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Abstract

In order for automated mobile vehicles to navigate in the real world with
minimal collision risks, it is necessary for their planning algorithms to con-
sider uncertainties from measurements and environmental disturbances. In
this paper, we consider analytical solutions for a conservative approximation
of the mutual probability of collision between two robotic vehicles in the
presence of such uncertainties. Therein, we present two methods, which we
call unitary scaling and principal axes rotation, for decoupling the bivariate
integral required for efficient approximation of the probability of collision
between two vehicles including orientation effects. We compare the conser-
vatism of these methods analytically and numerically. By closing a control
loop through a model predictive guidance scheme, we observe through Monte-
Carlo simulations that directly implementing collision avoidance constraints
from the conservative approximations remains infeasible for real-time plan-
ning. We then propose and implement a convexification approach based on
the tightened collision constraints that significantly improves the computa-
tional efficiency and robustness of the predictive guidance scheme.
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1. Introduction

A core undertaking for safely guiding an autonomously controlled vehicle
(ACV) within the real world amongst other dynamic agents, objects or ob-
ject vehicles (OVs), is that of devising real-time feasible collision free motion
plans. Guidance and trajectory planning algorithms for an ACV operating
in dynamic environments need to observe/track and predict the motion and
extent of neighboring OVs [1]. Starting with available measurements such
as sparse laser point clouds [2], OVs can be tracked by treating each as an
extended object [3, 4]. With knowledge of an OV’s shape and motion states
(for example fusing with camera images and other sensors), it can be rep-
resented by an estimated geometric/spatial shape to formulate enforceable
collision avoidance constraints in the motion trajectory planning problem for
the ACV [5, 6]. However, the problem is still quite challenging to solve in
real-time due to the following principal difficulties: 1) The planning problem
involves uncertainties due to modeling errors, sensor imperfections and/or en-
vironmental disturbances; and; 2) Since the desired feasible field for planning
maneuvers is defined to be outside of the area occupied by OVs and other
(road or workspace) boundaries, the collision avoidance problem is generally
non-convex.

The first difficulty involving uncertainties is often handled by consider-
ing the known/assumed bounds (non-deterministic uncertainty case) or their
probability distributions (probabilistic case) [7]. In the non-deterministic
case [8], the worst case of the uncertainty is considered in the trajectory
planning problem leading often to a very conservative solution. In the prob-
abilistic case [9], the conservatism can be relaxed by specifying probabilistic
collision criteria which are often posed as chance/probabilistic collision avoid-
ance constraints with a given threshold. However, the evaluations of these
collision criteria are often computationally intractable due to the multivari-
ate integrals involved in the probabilistic collision avoidance criteria. Nev-
ertheless, for a specified confidence threshold, a solution can be sought by
solving approximate deterministic trajectory planning problems with either
a sampling-based method (Monte Carlo Simulations) [9] or with constraint-
tightening methods [10, 11].

In constraint-tightening methods, the original probabilistic collision avoid-
ance (chance) constraint is replaced by a deterministic constraint that is a
function of the confidence threshold and the probability distribution of the
uncertainty. The key step in these methods is to determine the form of this
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function. With assumptions of uncorrelated Gaussian distributions for the
state observations, an explicit function is easy to obtain by factorizations into
univariate integrals [11]. For the case of correlated state uncertainties, [12]
derived an approximate explicit function for probabilistic collision evaluation
of small-sized objects (radius smaller than 1 m). However, this approxima-
tion does not work for agents of larger geometric sizes, e.g. ACVs operating
in public road traffic. Our prior work in [10] provided a framework to han-
dle agents of non-negligible sizes with 2D rectangular axes-aligned shapes.
Therein, the computations of the mutual probability of collision between
OVs of non-negligible sizes is approximated analytically via coordinate rota-
tions. In this paper, we will refer to this method as principal axes rotation.
A drawback of this framework is that it does not account for the relative
orientation of agents and the associated uncertainty. This limitation will be
addressed in this paper by drawing from a similar approach proposed in [13]
that accounts for heading state uncertainty assuming independence of the
heading state from the translational states. Therein, the mutual probability
of collision is approximated via a linear coordinate transformation to achieve
unit covariance. In this paper, we will refer to this latter method as unitary
scaling. Both principal axes rotation and unitary scaling methods attempt
to achieve the same goal of constraint tightening via conservative approx-
imations of the collision avoidance criteria. In this paper, we characterize
the conservatism introduced by each method to identify guidance on their
respective preferred use scenarios.

Approaches to address the second difficulty (non-convexity of planning
space) vary by the choice of the planning method. Commonly cited sampling-
based planning methods like the A* algorithm [14] and RRT* algorithm [15]
use polygonal models [9, 16], which are a disjunction of linear constraints,
or algebraic models like circles, ellipses [17] and hyper ellipses [18]. These
sampling-based methods suffer from the computational burden of the large
number of samples that may be needed for sufficient resolution of the rel-
evant geometry for real-time guidance in complex traffic. Alternatives to
these planning methods are mathematical constrained-optimization based
planning methods like model predictive control (MPC) [19] that solve on-line
guidance optimizations subject to the constraints of the measured and model
predicted evolution of traffic. While polygonal representations of objects can
be adopted with these methods, they are less convenient since the disjunction
of linear constraints that would be needed to represent multi-vehicle traffic
often lead to non-smoothness and/or discontinuity in the solution space. This
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often result in Disjunctive Linear Programming problems [20], which require
specific solvers to find a solution. On the other hand, if one finds analyt-
ical approximations for the mutual probability of collision criteria between
objects, it is possible to directly implement those as tightened constraint
functions in the motion trajectory planning task (as in [13]). However, this
may still result in excessive execution time and non-robust behavior, as we
will show later in Section 3.2 with an MPC-based planner. For this reason,
we further propose convexification steps on top of the analytical approxima-
tions that improve execution time while still guaranteeing the probability of
collision threshold is not violated by the planner.

The main contributions of this paper can be summarized as follows:

• Detailed discussions on the analytical approximation of the mutual
probability of collision avoidance criteria between two agents.

• Compare two methods for decoupling the bivariate integral that ap-
pears in the collision avoidance criteria.

• Demonstration of the shortcomings of a chance-constrained nonlinear
MPC-based motion trajectory planner that directly implements the ap-
proximated probabilistic collision avoidance criteria as tightened con-
straints.

• Propose a constraint convexification method that significantly enhances
the computational speed and robustness of predictive planners that use
the constraint-tightening approximations.

