

19]) have been proposed thereafter. These methods usually add time-lagged variables

in a sliding window to form a data matrix that captures the (local) dynamic character-

istics of the underlying process. Compared with the traditional PCA or ICA, window-

based methods distinguish better sample measurement from noise, thus offering a reli-

able avenue to address challenges associated with continuous processes [20, 21].

To further improve the performance of the above window-based methods, efficient

extraction of high-order statistics of process variables is crutial [22, 23, 24, 25, 21, 26].

Notable examples include statistics pattern analysis (SPA) [20, 23], recursive trans-
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formed component statistical analysis (RTCSA) [24] and recursive dynamic trans-

formed component statistical analysis (RDTCSA) [25]. Different from traditional

PCA and DPCA that implicitly assume that the latent variables follow a multivari-

ate Gaussian distribution, SPA integrates the skewness, the kurtosis, and various other

high-order statistics of the process measurement in sliding windows to deal with non-

Gaussian data, demonstrating superior performance over PCA and DPCA. However,

SPA performs poorly in case of incipient faults [24]. To address this limitation, RTCSA

and RDTCSA avoid dividing the projected space into principal component subspace

and residual subspace. Instead, both methodologies take advantage of the full space

to extract orthogonal transformed components (TCs), and evaluate a test statistic by

incorporating the mean, the variance, the skewness, and the kurtosis of TCs. One

should note that, the third- and forth-order information is usually beneficial to detect

incipient faults [22, 20, 23, 24, 25, 21]. Although RTCSA and RDTCSA enjoy solid

mathematical foundation, the TCs from a covariance matrix only capture linear rela-

tionships among different dimensions of measurement. Therefore, a reliable way to

extract nonlinear statistics among different dimensions of measurements becomes a

pivotal problem in fault detection [27, 28, 29].

The application of information theory on fault detection is an emerging and promis-

ing topic [30, 31]. Although there are a few early efforts that attempt to shed light on

fault detection with information-theoretic concepts, they simply employ (an approxi-

mation to) the MI to select a subset of the most informative variables to circumvent

the curse of dimensionality (e.g., [32, 33, 34, 35, 36, 37]). To the best of our knowl-

edge, there are only two exceptions that illuminate the potential of using information-

theoretic concepts for fault detection, beyond the role of variable selection. Unfortu-

nately, no specific statistical analysis is presented [36, 37]. Therefore, the design from

first principles of a fault detection method using information theory remains an open

problem1. The detailed contribution of this work is multi-fold:

1Note that, this work does not use the physical significance of entropy, which was initially introduced in
thermodynamics. According to Boltzmann the function of entropy can be expressed as: S = −k ln p, where
k is Boltzmann constant, p is thermodynamic probability. Instead, this work is based on information entropy
by Shannon in 1948 [38], which was used to measure the uncertainty of signal source in a transmission
system.
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• Novel methodology: We construct a MI matrix to monitor the (possibly non-

linear) dynamics and the non-stationarity of the fault process. A novel fault

detection method, i.e., projections of mutual information matrix (PMIM), is also

developed thereafter.

• Novel estimator: Unlike previous information-theoretic fault detection methods

which usually use the classical Shannon entropy functional that relies heavily

on the precise estimation of underlying data distributions, we suggest using the

recently proposed matrix-based Rényi’s α-entropy functional to estimate MI val-

ues. The new estimator avoids estimation of the underlying probability density

function (PDF), and employs the eigenspectrum of a (normalized) symmetric

positive definite (SPD) matrix. This intriguing property makes the novel esti-

mator easily applicable to real-world complex industrial process which usually

contains continuous, discrete and even mixed variables.

• Detection accuracy: Experiments on both synthetic data and the benchmark

Tennessee Eastman process (TEP) indicate that PMIM achieves comparable or

slightly higher detection rates than state-of-the-art fault detection methods. More-

over, PMIM enjoys significantly lower false detection rate.

• Implementation details and reproducibility: We elaborate the implementa-

tion details of fault detection using PMIM. We also illustrate the detectability

of PMIM using the eigenspectrum of the MI matrix. For reproducible results,

we provide key functions (in MATLAB 2019a) concerning PMIM in the Ap-

pendix A. We also release a full demo of PMIM at https://github.com/

SJYuCNEL/Fault_detection_PMIM.

• Interpretability: Fault detection using PMIM can provide insights on the the

exact root variables that lead to the occurrence of fault. In this sense, the result

of fault detection using PMIM is interpretable, i.e., the practitioners know which

variable or specific sensor data causes the fault.

The remainder of this paper is organized as follows. We first introduce the defi-

nition of MI matrix and present its estimation with the matrix-based Rényi’s entropy
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functional in Section 2. We then describe our proposed fault detection using PMIM in

Section 3, and elaborate its implementation details in Section 4. Experiments on both

synthetic and TEP benchmark are performed in Section 5. We finally conclude this

work and discuss future directions in Section 6.

Notations: Throughout this paper, scalars are denoted by lowercase letters (e.g.,

x), vectors appear as lowercase boldface letters (e.g., x), and matrices are indicated by

uppercase letters (e.g., X). The (i, j)-th element of X is represented by Xij . If X is

a square matrix, then X−1 denotes its inverse. I stands for the identity matrix with

compatible dimensions. The i-th row of a matrix X is declared by the row vector xi,

while the j-th column is indicated with the column vector xj . Moreover, superscript

indicates time (or sample) index, subscript indicates variable index. For x ∈ Rn, the

`p-norm of x is defined as ‖x‖p , (
n∑
i=1

|xi|p)
1
p .

2. The MI Matrix: Definition and Estimation

2.1. The Definition of MI matrix

MI quantifies the nonlinear dependence between two random variables [39, 40].

Therefore, given a multivariate time series (here refers to fault process), an MI matrix

(in a stationary environment) can be constructed by evaluating MI values between each

pair of variables. Intuitively, the MI matrix can be viewed as a nonlinear extension

of the classical covariance matrix. Specifically, the formal definition of MI matrix is

given as follows.

Definition 1. Given a m-dimensional (stationary) process ℘, let us denote xi (i =

1, 2, · · · ,m) the i-th dimensional of the process measurement, then the MI matrix over

℘ is defined as:

M =


I(x1; x1) I(x1; x2) · · · I(x1; xm)

I(x2; x1) I(x2; x2) · · · I(x2; xm)
...

...
. . .

...

I(xm; x1) I(xm; x2) · · · I(xm; xm)

 ∈ Rm×m, (1)

where I(xi; xj) denotes MI between variables xi and xj .
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According to Shannon information theory [38], I(xi; xj) is defined over the joint

probability distribution of xi and xj (i.e., p(xi,xj)) and their respectively marginal

distributions (i.e., p(xi) and p(xj)). Specifically,

I(xi; xj)=

∫ ∫
p(xi,xj) log

(
p(xi,xj)

p(xi)p(xj)

)
dxidxj

= −
∫ (∫

p(xi,xj)dxj

)
log p(xi)dxi−

∫ (∫
p(xi,xj)dxi

)
log p(xj)dxj

+

∫ ∫
p(xi,xj) log p(xi,xj)dxidxj

= −
∫
p(xi) log p(xi)dxi−

∫
p(xj) log p(xj)dxj+

∫ ∫
p(xi,xj) log p(xi,xj)dxidxj

=H(xi)+H(xj)−H(xi,xj),

(2)

where H(·) denote the entropy and H(·, ·) denotes the joint entropy. In particular,

I(xi; xi) = H(xi).

