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Abstract

This paper considers the parameter identification problems of the input nonlinear output-error (IN-OE) systems,
that is the Hammerstein output-error systems. In order to overcome the excessive calculation amount of the
over-parameterization method of the IN-OE systems. Through applying the hierarchial identification principle
and decomposing the IN-OE system into three subsystems with a smaller number of parameters, we present the
key term separation auxiliary model hierarchical gradient-based iterative algorithm and the key term separation
auxiliary model hierarchical least squares-based iterative algorithm, which are called the key term separation
auxiliary model three-stage gradient-based iterative algorithm and the key term separation auxiliary model
three-stage least squares-based iterative algorithm. The comparison of the calculation amount and the simulation
analysis indicate that the proposed algorithms are effective.
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1. Introduction

Mathematical models are the basic requirement of studying natural sciences [1] and the solutions of numerous
problems arising in the field of engineering and applied physics are based on the mathematical models [2, 3].
Parameter identification plays a key role in system identification [4, 5], and the parameter identification of
linear and nonlinear systems is always a hot topic in the filed of system identification [6, 7, 8]. Nonlinear
systems are simply categorized into the input nonlinear systems (i.e., Hammerstein nonlinear systems), the
output nonlinear systems (i.e., Wiener nonlinear systems), the feedback nonlinear systems, and the input-
output nonlinear systems (i.e., Hammertein—Wiener nonlinear systems). Recently, many methods have been
proposed to solve the parameter identification problems of nonlinear systems [9, 10]. For instance, Zhang et al.
proposed an adaptive-noise-correction integrated parameter identification method for time-delayed nonlinear
systems [11]. By dividing the variables into the linear and nonlinear parts to simplify a class of nonlinear
least squares problems, Gan et al. studied several separated algorithms for such problems and compared the
performance of these algorithms by making use of the Monte Carlo experiments [12, 13, 14, 15, 16].

The input nonlinear systems consist of a static nonlinear block and a linear dynamical subsystem, and can
be categorized into the input nonlinear equation-error systems and the input nonlinear output-error systems
based on the features of the linear parts [17]. Many applications about the input nonlinear systems have been
studied in the literatures. Various parameter identification methods have been proposed for input nonlinear
systems, such as the auxiliary model identification idea [18], the multi-innovation identification theory [19]. For
example, Albu and Nishikawa presented an iterative kernel algorithm for nonlinear acoustic echo cancellation
[20]. Equation-error models and output-error models are two basic types of stochastic systems, and have received
considerable attention in the field of system identification [21]. The output-error model is often used in practice,
and the parameter estimation for output-error systems is essential [23, 24, 25, 26, 27]. Recently, Ding et al.
studied the parameter identification of linear and nonlinear output-error models, and proposed a particle filtering
based recursive least squares algorithm and a particle filtering based multi-innovation recursive least squares
algorithm to identify the system parameters [28]. The recursive identification and the iterative identification
are basic for parameter identification [29, 30, 31, 32]. Differently from the recursive algorithms, the iterative
algorithms update the parameter estimates by making use of a batch of data. The gradient-based iterative and

*This work was supported by the National Natural Science Foundation of China (No. 61873111) and the 111 Project (B12018).
*Corresponding author
Email address: fding@jiangnan.edu.cn (Feng Ding)

Preprint submitted to Journal of the Franklin Institute April 12, 2021



least squares-based iterative algorithms are the commonly used iterative algorithms for carrying out parameter
estimation and for solving some matrix equations [33, 34, 35, 36].

This paper considers the parameter estimation problems of input nonlinear output-error systems and develops
a key term separation auxiliary model three-stage gradient-based iterative (KT-AM-3S-GI) algorithm and a key
term separation auxiliary model three-stage least squares-based iterative (KT-AM-3S-LSI) algorithm based on
the key term separation technique and the hierarchical identification principle. The salient features of this work
are summarized as follows.

e Based on the hierarchical identification principle, the key term separation identification model of the
IN-OE model is decomposed into three sub-models to improve the computational efficiency.

e Based on the gradient search and least squares search, a KT-AM-3S-GI algorithm and a KT-AM-3S-LSI
algorithm are proposed to estimate the parameters of the IN-OE systems.

This paper is organized as follows. Section 2 establishes the over-parameterization identification model.
Section 3 establishes the key term separation identification model and the key term separation three-stage
identification model of the input nonlinear output-error systems. A KT-AM-3S-GI algorithm is presented in
Section 4. Section 5 proposes a KT-AM-3S-LSI algorithm. Section 6 analyzes the the calculation amount of
the proposed algorithms and the existing algorithms. Section 7 offers an example to illustrate the effectiveness
of the proposed algorithms. Finally, Section 8 gives some concluding remarks.

