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Abstract

Based on the classical probability, the stability of stochastic differential delay equations (SDDEs) whose coefficients
are growing at most linearly has been investigated intensively. Moreover, the delay-dependent stability of highly
nonlinear hybrid stochastic differential equations (SDEs) has also been studied recently. In this paper, using the
nonlinear expectation theory, we first explore the delay-dependent criteria on the asymptotic stability for a class of
highly nonlinear SDDEs driven byG-Brownian motion (G-SDDEs). Then, the (weak) quasi-sure stability of solutions
to G-SDDEs is developed. Finally, an example is analyzed by the φ-max-mean algorithm to illustrate our theoretical
results.
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1. Introduction

A sublinear expectation (see, e.g., [47, 48, 50]) can be represented as the upper expectation of a subset of linear
expectations. In most cases, this subset is often treated as an uncertain model of probabilities. Peng introduced theG-
expectation theory (G-framework) (see, e.g., [47] and the references therein) in 2006, where the notion ofG-Brownian
motion (GBm) and the corresponding stochastic calculus of Itô’s type were established. For more further details on
GBm we refer the reader to Denis et al. [5], Fei [8], Fei and Fei [15], Hu and Peng [26], Li and Peng [31], Peng and
Zhang [52], Soner et al. [56] and Zhang [64], etc.

So far, there is a large amount of literature on the problem of asset pricing and financial decisions under model
uncertainty. Chen and Epstein [1] put forward to the model of an intertemporal recursive utility, where risk and
ambiguity are differentiated, but uncertainty is only a mean uncertainty without a volatility uncertainty. The model
of the optimal consumption and portfolio with ambiguity are also investigated in Fei [13, 14]. Epstein and Ji [6, 7]
generalized the Chen-Epstein model and maintained a separation between risk aversion and intertemporal substitution.
We know that equivalence of priors is an optional assumption in Gilboa and Schmeidler [19]. Apart from very
recent developments, the stochastic calculus presumes a probability space framework. However, from an economics
perspective, the assumption of equivalence seems far from innocuous. Informally, if her environment is complex, how
could the decision-maker come to be certain of which scenarios regarding future asset prices and rates of return, for
example, are possible? In particular, ambiguity about volatility implies ambiguity about which scenarios are possible,
at least in a continuous time setting. A large amount of literature has argued that the stochastic time varying volatility is
important for understanding features of asset returns, and particularly empirical regularities in the derivative markets.

The classical SDEs driven by Brownian motion do not take an ambiguous factor into consideration. Thus, in
some complex environments, these equations are too restrictive for describing some phenomena. In fact, by taking
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into account uncertainties including probabilistic and Kightian ones [1], many real uncertain systems have been char-
acterized by Peng’s sublinear expectation framework. Recently, under uncertainty, a kind of SDEs driven by GBm
(G-SDEs) has been investigated. In Gao [18], the pathwise properties and homeomorphic flows for G-SDEs were s-
tudied. Lin [35] gave an analysis on some properties ofG-SDEs. Hu et al. [27] discussed backwardG-SDEs. Lin [36]
explored G-SDEs with reflecting boundary. In Luo and Wang [39], G-SDEs and ordinary differential equations were
compared. Moreover, the strong Markov property for G-SDEs was analyzed in Hu et al. [28]. Fei and Fei [9] proved
the consistency of least squares estimation to the parameter for G-SDEs. Fei [8] investigated optimality principles of
stochastic control with an application to optimal consumption and portfolio in the framework of G-SDEs.

The stability of the classical SDEs is an important topic in the study of stochastic systems. Influenced by Lyapunov
[40] and LaSalle [29] on the stability of nonlinear systems, Hasminskii [20] first studied the stability of the linear
Itô SDEs. Since then, the stability analysis for SDEs has been done by many researchers. The stabilization and
destabilization of hybrid systems of SDEs have been explored by many researchers, such as Mao et al. [42]. In Luo
and Liu [38], the stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps
was investigated.

Since a system described by G-SDEs provides a characterization of the real world with both randomness and
ambiguity, it is necessary to investigate its stability. Li et al. [32] investigated the delay feedback stabilisation of G-
SDEs. In Li and Yan [33], the stability of delayed Hopfield neural networks under a sublinear expectation framework
was discussed. And Li et al. [34] investigated stabilization of multi-weights stochastic complex networks with time-
varying delay and GBm via aperiodically intermittent adaptive control. The boundedness and stability analysis for
impulsive G-SDEs were studied by Xu et al [58]. Moreover, in Ren et al. [53], Yin et al. [61], Yin et al. [63],
they studied stabilization of G-SDEs with feedback control based on discrete-time state observation from differential
perspectives while Yin and Cao [62] analyzed stability of large-scale G-SDEs by a decomposition approach. The
exponential stability for G-SDEs was discussed by Zhang and Chen [65] where the quasi-sure analysis was used.

However, in many real systems, such as science, industry, economics and finance, we will run into time lag.
Differential delay equations (DDEs) have been used to model such time-lag systems. Hence, the researchers have
studied the stability of DDEs for more than 50 years. In 1980’s, the SDDEs were developed in order to model real
systems which are subjected to external noises. Since then, in the study of SDDEs including hybrid SDDEs the
stability analysis has been one of the most significant topics (see, e.g., [30, 37, 41]).

Most of the existing delay-dependent stability criteria are for the (hybrid) SDDEs whose coefficients are either
linear or nonlinear but bounded by linear functions (or, satisfy the linear growth condition). But, there are a large
number of highly nonlinear systems in practice, such as Ait-Sahalia interest rate model in financial engineering (see,
e.g., Deng et al. [4]). That was why Hu et al. [21, 22] initiated the investigation on the stability of the highly nonlinear
hybrid SDDEs driven by Brownian motion. Based on their results, Fei et al. [16] further established the delay-
dependent stability criterion, and more results can be found in [10, 12, 17, 44, 54, 55]. Recently, Mei et al. [45] worked
on exponential stabilization by delay feedback control for highly nonlinear hybrid stochastic functional differential
equations with infinite delay, in the meantime Mei et al. [46] explored feedback control for highly nonlinear neutral
SDDEs with Markovian switching.

Under the sublinear expectation, the stability of G-SDDEs has been discussed. For example, Fei and Fei [15]
investigated the quasi-sure exponential stability byG-Lyapunov functional method. Fei et al. [11] studied the stability
of highly nonlinear G-SDDEs while Deng et al. [3] analyzed the stability equivalence between G-SDDEs and the
corresponding numerical solutions by the Euler-Maruyama method. Yao and Zong [60] explored delay-dependent
stability of a class of stochastic delay systems driven by GBm. Zhu and Huang [66] implemented a stability analysis
for a class of stochastic delay nonlinear systems with GBm. Different from above work, in this paper we will study the
dependent stability criteria ofG-SDDEs, where the coefficients ofG-SDDEs are highly nonlinear (namely, without the
linear growth condition). Our results extend those developed in Fei et al. [16] for the classical SDDEs to G-SDDEs.

We discuss an example to motivate our aims in this paper more clearly. Consider the following highly nonlinear
G-SDDE

dX(t) = [−3X3(t) − X(t − δ(t))]dt + 0.5X2(t − δ(t))dB(t), (1.1)

where δ(t) ≥ 0 is a time lag, X(t) ∈ R is the state, B(t) is a scalar GBm.
For system (1.1), if the time delay δ(t) = 0.01, the computer simulation shows it is asymptotically stable (see

Fig. 1). If the time-delay is large, say δ(t) = 3, the computer simulation shows that G-SDDE (1.1) is unstable (see
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Fig. 2). In other words, whether the underlying system is stable or not depends on the size of the time-lag. On the
other hand, both drift and diffusion coefficients ofG-SDDE affect more significantly the stability of the system due to
super-linearity. To the best of our knowledge, there is no delay dependent criterion which can be applied to G-SDDE
to derive a sufficient bound on the time-delay δ(t) such that it is stable. Hence, the aim of this paper is to establish the
delay dependent criteria of stability of highly nonlinear G-SDDEs.