The rest of the paper is organized as follows. Section 2 derives the two meth-
ods for analytical approximation of the probability of collision criteria and
characterizes the associated conservatism in each. Section 3 first outlines
the chance-constrained nonlinear MPC-based motion-trajectory planner and
demonstrates its performance with a direct implementation of the results
from Section 2. Then, it proposes the convexification method and demon-
strates the associated improvements. Section 4 presents the conclusions of
the paper and identifies some avenues for further work.

2. Conservative Approximation of Probabilistic Collision Avoid-
ance Criteria

Figure 1 shows a schematic of the overall process for evaluating probabilis-
tic collision avoidance constraints. We assume that there are measurements
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Figure 1: Probabilistic collision avoidance constraint tightening framework.

zj available for each object vehicle, ovj, in the field of view of the ego vehicle,
egoi. We also assume that each ovj is tracked from these measurements and
we can obtain an estimation of the current state and prediction of the future
states of each ovj and egoi. As object vehicle tracking, and state estimation
and prediction are not a primary contribution of this paper we omit further
discussion of that here. The reader is referred to [21, 22, 23] and references
therein. We note that estimated/predicted state vector x̂j and associated
covariance matrices Σj are assumed to be available for each ovj over the
time horizon Np. Using this information about the state and uncertainty of
ovj, along with the estimated and predicted state trajectory and covariance
of egoi, the probabilistic constraint tightening block in Figure 1 conducts
the main computations we detail in the next subsection. In Section 3, we
will first overview how to directly implement the probabilistic constraint
Pr (Xi,k ∩ Xj,k) ≤ δ within a predictive trajectory planner (dash-dotted line
in Figure 1), where X is the 2D space occupied by a vehicle considering its
geometric shape and δ is the probability of collision threshold. Then, we
will present our conservative convexification method (dashed lines in Figure
1). Either the direct probabilistic constraint or the convexified constraint
(Aij,kx̂i,k ≤ bij,k) may be applied over the predicted state trajectories with
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Figure 2: Example of a collision free condition (left) and collision condition (right) between
an ego vehicle (pentagonal here) egoi and object vehicle (hexagonal) ovj .

the time indexed by k as in Figure 1.
We will begin by formulating a conservative approximation (upper bound)

on the probability of collision between egoi and ovj. For our purposes, here-
after, x represents the 2D position state for the centroid of the geometric
shape for a given vehicle, unless specifically noted otherwise.

2.1. General Formulation of the Probabilistic Collision Avoidance Criteria

We can state that a collision occurs between egoi and ovj, if Xi (xi) ∩
Xj (xj) 6= ∅ (at any time k, where the subscript k is omitted in the following
to reduce clutter). This condition is depicted on the right-hand side of Figure
2. Any arbitrary shape may be considered for the vehicles at this point. The
criteria for the probability of egoi entering a collision state with ovj to not
exceed a threshold δ is then:

Pr (X (xi) ∩ X (xj) 6= ∅) ≤ δ. (1)

Determining the intersection of two arbitrary shapes, Xi (xi)∩Xj (xj), analyt-
ically can be cumbersome. One common approach is to lump the geometric
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shapes of the egoi and ovj into a combined shape Xij (xj) centered at xj as
the Minkowski sum [24] of the underlying shapes (i.e. Xi ⊕Xj = Xij). Then
egoi can simply be considered as a point located at xi. See the lower portion
of Figure 2. The collision probability threshold criteria becomes:

Pr (xi ∈ Xij (xj)) ≤ δ; (2)

where the probability of collision between egoi and ovj is defined by [21]:

Pr (xi ∈ Xij(xj)) =

∫∫
Ic(xi, xj) pxixj(xi, xj) dxidxj. (3)

Here, pxixj is the joint probability density function (PDF) of the random
variables xi and xj for the position states, and Ic (xi, xj) is a collision indicator
function defined as:

Ic (xi, xj) =

{
1 if xi ∈ Xij (xj) ,

0 otherwise.
(4)

Now using the definition of the joint PDF, we can rewrite pxixj (xi, xj) =
pxi (xi|xj) pxj (xj). This, with the definition of Ic, allows us to replace the
inner indefinite integral of (3) with a definite integral over the shape of
Xij (xj) to obtain the general formulation for the probability of collision:

Pr (xi ∈ Xij (xj)) =

∫ [∫
xi∈Xij(xj)

pxi (xi|xj) dxi

]
pxj (xj) dxj. (5)

2.2. Approximation of the Probability of Collision for Gaussian Uncertainty
and Car-like Rectangular Geometries

The above general form in (5) is typically quite difficult to evaluate ef-
ficiently for vehicles of non-negligible sizes and arbitrary shapes using on-
board computing resources. To expedite computation of the probability of
collision online some simplifying assumptions need to be invoked. We make
two assumptions here:

Assumption 1 : OVs are rectangular in shape and their position states
follow Gaussian distributions. This assumption aligns with common prac-
tical autonomous vehicle guidance schemes that use lidar- or vision-based
perception techniques with bounding boxes for object detection and tracking
[22, 25] along with Gaussian noise assumptions. Following these practices:
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• Both egoi and ovj are described as car-like rectangular shapes;

• The PDFs of the position x and heading φ states of egoi and ovj are
independent and available from the respective estimation routines as
Gaussians.

We designate the normal PDF with N (µ,Σ), where µ is the mean and Σ the
covariance. In the discussion that follows, we use the state variable in the
subscript to differentiate which mean or covariance is intended. We note that
the assumption of rectangular shapes is not restrictive, as other geometries
may be bounded by a rectangle or divided into multiple sub-regions, each
of which is bounded by a rectangle. Further, the motions of the vehicles
may have a coupled (interactive) dynamics in traffic for which interaction-
aware planning methods have been proposed elsewhere [26, 27]. While this
is not the focus of the present paper, we note that one could estimate the
uncertainty in the joint states/behaviors of egoi and ovj as in [28] and extend
the decoupling approach detailed in this paper for bivariate distributions to
higher dimensions and proceed to utilize the proposed constraint tightening
framework. This extension is left as a possible future research direction.