2. Over-parameterziation identification model and the least squares-based iterative algorithm

Regression analysis is a method of predictive modeling technology that studies the relationship between the
dependent variable (target) and the independent variable (predictor). This technique is used in forecasting, time
series modeling and finding causal relationships between variables. The regression analysis is an important tool
for data modeling and analysis. The regression models are used to analyze the relationship between variables
and to reveal the degree of influence of multiple independent variables on a dependent variable.

Consider the input nonlinear output-error system described by an input nonlinear output-error (IN-OE)
model in Figure 1 [37], where the linear dynamical subsystem of the IN-OE model is given by

VO) = Gyt + ol 1)

The variable y(¢) € R is the output of the system, v(t) € R is a white noise with zero mean, A(z) and B(z) are
the polynomials of the unit shift operator z=1 [271y(¢) = y(t — 1)] with following mathematical descriptions:

A(z):=1+ a1z Y tasz 2+ + an, 2" ", a; € R,
B(z):=by+ b1z 4oz %4+ by, 2™, b €R,

a(t) € Ris the output of the nonlinear part and is a linear combination of a set of known basis functions f;(u(t))
with parameters 7;’s, that is

u(t) = f(u(t)) = Z Vi fi(u®) = nfi(ut) + v fo(u(t)) + -+ Yo fn (ult)), (2)

u(t) € R is the input of the system. Assume that the degrees m, n, and n; are known, and y(¢t) = 0, u(t) =0
and v(t) =0 for ¢ < 0.

u(t) £(%) a(t) B(z) x(t) CL y(1)

Figure 1: The input nonlinear output-error (IN-OE) system

From the IN-OE systems, we observe that @(t) is a hidden variable and is the output of the nonlinear part
and the input of the linear dynamical subsystem. Since @(¢) is an hidden variable located in the system, it
cannot be measured directly. Meanwhile, the output y(¢) is the noisy measurement of x(t). For the nonlinear
part, there are many sets of basis functions such as polynomials, trigonometric functions, exponential functions,
piecewise linear functions, etc., which can be chosen as the nonlinear basis functions f;(x).



Because the nonlinear function f(x) is in series with the transfer function 2 A , for any nonzero constant «,
(af(*),B(z)/a) and (f(*), B(z)) result in the identified input and output relatlonshlp for Equations (2)—(1).
In order to ensure that the system parameters are identifiable, a necessary work is to normalize u(t) or B(z).
Some different normalization assumptions in terms of different normalization methods are given as follows.

Assumption 1: Let by be 1 or 73 be 1; another choice is to normalize any nonzero coefficient b; or 7; to 1.

Assumption 2: Let B(1) be 1 or B(1)/A(1) be 1, where B(1)/A(1) is the gain of the linear dynamic subsystem.

Assumption 3: Let b%—i—b%—i—n-—&—b%b be 1, b >0, orlet v +~92 4+ ---+~2 be 1, v > 0.

The assumption scheme of the normalization in this paper is the first one, that is, bjp = 1. Other choices of
the normalization assumptions will lead to some different identification algorithms, for instance, v; = 1.

In this section, an over-parameterization identification model is established for comparison. Let us discuss
the over-parameterization identification model via the following analysis procedure. The noise-free output of
the system in Figure 1 is given by

u(t) € R. (3)
Uniting Equations (1) and (3) in accordance with the property of shift operator z~! yields
z(t) =[1 — A(2)]x(t) + B(2)u(t)
Ng Ny
= Zai:z:(t —i) + Zbiﬂ(t — )

:—Z:aZ (t —1) —|—Zb Z’yjfj (t —1)). (4)

=0 Jj=1

Define the parameter vector ¥ and the information vector ¢;(t) as

9:=[9),00,07,---,0, " €R"™, ny:=n,+m(ny +1), (5)
p1(t) =" (1), P (1), @1 (1), P2 (1), -+, @y, (1)]" € R™, (6)

where the parameter vectors ¥y and 9;, and the information vectors ¢(t) and ¢;(t) are defined as

Vo :=[ag, a2, - ,a,,]" € R", (7)

0; :=[biv1,bive, - bivm]|T €R™, 1 =0,1,2,...,ny, (8)

()= [—z(t—1),—x(t—2), -, —z(t —n,)]" € R™, (9)

®i(t) = [f1(ult =), fo(ult =0)), -, fm(u(t —2))]" € R™. (10)
According to the aforementioned definitions, Equations (4) and (1) take the concise forms:

x(t) = 7 ()9, (11)

y(t) =xz(t) +v(t) = 1 ()9 + (D). (12)

As a result, the over-parameterization identification model in (11)—(12) is established for the IN-OE system
in (1)—(2). The proposed algorithms in this paper are based on this identification model in (11)—(12). Many
identification methods are derived based on the identification models of the systems [38, 39, 40, 41] and can be
used to estimate the parameters of other linear systems and nonlinear systems [42, 43, 44, 45, 46, 47] and can
be applied to fields [48, 49, 50, 51, 52, 53] such as chemical process control systems.