The main contributions of this paper are presented as follows:

• A new criterion on delay-dependent stability of highly nonlinear G-SDDEs is proposed for the first time.

• New techniques are developed to establish the delay-dependent criteria of stability. Since, Ê[−X] = −Ê[X] for
random variable X generally does NOT hold under sublinear expectation, we overcome the difficulties caused by
it. A generalized Birkhold-Davis-Gundy inequality (see Lemma 2.4) is established to deal with highly nonlinear
G-SDDEs.

• The stochastic calculus on nonlinear expectations is applied to cope with the stability of the systems with
ambiguity, such as non-additive probability.

The arrangement of the paper is as follows. In Section 2, we give preliminaries on sublinear expectations and
GBm. Furthermore, we formulate the properties of GBms and G-martingales. Next, in Section 3, the quasi-sure
exponential stability of the solutions to G-SDDE is studied. We give an illustrative example in Section 4, where we
use the φ-max-mean algorithm. Finally, Section 5 concludes this paper.

2. Notations and Preliminaries

In this section, we first give the notion of sublinear expectation space (Ω,H , Ê), whereΩ is a given state set andH
a linear space of real valued functions defined on Ω. The spaceH can be considered as the space of random variables.
The following concepts come from Peng [50].

Definition 2.1. A sublinear expectation Ê is a functional Ê: H → R satisfying
(i) Monotonicity: Ê[X] ≥ Ê[Y] if X ≥ Y;
(ii) Constant preserving: Ê[c] = c;
(iii) Sub-additivity: For each X,Y ∈ H , Ê[X + Y] ≤ Ê[X] + Ê[Y];
(iv) Positivity homogeneity: Ê[λX] = λÊ[X] for λ ≥ 0.

A sublinear lower expectation is defined by E[X] := −Ê[−X] for a random variable X.

Definition 2.2. Let (Ω,H , Ê) be a sublinear expectation space. X(t) = (X1(t), · · · , Xd(t)), t ≥ 0 is called a d-
dimensional stochastic process if for each t ≥ 0, Xi(t), i = 1, · · · , d is a random vector in H .

The one-dimensional process (B(t))t≥0 on a sublinear expectation space (Ω,H , Ê) is called a GBm if the following
properties are satisfied:
(i) B0(ω) = 0;
(ii) for each t, s ≥ 0, the increment B(t+s)−B(t) is N({0}×s[σ2, σ2])-distributed and is independent from (B(t1), B(t2), · · · , B(tn)),
for each n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤ t, here 0 < σ2 ≤ σ2 < ∞.

We now introduce the notions of Itô integral with respect to one dimensional GBm with the function G(α) :=
1
2 Ê[αB(1)

2] = 1
2 (σ

2α+ − σ2α−), where Ê[B(1)2] = σ2,E[B(1)2] = −Ê[−B(1)2] = σ2, 0 < σ ≤ σ < ∞.
In the rest of this paper, we use the notation Ω = C0(R+) for the space of all R+-valued continuous paths (ωt)t≥0

with zero initial value, equipped with the distance

ρ(ω(1), ω(2)) =
∞∑
k=1

2−k[(max
t∈[0,k]

|ω(1)
t − ω(2)

t |2) ∧ 1].

For each fixed t, we set Ωt := {ω·∧t : ω ∈ Ω}. Now consider the canonical process Bt(ω) = ωt, t ∈ [0,∞), ∀ ω ∈ Ω.
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Let p > 0 be fixed. We consider the following type of simple processes: for a given partition πT = (t0, · · · , tN) of
[0,T ], where T can take∞, we get

ηt(ω) =
N−1∑
k=0

ξk(ω)I[tk ,tk+1)(t),

where ξk ∈ Lp
G(Ωtk ;Rd), k = 0, 1, · · · ,N − 1 are given. The collection of these processes is denoted by Mp,0

G (0,T ). We
denote by Mp

G(0,T ) the completion of Mp,0
G (0,T ) with the norm

∥η∥Mp
G(0,T )

:=
{
Ê
∫ T

0
|η(t)|pdt

}1/p
< ∞.

Definition 2.3. For each η ∈ M2,0
G (0,T ) with ηt(ω) =

∑N−1
k=0 1[tk ,tk+1)(t), we define

I(η) =
∫ T

0
ηt(ω)dBt :=

N−1∑
k=0

ξk(Btk+1 − Btk ).

The above mapping I : M2,0
G (0,T ) 7→ L2G(ΩT ) is a continuous linear mapping and thus be continuously extended to

I : M2
G(0,T ) 7→ L2G(ΩT )).

Moreover, for each η ∈ M2
G(0,T ), we define the stochastic integral∫ T

0
ηtdBt := I(η).

In what follows, similar to the setting of Peng et al. [51], our ambiguous probability measure familyP representing
sublinar expectation Ê is defined as follows

P :=
{
Pσ· = P0 ◦ (Yσ· )−1; (σt)t≥0 is an (Ωt)t≥0-progressively measurable process taking in [σ,σ]

}
, (2.1)

where P0 is a Wiener measure on a given canonical probability space (Ω,B(Ω), P0), Pσ·(A) = P0(Yσ· ∈ A) for each
event A ∈ B(Ω), and Yσ·

t =
∫ t
0 σsdw(s) P0-a.s. where (w(t))t≥0 is a standard Brownian motion under (Ω,B(Ω), P0).

Obviously,

B(·) := {Yσ·(·), (σt)t≥0 is an (Ωt)t≥0-prograssively measurable process taking in [σ,σ]}

is GBm under the probability measure family P. Thus, dB(t) = σtdw(t), P0-a.s.
For P corresponding to sublinear expectation Ê, we now define G-upper capacity V(·) and G-lower capacity V(·)

associated to Ê by

V(A) = sup
P∈P

P(A), ∀ A ∈ B(Ω),

V(A) = inf
P∈P

P(A), ∀ A ∈ B(Ω).

Thus a property is called to hold quasi surely (q.s.) if there exists a polar set D with V(D) = 0 such that it holds for
each ω ∈ Dc. Moreover, a property is called to holdV-quasi surely (V-q.s.) if there exists a probability measure P ∈ P
such that it holds almost surely under P.

Moreover, under probability measure P ∈ P, the process < B(t) > is a quadratic variation of P-martingale B(t),
and fulfils

σ2dt ≤ d < B(t) >≤ σ2dt, q.s. (2.2)

The following Burkholder-Davis-Gundy inequality provides the explicit bounds relative to those in Gao [18, The-
orems 2.1-2.2].
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Lemma 2.4. (Burkholder-Davis-Gundy inequality) Let p > 0 and ζ = {ζ(s), s ∈ [0,T ]} ∈ Mp
G(0,T ). Then, for all

t ∈ [0, T ],

Ê sup
s≤u≤t

∣∣∣∣ ∫ u

s
ζ(v)d < B(v) >

∣∣∣∣p
≤ (t − s)p−1σ2pÊ

( ∫ t

s
|ζ(v)|2dv

)p/2
, for p ≥ 1,

Ê sup
s≤u≤t

∣∣∣∣ ∫ u

s
ζ(v)dB(v)

∣∣∣∣p ≤ Cpσ
pÊ
( ∫ t

s
|ζ(v)|2dv

)p/2
, for p > 0,

where the constant Cp is defined as follows

Cp =
(32
p

)p/2
, if 0 < p < 2;

Cp =
( pp+1

2(p − 1)p−1
)p/2

, if p ≥ 2.

Proof. For p ≥ 1, by the Hölder inequality and (2.2), we get

Ê sup
s≤u≤t

∣∣∣∣ ∫ u

s
ζ(v)d < B(v) >

∣∣∣∣p
= sup

P∈P
EP sup

s≤u≤t

∣∣∣∣ ∫ u

s
ζ(v)d < B(v) >

∣∣∣∣p
≤ (t − s)p−1σ2p sup

P
EP
( ∫ t

s
|ζ(v)|2dv

)p/2
= (t − s)p−1σ2pÊ

( ∫ t

s
|ζ(v)|2dv

)p/2
.