Theoretically, the MI matrix is symmetric and non-negative2. Moreover, in the

absence of any dependence in pairwise variables, the MI matrix reduces to a diago-

nal matrix with the entropy of each variable lies on the main diagonal. Interestingly,

although the estimated MI matrix has been conjectured and also observed in our appli-

cation to be positive semidefinite, this property is not always true theoretically [41].

2.2. Estimate MI matrix with matrix-based Rényi’s α-order entropy

Entropy measures the uncertainty in a random variable using a single scalar quan-

tity [42, 43]. For a random variable (or vector) x, with probability density function

(PDF) p(x) in a finite set s, a natural extension of the Shannon’s differential entropy is

the Rényi’s α-order entropy [44]:

Hα(x) =
1

1− α
log

∫
s

pα(x)dx. (3)

2By applying the Jensen inequality, we have
I(xi;xj) =

∫∫
p(xi,xj) log

(
p(xi,xj)

p(xi)p(xj)

)
dxidxj ≥ −log

(∫∫
p(xi,xj)

(
p(xi)p(xj)

p(xi,xj)

))
=

− log(
∫∫
p(xi)p(xj)) = 0.
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It is well-known that, when α→ 1, Eq. (3) reduces to the basic Shannon’s differential

entropy3 H(x) = −
∫
s
p(x) log p(x)dx. In this perspective, Rényi’s entropy makes a

one-parameter generalization to the basic Shannon definition by introducing a hyper-

parameter α.

Information theory has been successfully applied to various machine learning, com-

puter vision and signal processing tasks [42, 46]. Unfortunately, the accurate PDF

estimation in Eq. (3) on continuous and complex data impedes its more widespread

adoption in data driven science. This problem becomes more severe for process mon-

itoring, since the obtained multivariate measurement may contain both discrete and

continuous variables. Moreover, there is still no universal agreement on the definition

of MI between discrete and continuous variables [47, 48], let alone its precise estima-

tion. In this work, we use a novel estimator developed by Sánchez Giraldo et al. [49]

to estimate the MI matrix. Specifically, according to [46, 49], it is feasible to evaluate a

quantity that resembles quantum Rényi’s entropy [44] in terms of the normalized eigen-

spectrum of the Hermitian matrix of the projected data in reproducing kernel Hilbert

space (RKHS), thus estimating the entropy directly from data without PDF estimation.

For completeness, we provide below Sánchez Giraldo et al.’s definition on entropy and

joint entropy.

Definition 2. Let κ : χ × χ 7→ R be a real valued positive definite kernel that is also

infinitely divisible [50]. Given {xi}ni=1 ∈ χ, each xi can be a real-valued scalar or

vector, and the Gram matrix K obtained from evaluating a positive definite kernel κ on

all pairs of exemplars, that is K = κ(xi,xj), a matrix-based analogue to Rényi’s α-

entropy for a normalized positive definite matrix A of size n× n, such that tr(A) = 1,

can be given by the following functional:

Hα(A) =
1

1− α
log (tr(Aα)) =

1

1− α
log2

(
n∑
i=1

λi(A)α

)
, (4)

where A is the normalized version of K, i.e., A = K/tr(K), and λi(A) denotes the

i-th eigenvalue of A.

3A simple proof by applying the L’Hôspital’s rule at α = 1 is shown in [45].
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Definition 3. Given n pairs of samples (xi,yi)
n
i=1, each sample contains two different

types of measurements x ∈ χ and y ∈ γ obtained from the same realization, and the

positive definite kernels κ1 : χ×χ 7→ R and κ2 : γ×γ 7→ R , a matrix-based analogue

to Rényi’s α-order joint-entropy can be defined as:

Hα(A,B) = Hα

(
A ◦B

tr(A ◦B)

)
, (5)

where Aij = κ1(xi,xj) , Bij = κ2(yi,yj) and A ◦B denotes the Hadamard product

between the matrices A and B.

Given Eqs. (4)-(5), the matrix-based Rényi’s α-order MI Iα(A;B) in analogy of

Shannon’s MI is given by:

Iα(A;B) = Hα(A) +Hα(B)−Hα(A,B). (6)

Throughout this paper, we use the Gaussian kernel κ(xi,xj) = exp(−‖xi−xj‖
2

2σ2 ) to

obtain the Gram matrices. Obviously, Eq. (6) avoids real-valued PDF estimation and

has no additional requirement on data characteristics (e.g., continuous, discrete, or

mixed), which makes it has great potential in our application.

3. The Fault Detection using PMIM

In this section, we present PMIM, a novel fault detection method by monitor-

ing the statistics associated with the MI matrix. Given a discrete time process ℵ =

{x1,x2, · · · } : xi ∈ R1×m, at each time instant k, we construct a local sample matrix

Xk ∈ Rw×m of the following form:

Xk =


xk−w+1

xk−w+2

...

xk

 =


xk−w+1
1 xk−w+1

2 · · · xk−w+1
m

xk−w+2
1 xk−w+2

2 · · · xk−w+2
m

...
...

. . .
...

xk1 xk2 · · · xkm


,
[

x1 x2 · · · xm

]
∈ Rw×m,

(7)
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Figure 1: Local sample matrix with a sliding window of size w.

where xj (1 ≤ j ≤ m) denotes the j-th dimensional variable that is characterized by

w realizations. Fig. 1 illustrates xi, xj and X . Each variable is mean centered and

normalized to [0, 1] to account for different value ranges [3, 4, 5, 6, 7]. Then the MI

matrix M at time instant k is given by:

M =


H(x1) I(x1; x2) · · · I(x1; xm)

I(x2; x1) H(x2) · · · I(x2; xm)
...

...
. . .

...

I(xm; x1) I(xm; x2) · · · H(xm)

 ∈ Rm×m. (8)

The general idea of our method is that M contains all the nonlinear dependencies

between any pairwise variables of the underlying fault process at time instant k. In a

stationary environment, any quantities or statistics associated with M should remain

unchanged or stable. However, the existence of an abrupt fault may affect, at least, the

values of one or more entries in the MI matrix, thus altering the values of our monitored

quantities or statistics extracted from MI matrix.