When we consider both egoi and ovj to be rectangular, instead of mere
points or circles, it is necessary to consider the orientation relative to the
coordinate frame as well. We can incorporate heading information in our
modeling with the following approach. Suppose φi and φj are the respective
heading angles of the two vehicles relative to a road fixed frame (see top of
Figure 3). We rotate the frame of reference to align with the ego vehicle and
define the relative heading angle φji = φj − φi with mean µφj − µφi and co-
variance Σφj +Σφi (see middle of Figure 3). Let Xij (xj, φji) be the combined
geometric description located at the 2D position state xj and constructed
according to the relative orientation φji (see bottom of Figure 3). Applying
Baye’s rule, the probability of collision can be formulated as:

Pr (xi ∈ Xij (xj)) =

∫
pφji (φji) Pr (xi ∈ Xij (xj, φji) |φji) dφji. (6)

Proposition 1 : Given independent Gaussians xi and xj, the probability
of collision conditioned on relative heading angle φji is:

Pr (xi ∈ Xij (xj, φji) |φji) =

∫
xij∈Xij(0,φji)

Nxij
(
µxij ,Σxij

)
dxij, (7)
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Figure 3: Depiction of heading angles φi and φj (top), the rotation to align the reference
frame with egoi and the resulting relative heading angle φji (middle), and the combined
shape Xij (xj , φji) (bottom).

where xij = xi − xj is the relative position state variable with mean µxij =
µxi − µxj , and covariance Σxij = Σxi + Σxj .

Proof : Proposition 1 was originally proved in [21]. �
When considering heading deviations, it is still cumbersome to compute

the collision probability defined by (6) and (7) (for real time use), due to the
double integral and the fact that the integration bounds in (7) depend on φji
and are irregular. This leads us to our next pragmatic assumption.

Assumption 2 : We use conservative embedding of ovj within a circum-
scribed rectangle aligned with the axes of egoi considering a specified range
of the relative heading angle φji.

This assumption is utilized in such a way that the combined geometric
description Xij (0, φji) remains rectangular, thereby simplifying the evalua-
tion of the integral in (7). There are, however, two remaining difficulties:
first is the consideration of uncertainty in relative heading angle, and second
is the coupling of the uncertainty in the two dimensions of the position space.

To address the first difficulty, we adopt a method proposed in [13]. We
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Figure 4: Visualization of the conservative embedding of ovj within an egoi axes-aligned
circumscribing rectangle for φji interval l.

consider the support of the relative heading φji and discretize it into nφ
intervals Φji,l = [φji,l−1, φji,l] , l ∈ {1, . . . , nφ}, from φji,0 = µφji − π/2 to
φji,nφ = µφji + π/2. As φji is Gaussian, and by definition has an infi-

nite support, we define Φji,0 = [−∞, φji,0] and Φji,nφ+1 =
[
φji,nφ ,∞

]
, thus∑nφ+1

l=0 Pr (φji ∈ Φji,l) = 1. For each heading angle interval Φji,l, l ∈ {0, . . . ,
nφ+1}, the combined shape Xij (xj,Φji,l) is constructed by a Minkowski sum
of the shape of egoi and the rectangle that circumscribes the convex hull of
the shape of ovj over the interval (see Figure 4). We denote the half-length
and half-width of Xij (0,Φji,l) by al and bl, respectively.

An upper bound on the probability of collision, considering the nφ discrete
intervals of φji, can then be obtained as:

Pr (xi ∈ Xij (xj)) ≤
nφ+1∑
l=0

Pr (φji ∈ Φji,l) Pr (xi ∈ Xij (xj,Φji,l) |Φji,l) . (8)

The upper bound in (8) is significantly easier to evaluate than (6) as the
coupled integration over φji and the 2D deviation state xij is replaced by
a (probability) weighted summation of sub-integrations over only the 2D
position states.

The second difficulty remains as the collision probability given a spe-
cific relative heading angle interval still requires bivariate integration over
the 2D position states. To overcome this, we seek a transformation of the
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deviation state variable into a reference frame that decouples/factorizes the
integration of the bivariate Gaussian distribution into univariate integrals.
Specifically, we are interested in obtaining a transformation applied to the
deviation variables that results in a diagonalized covariance matrix. As such
a transformation may result in an irregular integration region X′ij (0,Φji,l),

we will also determine the rectangular region X′′ij (0,Φji,l) that conservatively

embeds X′ij (0,Φji,l). We explore two methods that accomplish this, unitary
scaling (US) and principal axes rotation (PA).

2.2.1. Decoupling Method 1 – Unitary Scaling

US normalizes the covariance of the deviation state (i.e. Σx
′
ij

= TΣxijT
T =

I, where I is the 2 by 2 identity matrix), in order to allow decoupling in any
direction [13, 29]. One transformation matrix that accomplishes this is given

by T0 = Σ
−1/2
xij (see Appendix B for a discussion on how to compute T0).

The transformation T0, as depicted in the middle left hand portion of Figure
5, can be shown to be composed from three linear elementary operations:
rotation, scaling and shear; or T0 = RSH, where R is a rotation matrix,
S a scaling matrix, and H a shear matrix (see more below). Scaling does
not alter the shape, i.e. it maintains a rectangular integration region. Rota-
tion rotates the rectangular integration region with respect to the coordinate
axes, however, it does not alter the shape. Taking advantage of the fact that
we can decouple x

′
ij in any direction, we can undo the rotation using the

transformation R−1 to align X′ij (0,Φji,l) with the coordinate axes. See the
bottom left of Figure 5. (With a slight abuse of notation, we designate the
axes of the new reference frame by 1 and 2, however, it should be noted that
this is not the same frame as the principle axes 1 and 2 mentioned later for
Method 2.) Conversely, shear does alter the shape of X′ij (0,Φji,l). As shear

maintains parallelism, the (tightest) bounding box X′′ij (0,Φji,l) in the trans-
formed coordinate frame contains either: the two edges along the length of
the transformed combined shape X′ij (0,Φji,l), we will call this case 1 (shear
occurs along axis 1 – depicted on the left of Figure 5); or the two edges along
the width, which we call case 2 (shear occurs along axis 2 – not depicted).

To efficiently implement US, we can reduce the number of matrix opera-
tions by taking advantage of the decomposition of T0 intoRSH (see Appendix
C for how to compute R, S, and H for both case 1 and case 2). Instead of
applying the transformation T0 and rotating the reference frame by R−1, we
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Figure 5: Visualization of the decoupling methods, unitary scaling (left), principal axis
rotation (right).

can simply apply the transformation T = SH, which takes the form:

SH =


[
s1 s1h

0 s2

]
for case 1,[

s1 0

s2h s2

]
for case 2.

(9)

Based on the assumed forms of R, S, and H, it is possible to solve for s1, s2,
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and h as functions of the eigenvalues λc, c ∈ {1, 2}, and components of the
first eigenvector v1c, c ∈ {1, 2} of the original covariance matrix Σxij . The
complete derivation for s1, s2, and h may be found in Appendix C.1 for case
1 and Appendix C.2 for case 2, while the relationships between the elements
of a covariance matrix Σ and its eigenvalues and eigenvectors may be found
in Appendix A.