From the classical Burkholder-Davis-Gundy inequality (see, e.g., Mao and Yuan [43, Theorem 2.13 on page 70]), we
get

Ê sup
s≤u≤t

∣∣∣∣ ∫ u

s
ζ(v)dB(v)

∣∣∣∣p
= sup

P∈P
EP sup

s≤u≤t

∣∣∣∣ ∫ u

s
ζ(v)dB(v)

∣∣∣∣p
≤ Cp sup

P∈P
EP
( ∫ t

s
|ζ(v)|2d < B(v) >

)p/2
≤ Cpσ

pÊ
( ∫ t

s
|ζ(v)|2dv

)p/2
.

Thus, the proof is complete. 2
Finally, in this section, we give the definitions of (weak) quasi-surely stability and moment stability as follows.

Definition 2.5. (i) For p > 0, the trivial solution of SDE (3.1) is called to asymptotically stable in p-th moment if

lim
t→∞

Ê(|X(t; η)|p) = 0

for all η in (3.2). Especially, p = 2, it is called to be asymptotically stable in mean square.
( ii) For p > 0, the trivial solution of SDE (3.1) is called to weak asymptotically stable in p-th moment if

lim
t→∞

EP(|X(t; η)|p) = 0 ∀P ∈ P
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for all η in (3.2).
(iii) Moreover, it is called to be quasi-surely asymptotically stable or asymptotically stable with lower-capacity 1

denoted by lim
t→∞

x(t; η) = 0 q.s. if

V{lim
t→∞

x(t; η) = 0} = 1

for all η in (3.2). And it is called to be weak quasi-surely asymptotically stable or asymptotically stable with upper-
capacity 1 denoted by lim

t→∞
x(t; η) = 0 V-q.s. if

V{lim
t→∞

x(t; η) = 0} = 1

for all η in (3.2).

3. Delay-Dependent Asymptotic Stability of G-SDDEs

For the convenience of presentation, all processes take values in Rd. Let R+ = [0,∞). If A is a subset of Ω, denote
by IA its indicator function. Let (Ω,H , {Ωt}t≥0, Ê,V) be a generalized sublinear expectation space. Let (B(t))t≥0 be
one dimensional GBm defined on the sublinear expectation space.

Let f , g, h : R2d × R+ → Rd be Borel measurable functions. For τ > 0, let δ(t) ∈ [0, τ], t ≥ 0 satisfy dδ(t)/dt =
δ̇(t) ≤ δ̄ < 1. Consider one dimensional highly nonlinear variable delay SDE driven by GBm (G-SDDE)

dX(t) = f (X(t), X(t − δ(t)), t)dt
+ g(X(t), X(t − δ(t)), t)d < B(t) > +h(X(t), X(t − δ(t)), t)dB(t) (3.1)

on t ≥ 0 with nonrandom initial data

{X(t) : −τ ≤ t ≤ 0} = η ∈ C([−τ, 0];Rd). (3.2)

The uniqueness of solutions to SDEs driven by GBm has been proved under the coefficients satisfying non-
Lipschitzian conditions, where the coefficients are often bounded by a linear function (see, e.g., Lin [35]). In this
paper, however, the coefficients of G-SDDE (3.1) cannot be bounded by a linear function. The coefficients in (3.1)
are called highly nonlinear in terms of Fei et al. [16] and Hu et al. [21], the corresponding equations (3.1) are
called highly nonlinear G-SDDEs. In Fei et al. [11], the existence and uniqueness of solutions to G-SDDEs (3.1) are
proved, while the stability and boundedness of solutions to G-SDDE (3.1) are investigated as well. We will consider
highly nonlinear G-SDDEs which, in general, do not satisfy the linear growth condition in this paper. Therefore, we
impose the polynomial growth condition, instead of the linear growth condition. Let us provide these conditions as an
assumption for our aim.

Assumption 3.1. Assume that for any b > 0, there exists a positive constant Kb such that

| f (x, y, t) − f (x̄, ȳ, t)| ∨ |g(x, y, t) − g(x̄, ȳ, t)| ∨ |h(x, y, t) − h(x̄, ȳ, t)|
≤ Kb(|x − x̄| + |y − ȳ|)

for all x, x̄, y, ȳ ∈ Rd with |x| ∨ |x̄| ∨ |y| ∨ |ȳ| ≤ b and all t ∈ R+. Assume moreover that there exist three constants K > 0,
q1, q2 such that

| f (x, y, t)| ∨ |g(x, y, t)| ≤ K(1 + |x|q1 + |y|q1 ),
|h(x, y, t)| ≤ K(1 + |x|q2 + |y|q2 ) (3.3)

for all x, y ∈ Rd, t ∈ R+.
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The condition (3.3) with q1 = q2 = 1 is the familiar linear growth condition. But, we emphasise that we are
here interested in highly nonlinear G-SDDEs which mean q1 > 1 or q2 > 1. The condition (3.3) is referred as the
polynomial growth condition. It is known that Assumption 3.1 only guarantees that theG-SDDE (3.1) with the initial
data (3.2) has a unique maximal solution, which may explode to infinity at a finite time. To avoid such a possible
explosion, we need to impose an additional condition by Lyapunov functions. To this end, we need more notation.

We denote C2,1(Rd × R+;R+) as the family of non-negative functions U(x, t) defined on (x, t) ∈ Rd × R+ which
are continuously twice differentiable in x and once in t. Now we can state another assumption.

Assumption 3.2. Let H(·) ∈ C(Rd × [−τ,∞);R+). Assume that there exists a function Ū ∈ C2,1(Rd × R+;R+),
nonnegative constants c1, c2, c3 and q = 2(q1 ∨ q2 ) such that

c3 < c2(1 − δ̄), |x|q ≤ Ū(x, t) ≤ H(x, t) (3.4)

for ∀ (x, t) ∈ Rd × R+, and

LŪ(x, y, t) :=Ūt(x, t)+ < Ūx(x, t), f (x, y, t) >
+G(< Ūx(x, t), 2g(x, y, t) > + < Ūxx(x, t)h(x, y, t), h(x, y, t) >)

≤c1 − c2H(x, t) + c3H(y, t − δ(t)) (3.5)

for all x, y ∈ Rd, t ∈ R+. Here,

Ūt(x, t) =
∂Ū(x, t)
∂t

, Ūx(x, t) =
(∂Ū(x, t)

∂xi

)
d×1
, Ūxx(x, t) =

(∂2Ū(x, t)
∂xi∂x j

)
d×d
.

The following result gives the boundedness of the solution to G-SDDE (3.1) (see, e.g., Fei et al. [11, Theorem
5.2]).

Theorem 3.3. Under Assumptions 3.1 and 3.2, the highly nonlinear G-SDDE (3.1) with initial data (3.2) has unique
global solution satisfying

sup
−τ≤t<∞

Ê|X(t)|q < ∞.