Remark 1: The parameter vector ¥ of the over-parameterization identification model in (12) contains all
parameters of the whole system. However, there exists the product terms composed of the linear dynamical
subsystem parameters b;’s and the static nonlinear part parameter «y;’s, which leads to a result that the number
ny := ng +mnp +m of the parameter vector 9 is larger than the number n, +ny +14+m (m,n, > 2) of the all
parameters of the original system, and generates many redundant parameter estimates. Hence, it is necessary
to study new identification methods with smaller calculation amount.

3. The key term separation three-stage identification model

In this section, a key term separation identification model is established based on the key term separation
technique. Furthermore, in order to improve the computational efficiency, the key term separation identifi-
cation model is decomposed into three submodels with fewer variables and a key term separation three-stage
identification model is established.



3.1. The key term separation identification model

Choosing @(t) as the key term to parameterize the noise-free output, and Equation (3) can be expressed as

- Z a;z(t — i) + Zb: biu(t — i) + bou(t)
=D st =)+ Y bt — )+ Do ult), 13)

Define the sub-parameter vectors a, b and -, and the sub-information vectors ¢, (t), @p(t) and f(t):

a:=la1,az,a3, - ,ap,]T € R,
b:=1[b1,b2,b3, - ,byp,]T € R",
v = [v1,7278, 0 Ym] T € R™,
po(t) :=[—z(t—1),—x(t —2),—x(t —3), - ,—x(t —ny)]" € R",
wu(t) = [u(t —1),a(t —2),u(t = 3),---,ult —np)]" € R™,
F@) = [f1(u(®)), f2(u(t)), fs(u(t), -, fm(u(t))]" € R™. (14)
Using these definitions, Equations (2)—(3) take the concise forms:
u(t) =" (@t)y, (15)
z(t) = pa(t)a+ @y ()b + £ (1), (16)
y(t) = x(t) + o(t)
=wa(t)a+ @y ()b + )y +v(D). (17)
Let n := ng 4+ np + m, define the parameter vector ¢ and the information vector ¢s(t) as
9:=[a",b",¥"]" e R, (18)
pa(t) == lqa (1), o (1), F7(1)]" € R™. (19)
Then, Equation (17) can be rewritten as
y(t) = @5 ()0 + v(t). (20)

Therefore, we can get the key term separation identification model in (20) of the IN-OE system in (2)—(1),
where 9 is the parameter vector to be identified and contains all parameters of the original system.

Remark 2: Obviously, the dimension of the parameter vector ¥ of the key term separation identification model
in (20) is smaller than that of the over-parameterization identification model in (12). Hence, the identification
algorithms based on the key term separation identification model have less computation than the identification
algorithms based on the over-parameterization identification model.

3.2. The key term separation three-stage identification model

According to the key term separation identification model in (15)—(17), define three intermediate variables:

y(t) — @y ()b — 7 (t)v,
= y(t) — pF(t)a — fT (),
y(t) — @a(t)a — @y (1)b.

The original parameter vectors a, b and -« to be identified are included in these three fictitious subsystems,
respectively.

Remark 3: On handling the key term separation three-stage identification models in (21)—(23), a difficulty
arises because the sub-information vectors ¢, (t) and ¢,(t) are constructed by the unknown terms x(t — )
and @(t — i). The approach taken here is to establish the auxiliary models, whose outputs are regarded as
the estimates of these unknown terms, respectively, and to construct the sub-information vectors with their
estimates 21 (t — i) and ug_1(t — i) at iteration (k — 1).