Prior art suggests that those reliable quantities can be extracted from the orthogonal

space spanned by eigenvectors of the sample covariance matrix (e.g., [6, 7, 11, 51,

24, 25, 26]). Motivated by this idea, suppose the eigenvalue decomposition of MI

matrix is given by M = PΛP−1, where P ∈ Rm×m is the matrix of eigenvectors

and Λ = diag(λ1, λ2, · · · , λm) ∈ Rm×m is a diagonal matrix with eigenvalues on the

main diagonal. Then, a new representation of X (denote it T ) in the orthogonal space
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spanned by column vectors in P can be expressed as,

T = XP ,


tk−w+1

tk−w+2

...

tk

 ∈ Rw×m. (9)

We term the column vectors of T the mutual information based transform compo-

nents (MI-TCs). The terminology of transform components (TCs) originates from [6,

7, 24] and is defined over the sample covariance matrix C = 1
w−1X

TX . Specifi-

cally, suppose PC and ΛC are respectively the eigenvectors and eigenvalues of C, i.e.,

C = PCΛCPC
−1, then the original TCs of X are given by TC = XPC ∈ Rw×m.

Compared with the MI matrix M , the covariance matrix C only captures the lin-

ear dependence (correlation) between pairwise dimensions of the normalized measure-

ment [24]. By contrast, the MI matrix M operates with the full PDF information

between pairs of variables and makes no assumption on the joint distribution of the

measurement nor the nature of the relationship between pairwise dimensions. More-

over, it can simply identify nonlinear and non-monotonic dependencies [52], which are

common in industrial process [10, 24, 26, 53]. See Fig. 2 for a few concrete exam-

ples on the advantage of MI over linear correlation, in which the linear correlation fails

completely in quantifying nonlinear and non-monotonic effects (the bottom row).

In each sliding window, we characterize T with a detection index Θk = [µk|νk|ζk|γk]T ∈

R4m, it consists of the first-order statistic (i.e., the mean µk = E(tk)), the second-order

statistic (i.e., the variance νk = σ2
k = E

[
(tk − µk)2

]
), the third-order statistic (i.e., the

skewness ζk = E
[(

tk−µk
σk

)3]
), and the forth-order statistic (i.e., the excess kurtosis

γk = E
[(

tk−µk
σk

)4]
− 3). Specifically, the empirical estimation to µk, νk, ζk and γk

are given by:

µk =
1

w

w−1∑
i=0

tk−i ∈ R1×m, (10)
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Figure 2: Examples of correlation versus mutual information (MI) estimated by the classic Shannon’s dis-
crete entropy functional with the formula H(x) = −

∑
x∈x

p(x) log2 p(x), over 500 samples. Each panel

illustrates a scatter plot of samples drawn from a particular bivariate distribution. For each example, the
correlation between the two variables is shown in brown (left) and the MI is shown in red (right). The top
row shows linear relationships, for which MI and correlation both detect a relationship (although in different
scales). The bottom row shows a series of distributions for which the correlation is 0, but the MI is significant
larger than 0.

νk =
1

w

w−1∑
i=0

(
tk−i − µk

)2 ∈ R1×m, (11)

ζk =
1

wσ3
k

w−1∑
i=0

(
tk−i − µk

)3 ∈ R1×m, (12)

γk =
1

wσ4
k

w−1∑
i=0

(
tk−i − µk

)4 − 3 ∈ R1×m. (13)

Note that, µ∗ = E [µk] (the mean of the TCs under normal condition) is used for

the online calculation of detection index. When a fault occurs, one or more of the four

statistics (namely, µk, νk, ζk and γk) are expected to deviate significantly from their

expectations.

Given Θk, a similarity index for local sample matrix Xk at time instant k can be

defined as:

Dk = ‖Θ−1σ (Θk −Θµ)‖p, (14)

where Θµ denotes the mean value of similarity index over training data, Θσ = diag(σ1, σ2, · · · , σ4m)

denotes a diagonal matrix in which the main diagonal consists of the standard devia-

tion in each dimension of Θk. The empirical method based on training data is used to
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determine the upper control limit Dcl with a given confidence level η [20]. An online

monitoring procedure is then used to quantify the dissimilarity of statistics between

normal and abnormal states.

Algorithm 1 and Algorithm 2 summarize, respectively, the offline training and the

online testing of our proposed PMIM.

Algorithm 1 Fault detection using PMIM (training phase)
Input: Process measurements ℵ = {xi|xi ∈ Rm}ni=1; sliding window size w; significance

level η.
Output: mean of the transform components (TCs) µ∗; standard deviation Θσ of the detection

index; reference mean Θµ of the detection index.
1: for i = 1 to n do
2: Construct a local time-lagged matrix Xi ∈ Rw×m at time instant i by Eq. (7);
3: Construct the MI matrix M i by Eq. (8);
4: Obtain the TCs T i of Xi by Eq. (9);
5: Obtain the detection index Θi = [µi|νi|ζi|γi]T by Eqs. (10)-(13).
6: end for
7: Calculate the mean of the TCs µ∗ =

n∑
i=1

µi, reference mean Θµ and standard deviation Θσ .

8: for i = 1 to n do
9: Di = ‖Θ−1

σ (Θi −Θµ)‖p.
10: end for
11: Determine the control limit Dcl at the significance level η.
12: return µ∗; Θσ; Θµ; Dcl

Algorithm 2 Fault detection using PMIM (testing phase)
Input: The online process measurement {x1

test,x
2
test, · · · }; sliding window size w; mean of the

transform components (TCs) µ∗; standard deviation Θσ of the detection index; reference
mean Θµof the detection index; control limit Dcl.

Output: Decision: alarm or not.
1: while End of process not reached do
2: Construct a local time-lagged matrix Xi

test ∈ Rw×m at time instant i by Eq. (7);
3: Construct the MI matrix M i

test by Eq. (8);
4: Obtain the TCs T itest of Xi

test by Eq. (9);
5: Obtain the detection index Θi

test = [µi|νi|ζi|γi]Ttest with the mean of the TCs µ∗;
6: Obtain the similarity index by Di

test = ‖Θ−1
σ (Θi

test −Θµ)‖p;
7: if Di

test ≥ Dcl then
8: Alarm the occurrence of fault;
9: Identify the root variables that cause the fault;

10: else
11: i = i+ 1; Go back to Step 2.
12: end if
13: end while
14: return Decision
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4. A Deeper Insight into the Implementation of PMIM

In this section, we elaborate the implementation details of PMIM. The discussion

is based on a synthetic process with time-correlated dynamics[24, 25]:

x = As + e, (15)

where x ∈ Rm is the process measurements, s ∈ Rr(r < m) is the data sources,

e ∈ Rm is the noise, and A ∈ Rm×r is coefficient matrix that assumed to be column

full rank [25, 16]. Let us assume data sources satisfy the following relations:

ski =

l∑
j=1

βi,jv
k−j+1
i , (16)

where ski is the i-th variable at time k, vk−j+1
i represents the value of the i-th Gaussian

data source with time independence at time k−j+1, βi,j denotes the weight coefficient,

l ≥ 2. Obviously, both s and x are time-correlated.

Here, the fault type of sensor bias4 is considered:

x∗ = x + f , (17)

where x∗ is the measurement under sensor bias, and x denotes the fault-free portion.

In the following, we will show how f affects the matrix-based Rényi’s α-order entropy.

The matrix-based Rényi’s α-order entropy is a non-parametric measure of entropy.