Next, we will use the method of Lyapunov functionals to investigate the delay-dependent asymptotic stability. We
define two segments X̄(t) := {X(t + s) : −2τ ≤ s ≤ 0} for t ≥ 0. For X̄(t) to be well defined for 0 ≤ t < 2τ, we set
X(s) = η(−τ) for s ∈ [−2τ,−τ). We construct the Lyapunov functional as follows

V(X̄(t), t) = U(X(t), t)

+ θ

∫ 0

−τ

∫ t

t+s

[
τ| f (X(u), X(u − δ(u)), u)|2

+ τσ4|g(X(u), X(u − δ(u), u))|2 + σ2|h(X(u), X(u − δ(u), u))|2
]
duds

for t ≥ 0, where U ∈ C2,1(Rd × R+;R+) such that

lim
|x|→∞

[ inf
t∈R+

U(x, t)] = ∞,

and θ is a positive number to be determined later while we set

f (x, s) = f (x, 0), g(x, s) = g(x, 0), h(x, s) = h(x, 0)

for all x ∈ Rd, s ∈ [−2τ,∞). Applying Itô’s formula for GBm (see, e.g., [50]) to U(X(t), t), we get, for t ≥ 0,
quasi-surely,

7

Delay-dependent asymptotic stability of highly nonlinear stochastic differential delay equations driven by G-Brownian motion



dU(X(t), t)

=
(
Ut(X(t), t)+ < Ux(X(t), t), f (X(t), X(t − δ(t)), t) >

)
dt

+
(
< Ux(X(t), t), g(X(t), X(t − δ(t)), t) >

+
1
2
< Uxx(X(t), t)h(X(t), X(t − δ(t)), t), h(X(t), X(t − δ(t)), t) >

)
d < B(t) >

+ < Ux(X(t), t), h(X(t), X(t − δ(t)), t) > dB(t)
≤ LU(X(t), X(t − δ(t)), t)dt+ < Ux(X(t), t), h(X(t), X(t − δ(t)), t) > dB(t)

by [15, Proposition 2.5]. Rearranging terms gives

dU(X(t), t)

≤
(
< Ux(X(t), t), f (X(t), X(t − δ(t)), t) − f (X(t), X(t), t) >

+LU(X(t), X(t − δ(t)), t)
)
dt+ < Ux(X(t), t), h(X(t), X(t − δ(t)), t) > dB(t),

where the function LU : R2 ×C([−δ(t), 0];R) × R+ → R is defined by

LU(x, y, t) = Ut(x, t)+ < Ux(x, t), f (x, x, t) >
+G(< Ux(x, t), 2g(x, y, t) > + < Uxx(x, t)h(x, y, t), h(x, y, t) >). (3.6)

Moreover, the fundamental theory of calculus shows

d
( ∫ 0

−τ

∫ t

t+s

[
τ| f (X(u), X(u − δ(u)), u)|2

+ τσ4|g(X(u), X(u − δ(u)), u)|2 + σ2|h(X(u), X(t − δ(u)), u)|2
]
duds
)

=
(
τΨ(t) −

∫ t

t−τ
Ψ(u)du

)
dt,

where Ψ(t) := τ| f (X(t), X(t − δ(t)), t)|2 + τσ4|g(X(t), X(t − δ(t)), t)|2 + σ2|h(X(t), X(t − δ(t)), t)|2.
Lemma 3.4. With the notations above, V(X̄(t), t) is G-Itô process on t ≥ 0 with its Itô differential

dV(X̄(t), t) ≤ LV(X̄(t), t)dt + dM(t) q.s.,

where M(t) is a G-continuous martingale with M(0) = 0 and

LV(X̄(t), t) =
Ux(X(t), t)[ f ((X(t), X(t − δ(t)), t) − f (X(t), X(t), t)]

+LU(X(t), X(t − δ(t)), t) + θτΨ(t) − θ
∫ t

t−τ
Ψ(u)du.

To study the delay-dependent asymptotic stability of the G-SDDE (3.1), we need to impose two new assumptions.

Assumption 3.5. Assume that there are functions U ∈ C2,1(R × R+;R+), U1 ∈ C(R × [−τ,∞);R+), and positive
numbers α1, α2 and βk (k = 1, 2, 3, 4) such that

α2 < α1(1 − δ̄) (3.7)

and

LU(x, y, t) + β1|Ux(x, t)|2

+ β2| f (x, y, t)|2 + β3|g(x, y, t)|2 + β4|h(X(t), X(t − δ(t)), t)|2

≤ −α1U1(x, t) + α2U1(y, t − δ(t)) (3.8)

for all x ∈ Rd, t ∈ R+.
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Assumption 3.6. Assume that there exists a positive number ϖ such that

| f (x, x, t) − f (x, y, t)| ≤ ϖ|x − y|

for all x ∈ R, t ∈ [−2τ,∞).

Theorem 3.7. Let Assumptions 3.1, 3.2, 3.5 and 3.6 hold, where h(·) is a deterministic function. Assume also that

τ ≤
√

4β1β2
3ϖ2

∧ √
4β1β3
3ϖ2σ4

∧ 4β1β4
3ϖ2σ2 . (3.9)

Then for any given initial data (3.2), the solution of the G-SDDE (3.1) has the properties that

Ê
∫ ∞

0
U1(X(t), t)dt < ∞ (3.10)

and
sup
0≤t<∞

ÊU(X(t), t) < ∞. (3.11)

Proof. Fix the initial data η ∈ C([−τ, 0];R) arbitrarily. Let k0 > 0 be a sufficiently large integer such that ∥η∥ :=
sup−τ≤s≤0 |η(s)| < k0. For each integer k > k0, define (Ωt)-stopping time

νk = inf{t ≥ 0 : |x(t)| ≥ k}.

It is easy to see that νk is increasing as k → ∞ and limk→∞ νk = ∞ q.s. By Itô’s formula for GBm we obtain from
Lemma 3.4 that

V(X̄(t ∧ νk), t ∧ νk)

≤ V(X̄(0), 0) +
∫ t∧νk

0
LV(X̄(s), s)ds + M(t ∧ νk) (3.12)

for any t ≥ 0 and k ≥ k0. Let θ = 3ϖ2/(4β1). By Assumption 3.6 and Cauchy-Schwartz inequality, it is easy to see
that

Ux(X(t), t)[ f (X(t), X(t), t) − f (X(t), X(t − δ(t)), t)]

≤ β1|Ux(X(t), t)|2 +
ϖ2

4β1
|X(t) − X(t − δ(t))|2. (3.13)

By condition (3.9), we also have
θτ2 ≤ β2, θσ

4τ2 ≤ β3, θσ
2τ ≤ β4.

It then follows from Lemma 3.4 that

LV(X̄(s), s) ≤ LU(X(s), X(s − δ(t)), s) + β1|Ux(X(s), s)|2

+ β2| f (X(s), X(s − δ(s)), s)|2

+ β3|g(X(s), X(s − δ(s)), s)|2 + β4|h(X(s), X(s − δ(s)), s)|2

+
ϖ2

4β1
|X(s) − X(s − δ(s))|2

− 3ϖ2

4β1

∫ s

s−δ(s)
Ψ(u)du.
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By Assumption 3.5, we then have

LV(X̄(s), s)
≤ −α1U1(X(s), s) + α2U1(X(s − δ(s)), s − δ(s))

+
ϖ2

4β1

∫ 0

−δ(s)
|X(s) − X(s + u)|2du

− 3ϖ2

4β1

∫ s

s−δ(s)
Ψ(u)du.

Substituting this into (3.12) implies

V(X̄(t ∧ νk), t ∧ νk) ≤ V(X̄(0), 0) + I1 + I2 + M(t ∧ νk), (3.14)

where

I1 =
∫ t∧νk

0

[ − α1U1(X(s), s) + α2U1(X(s − δ(s)), s − δ(s))
]
ds,

I2 =
ϖ2

4β1

[ ∫ t∧νk

0

[|X(s) − X(s − δ(s))|2 − 3
∫ s

s−δ(s)
Ψ(u)du

]
ds
]
.

We notice the following fact ∫ νk∧t

0
U1(X(s − δ(s)), s − δ(s))ds

≤ 1
1 − δ̄

∫ 0

−τ
U1(η(s), s)ds +

1
1 − δ̄

∫ νk∧t

0
U1(x(s), s)ds.

Thus we get

I1 ≤
α2

1 − δ̄

∫ 0

−τ
U1(η(u), u)du −

ᾱ

1 − δ̄

∫ t∧νk

0
U1(X(s), s)ds, (3.15)

where ᾱ = (1 − δ̄)α1 − α2 > 0 by Assumption 3.5. Substituting this into (3.14) yields

ᾱ

1 − δ̄

∫ t∧νk

0
U1(X(s), s)ds ≤ C1 + I2 + M(t ∧ νk), (3.16)

where C1 is a constant defined by

C1 = V(X̄(0), 0) +
α2

1 − δ̄

∫ 0

−τ
U1(η(s), s)ds.