4. The key term separation auxiliary model three-stage gradient-based iterative algorithm

Consider the data from ¢t = 1 to t = L, and define the stacked output vectors Y (L), Y, (L), Y3(L) and
Y, (L), and the stacked information matrices ®,(L), ®,(L) and F(L) as

Y(L):=[y(1),5(2),y(3), - ,y(L)]" € RF, (24)
Yo(L) :=[Ya(1),¥a(2),ya(3 )7--- Ya(L)]" =Y (L) — ®y(L)b — F(L)y € RY,

Yo (L) = [ys(1), 4(2), 90(3), -+ y(L)]" = Y (L) — ®o(L)a — F(L)y € RY,

Y,(L) = [y5(1),95(2),5(3), -,y (L))" = Y(L) = Bu(L)a — Py(L)b € R,

Po(L) = [pa(1),#a(2),0a(3), -+, pa(L)]" € REXMe,

Py(L) = [pn(1), 06(2), 5(3), -, p(L)]" € REX™,

F(L):=[f(1), £(2), £(3),--- , F(L)]" € REX™. (25)

Let the norm of a matrix (or a column vector) X is denoted by ||bfX|| where || X||? := tr[X X T]. According to
Equations (21)—(23), define three criterion functions:

Ta(@) = 3 |Ya(L) - Bu(L)al?,
T(B) = 5IY(L) ~ (L0l
L0 = 5% (L) = FEA P,

Let k =1,2,3,--- be an iterative variable, a; € R"e, by, € R™ and Y € R™ be the estimates of the parameter
vectors a, b and ~ at iteration k, and pik, por and pg be three convergence factors. Using the negative
gradient search and minimizing J,(a), Jy(b) and J, () lead to the following gradient-based iterative relations

for computing a, by, and g
ap = ap—1 — p1 xgrad[J, (Gr—1)]
= a1+ 1k P, (L)[Ya(L) — Po(L)ar—1]
= ay—1 + 1,18} (L)Y (L) = By(L)br—1 — F(L)Fr—1 — Pa(L)ar1]
=ay—1 + p 1B (L)Y (L) = Pa(L)ar— — By(L)br—1 — F(L)Ar-1], (26)
by =by_1 — pio pgrad[Jy(bg_1)]
=bp—1 + 2B (L)[Yo(L) — By(L)bg—1]
=bi1 + p2 @B (L)Y (L) = Po(L)an—1 — F(LY -1 — Sy(L)bg1]
= b1 + p2 B (L)Y (L) = Bo(L)ag—1 — By(L)br—1 — F(L)Ar-1], (27)
Y = Ye—1 — pagrad[Jy (Ye—-1)]
= k-1 + s F (L)Y, (L) = F(L)yg]
= A1 + s FT (L)Y (L) = o (L)ar—1 — Py(L)bk—1 — F(L)Ag-1)- (28)
Equations (26)—(28) cannot figure out the parameter estimates ay, by, and 4, because the stacked information
matrices @,(L) and D,(L) contain the unknown entries x(t — i) and @(¢ — 7). The solution is to replace these
unknown entries in the stacked information matrices @,(L) and @,(L) with their corresponding estimates
Z—1(t — 1) and Uy_1(t — ) at iteration (k — 1). Define the estimates @q x(t), @bk (t), Par(L) and Py x(L) of
@alt), @o(t), Ba(L) and By (L) as

Gunlt) i= [—ipr(t — 1), —ip 1 (t—2), -, —&p_1(t —na)]" € R, (29)
G k(t) = [Ug—1(t — 1), up—1(t —2), -+ ,Up—1(t — np)]" € R™, (30)
B0 k(L) = [@a k(1) Pap(2), Bak(3), - s Par(L)]T € RE e, (31)
@y, 1. (L) = [Po(1), Po.k(2), ok (3), -, Poi(L)]" € REX™. (32)

Replacing @, (L) and (L) in (26)—(28) with their estimates @, (L) and @, 5 (L) yields the following gradient-
based iterative algorithm for estimating a, b and -~:

ar, = a1+ p1p @ (L)Y (L) — B p(L)an—1 — Py1(L)bi F(L)Ak-1] (33)
=T, — 1w @% (L) P k(L) k-1 + p1 1P} (L)Y (L) — &, k( Ybi—1 — F(L)A-1],
br =by_1 + uz,k@;k(L)[Y(L) — &, 1 (L)ay—1 — Py 1 (L)by—1 — F(L)Ay_1] (34)



= [I1, — 2 k51 (L) Bt o (L))br 1 + 25 ®5 1 (L)Y (L) = By i (L)a—1 — F(L)Ax1],
Ak =Fk—1 + psF" (L)Y (L) = So (L) ar—1 — Dy (L)bp—1 — F(L)A-1] (35)
= I, — psF"(L)F (L) A1 + psF™ (L)Y (L) = @ k(L) k1 — By i (L)br1],
The above equations can be viewed as three discrete-time systems. In order to guarantee the convergence of

the parameter estimates ay, by and 4y, all characteristic values of the matrices [I, — pi ksﬁa W(L)Ba k(L)