2.2.2. Decoupling Method 2 – Principal Axes Rotation

The second method attempts to decouple the bivariate Gaussian distri-
bution of the deviation state by a rotation to align the coordinate axes with
the principal axes 1 and 2 of the uncertainty. The transformation is then

T =

[
cos θ − sin θ
sin θ cos θ

]
, where the angle θ to the principal axes is the direction

of an eigenvector of the covariance matrix Σxij [30]. The transformed covari-
ance is then Σx

′
ij

= TΣxijT
T = D, where D is the diagonal matrix composed

of the eigenvalues of the original covariance matrix Σxij . Let θ correspond
to the eigenvector associated with the first eigenvalue along the diagonal of
D. The reader is directed to Appendix A or our paper [10] for detailed
equations for this method. The right half of Figure 5 depicts this rotation.

After the transformation for either decoupling method, a rectangle X′′ij (0,Φji,l)
aligned with axes 1 and 2 is found that circumscribes the transformed in-
tegration region X′ij (0,Φji,l) (depicted for both methods in Figure 5). We
can then solve for the half-length and half-width of the bounding box of the
transformed shape, a

′′

l and b
′′

l , respectively, with the following relationship:[
a
′′

l

b
′′

l

]
= abs (T )

[
al
bl

]
, (10)

where we use abs (·) to describe the elementwise absolute value function.
Note that T is the rotation matrix for PA and T = SH for US. The bivariate
integral in (7) becomes a product of two univariate integrals:

Pr (xi ∈ Xij (0,Φji) |φji,l) ≤
2∏
c=1

∫ x
′
c,l

x
′
c,l

Nx′c
(
µx′c , σ

2
x′c

)
dx
′

c, (11)

where x
′
ij =

[
x
′
1, x

′
2

]T
is the transformed relative position state, and x

′

c,l and

x
′

c,l are the upper and lower bounds of the conservative transformed shape

X′′ij,l (0,Φji,l) in the c-direction, c ∈ {1, 2} (±a′′l along axis 1 and ±b′′l along
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axis 2). For future use, we will denote the integral (or the factors) on the
right-hand side of (11) as Pr

(
x
′
c ∈
[
x
′

c,l, x
′

c,l

])
. Using the result in (11) and

the definition of the cumulative distribution function (CDF) of the normal
distribution, we can update the upper bound in (8) as:

Pr
(
x
′

ij ∈ X′′ij (0)
)

=

nφ+1∑
l=0

Pr (φji ∈ Φji,l)
2∏
c=1

Ψ

(
x
′
c − µx′c
σx′c

)∣∣∣∣∣
x
′
c,l

x
′
c,l

 , (12)

where Ψ (z) is the CDF of the standard normal and σx′c is the standard
deviation. With (12), we have now derived an analytical solution for an
upper bound on the mutual probability of collision between egoi and ovj.

2.3. Comparison of Decoupling Methods

We now investigate the shape contours for different (constant) probabil-
ities of collision approximated with the two decoupling methods. To obtain
the true probability of collision for comparison purposes, we utilize Monte-
Carlo Simulations. Specifically, we estimate the true probability of collision
by sampling nMS instances of the position and heading states of the egoi and
ovj (both with mean µx,φ and joint covariance Σx,φ) and then calculating the
indicator function (4) and the probability of collision by:

Pr (xi ∈ Xij) =
1

nMS

nMS∑
k=0

Ic

([
xi,k
φi,k

]
,

[
xj,k
φj,k

])
(13)

Figure 6 shows the collision probability contours approximated using the
unitary scaling case 1 (US1), principal axes (PA) rotation, and Monte-Carlo
Simulations (MS) methods. We see that both approximation methods (US1,
PA) are conservative as the true probability contours are contained within
the contours of the approximations.

In the following, we seek to characterize the level of conservatism for
both decoupling methods. This can be very important to consider for online
motion planning tasks, as the choice of decoupling method could mean the
difference between finding a feasible path in the available computing time
or not. Substituting the respective definitions of T for US and PA into (10)
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Figure 6: Contour of collision probabilities between egoi and ovj using unitary scaling case
1 (US1), principle axes rotation (PA), and Monte-Carlo simulations (MC); nMS = 10, 000
samples were used for the MS method; for the approximation methods nφ = 20 was used.

yields:

[
a
′′

b
′′

]
=



[
|s1| a+ |s1h| b
|s2| b

]
for US case 1,[

|s1| a
|s2h| a+ |s2| b

]
for US case 2,[

|cos θ| a+ |sin θ| b
|sin θ| a+ |cos θ| b

]
for PA.

(14)

To compare the two decoupling methods, we emphasize that both cases of
US scale the original dimensions, whereas PA does not. As scaling does not
result in any conservatism, we will compare a

′′
and b

′′
of PA to a

′′
/ |s1| and

b
′′
/ |s2| of either US case. We do this both analytically and numerically.

First for PA, it is easy to show geometrically, or by taking derivatives
of (14) with respect to θ, that both a

′′
and b

′′
are bounded in the set[

min {a, b} ,
√
a2 + b2

]
. If b < a, then the minimum of a

′′
occurs at the

angles θ ∈ {π/2± kπ} for all k ∈ I≥0, and the minimum of b
′′

occurs at
θ ∈ {±kπ} for all k ∈ I≥0, where I≥0 is the set of positive integers including
0. If a > b, then the angles obtaining the minimum of a

′′
and b

′′
are each

shifted by π/2. The maximum of a
′′

occurs at θ ∈ {tan−1 (b/a)± kπ} for all

15



Figure 7: Plot of a
′′

(top row) and b
′′

(bottom row), as a function of correlation coefficient
ρ and σx/σy for principal axis rotation (left), unitary scaling case 1 (center), and unitary
scaling case 2 (right), with original dimension a = 4 and b = 2.

k ∈ I≥0, while the maximum of b
′′

occurs at θ ∈ {tan−1 (a/b)± kπ} for all
k ∈ I≥0. Further, if we look at the area of the transformed integration region
for PA, a

′′
b
′′
, we can see that it is bounded in [ab, 0.5 (a2 + b2) + ab], where

the minimum area occurs at the angles θ ∈ {±kπ/2} for all k ∈ I≥0, and the
maximum area occurs at the angle θ ∈ {π/4± kπ/2} for all k ∈ I≥0.