Taking the upper expectation in (3.16), then setting k → ∞, we get

ᾱ

1 − δ̄
Ê
∫ t

0
U1(X(s), s)ds ≤ C1 + Ī2, (3.17)

where

Ī2 =
ϖ2

4β1
Ê
[ ∫ t

0

[|X(s) − X(s − δ(s))|2 − 3
∫ s

s−δ(s)
Ψ(u)du

]
ds
]
.

For t ∈ [0, τ], we have

Ī2 ≤
ϖ2

2β1

∫ τ

0
(Ê|X(s)|2 + Ê|X(s − δ(s))|2)ds

≤ τϖ2

β1

(
sup

−τ≤u≤τ
Ê|X(u)|2

)
. (3.18)
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For t > τ, we have

Ī2 ≤
τϖ2

β1

(
sup

−τ≤u≤τ
Ê|X(u)|2

)
+
ϖ2

4β1
Ê
[ ∫ t

τ

[|X(s) − X(s − δ(s))|2 − 3
∫ s

s−δ(s)
Ψ(u)du

]
ds
]
. (3.19)

Noting

|X(s) − X(s − δ(s))|

=
∣∣∣∣ ∫ s

s−δ(s)
f (X(u), X(u − δ(u)), u)du

+

∫ s

s−δ(s)
g(X(u), X(u − δ(u)), u)d < B(u) > +

∫ s

s−δ(t)
h(X(u), X(u − δ(u)), u)dB(u)

∣∣∣∣,
by [15, Proposition 2.5] and Cauchy-Schwartz inequality, we have

|X(s) − X(s − δ(s))|2

≤ 3
∫ s

s−δ(s)
τ| f (X(u), X(u − δ(u)), u)|2du

+ 3σ4
∫ s

s−δ(s)
τ|g(X(u), X(u − δ(u)), u)|2du

+ 3
( ∫ s

s−δ(s)
h(X(u), X(u − δ(u)), u)dB(u)

)2
q.s.

Noting (2.2) and the definition of the ambiguous probability family P, we obtain

Ê
∫ t

τ

[|X(s) − X(s − δ(s))|2 − 3
∫ s

s−δ(s)
Ψ(u)du

]
ds

≤ Ê
[
3
∫ t

τ

( ∫ s

s−δ(s)
h(X(u), X(u − δ(u)), u)dB(u)

)2
ds

− 3σ2
∫ t

τ

∫ s

s−δ(s)
|h(X(u), X(u − δ(u)), u)|2duds

]
= 3 sup

P∈P
EP
[ ∫ t

τ

( ∫ s

s−δ(s)
h(X(u), X(u − δ(u)), u)dB(u)

)2
ds

− σ2
∫ t

τ

∫ s

s−δ(s)
|h(X(u), X(u − δ(u)), u)|2duds

]
= 3 sup

P∈P

[ ∫ t

τ

EP
( ∫ s

s−δ(s)
h(X(u), X(u − δ(u)), u)dB(u)

)2
ds

− σ2
∫ t

τ

∫ s

s−δ(s)
EP|h(X(u), X(u − δ(u)), u)|2duds

]
≤ 3 sup

P∈P

[ ∫ t

τ

EP
∫ s

s−δ(s)
|h(X(u), X(u − δ(u)), u)|2d < B(u) > ds

− σ2
∫ t

τ

∫ s

s−δ(s)
|h(X(u), X(u − δ(u)), u)|2duds

]
= 0.

Moreover, from (3.18) and (3.19) we get

Ī2 ≤
τϖ2

β1

(
sup

−τ≤u≤τ
Ê|X(u)|2

)
. (3.20)
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Substituting (3.20) into (3.17), together with (3.9), yields

ᾱ

1 − δ̄
Ê
∫ t

0
U1(X(s), s)ds ≤ C1 +

4β3
3σ2 sup

−τ≤u≤τ
Ê|X(u)|2 := C2.

Letting t → ∞ gives

Ê
∫ ∞

0
U1(X(s), s)ds ≤

(1 − δ̄)C2

ᾱ
,

which shows (3.10).
In addition, we deduce easily from (3.14) that

ÊU
(
X(t ∧ νk), t ∧ νk

)
≤ C1 + ÊI1 + ÊI2.

Letting k → ∞, by (3.15) and (3.20) we get

ÊU(X(t), t) ≤ C1 +
α2

1 − δ̄

∫ 0

−τ
U1(η(u), u)du +

τϖ2

β1

(
sup

−τ≤u≤τ
Ê|X(u)|2

)
< ∞,

which shows (3.11). Therefore, the proof is complete. 2

Corollary 3.8. Let the conditions of Theorem 3.7 hold. If there exists a pair of positive constants c and p such that

c|x|p ≤ U1(x, t), ∀ (x, t) ∈ R × R+,

then for any given initial data (3.2), the solution of G-SDDE (3.1) satisfies

Ê
[ ∫ ∞

0
|X(t)|pdt

]
< ∞. (3.21)

This corollary follows from Theorem 3.7 obviously. Generally, it does not follow from (3.21) that limt→∞ E|X(t)|p =
0. But, the following proposition provides a slightly weaker claim.

Theorem 3.9. Let the conditions of Corollary 3.8 hold. If, moreover,

p ≥ 2 and (p + q1 − 1) ∨ (p + q2 − 1) ≤ q,

then the solution of G-SDDE (3.1) satisfies
(i) Ê|X(t)|p is uniformly continuous in t on R+;
(ii) for each P ∈ P,

lim
t→∞

EP|X(t)|p = 0

for any initial data (3.2). That is, the solution X(t) of G-SDDE (3.1) is weak asymptotically stable.

Proof. Fix the initial data (3.2) arbitrarily. For any 0 ≤ t1 < t2 < ∞, by the Itô formula for GBm, we get

d|X(t)|p = p|X(t)|p−2⟨X(t), f (X(t), X(t − δ(t)), t)⟩dt

+
(1
2
p(p − 2)|X(t)|p−4|⟨X(t), h(t)⟩|2

+
1
2
p|X(t)|p−2|h(t)|2

+ p|X(t)|p−2⟨X(t), g(X(t), X(t − δ(t)), t)⟩
)
d⟨B(t)⟩

+ p|X(t)|p−2⟨X(t), h(t)⟩dB(t).
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By Peng [50, Lemma 3.4.3], along with the polynomial growth condition (3.3), for each P ∈ P we get∣∣∣EP|X(t2)|p − EP|X(t1)|p
∣∣∣

≤ Ê
∫ t2

t1
p|X(t)|p−1| f (X(t), X(t − δ(t)), t)|dt

+ Ê
∫ t2

t1

(1
2
p(p − 1)|X(t)|p−2|h(t)|2 + p|X(t)|p−1|g(X(t), X(t − δ(t)), t)|

)
d < B(t) >

≤ Ê
∫ t2

t1

(
pK|X(t)|p−1[1 + |X(t)|q1 + |X(t − δ(t))|q1]dt

+ σ2Ê
∫ t2

t1

(1
2
p(p − 1)K2|X(t)|p−2 + pK|X(t)|p−1[1 + |X(t)|q2 + |X(t − δ(t))|q2])dt.

By inequalities,

|X(t)|p−1|X(t − δ(t))|q1 ≤ |X(t)|p+q1−1 + |X(t − δ(t))|p+q1−1,
|X(t)|p−1 ≤ 1 + |X(t)|q,

etc., and noting that for any 1 ≤ p̄ ≤ q, by Theorem 3.3 we have

Ê|X(t − δ(t))|p̄ ≤ 1 + sup
−τ≤s<∞

Ê|X(s)|q < ∞,

we can obtain, by the sub-additivity of sublinear expectation,∣∣∣EP|X(t2)|p − EP|X(t1)|p
∣∣∣ ≤ C3(t2 − t1), P ∈ P,

where

C3 = (4pK(1 + σ2)

+
1
2
p(p − 1)K2σ2)(1 + sup

−τ≤s<∞
Ê|X(s)|q) < ∞.