For the p-th variable with w realizations, we build its Gram matrixK ∈ Rw×w (at time

4Other fault types, such as sensor precision degradation x∗ = ηx, gain degradation x∗ = x+ ξme[s],
additive process fault x = A(s + ξmf [p]) + e and dynamic changes β̃ = β + 4β can also analyzed
similarly.
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instant k) by projecting it into a RKHS with an infinite divisible kernel5:

Kxp =



1 exp

(
− (xk−w+1

p −xk−w+2
p )2

2σ2

)
· · · exp

(
− (xk−w+1

p −xkp)
2

2σ2

)
exp

(
− (xk−w+2

p −xk−w+1
p )2

2σ2

)
1 · · · exp

(
− (xk−w+2

p −xkp)
2

2σ2

)
...

...
. . .

...

exp

(
− (xkp−x

k−w+1
p )2

2σ2

)
exp

(
− (xkp−x

k−w+2
p )2

2σ2

)
· · · 1


.

(18)

We normalize K by its trace, i.e., K = K/tr(K). It should be noted that the kernel

induced mapping can be understood as a means of computation of high order statistics6.

Suppose the fault occurs exactly at the p-th variable, i.e., x∗p = xp + f and f =

{fk−w+1, fk−w+2, · · · , fk}. The (i, j)-th entry of the Gram matrix K associated

with xp becomes:

exp

(
−
||xi∗p − xj∗p ||2

2σ2

)
= exp

(
−

[(xip + f i)− (xjp + f j)]2

2σ2

)

= exp

(
−

[(xip − xjp) + (f i − f j)]2

2σ2

)

= exp

(
−

(xip − xjp)2

2σ2

)
exp

(
−

(xip − xjp)(f i − f j)
σ2

)
exp

(
− (f i − f j)2

2σ2

)
,

(19)

where i, j are time indices. Therefore, the new Gram matrix K∗xp can be represented

as:

K∗xp = Kxp ◦K〈xp, f〉 ◦Kf , (20)

5In this work, we simply use the radial basis function (RBF) kernel Gσ(·) = exp(− ‖·‖
2

2σ2 ) as recom-
mended in [49, 46].

6By the Taylor expansion of the RBF kernel, we have

κ(xi, xj) = exp
(
−γ‖xi − xj‖2

)
= exp

(
−γxi2

)
exp

(
−γxj2

)(
1 + 2γxixj

1!
+

(2γxixj)2

2!
+

(3γxixj)2

3!
+ · · ·

)
,

where γ = 1
2σ2 .
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where

K〈xp, f〉 =



1 exp

− (xk−w+1
p −xk−w+2

p )(fk−w+1−fk−w+2)

σ2

 · · · exp

− (xk−w+1
p −xkp)(fk−w+1−fk)

σ2


exp

− (xk−w+2
p −xk−w+1

p )(fk−w+2−fk−w+1)

σ2

 1 · · · exp

− (xk−w+2
p −xkp)(fk−w+2−fk)

σ2


.
.
.

.

.

.
. . .

.

.

.

exp

− (xkp−x
k−w+1
p )(fk−fk−w+1)

σ2

 exp

− (xkp−x
k−w+2
p )(fk−fk−w+2)

σ2

 · · · 1



,

(21)

and

Kf =



1 exp
(
− (fk−w+1−fk−w+2)2

2σ2

)
· · · exp

(
− (fk−w+1−fk)2

2σ2

)
exp
(
− (fk−w+2−fk−w+1)2

2σ2

)
1 · · · exp

(
− (fk−w+2−fk)2

2σ2

)
...

...
. . .

...

exp
(
− (fk−fk−w+1)2

2σ2

)
exp
(
− (fk−fk−w+2)2

2σ2

)
· · · 1


.

(22)

In case of incipient faults, f i−f j ≈ 0, Eq. (22) reduces to an all-ones matrix. As a

result, Eq. (20) can be approximated with K∗xp ≈ Kxp ◦K〈xp, f〉. Take the simulation

data described in section 5.1 as an example, f is induced on x1, the Gram matrix of x1

and x∗1 , i.e., Kx1
and K∗x1

, are shown in Fig. 3. As can be seen, the incipient fault f

causes minor changes on the (normalized) Gram matrix as well as its eigenspectrum,

and thus the entropy of the variable.
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Figure 3: The (normalized) Gram matrix and its associated eigenspectrum in normal state or under incipient
fault. (a) Kx1 in normal state; (b) K∗x1

under incipient fault; (c) the eigenspectrum of Kx1 and K∗x1
. The

incipient fault causes an obvious change in eigenspectrum, and thus the entropy of data.
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We now discuss the change of MI between the p-th variable xp and the q-th variable

xq . Again, suppose the fault of sensor bias occurs at the p-th variable x∗p, the difference

between I(xp; xq) and I(x∗p; xq) is:

4I(x∗p; xq) = I(x∗p; xq)− I(xp; xq)

= [Hα(A∗p) +Hα(Aq)−Hα(A∗p, Aq)]− [Hα(Ap) +Hα(Aq)−Hα(Ap, Aq)]

= Hα(A∗p)−Hα(A∗p, Aq)−Hα(Ap) +Hα(Ap, Aq)

=
1

1− α
log2


w∑
i=1

λi(A
∗
p)
α

w∑
i=1

λi

(
Ap◦Aq

tr(Ap◦Aq)

)α
w∑
i=1

λi(Ap)α
w∑
i=1

λi

(
A∗p◦Aq

tr(A∗p◦Aq)

)α
 ,

(23)

where λi(A) denotes the i-th eigenvalue of matrix A, the normalized Gram matrix

obtained from the corresponding variable.

Again, we use the simulated data described in section 5.1 as an example, where

the fault is induced in x1. By comparing the MI matrix under normal and fault states,

as shown in Fig. 4, we can observe that all entries related to x1 (the first dimensional

measurement) have a sudden change. For example, the MI value in M12 is 2.51 under

normal state, but it becomes 2.67 with incipient fault. This result also indicates that

our methodology has the potential to identify the exact fault sources by monitoring

significant changes in MI values over MI matrix, which makes our detection result

interpretable.

5. Experiments

In this section, experiments on both synthetic data and the real-world Tennessee

Eastman process (TEP) are conducted to demonstrate the superiority of our proposed

PMIM over state-of-the-art fault detection methods. We also evaluate the robustness of

PMIM with respect to different hyper-parameter settings.

Two generally used metrics, namely the fault detection rate (FDR) and the false

alarm rate (FAR), are employed for performance evaluation[1, 54, 55]. The FDR is the
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Figure 4: The MI matrix under (a) normal state; and (b) fault state (the fault is induced on x1). The entries
with changed values are marked with red rectangles. Only entries that are related to x1 have different MI
values.

probability of event where an alarm is raised when a fault really occurs,

FDR = prob(D > Dcl|fault 6= 0), (24)

where D and Dcl are respectively the similarity index and its corresponding control

limit. By contrast, the FAR is the percentage of the samples under normal state but are

identified as faults,

FAR = prob(D > Dcl|fault = 0). (25)

Obviously, a higher FDR and a lower FAR is expected.