(I, — ﬂlk’éb,k( )dib7k( )] and [Iy, — psF*(L)F(L)] must be inside the unit circle. The conservative choices of
M1k, Mok and ps are to satisfy

2 _ ~
M1,k < )\max [éz’k(L)émk(L)] = 2)‘max [éa k:(L)dlek(L)L (36)
2 1 18T
W T T R .
2 _

where Amax[X] denotes the maximum eigenvalue of the square matrix X. Calculating the convergence factors
through Equations (36)—(38) is very complicated, so the convergence factors can be simply taken as

i1 2] B0 (D)2, (39)
o, < 2|41 (L)) 2, (40)
<2|F(L)] 2, (41)

Based on Equations (15)—(16), the estimates iy (t) and #x(t) at iteration k can be calculated through two
auxiliary models:

g (t) :== f(t)An, (42)
Fi(t) == @p (B + Py (H)br, + Uk (1), (43)

Combining Equations (24)—(43), we can obtain the following key term separation auxiliary model three-stage
gradient-based iterative (KT-AM-3S-GI) algorithm [37]:

ag = ak1 + p1 k@] L (L)Y (L) — o i (L)an 1 — By i (L)bs—1 — F(L)Ak1), (44)

11k < 2Ahe[PF L (D) Bk (L)], or  pua g < 2[Ba (L)) 72, (45)

b =bi_1 + 2, kdsb R L)Y (L) = P (L)as—1 — Poi(L)br—1 — F(L)Ak-1], (46)

p2k < 2\mn[ 5 (L)@ k(L)], or  prg s < 2/|Bo k(L) 72, (47)
‘Yk Fr—1 + M3FT(L)[Y(L) — @ i (L)ag—1 — By i (L)br1 — F(L)Ax1], (48)

p3 < 2>\max[FT(L)F(L)L or pg <2|F(L)[|72. (49)

Y (L) =[y(1),y(2),y(3), -, y(L)]", (50)
B k(L) = [Pak(1), Pak(2), Bar(3),+  Bar(L)]", (51)
Dy (L) = [P, (1), Poi(2), @ (3)7"' b (L) (52)
F(L)=[f(1),f(2),f3), -, fF(D]", (53)
Pak(t) =[-Tp—1(t = 1), =Fp_1(t = 2),- -+, =Tg_1(t — na)]", (54)
Go () = [tg—1(t — 1), tUp—1(t —2), -, Up—1(t —np)]", (55)
F@) =[fi(u®)), f2(u(®)), -, fm(u(t))]", (56)

g (t) = £ ()Y, (57)
Br(t) = @y o (D)ak + @51, (D by, + k(1) (58)
dk (@15, G2 ks - 5 Gng k] T, (59)

= [b1 ks bogs oy ] (60)

’Yk—[% ks A2,k s Ymok] (61)

The steps involved in the KT-AM-3S-GI algorithm in (44)—(61) are listed as follows.

1. For t < 0, all variables are set to zero. Set the data length L (L > n), the parameter estimation accuracy
e and the basis function f;(x). Let k = 1, set &o(t) = 1/py and uo(t) = 1/po, t = 1,2,---, L. Preset

ao = 1, /po, bo = 1, /po and 4o = 1,,,/po, po = 10°.



2. Collect the observation data u(t) and y(t), and construct the sub-information vector f(¢) using (56),
t =1,2,---,L. Construct the stacked output vector Y (L) and the stacked input information matrix
F(L) using (50) and (53). Select a large step-size u3 by (49).

3. Construct the sub-information vectors @, x(¢) and @y, (t) using (54)—(55), t = 1,2,--- , L. Construct the
stacked information matrices @, (L) and @, (L) using (51) and (52).

4. Select a large step-sizes p1 1 and pg i by (45) and (47), and update the parameter estimation vectors ay,
by and 4, using (44), (46) and (48).

5. Calculate the outputs i (t) and Z(t) of the auxiliary models by using (57)—(58).

6. Compare aj with aj_1, by with by_1, 4 with J_1: if
Error := ||ay, — ap—1 + [bx — be1ll + 9% — Y1l >,

increase k by 1 and go to Step 3; otherwise obtain the parameter estimates ay, by, and Yk, and terminate
this procedure.

5. The key term separation auxiliary model three-stage least squares-based iterative algorithm

In this section, a key term separation auxiliary model three-stage least squares-based iterative algorithm
is derived for the parameter estimation of the IN-OE systems. Differently from the gradient-based iterative
algorithm [54], the least squares-based iterative algorithm needs fewer iterations to achieve the same parameter
estimation accuracy.