Here, C3 is independent of P ∈ P. Thus, we show EP|X(t)|p is uniformly continuous on R+ for each P ∈ P. On the
other hand, we have

EP
∫ ∞

0
|X(s)|pds < C, ∀ P ∈ P

for some positive constant C. Thus, there is a sequence {tl}∞l=1 in R+ such that EP|X(tl)|p → 0. Moreover, we get
limt→∞ EP|X(t)|p = 0 since EP|X(t)|p is uniformly continuous on R+ for each P ∈ P. Thus, the proof is complete. 2

Theorem 3.10. Let the conditions of Theorem 3.7 hold. Assume also that there are positive constants p and c such
that

c|x|p ≤ U(x, t), ∀ (x, t) ∈ Rd × R+. (3.22)

Moreover assume there exists a function W : R → R+ such that

W(x) = 0 if and only if x = 0

and
W(x) ≤ U1(x, t), ∀ (x, t) ∈ Rd × R+.

Then for any given initial data (3.2), the solution X(·) to Eq. (3.1) is weak quasi-surely asymptotically stable, i.e.,

lim
t→∞

X(t) = 0 V-q.s.
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Proof. Let X(·) be the solution to Eq. (3.1) with initial data η defined in (3.2). Since the conditions in Theorem
3.7 hold, we can show that

C4 := Ê
[ ∫ ∞

0
W(X(t))dt

]
< ∞, (3.23)

which implies ∫ ∞

0
W(X(t))dt < ∞ q.s. (3.24)

In fact, if (3.24) is false, then there is a set A with V(A) > 0 such that (
∫ ∞
0 W(X(t))dt)IA(ω) = ∞. Thus, from (3.23),

we deduce

∞ = Ê
[
IA(ω)

∫ ∞

0
W(X(t))dt

]
≤ Ê
[ ∫ ∞

0
W(X(t))dt

]
< ∞,

which contradicts (3.23). Therefore, (3.24) holds.
Set νk := inf{t ≥ 0 : |X(t)| ≥ k}, which is (Ωt)-stopping time. We observe from (3.24) that

lim
t→∞

infW(X(t)) = 0 q.s. (3.25)

Moreover, in the same way as Theorem 3.7 was proved, from (3.22) we can show that

Ê|X(T ∧ νk)|p ≤ C, ∀ T > 0,

which implies, by the Chebyshev inequality for sublinear expectation (see, e.g., Chen et al. [2, Proposition 2.1 (2)]),

kpV(νk ≤ T ) ≤ C.

Letting T → ∞ yields

kpV(νk < ∞) ≤ C. (3.26)

We now claim that

lim
t→∞

W(X(t)) = 0 V-q.s. (3.27)

In fact, if this is false, then we can find a number ε ∈ (0, 1/4) such that

V(Ω̃1) ≥ 4ε, (3.28)

where Ω̃1 = {lim supt→∞ W(X(t)) > 2ε}. Recalling (3.26), we can find an integer m sufficiently large for V(νm < ∞) ≤
ε. This means that

V(Ω̃2) = 1 − V(Ω̃c
2) ≥ 1 − ε. (3.29)

where Ω̃2 := {|X(t)| < m for ∀ t ≥ −τ}, and Ω̃c
2 is the complement of Ω̃2. By (3.28) and (3.29) we get

V(Ω̃1 ∩ Ω̃2) ≥ V(Ω̃1) − V(Ω̃1 ∩ Ω̃c
2) ≥ 3ε. (3.30)

Let us now define the stopped process ζ(t) = X(t ∧ νm) for t ≥ −τ. Clearly, ζ(t) is a bounded Itô process with its
differential

dζ(t) = ϕ(t)dt + ψ(t)d < B(t) > +χ(t)dB(t),
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where

ϕ(t) = f (X(t), X(t − δ(t)), t)I[0,νm)(t),
ψ(t) = g(X(t), X(t − δ(t)), t)I[0,νm)(t),
χ(t) = h(X(t), X(t − δ(t)), t)I[0,νm)(t),

Here f , g, h are defined by (3.1). Recalling the polynomial growth condition (3.3), we know that ϕ(·), ψ(·) and χ(·)
are bounded processes, say

|ϕ(t)| ∨ |ψ(t)| ∨ |χ(t)| ≤ C5 q.s. (3.31)

for all t ≥ 0 and some C5 > 0. Moreover, we also observe that |ζ(t)| ≤ m for all t ≥ −τ. Define a sequence of stopping
times

ρ1 = inf{t ≥ 0 : W(ζ(t)) ≥ 2ε},
ρ2 j = inf{t ≥ ρ2 j−1 : W(ζ(t)) ≤ ε}, j = 1, 2, · · · ,
ρ2 j+1 = inf{t ≥ ρ2 j : W(ζ(t)) ≥ 2ε}, j = 1, 2, · · · .

From (3.25) and the definition of Ω̃1 and Ω̃2, we have

Ω̃1 ∩ Ω̃2 ⊂ {νm = ∞}
∩(

∩∞
j=1 {ρ j < ∞}

)
. (3.32)

We also note that for all ω ∈ Ω̃1 ∩ Ω̃2, and j ≥ 1,

W(ζ(ρ2 j−1)) −W(ζ(ρ2 j)) = ε and
W(ζ(t)) ≥ ε when t ∈ [ρ2 j−1, ρ2 j]. (3.33)

Since W(·) is uniformly continuous in the close ball S̄m = {x ∈ R : |x| ≤ m}. We can choose δ = δ(ε) > 0 small
sufficiently for which

|W(ζ) −W(ζ̄)| < ε, ζ, ζ̄ ∈ S̄m, with |ζ − ζ̄ | < δ. (3.34)

We emphasize that for ω ∈ Ω̃1∩Ω̃2, if |ζ(ρ2 j−1+u)−ζ(ρ2 j−1)| < δ for all u ∈ [0, λ] and some λ > 0, then ρ2 j−ρ2 j−1 ≥ λ.
Choose a sufficiently small positive number λ and then a sufficiently large positive integer j0 such that

3C2
5λ(λ + λC1(2, σ) +C2(2, σ)) ≤ εδ2 and C4 < ε

2λ j0. (3.35)

By (3.30) and (3.32) we can further choose a sufficiently large number T for

V(ρ2 j0 ≤ T ) ≥ 2ε. (3.36)

In particular, if ρ2 j0 ≤ T , then |ζ(ρ2 j0)| < m, and hence ρ2 j0 < νm by the definition of ζ(t). We hence have

ζ(t, ω) = X(t, ω) for all 0 ≤ t ≤ ρ2 j0 and ω ∈ {ρ2 j0 ≤ T }.
By the Burkholder-Davis-Gundy inequality under sublinear expectation (see, e.g., Lemma 2.4), we can have that, for
1 ≤ j ≤ j0,

Ê
(
sup
0≤t≤λ

|ζ(ρ2 j−1 ∧ T + t) − ζ(ρ2 j−1 ∧ T )|2
)

≤3λÊ
∫ ρ2 j−1∧T+λ

ρ2 j−1∧T
|ϕ(s)|2ds

+ 3C1(σ)λÊ
∫ ρ2 j−1∧T+λ

ρ2 j−1∧T
|ψ(s)|2ds

+ 3C2(σ)
∫ ρ2 j−1∧T+λ

ρ2 j−1∧T
|χ(s)|2ds

≤3C2
5λ(λ + λC1(σ) +C2(σ)),
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which, together with (3.35) and the Chebyshev inequality for sublinear expectation Ê, we can obtain that

V
(
sup
0≤t≤λ

|ζ(ρ2 j−1 ∧ T + t) − ζ(ρ2 j−1 ∧ T )| ≥ δ
)
≤ ε.

Noting that ρ2 j−1 ≤ T if ρ2 j0 ≤ T , we can derive from (3.36) and the above inequality that

V
(
{ρ2 j0 ≤ T } ∩

{
sup
0≤t≤λ

|ζ(ρ2 j−1 + t) − ζ(ρ2 j−1)| < δ
})

= V(ρ2 j0 ≤ T )

− V
(
{ρ2 j0 ≤ T } ∩

{
sup
0≤t≤λ

|ζ(ρ2 j−1 + t) − ζ(ρ2 j−1)| ≥ δ
})

≥ V(ρ2 j0 ≤ T ) − V
(
sup
0≤t≤λ

|ζ(ρ2 j−1 + t) − ζ(ρ2 j−1)| ≥ δ
)

≥ ε.