5.1. Numerical Simulation

Motivated by [16, 24, 25], we consider a multivariate nonlinear process generated

by the following equation:

x1

x2

x3

x4

x5


=



0.2183 −0.1693 0.2063

−0.1972 0.2376 0.1736

0.9037 −0.1530 0.6373

0.1146 0.9528 −0.2624

0.4173 −0.2458 0.8325




s1

2

s2s3

s3
3

+



e1

e2

e3

e4

e5


,

17



where s satisfies ski =
∑l
j=1 βi,jv

k−j+1
i with a weight matrix β given by,

β =


0.6699 0.0812 0.5308 0.4527 0.2931

0.4071 0.8758 0.2158 −0.0902 0.1122

0.3035 0.5675 0.3064 0.1316 0.6889

 ,

v denotes three mutually independent Gaussian distributed data sources with mean of

[0.3, 2.0, 3.1]T and standard deviation of [1.0, 2.0, 0.8]T , and e denotes Gaussian

white noises with standard deviation [0.061, 0.063, 0.198, 0.176, 0.170]T . Same

to [24, 25], we consider four different types of faults that cover a broad spectrum of

real-life scenarios,

• Type I: Sensor bias x∗ = x + f , with f = 5.6 + e, e randomly chosen from

[0, 1.0];

• Type II: Sensor precision degradation x∗ = ηx with η = 0.6;

• Type III: Additive process fault s∗ = s + f with f = 1.2;

• Type IV: Dynamic changes β̃ = β+4β with4β3 = [−0.825, 0.061, 0.662, −

0.820, 0.835], where β3 denotes the 3-th row of β.

The training set contains 10, 000 samples, the test set contains 4, 000 samples. All

the faults are introduced after the 1, 000-th sample. For convenience, we assume sensor

fault occurs at x1 (i.e., the first dimension of observable measurement), and process

fault occurs at s1 (i.e., the first independent data sources). Empirical evaluation aims

to answer the following three questions:

• Can MI manifest more complex dependence among different dimensions of mea-

surement than the classical correlation coefficient?

• Is fault detection using PMIM robust to hyper-parameter settings and how hyper-

parameters affect the performance of PMIM?

• Does PMIM outperform existing state-of-the-art window-based fault detection

methods?
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Figure 5: The comparison between Pearson’s correlation coefficient γ2 and mutual information estimated
with (a) Shannon’s discrete entropy functional by discretizing continuous variables into 5 bins of equal
width; and (b) matrix-based Rényi’s α-order MI. The values of γ2 and MI are shown in x-axis and y-axis,
respectively.

5.1.1. MI versus Pearson’s correlation coefficient

Firstly, we demonstrate the advantage of MI over the Pearson’s correlation coef-

ficient γ on manifesting the complex (especially nonlinear) dependency between two

variables. Intuitively, if two random variables are linearly correlated, they should have

large γ2 (γ2 > 0.6) and large MI7(but we cannot compare the value of γ2 to the value

of MI). However, if they are related in a nonlinear fashion, they should have large MI

but small γ2 (γ2 ≤ 0.6) [33]. On the other hand, two variables will never have a large

γ2 but a small MI, as linear correlation is a very special case of the general dependence.

Therefore, MI should always be a superior metric to measure the degree of interactions

than Pearson’s correlation coefficient. We perform a simple simulation to support our

argument.

Specifically, we select the first 4, 000 samples in the training set and compute both

MI and γ2 in each window data of size 100. We finally obtain 3, 601 pairs of MI and

γ2. We evaluate MI with both the basic Shannon’s discrete entropy functional and

our suggested matrix-based Rényi’s α-order entropy functional. For Shannon entropy

7In general, γ2 > 0.3 indicates a moderate linear dependence and γ2 > 0.6 indicates a strong linear
dependence [56, 33]. However, there is little guidance for what value of MI really constitutes an indication
of strong dependence [33]. This is just because MI is not upper bounded and different estimators usually
offer different MI values. Therefore, we intuitively consider a MI value is “large” if the corresponding γ2

indicates a “strong” linear dependence (i.e., larger than 0.6).
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Figure 6: Performance comparison between PCA and MI-PCA in terms of FDR (the larger the better) and
FAR (the smaller the better). We replace the covariance matrix in the basic PCA-based fault detection with
MI matrix estimated with both Shannon entropy (denote it MI-PCAShannon) and matrix based Rényi’s α-
order entropy (denote it MI-PCARényi). We use both Hotelling T 2 and squared prediction error (SPE) to
monitor the state of samples.

functional, we discretize continuous variables into 5 bins of equal width to estimate the

underlying distributions. The values of MI (y-axis) and γ2 (x-axis) are specified in the

scatter plot in Fig. 5. As can be seen, there are strong nonlinear dependencies in our

simulated data. Take Fig. 5(b) as an example, we can observe that when γ2 = 0.6, the

smallest MI is 0.37. As such, we consider MI ≥ 0.37 to indicate a strong correlation.

We noticed that there are quite a few points in the region 0.37 ≤ MI ≤ 1.2 and γ2 ≤

0.6, suggesting that nonlinear dependence dominates for a large number of variables.

Further, to quantitatively demonstrate the superiority of MI matrix over the well-

known covariance matrix on nonlinear fault detection, we use MI matrix as a substi-

tute to the covariance matrix in the basic PCA-based fault detection approach. We

denote this simple modification as MI-PCA, which includes both MI-PCAShannon and

MI-PCARényi. Both Hotelling T 2 and squared prediction error (SPE) are considered in

PCA and MI-PCA. Performances in terms of FDR and FAR are shown in Fig. 6. In

case of T 2, MI-PCA always has higher or almost the same FDR values, but signifi-

cantly smaller FAR values. In case of SPE, although traditional PCA has smaller FAR,

its results are meaningless. In fact, if we look deeper, the FDR of PCA is almost zero,

which suggests that traditional PCA completely fails.
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Figure 7: Detection performances of different α on (a) FDRs; and (b) FARs. Both `∞ and `2 norm are
considered in the calculation of similarity index D. As a common practice, window size 100 is used here.

5.1.2. Hyperparameter analysis

We then present a comprehensive analysis on the effects of three hyper-parameters,

namely the entropy order α, the kernel size σ and the length w of sliding window

in PMIM. We focus our discussion on the process data with time-correlated dynamic

changes, i.e., fault Type V. The FDR and FAR values of our methodology with respect

to different hyper-parameter settings are shown in Fig. 7, Fig. 8 and Fig. 9.

The choice of α is associated with the task goal. If the application requires em-

phasis on tails of the distribution (rare events) or multiple modalities, α should be less

than 2, but if the goal is to characterize modal behavior, α should be greater than 2.

α = 2 provides neutral weighting [46, 57]. The detection performances of different

values of α are presented in Fig. 7. For a comprehensive comparison, we consider

α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 5}.