Minimizing the criterion functions J,(a), J5(b) and J,(vy) and setting the derivatives to be zero give

a{;((la) =—&"(L)[Y,(L) — ®,(L)a] = 0,
wgng) = —P;(L)[Ys(L) — ®,(L)b] = 0,
9Jy(v) " B

oy~ F (L)[Y,(L) — F(L)~] = 0,
(@7 (L)®,(L)]a =" (L)Y,(L), .
(8] (L)@,(1)]b =B} (L)Y5(L), ©
[F*(L)F(L)]y=F"(L)Y,(L). )

Assume that the data length L is much greater than the dimension of 43, i.e., L > n, when the information vectors
pa(t), pu(t) and f(t) are persistently exciting and the matrices [®} (L)@, (L)], (@} (L)Py(L)] and [F"(L)F(L)]
are invertible, we can obtained the least squares-based iterative relations for computing ay, by and 4y:

ay = [®}(L)®. (L) '@} (L)Y (L)

=@} (L)P.(L)] '@} (L)[Y (L) — B3(L)b — F(L)v], (65)
bi. = (B} (L)®y(L)] "' &} (L)Y3(L)

= [®} (L)®y (L)) ' ®; (L)Y (L) — ®a(L)a — F(L)v], (66)
Ak = [F"(L)F(L)] "' F*(L)Y,(L)

= [F*(L)F(L)] " F*(L)[Y (L) — ®4(L)a — ®,(L)b]. (67)

However, Equations (65)(67) cannot calculate the estimates @y, by and 4j because these equations contain
the unknown parameter vectors b, v and a and the unknown information matrices @,(L) and ®,(L). The
approach taken here is to replace these unknown terms with their estimates at the previous iteration based on
the auxiliary model identification idea. Then, we can obtain the following key term separation auxiliary model
three-stage least squares-based iterative (KT-AM-3S-LSI) algorithm [37]:

ay = (8] (L) B0,k (L)] '@} 1 (L)Y (L) — By 4 (L)bg—1 — F(L)A51), (68)

by, = (D7 . (L)Dy k(L)) ' & (L)Y (L) — By (L) ar—1 — F(L)qr-1], (69)

A = [F*(L)F(L)] ' F (L)Y (L) — Ba4(L)an—1 — Pp1(L)bi_1], (70)
Y(L)=[y(1),y(2),y(3), - ,y(L)]", (71)
By (L) = [@ak(1), Pak(2), +  Par(L)]", (72)



Py (L) = [Po,k(1), Po,k(2), -+ s Pou(L)], (73)
F(L)=[f1),f(2), -, f(D)]", (74)
Pak(t)=[-Tp-1(t = 1), =Zp—1(t = 2), -+, —Zp—1(t — na)]", (75)
o (t) = [up—1(t = 1), up—1(t = 2), - g1 (t —np)]", (76)
F(t) = [fr(u(t)), f2(u(t)), -, fn(u(®)], (77)

g (t) = £ ()Y, (78)
Bk (t) = @p o (t)ay + @p 1 (O)by + (1), (79)
dk:[dl,k,dg}k,“- ,dna,k]T7 (80)

b = [b1k, bogs - s bny] ™ (81)

Y = [,k Vokr s Ymok] - (82)

The proposed approaches in the paper can combine some mathematical tools and statistical strategies [55, 56,
57, 58, 59, 60] and some identification algorithms [61-67] to study the performances of the parameter estimation
algorithms of other linear stochastic systems and nonlinear stochastic systems with different structures and
disturbance noises [68-75] and can be applied to literatures [76-82] such as paper-making systems. The steps
involved in the KT-AM-3S-LSI algorithm in (68)—(82) are listed in the following.

1.

For ¢ < 0, all variables are set to zero. Set the data length L (L >> n), the parameter estimation accuracy
e and the basis function f;(*). Let k = 1, &0(t) and uo(¢) be random numbers, ¢ = 1,2,---, L. Preset

ao = 1n, /o, bo = 1., /po and 4o = 1,,,/po, po = 10°.

. Collect the observation data w(t) and y(t), and construct the sub-information vector f(t) using (77),

t = 1,2,---,L. Construct the stacked output vector Y (L) and the stacked input information matrix
F(L) using (71) and (74).

Construct the sub-information vectors @, x(t) and @y 1 (t) using (75)—(76), t =1,2,--- , L. Construct the
stacked information matrices @, (L) and @, (L) using (72) and (73).

Update the parameter estimation vectors @y, by and 4 using (68)-(70).

Calculate the outputs iy (t) and & () of the auxiliary models using (78)—(79).