This, together with (3.34), implies easily that

V
(
{ρ2 j0 ≤ T } ∩ {ρ2 j − ρ2 j−1 ≥ λ}

)
≥ ε

which means, for each P ∈ P,

P
(
{ρ2 j0 ≤ T } ∩ {ρ2 j − ρ2 j−1 ≥ λ}

)
≥ ε. (3.37)

By (3.33), (3.37), the sub-additivity and the Chebyshev inequality for sublinear expectation, we derive

C4 ≥ Ê
j0∑
j=1

(
I{ρ2 j0≤T }

∫ ρ2 j

ρ2 j−1

W(X(t))dt
)

≥ ε sup
P∈P

j0∑
j=1

EP
(
I{ρ2 j0≤T }(ρ2 j − ρ2 j−1)

)
≥ ελ

j0∑
j=1

P
(
{ρ2 j0 ≤ T } ∩ {ρ2 j − ρ2 j−1 ≥ λ}

)
≥ ε2λ j0.

This contradicts the second inequality in (3.35). Thus (3.27) must hold.
We now claim limt→∞ X(t) = 0 V-q.s. If this were not true, then

ε1 := V(Ω̃3) > 0,

where Ω̃3 = {lim supt→∞ |X(t)| > 0}. On the other hand, by (3.26), we can find a positive integer m0 large enough for
V(νm0 < ∞) ≤ 0.5ε1. Let Ω̃4 = {νm0 = ∞}. Then

V(Ω̃3 ∩ Ω̃4) = V(Ω̃3) − V(Ω̃3 ∩ Ω̃c
4) ≥ V(Ω̃3) − V(Ω̃c

4) ≥ 0.5ε1.

For any ω ∈ Ω̃3 ∩ Ω̃4, X(t, ω) is bounded on t ∈ R+. We can then find a sequence {t j} j≥1 such that t j → ∞ and
X(t j, ω) → X̃(ω) , 0 as j → ∞. This, together with the continuity of W, implies

lim
j→∞

W(X(t j, ω)) = W(X̃(ω)) > 0,

which show
lim sup

t→∞
W(X(t, ω)) > 0 for all ω ∈ Ω̃3 ∩ Ω̃4.

But this contradicts (3.27). We therefore have the assertion limt→∞ X(t) = 0 V-q.s. Thus, the proof is complete.
2
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4. Stability Example for G-SDDEs

In order to give the numerical simulation, we will estimate the pth moment of the solutions to G-SDDEs. To this
end, we consider the following equation, for σt ∈ [σ,σ], ∀ t ≥ 0,

dX(t) = f (X(t), X(t − δ(t), t)dt + g(X(t), X(t − δ(t), t)σ2
t dt

+ h(X(t), X(t − δt), t)σtdw(t). (4.1)

Denote the solution to (4.1) by X(t) = X(t, σt) being dependent on σt. Let Eσ denote the linear expectation under the
corresponding probability measure Pσ. Define now

Υ(m̃) := max
σℓ∈[σ,σ],ℓ=1,··· ,m̃

Eσℓ [|X(t, σℓ)|p],

Υ(m̃) := min
σℓ∈[σ,σ],ℓ=1,··· ,m̃

Eσℓ [|X(t, σℓ)|p],

where σ = σ0 ≤ σ1 ≤ · · · ≤ σm̃ = σ, ℓ = 0, 1, · · · , m̃ with maxm̃ℓ=1(σℓ − σℓ−1) → 0.

Lemma 4.1. Under the notations above, we have

Υ(m̃) → sup
σ∈[σ,σ]

Eσ[|X(t, σ)|p] = Ê[|X(t)|p], m̃ → ∞, (4.2)

Υ(m̃) → inf
σ∈[σ,σ]

Eσ[|X(t, σ)|p] = E[|X(t)|p], m̃ → ∞. (4.3)

Proof. From equation (4.1), we know that X(t, σ) is a G-normal distribution. Since φ(x) = xp, x ≥ 0, p > 0 is a
convex function, by Peng [50, Proposition 2.2.15], we get

sup
σ∈[σ,σ]

Eσ[|X(t, σ)|p] = Ê[|X(t)|p]. (4.4)

We easily know that function Λ(σ) := Eσ[|X(t, σ|p] is continuous in σ ∈ [σ,σ]. For ∀ ε > 0, there exists a sufficiently
enough large positive number Ñ such that for each m̃ > Ñ, we have |Λ(σ′) − Λ(σℓ)| < ε/2, σ′ ∈ [σℓ, σℓ+1], ℓ =
0, 1, · · · , m̃.

Besides, for above ε > 0, there exists σ̃ ∈ [σℓ0 , σℓ0+1] for some ℓ0 such that

sup
σ∈[σ,σ]

Eσ[|X(t, σ)|p] − ε/2 < Eσ̃[|X(t, σ̃)|p] < Eσℓ0 [|X(t, σℓ0 )|p] + ε/2, (4.5)

which shows
0 < sup

σ∈[σ,σ]
Eσ[|X(t, σ)|p] − Υ(m̃) < ε.

Thus, together with (4.4), we deduce (4.2). By using the relation between lower expectation E and sublinear expecta-
tion Ê, we easily prove equation (4.3). Hence, the proof is complete. 2

For a highly nonlinear G-SDDE (3.1) with g(t) ≡ 0, by the equal-spaced partition of time, it follows that

X(ti) =X(ti−1) + f (X(ti−1), X(ti−1 − [δ(ti−1)/∆]∆, ti−1)∆ti
+ h(X(ti−1), X(ti−1 − [δ(ti−1)/∆]∆, ti−1)(B(ti) − B(ti−1)) (4.6)

with initial data η = {X(t) = η(t), t ∈ [−τ, 0]},∆ = ∆ti = ti − ti−1 = 1/N, i = 1, · · · ,N, where N is a positive integer.
Let us introduce the simulation algorithm for GBm (B(t))t≥0. Related details can be referred to Fei and Fei [9].

Now consider a random variable ζ = B(ti) − B(ti−1) ∼ N(0, [σ2, σ2]∆), i = 1, · · · ,N, we construct an experiment
as follows. We take equal-step points σk, k = 1, · · · ,m, such that σ = σ1 < σ2 · · · < σk < · · · < σm = σ. For
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the kth-random sampling (k = 1, · · · ,m), ζk ji (i = 1, · · · ,N; j = 1, · · · , n) are from the classical normal distribution
N(0, σ2

k∆). Define X
k j(ti) by

Xk j(ti) = Xk j(ti−1)

+ f (Xk j(ti−1), Xk j(ti−1 − [δ(ti−1)/∆]∆, ti−1)∆ + h(X(ti−1), X(ti−1 − [δ(ti−1)/∆]∆, ti−1)ζ
k j
i (4.7)

for i = 1, · · · ,N; j = 1, · · · , n; k = 1, · · · ,m.
By Lemma 4.1, for p > 0 we can obtain the estimator ˆ̄µm,n(p) of Ê|X(ti)|p equals to max

1≤k≤m
{ 1n

n∑
j=1

|Xk j(ti)|p}, and the

estimator µ̂
m,n

(p) of E|X(ti)|p to min
1≤k≤m

{ 1n
n∑
j=1

|Xk j(ti)|p}, i = 1, · · · ,N, respectively.

It is easy to find that if Ê|X(t)| with the solution X(t) to highly nonlinear G-SDDE (3.1) is stable, then the solution
X(t) to G-SDDE (3.1) is quasi-surely stable, i.e., V(lim

t→∞
|X(t)| = 0) = 1. Meanwhile, if E|X(t)| is unstable under

sublinear expectation, then the solution X(t) to G-SDDE (3.1) is unstable, i.e., V(lim sup
t→∞

|X(t)| , 0) = 1.

Through above discussions on the simulation algorithm, we now investigate an example to illustrate our theoretic
results.