Now investigating US, it is easy to see from (14) that b
′′
/ |s2| = b for case

1 and a
′′
/ |s1| = a for case 2, i.e. there is no conservatism in the respective

directions. Therefore, all of the conservatism can be lumped into a
′′
/ |s1| for

case 1 and b
′′
/ |s2| for case 2. Specifically, the conservatism is proportional

to the shear h, therefore we seek to analyze how h (case 1 (C.4c) and case
2 (C.7c) in Appendix C) behaves with respect to λ1, λ2, v11, and v12. As
we chose unit eigenvectors, we know v11, v12 ∈ [0, 1] and v211 + v212 = 1. The
denominator of h, for either case, is then a weighted combination of the
eigenvalues, while the numerator is bounded with respect to v11 and v12.
Therefore, it is of interest to understand how h behaves with respect to the
eigenvalues λ1 and λ2. In theory, if the eigenvalues tend towards infinity,
it can be shown that h tends towards either ±v12/v11 or ∓v11/v12 for either
case (see Appendix C). As both are unbounded this means the conservatism
of US is theoretically unbounded in one direction. However, in practice, the
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spectral radius of Σxij is (or the eigenvalues are) typically bounded meaning
practical bounds on h can be computed.

Recalling that the eigenvalues and eigenvectors are a function of the stan-
dard deviations σx and σy, as well as the correlation coefficient ρ, we present
plots of the dimensions of X′′ij as a function of ρ and σx/σy in Figure 7.

As presented analytically, Figure 7 (a) and (d) support that a
′′

and b
′′

for
PA are bounded, and therefore the corresponding conservatism is bounded.
Then referencing Figure 7 (b) and (e), we see how b

′′
/ |s2| remains constant

while a
′′
/ |s1| increases, apparently unbounded, as |ρ| and σx/σy increase for

US case 1. Similar behavior is observed for the opposite dimensions in Figure
7 (c) and (f) for US case 2.

The key observations are the following: in unstructured environments,
where egoi may need to navigate around an obstacle in any direction, the PA
decoupling method is beneficial as the conservatism is easily bounded in any
direction. However, in applications where only one direction is of relative
importance, US guarantees minimal conservatism in one or the other direc-
tion. For example, if the application is autonomous driving on a multi-lane
highway, US case 1 will guarantee minimal lateral conservatism allowing egoi
to pass (or be passed by) OVs in adjacent lanes. On the other hand, on a
single lane highly populated road where the egoi is following an OV using
adaptive cruise control (ACC), US case 2 is beneficial as it allows for mini-
mal conservatism in the longitudinal direction, and therefore accommodate
longitudinally dense traffic.

3. Application in Closed-Loop Trajectory Planning

3.1. Nonlinear MPC-based Motion Planning Formulation

To demonstrate the use of the above constraint tightening methods, we
formulate a chance constrained nonlinear MPC (CC-MPC) that solves the
trajectory planning problem:

min
xi,u

E
[
(y − r)T Q (y − r) + uTRu

]
(15a)
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Subject to:

ẋi = f (xi, u, w) , xi ∈ X , u ∈ U , w ∈ W (15b)

yi = Cxi + ν, ν ∈ V (15c)

xi (0) = x̂i (t) (15d)

Pr (X (xi) ∩ X (xj) 6= ∅) ≤ δ ∀j ∈ {1, ..., nov} (15e)

E [c2 (xi, u)] ≥ 0. (15f)

The problem in (15a) minimizes the expected error in output tracking, where
y, r, and u are, respectively, the outputs, references to be tracked, and inputs
augmented over the prediction horizon. Let Q and R be block diagonal
matrices composed of the symmetric positive semi-definite weighting matrices
Qk and Rk at each time step k ∈ {1, . . . , np}. The constraints include: 1) the
nonlinear motion dynamics model and the feasible state and input bounded
sets, X and U , respectively, in (15b), with process noise w sampled from
the set W ; 2) the output model in (15c), with measurement noise ν sampled
from the set V ; 3) the initial condition in (15d); 4) the probabilistic collision
avoidance constraints in (15e), and 5) nonlinear expectation constraints are
modeled by (15f).

Here the ego vehicle state xi =
[
s ye φ v a γ

]T
includes the posi-

tion state (longitudinal position s and lateral position ye), heading angle φ,
velocity v, acceleration a, yaw rate γ, and the inputs include desired accel-
eration ad and yaw rate γd. We assume full state measurement, i.e. C is the
6 by 6 identity matrix, however, the optimal control problem only tracks ye
and v references. The kinematics are governed by a particle motion model
in the Frenet frame, with the dynamics associated with vehicle mass, mo-
ment of inertia, drivetrain, and steering system lumped into first order lag
dynamics for a and γ. For a detailed discussion of the complete nonlinear
motion model of (15b) and nonlinear constraints of (15f), including friction
limits, the reader is directed to our prior work in [19]. We also defer the dis-
cussion of the transformation of the stochastic CC-MPC problem above into
a deterministic one (with collision constraints tightened with our approach)
to references elsewhere [31, 32, 33].

We utilize an unscented Kalman filter (UKF) to estimate the mean cur-
rent state of egoi and the idea of the most likely measurement [34] to prop-
agate the covariance over the prediction horizon. The predicted ovj states

include xj =
[
s ye v φ

]T
. For estimating and predicting xj and its co-
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Figure 8: Illustrative scenario.

variance we use a UKF coupled with the nonlinear motion model from [19].

3.2. Direct Implementation of the Probabilistic Constraint

For a direct implementation of the probabilistic constraint, we replace the
general probability on the left-hand side of (15e) with the analytical upper
bound on the probability of collision in (12). To simplify calculations within
the MPC, we utilize the prior time step plan of xi and the prediction of xj
to precompute Σxij , φji, and Σφji . This allows us to calculate the integration

bounds a
′′

l and b
′′

l for every l relative heading range Φji,l and each time step
prior to the MPC call. We solve the optimal control problem (OCP) using
the MPCTools [35] interface with CasADi [36] and the IPOPT solver [37].