Compare aj with ag_1, by with Bk,l, A With g _q: if
Error := ||y, — ar—1|| + bx — br—1 ]| + [ — -1l > e,

increase k by 1 and go to Step 3; otherwise obtain the parameter estimates ay, by, and Ak, and terminate
this procedure.

6. Calculation analysis

This part compares the calculation amount of the the KT-AM-3S-GI algorithm and the KT-AM-3S-LSI
algorithms with the existing algorithms for estimating the parameters of the IN-OE systems, namely the O-
AM-GI algorithm, the O-AM-LSI algorithm, the KT-AM-GI algorithm and the KT-AM-LST algorithm.

Table 1: The computational efficiency of each algorithm

Algorithms Total flops

O-AM-GI Ny =6n1L+ 3n1 4+ 2mny — 1

O-AM-LSI Ng = %n? + %nf + 2n%L — %nl +2mny +2n1L 4+ 2n1 — 1
KT-AM-GI N3 =6nL +3n+2m —2

KT-AM-LSI Ni=8n®+ (2L + L)n? + tn+2nL +2m —2
KT-AM-3S-GI N5 = 6L(nq +np +m) + 3(nag +np +m) —2
KT-AM-3S-LSI N = 3(n3 +n3 +m3) + (2L + §)(n2 + ni + m?)

+6L(na+nb+m)+%(na+nb+m)—2

The calculation amount of each algorithm at each step is given in the supplementary file, and the calculation
amount of each algorithm is shown in Table 1, where flop represents the floating point operations, and the
stacked information matrices @4 (L) and @ (L) are defined as

&1 4(L) =01 4(1), 914(2), @1 5(3), - @] € RY™ . my o= g+ mlmy 1),
!ii2,k(L) = [4)02,/6(1)’ ¢2,k(2)7 902,/6(3)7 e 7902,/6(L)]T € RLX"? n = ng +npy +m.



The calculation amount of each algorithm comprehensively satisfies the following relationship when m, ny, > 2,

N5 < N3 < N1, (83)
Ng < Ny < NQ, (84)

where N; (i =1,2,---,6) represents the total flops of the O-AM-GI, O-AM-LSI, KT-AM-GI, KT-AM-LSI, KT-
AM-3S-GI and KT-AM-3S-LSI in turn. Hence, the proposed algorithms have a small amount of calculation.
Furthermore, for the same identification model, the gradient-based iterative algorithms have a smaller amount of
calculation than the least squares-based iterative algorithms. In order to show the gap between each algorithm
more clearly, a specific numerical comparison is given below. Set n, = 10, n, = 10, m = 10 and L = 1000, we
can obtain N1, Ny, N3, N4, N5 and Ng in Table 2

Obviously, as the data length increases and the system dimension increases, this gap becomes more and
more obvious, that is, the computational efficiency of the algorithms proposed in this paper is superior to the
existing O-AM-GI, O-AM-LSI, KT-AM-GI and KT-AM-LSI algorithms.

Table 2: The computational efficiencies of each algorithm

Ni(i=1,---,6) Total flops Ni(i=1,---,6) Total flops
Ny 7.20559 x 10° Ny 3.3650619 x 107
N3 1.80108 x 10° Ny 1.932173 x 106
Ns 1.80088 x 10° Ng 7.88053 x 10°

7. Simulation Example

The O-AM-GI algorithm, the O-AM-LSI algorithm, the KT-AM-GI algorithm and the KT-AM-LSI algo-
rithm are chosen as the comparators. All the simulations are implemented on the MatLab R2019b version and
the a machine with an Intel Core i7-10700 2.9 GHz CPU and 8 GB RAM.

Example 1: In this section, the system identification problems of the IN-OE model with seven elements in the
parameter vector 9 is evaluated along with the derails as given below:

B(z) -

y(t A0) u(t) + o),

)
AZ)=14a127 ' +a272 =14+0.84271 +0.31272,
B(z)=bg+ b1z 4 byz72=1-0572"" +0.86272,
u(t) ( (1)) = nult) +y2u(t) + y3u’(t)
—1.50u(t) — 2.60u?(t) + 3.20u3(t),
9 = [ay, az,b1,b2,71,72,73]"
—[0.84,0.31, —0.57,0.86, —1.50, —2.60, 3.20] .

In this simulation, the input {u(¢)} is taken as an independent persistent excitation signal sequence with zero
mean and unit variance, {v(¢)} is taken as a white noise with zero mean and variance o7 = 0.20% and 03 = 1.002,
respectively. Applying the KT-AM-3S-GI algorithm and the KT-AM-3S-LSI algorithm with the data length
L = 1000 to estimate the parameters of this system, the parameter estimation errors § = ||y — 9||/||9]| versus
k are shown in Figures 2 and 3.