Example 4.2. Let us consider the G-SDDE (1.1) with the initial data (3.2), where f (x, y, t) = −3x3 − y, g(x, y, t) =
0, h(t) = 0.5y2, σ2 = 0.5, σ2

= 1 and δ̄ = 0.1. Consider two cases: δ(t) = 0.01 and δ(t) = 3 for all t ≥ 0. In case
δ(t) = 0.01, let the initial data η(u) = 2 + sin(u) for u ∈ [−0.01, 0], the sample paths of the solution to (1.1) are
shown in Figure 1, which indicates that the G-SDDE is asymptotically stable. In the case δ(t) = 3, let the initial data
η(u) = 2 + sin(u) for u ∈ [−3, 0], the solution to (1.1) are plotted in Figure 2, which indicates that G-SDDE (1.1) is
unstable. Thereout, whether the G-SDDE (1.1) is stable or not depends on how much the time lag is.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

t

 

 
a(t)
b(t)

Figure 1: The computer simulation of the upper expectation a(t) = Ê|X(t)|0.5 and the lower expectation b(t) = E|X(t)|0.5 of the solution to the
G-SDDE (1.1) with δ(t) = 0.01 using the Euler–Maruyama method with step size 10−3.

We can see coefficients defined by (1.1) satisfy Assumption 3.1 with q1 = 3 and q2 = 2. Define Ū(x, t) = |x|6 for
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Figure 2: The computer simulation of of the upper expectation a(t) = Ê|X(t)|0.5 and the lower expectation b(t) = E|X(t)|0.5 of the solution to the
G-SDDE (1.1) with δ(t) = 3 using the Euler–Maruyama method with step size 10−3.

(x, t) ∈ R × R+. It is easy to show that

LŪ(x, y, t) = 6x5(−y − 3x3) +
15
4
x4y4

≤ 5x6 + y6 − 16x8 + 2y8

≤ c1 − 15.5(1 + x8) + 2.5(1 + y8) (4.8)

for (x, y, t) ∈ R × R × R+, where

c1 = sup
x,y∈R

[
13 + 5x6 + y6 − 0.5(x8 + y8)

]
< ∞.

Thus, we can set H(x, t) = 1 + x8. Due to 2.5 = c3 < (1 − δ̄)c2 = 13.95, we know Assumption 3.2 holds. From
Theorem 3.3, the solution of the G-SDDE (1.1) satisfies

sup
−τ≤t<∞

Ê|X(t)|6 < ∞.

To apply our theorems established in the previous section, we need to verify assumptions imposed there. Let us do so
one by one. To verify Assumption 3.5, we define

U(x, t) = x2 + x4 (4.9)

for (x, t) ∈ R × R+. Moreover,
|Ux(x, t)|2 = 4x2 + 16x4 + 16x6, (4.10)

| f (x, y, t)|2 = |y + 3x3|2 ≤ 2y2 + 18x6, (4.11)
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|h(x, y, t)|2 = 0.25y4. (4.12)

By definition (3.6), it is straightforward to show

LU(x, y, t) = (2x + 4x3)(−3x3 − x) +
1
8
(2 + 12x2)y4

≤ −2x2 − 10x4 + 0.25y4 − 11.5x6 + y6. (4.13)

Set
β1 = 0.1, β2 = 0.2, β3 = 1, β4 = 1. (4.14)

By using (4.13)-(4.14), we can then show that

LU(x, y, t) + β1|Ux(x, t)|2

+ β2| f (x, y, i, t)|2 + β4|h(x, y, t)|2

≤ −1.6x2 + 0.4y2 − 8.4x4 + 0.5y4 − 6.3x6 + y6

≤ −6(0.2x2 + x4 + x6) + 3(0.2y2 + y4 + y6). (4.15)

Let U1(x, t) = 0.2x2 + x4 + x6, α1 = 6, α2 = 3. Due to 5.4 = α1(1 − δ̄) > α2 = 3, we get condition (3.7). Note that
ϖ = 1. Then condition (3.9) becomes

δ(t) ≤ 0.13.
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Figure 3: The computer simulation of the upper expectation a(t) = Ê|X(t)|0.5 and the lower expectation b(t) = E|X(t)|0.5 of the solution to the
G-SDDE (1.1) with δ(t) = 0.13 using the Euler–Maruyama method with step size 10−3.

By Theorem 3.7, the solution of the G-SDDE (1.1) has the properties that∫ ∞

0
(X2(t) + X4(t) + X6(t))dt < ∞ q.s.,

Ê
∫ ∞

0
(X2(t) + X4(t) + X6(t))dt < ∞.
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Figure 4: The computer simulation of the upper expectation a(t) = Ê|X(t)|0.5 and the lower expectation b(t) = E|X(t)|0.5 of the solution to the
G-SDDE (1.1) with δ(t) = 0.8 using the Euler–Maruyama method with step size 10−3.

Moreover, as |X(t)|p ≤ X2(t) + X4(t) + X6(t) for any p ∈ [2, 6], we have

Ê
∫ ∞

0
|X(t)|pdt < ∞.

Recalling q1 = 3, q2 = 0 and q = 6, we see that for p = 4, all conditions of Theorem 3.9 are satisfied so that

lim
t→∞

EP|X(t)|4 = 0, ∀P ∈ P.

We perform a computer simulation with the time-delay δ(t) = 0.13 for all t ≥ 0 and the initial data X(u) = 2 + sin(u)
for u ∈ [−0.13, 0]. The sample paths of the solution to (1.1) are plotted in Figure 3, where the simulation supports our
theoretical results as well.

In addition, from Figure 4, we find the system maintains stable even if the time-delay of the system is bigger than
the upper bound 0.13 computed by (3.9) in Theorem 3.7. This appearance arouses our interests to improve the results
here.

5. Conclusion

In real systems, we are often faced with two kinds of uncertainties: probabilistic and Knightian ones, respectively.
Under Peng’s sublinear expectation framework, we can characterize the systems with ambiguity. This paper gives a
description of this kind of system with delay driven by GBm. By the method of Lyapunov functional, we derive the
delay-dependent stability criteria of the solutions to highly nonlinearG-SDDEs. Then, an illustrative example with its
simulation algorithm is addressed in Section 4. Our work here under sublinear expectation provides a new perspective
relative to the classical one for the further research on the time-delay stability of highly nonlinear G-SDDEs.

In Theorem 3.7, if σ̄ = 1, then the delay upper bound in (3.9) reduces to the classical case without volatility
ambiguity. If σ̄ < 1, then the delay upper bound in (3.9) will be no less than the classical one while if σ̄ > 1, then
the delay upper bound in (3.9) will be no more than the classical one. In Theorem 3.9, if the family P of uncertain
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probability measures includes multi-elements, we can prove the system (3.1) is weak asymptotically stable while
if P is singleton, the stability of the system (3.1) reduces to the classical asymptotic stability. In Theorem 3.10, if
the family P of uncertain probability measures includes multi-elements, then we can prove the system (3.1) is weak
quasi-surely asymptotically stable while if P is singleton, then the stability of the system (3.1) reduces to the classical
almost surely asymptotic stability.

In addition, Niu et al. [23] first put forward an adaptive neural-network-based dynamic surface control method
for a class of stochastic interconnected nonlinear nonstrict-feedback systems with unmeasurable states and dead zone
input. In Niu et al. [25], authors constructed adaptive neural output-feedback controller for a class of uncertain
switched time-delay nonlinear systems with nonlower triangular structure, while Niu et al. [24] presented an adaptive
approximation-based output-feedback tracking control scheme for a class of stochastic switching lower-triangular
nonlinear systems with input saturation and unmeasurable state variables. These methods help to solve the stability
for a class of nonlinear stochastic switching systems in classical probability framework. However, our present topics
of the paper have two basic different points: first, our current paper is based on the framework of sublinear expectation,
and second, our referred stochastic systems are highly nonlinear ones. Thus, it will be valuable and challenging to
investigate the stability of our systems by applying adaptive neural-network-based dynamic surface control method.
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