To illustrate how the constraint tightening framework and CC-MPC per-
form, we set up an example simulation scenario with an autonomously con-
trolled ego vehicle driving down a road and avoiding two stationary object
vehicles within its path. The specific roadway with obstacles is presented
in Figure 8. The roadway is 280m long and 10m wide. The ego vehicle
egoi starts at an initial position state randomly perturbed about the means
µsi,0 = 0m, µye,i,0 = 0.5m, and µφi,0 = 0rad, with variances of Σsi,0 = 0.1m2,
Σye,i,0 = 0.1m2, and Σφi,0 = 0.01rad2. Further, egoi has an initial velocity
of vi,0 = 17 m/s. The CC-MPC controlling the ego vehicle tracks the lane
centerline with rye = 0m and a reference velocity rv = 20m/s. The plant
model for the egoi is the same as that used within the CC-MPC. The sta-
tionary OVs are then located as follows: ov1 has a mean initial position state
of µs1,0 = 150m, µye,1,0 = −2m, and µφ1,0 = 0rad; while, ov2 has a mean
initial position state of µs2,0 = 200m, µye,2,0 = 2m, and µφ2,0 = π/16rad. The
initial position states of both stationary OVs are randomly perturbed about
the means with the same variance as the egoi.
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Figure 9: Simulation trajectories for direct implementation of the tightened probabilistic
collision constraint using (a) PA decoupling and (b) US1 decoupling.

The constraint tightening framework and CC-MPC is updated every 0.15
simulation seconds, and the CC-MPC is discretized with 0.15s time step
with a horizon of 6s, for a total of 40 time steps in the horizon. We choose
a probability of collision threshold of δ = 0.001 and discretize the relative
heading space with nφ = 20. For comparison of the two decoupling methods
described in Section 2.2, 100 simulations each using US1 and PA decoupling
methods were completed. The results for the 100 simulations using each
decoupling method are plotted within Figure 9.

From Figure 9 we can see that the CC-MPC, using either decoupling
method, does not always find a solution that keeps the vehicle traveling down
the roadway. When comparing the trajectories for PA and US1 decoupling,
in Figure 9 (a) and (b), respectively, we can see that the US1 results in more
robust behavior. Specifically, US1 only has one instance where a solution is
not found, while PA results in several. Furthermore, with either decoupling
method the CC-MPC does not always pass the OVs on the same side. The
reason US1 decoupling performs more robustly is because it is less conserva-
tive along the relevant (lateral) dimension resulting in additional free space
for planning, as discussed earlier in Section 2.3. The statistics of the max
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Figure 10: Box plot of max observed probability of collision between the egoi and ov1
and ov2 for each simulation with direct implementation of the tightened probabilistic
constraint.

probability of collision in Figure 10 support this notion as the medians (red
lines) and quartiles (upper and lower extents of the blue box) for US1 decou-
pling are greater than those for PA. We note that there are outliers which
exceed the probability threshold δ in Figure 10, as a solution is not always
found.

Another drawback is that the implementation of the approximated prob-
abilistic collision avoidance constraint with either method is still computa-
tionally expensive. The simulations presented here were run on a modern
laptop with an Intel® CoreTM i7-7820HQ 2.9 GHz quad core processor with
16.0GB RAM. The median computation time for the CC-MPC with PA de-
coupling over the 9,300 calls of the solver was 0.142s. This is on the border
of the update rate of 0.15s, resulting in the CC-MPC not meeting real-time
requirements more than 45% of the time. This is improved with US1 decou-
pling, where the median is 0.126s and real-time requirements are not met
with 30% of the CC-MPC calls. To improve the robustness and computa-
tional efficiency of our CC-MPC we develop convexified tightened collision
avoidance constraints as described below.
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Figure 11: Depiction of the tightened constraint bounding box for the principal axis
approach. The statistics match those in Figure 6.

3.3. Convexified Tightened Constraint

We perform the convexification of the probabilistic collision avoidance
constraint in 2 steps: first, we seek a conservative approximation of the
probability contour in the position space of egoi for the threshold δ with
each ovj; second, we seek convex bounds on the mean position state that
guarantee the threshold δ is not violated.

3.3.1. Tightened constraint bounding box

For a given threshold δ, it remains difficult to invert the right-hand side in
(12) to find the corresponding contour. We simplify this task by finding the
length and width of a bounding box circumscribing the contour (see Figure
11) as tightly as possible, thereby remaining conservative but not too much
so. To do this, we implement a search along axes aligned with those used in
the decoupling approximations.

Now, to find the tightened constraint bounding box we perform five steps:

1. Discretize the relative heading space into nφ intervals Φji,l, where l ∈
{1, . . . , nφ}, and calculate Pr (φji ∈ Φji,l), a

′′

l , and b
′′

l for all l.

2. Calculate Pr
(
x
′
1 ∈

[
x
′

1,l, x
′

1,l

])
assuming µx′1

= 0 for all l ∈ {1, . . . , nφ}.
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3. Implement a gradient-based probability threshold search (PTS) algo-
rithm presented in Algorithm 1 in Appendix D, to find µ∗

x
′
2

, the extent

along axis 2 where Pr
(
x
′
ij ∈ X′′ij (0)

)
= δ.

4. Repeat steps 2 and 3 by switching the coordinates (i.e. µx′2
= 0, and

search for the corresponding µ∗
x
′
1

where Pr
(
x
′
ij ∈ X′′ij (0)

)
= δ).

The resulting tightened constraint bounding box in the transformed coor-
dinate frame is of size 2µ∗

x
′
1

by 2µ∗
x
′
2

. We note here that steps 2 and 3 in

the above iterative algorithm are independent. This provides the opportu-
nity to use different decoupling methods to find µ∗

x
′
1

and µ∗
x
′
2

. Therefore, to

reduce conservatism it is ideal to use US case 1 to find µ∗
x
′
2

and US case 2

to find µ∗
x
′
1

. To obtain constraints expressed in the original reference frame

the inverse transformations for the respective methods may be applied to the
points defining the bounding box in the transformed coordinates.

3.3.2. Convex bounds

When directly constraining the mean position state of egoi to be outside
the tightened constraint bounding box found above (Figure 11 for a given
threshold δ), a disjunctive or mixed-integer program results requiring special-
ized solvers. In our prior work, to avoid posing the problem in this way, we
utilized elliptical or hyper-elliptical collision avoidance constraints, as they
are continuous and differentiable and can be readily handled via nonlinear
optimization solvers. There are, however, two drawbacks to that method: 1)

the feasible set for the position states
[
s ye

]T
are non-convex; and, 2) the

major and minor axes of a hyper-ellipse (fourth order) must be enlarged by
a factor of at least 21/4, in order to circumscribe the minimum bounding box
[38].