Both `∞ and `2 are assessed in the calculation of similarity index D in Eq. (14). As a

common practice, we use window size 100. As can be seen, the FDR values are always

larger than 99.5%, which suggests that FDR is less sensitive to the changes of α. On

the other hand, the FAR keeps a stable value in the range α ∈ [0.5, 1.2], but suddenly

increases to 25% or above when α ≥ 2. Therefore, we recommend α in the range

[0.5, 1.2] for PMIM.

The parameter σ controls the locality of the estimator, its selection can follow Sil-

verman’s rule of thumb for density estimation [58] or other heuristics from a graph
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cut perspective (e.g., the 10 to 30 percent of the total range of the Euclidean dis-

tances between all pairwise data points [59]). For example, the range from a graph

cut perspective corresponds to 0.21 < σ < 1.33 on the normalized data here. The

detection performances of different σ and α are presented in Fig. 8. We choose σ ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 5, 10, 24, 50, 100} (displayed in

log-scale) and α ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.5}. According to

Fig. 8, FDR is always larger than 99.20%, whereas FAR is relatively more sensitive to

σ. Specifically, FAR reaches to its minimum value when σ is around 0.5. After that,

FAR is consistently increasing when σ ∈ [1, 100]. To achieve higher FDR and lower

FAR values, we thus recommend σ in the range [0.4, 1] for PMIM.

(a) FDRs with different σ (b) FARs with different σ

Figure 8: Detection performances of different σ with a fixed α on (a) FDRs; and (b) FARs. σ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 5, 10, 24, 50, 100} (displayed in log-scale). `2
norm is considered in the calculation of similarity index D.

The local stationarity or smoothness assumption (of the underlying process) might

be violated if the window size is too large. In this case, the eigenspectrum becomes

stable and is less sensitive to the abrupt distributional changes of the underlying pro-

cess, which may lead to decreased detection power or lower FDR values. On the other

hand, in case of a very small window size, the MI estimation becomes unreliable (due

to limited samples) and the local time-lagged matrix may be dominated by environ-

mental noises, which in turn would result in a high FAR value. Moreover, according to

Fig. 9, FDR remains stable when w ∈ [50, 120], and decreases as the window length

increasing when w ≥ 120. By contrast, FAR is more sensitive to w than FDR, but its
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Figure 9: Detection performances of different w on (a) FDRs; and (b) FARs. Both `∞ and `2 norm are
considered for scalarization in the calculation of similarity index D.

changing patterns are not consistent for `2 norm and `∞ norm. We choose w = 100

in the following experiments, because it can strike a good trade-off between FDR and

FAR for both `2 norm and `∞ norm here.

5.1.3. Comparison with state-of-the-art methods

We compare our proposed PMIM with four state-of-the-art window based data-

driven fault detection approaches, namely DPCA [11], SPA [20], RTCSA [24] and

RDTCSA [25]. The hyperparameters of PMIM are set to α = 1.01, σ = 0.5 and w =

100. For DPCA, 90% cumulative percent variance is used to determine the number of

principal components. For RTCSA, RDTCSA and PMIM, their detection performances

are illustrated in Table 1 and Table 2.

According to Table 1, PMIM can effectively detect different types of faults and has

the highest detection rate. Our advantage becomes more obvious for fault Type III and

fault Type V, namely the additive process fault and dynamic changes. Moreover, as

demonstrated in Table 2, for each test process, PMIM achieves smaller FAR values at

the early stage of the normal phase. Although SPA achieves nearly zero FAR values, its

FDR values is too small, which indicates that SPA is hard to identify faults here. This

is not hard to understand. Note that SPA uses a time lag of 1. In this sense, any two

adjacent windows of data only differ in 1 sample. The highly overlapped windows will

lead to highly correlated SPs, which severely deteriorate the capability of SPA [20].
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Table 1: The FDRs (%) of different methods for the numerical simulations

No. DPCA SPA RTCSA RDTCSA PMIM
T 2 SPE Dr Dp

1 51.17 99.70 0.80 2.80 88.43 91.01 91.57
2 21.23 21.0 2.40 6.67 82.50 100 99.63
3 33.10 99.83 0.77 7.37 96.60 96.83 97.50
4 81.23 85.57 29.13 99.13 99.70 99.70 99.87

Aver. 46.68 76.53 8.28 29.0 91.81 96.89 97.14

T 2 denotes Hotelling’s T 2 statistic; SPE denotes squared prediction error; Dr and Dp
denote SPE and T 2 of statistics patterns (SPs) in SPA framework, respectively. For SPA,
the selected statistics are mean, variance, skewness, and kurtosis. For DPCA, SPA and
RDTCSA, the time lag is set to 2, 1 and 1 respectively. The window lengths are all
set as the commonly used 100. For RTCSA, RDTCSA and PMIM, `2 norm is used as
scalarization. The significance level is set as 5%.

Table 2: The FARs (%) of different methods for the numerical simulations

No. DPCA SPA RTCSA RDTCSA PMIM
T 2 SPE Dr Dp

1 17.31 18.28 0.22 10.32 6.22 3.11 1.78
2 20.20 19.44 0 0 4.67 1.44 5.01
3 18.28 15.53 0 9.54 4.88 3.65 2.77
4 19.44 17.92 0 15.54 11.88 15.53 2.77

Aver. 18.81 17.79 0.055 8.85 6.91 5.93 3.08
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5.2. TEP Experiment

As a public benchmark of chemical industrial process, Tennessee Eastman process

(TEP) created by the Eastman Chemical Company has been widely used for multivari-

able process control problems [60, 61] (see Appendix B on the introduction of TEP

process). In this application, we use the simulation data generated by the closed-loop

Simulink models developed by Braatz [61, 62, 63] to evaluate the effectiveness of our

proposed PMIM. We use 22 continuous process measurements (sampled with a sam-

pling interval of 3 minutes) and 11 manipulated variables (generated at time delay that

varys from 6 to 15 minutes) for monitoring, which constitutes 33 dimensional of input

data. To obtain a reliable significance level, we generate 200 hours of training data

(4, 000 samples in total) and 100 hours of testing data (2, 000 samples in total). In each

test data, a fault occurs exactly after 20 hours from the beginning.

First, the MI matrix (with the boxplot of its diagonal vector) of normal state, fault 1

(step fault) and fault 14 (sticking fault) are shown in Fig. 10. Obviously, the MI matrix

keeps almost the same in different time instants under the normal state. However,

the occurrence of a fault will lead to different joint or marginal distributions on each

dimensional of input, and thus change the entry values in MI matrix. By comparing

the boxplots of normal and fauts states, we can observe the changes of diagonal vector,

i.e., changes of entropy. Moreover, different types of faults produce different changes

of MI matrix.