Adjust the input value, other simulation conditions are the same as above. Applying the KT-AM-3S-GI
algorithm and the KT-AM-3S-LSI algorithm with the data length L = 500 and L = 1000 to estimate the
parameters of this system, respectively, the estimation errors é versus k are shown in Figures 4 and 5.

From Figures 2-5, we can draw the following conclusions.

e The parameter estimation errors given by the KT-AM-3S-GI and KT-AM-3S-LSI algorithms become
smaller as the iteration k increases. Thus the proposed algorithms are effective for the IN-OE systems.

e To achieve the same parameter estimation accuracy, compared with the KT-AM-3S-GI algorithm, the
KT-AM-3S-LSI algorithm requires fewer iterative steps.

e A lower noise variance leads to higher parameter estimation accuracy given by the KT-AM-3S-GI algorithm
and the KT-AM-3S-LSI algorithm under the same data length.

e Under the same noise variance, the parameter estimation accuracy given by the the KT-AM-3S-GI algo-
rithm and the KT-AM-3S-LST algorithm becomes smaller as the data length L increases.
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Figure 3: The KT-AM-3S-LSI estimation errors ¢ versus k with different noise variance

Example 2: In the above simulation analysis of the proposed algorithms, the influence of the noise variance
and the data length on the parameter estimation accuracy is studied. Next, we will consider a model with more
parameters, which is used as a basis to compare the parameter estimation accuracy of the presented algorithms
and the existing algorithms. Consider the following IN-OE model:
B(z)
t =
y(t) A0)
A)=14a1z " +asz 2 +azz > +agz * +asz >
=1+0.1427"+0.21272 4+ 0.2327° +0.3127* +0.23277,
B(Z) =by + b1Z71 + b2272 + b32’73 + b42’74 + b5275
=1-061z"1+0.87272 4036272+ 023274 +0.24275,
a(t) = f(u(t)) = m cosu(t) + e sinu?(t) + y3u’(t)
= —1.50cosu(t) — 2.60sinu>(t) + 3.20u(t),

a(t) + v(t),
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Figure 5: The KT-AM-3S-LSI estimation errors ¢ versus k with different data length

U= [Cll, ag,as, a4as, b17 b27 b37 b4a b5a V1,72, 73]T
—[0.14,0.21,0.23,0.31,0.23, —0.61, 0.87, 0.36, 0.23, 0.24, —1.50, —2.60, 3.20]".

In the simulation, the input {u(¢)} is taken as an independent persistent excitation signal sequence with zero
mean and unit variance, {v(t)} is taken as a white noise with zero mean and variance o> = 0.802. Applying
the O-AM-GI and O-AM-LSI algorithms, the KT-AM-GI and KT-AM-LSI algorithms, the KT-AM-3S-GI and
KT-AM-3S-LSI algorithms with the data length L = 500 to estimate the parameters of the example system,
the parameter estimation errors ¢ versus k are shown in Figures 6-7.

From Figures 67, we can draw the following conclusions.

e Under the same simulation conditions, the parameter estimation errors of the KT-AM-3S-GI algorithm are
smaller than the parameter estimation accuracy of the O-AM-GI algorithm and the KT-AM-GI algorithm.

e Under the same simulation conditions, the parameter estimation accuracy of KT-AM-3S-LSI algorithm is
higher than that of O-AM-LSI algorithm and KT-AM-LSI algorithm.
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Figure 7: The estimation errors § obtained from three least squares-based iterative algorithms versus k

8. Conclusions

In this paper, we have studied the parameter identification problems of the dynamical systems described
by the input nonlinear output-error model. A key term separation auxiliary model three-stage gradient-based
iterative algorithm and a key term separation auxiliary model three-stage least squares-based iterative algorithm

12



have been presented based on the key term separation technique and the hierarchical identification principle.
In order to fully demonstrate the performance of the proposed algorithms, we compares the difference in the
calculation and the parameter estimation accuracy between the proposed algorithms and the existing algorithms
in detail. Both the data and the simulation waveforms fully confirm that the presented algorithms have less
calculation and higher parameter estimation accuracy. However, there are still two problems worth thinking
about: when the system’s input and output dimensions increase, that is the system becomes a multiple-input
multiple-output system, and when the disturbances become complex colored noises, whether the methods studied
in this paper still have good performance needs further research. The proposed methods in this paper can be
applied to other fields [83, 84, 85, 86, 87] such as signal processing and engineering application systems [88, 89,
90, 91, 92, 93] the information processing and transportation communication systems [94, 95, 96, 97, 98, 99]
and so on.
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