Here, we choose a third approach: at each time step in the horizon, the
lateral deviation ye is upper and lower constrained by linear functions of s,
as depicted in Figure 12. More specifically, the upper and lower constraints
on ye are defined as:

αs+ β ≤ ye ≤ αs+ β, (16)

where α and α are the slopes of the upper and lower bounds, respectively,
on ye at time step k, while β and β are the respective intercepts. We further
constrain the longitudinal position s to be within an upper bound s and lower
bound s to guarantee the constraint (16) performs as intended.
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Figure 12: Example evolution of the convex constraint space (shaded teal) over the predic-
tion horizon. The blue spline is the predicted trajectory, red dashed lines are the bounding
boxes, yellow lines are the road boundary, and the teal lines are the linear ye bounds.

In order to implement this method for deterministic constraint tighten-
ing we make two assumptions: 1) the solution to the MPC problem does
not deviate significantly from one solver call to another, and 2) if the prior
plan is shifted assuming a constant velocity between prediction time steps,
as presented in [39], the error in the position states is negligible. The first
assumption allows us to use the prior solution of the MPC problem to define
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the slope and intercept of the boundary line at each time step in the predic-
tion horizon. Whereas the second assumption allows for an efficient method
of shifting the plan if the time step in the horizon is larger than the update
rate of the MPC.

Prior to defining the slopes and intercepts, we will introduce some useful
notations. Let Bj denote the ordered set of four (s, ye) points that define
the tightened constraint bounding box of ovj. Moving forward we will drop
the OV index j to reduce clutter. Each point in B is designated by bp, p ∈
{1, . . . , 4}. An edge of the tightened constraint bounding box is defined by
two adjacent points in B and designated by Bp = {bp, bq}, where q = p+ 1 if
p < 4 and q = 1 if p = 4.

To find α, α, β, and β we begin by sorting whether a given ovj should
be considered for the upper or lower bound. For the purposes of this paper,
if the geometric center of ovj is above the lane centerline (ye,j > 0), then
it is considered in the upper bound on ye. While, if ye,j is below the lane
centerline ye,j ≤ 0, it is considered in the lower bound on ye. Once the OVs
are sorted, a simple set of rules is used to calculate α, α, β, and β. There are
three possible conditions based on si; we will refer to Figure 12 to describe
each condition. We will use the subscript s (or ye) when referring to those
respective values of elements in B. Next we will overview how to calculate
α and β. An analogous method may be used to calculate α and β, however,
we will highlight minor changes as necessary.

The first condition arises if minBs ≤ si ≤ maxBs, as is the case at
k = 1 for the upper ye bound in Figure 12 (or k = 3 for the lower). To
calculate α and β, we begin by determining the set {Bp} of edges where si ∈
[minBp,s,maxBp,s]. Then α and β are the slope and intercept, respectively,
of the edge Bp in that set satisfying arg minp {Bp,ye} (or arg maxp {Bp,ye} for
α and β).

The second possible condition occurs if egoi is within ∆s, a fixed look-
ahead/behind distance, of the tightened constraint bounding box. Specifi-
cally, if si ≥ maxBs and si − ∆s ≤ maxBs or si ≤ minBs and si + ∆s ≥
minBs (both depicted at k = 2 in Figure 12, the former as the upper bound
and the latter as the lower). We then calculate α and β as follows:

α =
ye − bp,ye

si ∓∆s− bp,s
(17a)

β = ye − α (si ∓∆s) , (17b)
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where ye is the upper roadway boundary. For α and β replace ye in (17) with
the lower roadway boundary y

e
.

The last possible condition occurs when the tightened constraint bound-
ing box is beyond the look ahead/behind distance, i.e. when si+∆s < minBs
or si − ∆s > maxBs. When this occurs, the constraint is defined by the
roadway boundaries, therefore α = 0 and β = ye (β = y

e
). This condition is

depicted at time steps k = 0 or 3 for the upper bound in Figure 12 (k = 0
and 1 for the lower).

We note that the above algorithm for determining a convex constraint
space is relatively simple, and the problem of decomposing the obstacle-
free space into convex sets is an intriguing research question on its own
with many solutions (e.g. [40, 41]). However, our primary focus within this
paper is on guaranteeing the probability of collision threshold is not violated
(accomplished in Section 3.3.1) and on the added performance benefits of the
convexified tightened constraint.

3.3.3. Results

In this section, we compare the performance of our CC-MPC with the
convexified tightened collision avoidance constraint to that with the direct
implementation of the approximated constraint. To this end, first the same
simulation setup as presented in Section 3.2 was used. As before, 100 simula-
tions for each of the PA and US decoupling methods were completed. Here,
when utilizing US decoupling, we combine US case 1 to find µ∗

x
′
2

and US case

2 to find µ∗
x
′
2

, as noted in Section 3.3.1. Figure 13 shows the trajectories for

the 100 simulations for both PA and US decoupling. When comparing this
to Figure 9, we see that the convexified tightened constraint has significantly
improved the robustness of our CC-MPC. Specifically, the CC-MPC was able
to find a solution for all simulations. The egoi also passes each ovj on the
same side in every simulation, which is required based on the formulation of
the convexified tightened constraint.

The trajectories in Figure 13 show improved robustness, however, we are
also interested in whether the probability of collision threshold is not violated.
The boxplot of the maximum observed probability of collision between each
OV is presented in Figure 14. From the figure, we notice that the probability
of collision threshold is never violated. The maximum observed probability
of collision was approximately 0.0008, which occurred between the egoi and
ov1 with the US decoupling method. When comparing the two decoupling

26



50 100 150 200 250

(a)

-5

0

5

y
e
 (

m
)

PA

50 100 150 200 250

(b)

s (m)

-5

0

5

y
e
 (

m
)

US

Ego

OV

Figure 13: Simulation trajectories for CC-MPC with convexified tightened collision con-
straints using (a) PA decoupling and (b) US decoupling.
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Figure 14: Box plot of max observed probability of collision between the egoi and ov1 and
ov2 for each simulation with the convexified tightened collision constraint.

methods, it is easy to see in Figure 14 that, as expected, the US decoupling
method is significantly less conservative than the PA decoupling method.
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Figure 15: Histogram of MPC computation time for (a) PA and (b) US decoupling; where
∆t is the simulation update rate, PROB denotes the direct implementation, and CONV
denotes the convexified tightened constraint.

This is reflected in Figure 13, where the US trajectories deviate less from
the centerline, traveling closer to the obstacles. Now comparing Figure 14
with Figure 10, it is evident that the overall probability of collision distribu-
tions is shifted downward for the convexified constraint, i.e. the constraint
convexification has resulted in safer driving on average.