The mean of MI values between one variable and all remaining variables8 are

shown in Fig. 11. As Fig. 11(a) shown, the central box becomes wider and the 75-th

percentiles becomes larger. This indicates that the fault 1 is possibly a step change. In

fact, fault 1 indeed induce a step change on stream 4. This feeding changes of reactants

A, B and C causes a global impacts on measurements. By contrast, fault 14 induces

a sticking change on the reactor cooling water valve, and the most relevant variables

are in dimensions 9, 21 and 32 [62]. From Fig. 11(b), there are indeed three outliers

which are plotted individually using the “ + ” symbol, corresponding to the 9-th, 21-

th and 32-th dimensional variables. In other words, the changes on the dimensions

8For the i-th variable, we just compute the mean of I(x1,xi), · · · , I(xi−1,xi), I(xi+1,xi), · · · , I(xm,xi).
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(c) Fault 1 (t=1, 500)
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Figure 10: The MI matrix of TEP under normal and fault states: (a) the MI matrix of normal state at 500-th
sampling instant; (b) the MI matrix of normal state at 1, 500-th sampling instant; (c) the MI matrix of fault
1 at 1, 500-th sampling instant; and (d) the MI matrix of fault 14 at 1, 500-th sampling instant.
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Figure 11: The means of MI matrix of TEP under fault states: (a) fault 1 (step fault); and (b) fault 14 (sticking
fault). The left plot is the means of MI along each variable, and the right is their confidence interval.

9, 21 and 32 are exactly the driving force that lead to the changes in MI matrix (and

hence its eigenspectrum). In this sense, our PMIM also provides insights on the exact
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root variables that cause the fault, i.e., our fault detection using PMIM is interpretable.

One should also note that, an interpretable results also benefit problems related to fault

isolation [64] and restoration [65].

Next, we use the empirical method to determine the confidence limits of different

MSPM methods under the same confidence level. Without loss of generality, the win-

dow lengths of all competing methods are set to 100, and all the statics mentioned in

Section 3 are used here. The average FDR and FAR values of different MSPM methods

on TEP are summarized in Table 3 and Table 4, respectively.

It can be observed from Table 3 that the FDR of RTCSA, RDTCSA, and PMIM

are consistently higher than other methods and remain stable across different types of

faults. Moreover, our PMIM always outperforms RTCSA, owing to the superiority of

MI over covariance matrix in capturing the intrinsic interactions (either linear or non-

linear) between pairwise variables. PMIM detects most of faults. Although our method

has relatively lower FDR on step fault 5 and unknown fault 19 with w = 100, its

detection performance in both faults can be significantly improved with larger window

size w (see Fig. 12.) Detection performances in terms of FDR of different w for fault 5

and 19 are shown in Fig. 12. w = 150 is better to achieve higher FDRs here.
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Fault 5

Figure 12: Detection performances in terms of FDR of different w for fault 5 and 19 in TEP. w ∈
{80, 100, 120, 150, 180, 200}. Fault 5 is marked by red, fault 19 is marked by blue.

From Table 4 all the methods achieve favorable FAR, approaching to the theoreti-

cal minimum value, i.e., the used significance level. Moreover, our FAR is lower than

RTCSA and RDTCSA. This result confirms the superiority of MI in capturing the in-
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Table 3: The FDRs (%) of different MSPM methods for TEP

No. DPCA SPA RTCSA RDTCSA PMIM
(fault type) T 2 SPE Dr Dp

1 Step 99.91 99.94 99.88 99.81 99.62 99.56 99.69
2 Step 99.19 98.88 99.12 99.12 98.50 98.69 98.31
4 Step 11.63 100 16.50 100 98.38 99.44 99.56
5 Step 14.94 28.56 19.50 87.81 99.88 97.25 77.38
6 Step 99.50 100 13.63 13.63 100 99.94 100
7 Step 100 100 44.12 100 100 100 100
8 Random 98.88 93.63 99.12 99.12 97.88 97.75 98.62
10 Random 21.69 51.62 59.56 88.12 96.63 37.38 96.06
11 Random 36.88 95.44 99.69 100 96.25 92.94 99.0
12 Random 99.38 97.31 99.31 99.31 99.38 99.50 100
13 Slow drift 98.56 92.31 98.31 100 97.88 98.0 98.25
14 Sticking 99.88 99.94 99.94 99.94 99.88 99.88 99.88
16 Unknown 15.37 52.38 63.56 91.81 99.75 79.31 99.50
17 Unknown 87.19 98.31 98.0 99.31 97.81 97.75 97.88
18 Unknown 94.56 95.75 93.81 95.56 93.75 93.69 94.69
19 Unknown 48.25 49.75 29.38 99.62 100 97.19 78.19
20 Unknown 47.38 61.31 96.19 96.75 96.69 95.81 96.31

The window lengths are all set as 100. The selected statistics are mean, variance, skewness, and kurtosis.
For RTCSA, RDTCSA and PMIM, `∞ norm is used as scalarization. For DPCA and RDTCSA, the time
lag is set to 2 and 1 respectively, recommended by authors [24, 25]. The significance level is set as 2%.

Table 4: The average FARs (%) of different MSPM methods for TEP

FAR DPCA SPA RTCSA RDTCSA PMIM
(%) T 2 SPE Dr Dp

Normal 2.05 3.95 4.73 5.96 2.89 3.63 1.18
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trinsic interactions. On the other hand, the detection delay is inevitable owing to the

use of sliding windows, a common drawback of the window-based MSPM methods.

Take fault 1 for instance, detection performances in terms of FAR, FDR and TFDR

(we define the FDR value in the transition phase9 as TFDR, the higher the better), of

RTCSA, RDTCSA and PMIM are illustrated in Fig. 13. Our proposed PMIM has the

lowest FAR and highest TFDR, which indicates that PMIM is more sensitive to fault

1 than RTCSA and RDTCSA. The detection delay of the proposed method is only 4

samples, which is acceptable in window-based approaches.
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Figure 13: Detection performances of TCSA methods for fault 1 in TEP. TFDR refers to the FDR value
in transition phase. The higher TFDR, the better performance of the used methodology. The methods of
RTCSA, RDTCSA and PMIM are marked by blue, red and yellow respectively.

To describe the effectiveness of our proposed PMIM by a more general data, we

use the benchmark data of base model that can be downloaded from: http://web.

mit.edu/braatzgroup/links.html. 960 samples are used as test data. The

fault is induced after 8 hours, which corresponds to the 161-th samples. Because the

length of sliding window is 100, the fault occurs at the time index 61 (for RTCSA

and PMIM) and 60 (for RDTCSA). Take fault 21 as an example, the detection per-

formances of RTCSA, RDTCSA and our PMIM are shown in Fig. 14. The FARs of

three competing methods are 1.67% (for RTCSA), 27.87% (for RDTCSA) and 0 (for

PMIM). Obviously, our method has the lowest FAR in this example. RTCSA detects a

fault at the 85-th sample, which suggests a detection delay of 24 samples. By contrast,

9Transitional phase can be regarded as a connection process between its two neighboring stable phases,
in which the window contains both normal and abnormal samples.
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Figure 14: Detection performances of TCSA methods for fault 21 in TEP. The occurrence of fault corre-
sponded to the 61-th (RTCSA, PMIM) / 60-th (RDTCSA) measurements, marked by black line. The FDR
values in transition phase are marked by pink. The green line indicates the first sample that detected as a
fault instant.
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our PMIM detects a fault at time index 69, with a detection delay of only 8 samples.

RDTCSA fails in this example, because it alarms a fault at time index 42 (18 samples

ahead of the occurrence of fault), which is a false detection.

6. Conclusion

This work presents a new information-theoretic method on fault detection. Before

our work, most of the information-theoretic fault detection methods just use mutual

information (MI) as a dependence measure to select the most informative dimensions

to circumvent the curse of dimensionality. Distinct from these efforts, our method

does not perform feature selection. Instead, we constructed a MI matrix to quantify

all nonlinear dependencies between pairwise dimensions of data. We introduced the

matrix-based Rényi’s α-order mutual information estimator to estimate the MI value

in each entry of the MI matrix. The new estimator avoids the density estimation and is

well-suited for complex industrial process. By monitoring different orders of statistics

associated with the transformed components of the MI matrix, we demonstrated that

our method is able to quickly detect the distributional change of the underlying process,

and to identify the root variables that cause the fault. We compared our method with

four state-of-the-art fault detection methods on both synthetic data and the real-world

Tennessee Eastman process. Empirical results suggest that our method improves the

fault detection rate (FDR) and significantly reduces the false alarm rate (FAR). We also

presented a thorough analysis on effects of hyper-parameters (e.g., window length w

and kernel width σ) to the performance of our method and illuminated how they control

the trade-off between FAR and FDR.

Finally, one should note that the MI matrix is a powerful tool to analyze and dis-

cover pairwise interactions in high dimensions of multivariate time series in signal

processing, economics and other scientific disciplines. Unfortunately, most of its prop-

erties, characteristics, and practical advantages are still largely unknown. This work is

a first step to understand the value of non-parametric dependence measures (especially

the MI matrix) in monitoring industrial process. We will continue working along this

direction to improve the performance of our method and also theoretically explore its
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fundamental properties.

Acknowledgment

This work was supported by the National Natural Science Foundation of China

under Grant 61751304, 61933013, 62003004; and the Henan Provincial Science and

Technology Research Foundation of China under Grant 202102210125.

Appendix A

For reproducible results, we provide key functions (in MATLTB 2019a) of the pro-

posed PMIM. Specifically, “mutual information estimation.m” estimates the matrix-

based Rényi’s α-order mutual information (Eq. 6), in which the “gaussianMatrix.m”

evaluates the kernel induced Gram matrix (Eq. 18). “MI matrix.m” obtains a series of

mutual information matrix at each time instant k. “MITCSA.m” computes the similar-

ity index (Eq. 14).

1 function mutual_information = mutual_information_estimation(variable1,

variable2,sigma,alpha)

2 % variable 1 is i-th dimensional of the process measurement (i-th

variable)

3 % variable 2 is j-th dimensional of the process measurement (j-th

variable)

4 %% estimate entropy for variable 1

5 K_x = real(guassianMatrix(variable1,sigma))/size(variable1,1);

6 [˜, L_x] = eig(K_x);

7 lambda_x = abs(diag(L_x));

8 H_x = (1/(1-alpha))*log((sum(lambda_x.ˆalpha)));

9

10 %% estimate entropy for variable 2

11 K_y = real(guassianMatrix(variable2,sigma))/size(variable2,1);

12 [˜, L_y] = eig(K_y);

13 lambda_y = abs(diag(L_y));

14 H_y = (1/(1-alpha))*log((sum(lambda_y.ˆalpha)));

15

16 %% estimate joint entropy H(X,Y)

17 K_xy = K_x.*K_y.*size(variable1,1);
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18 [˜,L_xy] = eig(K_xy);

19 lambda_xy = abs(diag(L_xy));

20 H_xy = (1/(1-alpha))*log( (sum(lambda_xy.ˆalpha)));

21

22 %% estimate mutual information I(X;Y)

23 mutual_information = H_x + H_y - H_xy;

24

25 end

1 function K = guassianMatrix(X,sigma)

2 G = X*X’;

3 K = bsxfun(@minus, 2*G, diag(G)’);

4 K = exp((1/(2*sigmaˆ2))*bsxfun(@minus, K, diag(G)));

5

6 end

1 function MImatrixcell = MI_matrix(data,sigma,alpha,MIsize)

2 % Input:

3 % data is the sample matrix X

4 % MIsize is the length of sliding window

5 % alpha is the entropy order

6 % sigma is the kernel size

7 % Output:

8 % MImatrixcell is a series of mutual information(MI) matrix over

the whole process

9 [nums nums_vars]=size(data);

10 [Data, av, st]=zscore(data);

11 for k=1:nums-MIsize+1

12 dydata=Data(k:k+MIsize-1,:);

13 % MImatrix is the MI matrix at time instant k

14 for i=1:nums_vars

15 for j=i:nums_vars

16 MImatrix(i,j) = mutual_information_estimation(dydata(:,i

),dydata(:,j),sigma,alpha);

17 MImatrix(j,i) = MImatrix(i,j);

18 end

19 end

20 MImatrixcell{1,k} = MImatrix;

21 end
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22

23 end

1 function Di = MITCSA(data,MImatrixcell,MIsize)

2 % Input:

3 % data is the sample matrix X

4 % MIdata is the MI matrix of data

5 % MIsize is the length w of sliding window

6 % Output:

7 % Di is the similarity index

8 for i=1:length(MImatrixcell)

9 MImatrix=MImatrixcell{1,i};

10 % Eigen-decomposition of the mutual information(MI) matrix

11 [Vet C]=eig(MImatrix,’vector’);

12 % The MI based transform components(TCs)

13 T=data{1,i}*Vet;

14 % The statistic of TCs

15 Mu(i,:) = mean(T);% mean

16 V(i,:) = sum((T-Mu(i,:)).ˆ2)/MIsize; % variance

17 S1(i,:)= sum((T-Mu(i,:)).ˆ3)/MIsize;

18 K1(i,:)= sum((T-Mu(i,:)).ˆ4)/MIsize;

19 S(i,:) = S1(i,:)./(V(i,:).ˆ(3/2)); % skewness

20 K(i,:) = K1(i,:)./(V(i,:).ˆ2)-3; % kurtosis

21 end

22 Oo = [Mu,V,S,K];

23 Mu_mu = mean(Mu);% the reference mean

24 Oo_mu = mean(Oo);

25 Oo_sv = std(Oo,1);

26 % The calculation of the similarity index

27 for i=1:length(MImatrixcell)

28 D1 = Oo(i,:)-Oo_mu;

29 D = D1./(Oo_sv);

30 Di(1,i) = norm(D,inf);

31 end

32

33 end
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Appendix B

Tennessee Eastman process (TEP) created by the Eastman Chemical Company is

designed to provide an actual industrial process for evaluating process control strategies[60,

61]. It is composed of five major unit operations including a chemical reactor, a prod-

uct condenser, a recycle compressor, a vapor-liquid separator and a product stripper.

Fig. 15 shows its schematic. 21 types of identified faults are listed in Table 5. In this

work, 33 different variables (22 process measurements and 11 manipulated measure-

ments) constitute the input of PMIM, as listed in Table 6. In this sense, the MI matrix

in TEP is of size 33× 33.

Figure 15: The schematic of TEP.
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