Next, it is important to determine if the reduction in conservatism comes
at the cost of increased computation time. Figure 15 presents the distri-
butions of the computation times for both CC-MPC implementations and
both decoupling methods. The distribution is significantly shifted to the left
(or computation times are on average lower) for the convexified constraint.
Specifically, using the convexified constraint, the median computation times
are reduced to 0.07s for the PA decoupling case and 0.065s for the US decou-
pling case. With the convexified constraint, the real-time requirement (∆t)
is exceeded only in 1.85% of the MPC calls for the PA case and in 1.31% of
the MPC calls for the US case.

The improved computation time does come at the cost of increased pre-
computations for finding the dimensions of the tightened constraint bound-
ing box. The computation statistics for finding the bounding box dimensions
are presented in Table 1. There is a negligible difference in the computation
times for the two decoupling methods. Further, the magnitude of the addi-
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Table 1: Computation Time Statistics for Finding the Tightened Constraint Bounding
Box Dimensions

Computation Time (ms) PA US

Median 3.999 4.035

Upper Quartile 4.670 4.692

Figure 16: Scenario to illustrate performance with moving obstacles. The OV references
are rv,1 = 8 m/s and rv,2 = 22 m/s for speed and rye,1 = −1.85 m and rye,2 = 1.85 m for
lateral error, respectively, while the ego references are rv,i = 20 m/s and rye,i = −1.85 m.

tional precomputation time is significantly lower than the reduction in the
CC-MPC execution time. We do note that the presented computation time
is only for finding one set of tightened constraint bounding box dimensions.
This process must be repeated for each step of the horizon, however, each
computation is independent and can therefore be parallelized. Thus, the con-
vexified tightened constraint is a viable solution to improving the robustness
and reducing the execution time of the presented CC-MPC.

Lastly, in order to show the applicability of the constraint handling method
to more complex scenarios, we will briefly present results for a second sce-
nario depicted in Figure 16. Therein, the ego vehicle is traveling in the right
lane, with ov2 passing egoi on the left, while ov1 is entering the roadway
from the right in front of egoi. The mean initial positions (of the randomize
simulations) are shown in Figure 16, while the initial velocities are as follows:
vi,0 = 17 m/s, v1,0 = 15 m/s, and v2,0 = 20 m/s. The OVs utilize the intelli-
gent driver model (IDM) for speed tracking and a linear feedback controller
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Figure 17: Simulation trajectories for CC-MPC with convexified tightened collision con-
straints and scenario 2 using (a) PA and (b) US decoupling.

for ye and ψ (the reference heading error rψ = 0 rad).
Figure 17 shows select simulated trajectories with the CC-MPC and the

two decoupling methods. For clarity only representative trajectories are
shown. In general, there are two main types of responses that egoi exhibits,
either: speeding up and passing ov1 before returning to the left and allowing
ov2 to pass; or slowing down and allowing ov2 to pass prior to passing ov1.
Despite the varied responses, the probability of collision criteria are still met
as can be seen in Figure 18. When comparing to Figure 14, it is evident that
with moving obstacles the maximum probability of collision distributions are
shifted upwards as the dynamic environment includes additional uncertain-
ties with respect to OV state predictions that are not captured with the
simplified models used here. Still, the thresholds were not violated in any of
the simulations.

4. Conclusion

In this paper we have derived analytical methods for the efficient approx-
imation of an upper bound on the mutual probability of collision between

30



OV1 PA OV1 US OV2 PA OV2 US
10

-20

10
-15

10
-10

10
-5

10
0

m
a
x
(P

r(
x

i
 X

i,
j(x

j))
)

outlier
0.0005

0.001

Figure 18: Box plot of max observed probability of collision between the egoi and ov1 and
ov2 for scenario 2 with the convexified tightened collision constraint.

robotic vehicles. This included a detailed discussion of two separate decou-
pling methods (principal axes rotation, and unitary scaling cases 1 and 2) and
the associated conservatism of each method. We have drawn the following
important insights on the utility of either method: principal axis rotation is
ideal for unstructured environments as the conservatism introduced is easily
bounded in all directions; unitary scaling case 1 is ideal for environments
where agents are traveling in parallel and passing each other, because the
conservatism is only introduced in the longitudinal direction; lastly, unitary
scaling case 2 is ideal for environments where agents are following each other
as conservatism is only introduced in the lateral direction.

The effectiveness of the analytical approximation methods was then eval-
uated within a chance-constrained model predictive controller (CC-MPC)
motion planner formulation. Therein, we highlighted shortcomings in the
robustness and computational efficiency of using a direct implementation of
the tightened probability of collision constraints in the CC-MPC. We then
proposed a method for convexification of the tightened constraints which
showed promising results for significantly improving robustness and reducing
computation times for online motion planning in complex traffic.

There are important future extensions that can be pursued on the ap-
plication of these approximation methods for mutual collision probabilities.
These include the following: Verifying the performance when implemented
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on a higher fidelity plant/vehicle model; Using the approximations for clus-
tering object vehicles in traffic to enable further convexification of the naviga-
tion space [21]; Improving the algorithm presented here for determining the
slope and intercept of the convexified tightened constraint; Exploring meth-
ods/extensions to the constraint building process to consider unstructured
environments and roadways with multiple lanes; Investigating methods to
account for the inherent coupling between neighboring vehicle’s states with
an additional layer of uncertainty decoupling.

Appendix A. Calculating Σx
′
ij

and θ

In order to implement principal axis rotation it is necessary to solve for
the covariance Σx

′
ij

along the principal axes and the angle of rotation θ to

align the reference frame with the principal axes. To accomplish this, we first
solve for the eigenvalues of the original covariance Σxij , as Σx

′
ij

= D, where

D is the diagonal matrix of eigenvalues. Assuming the covariance matrix is
of the form:

Σxij =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
, (A.1)

we can compute the eigenvalues λc, c ∈ {1, 2}, by solving
∣∣Σxij − λcI

∣∣ = 0,
resulting in:

λ1/2 =

(
σ2
x + σ2

y

)
∓
√(

σ2
x + σ2

y

)2 − 4σ2
xσ

2
y (1− ρ2)

2
. (A.2)

Then, the diagonal matrix D =

[
λ1 0
0 λ2

]
.

Now that we have the covariance along the principal axes, it is necessary
to solve for the rotation angle θ. We first solve for the matrix of eigenvectors

V =
[
~v1 ~v2

]
, where ~vc =

[
vc1 vc2

]T
, for all c ∈ {1, 2}, is the unit eigenvector

corresponding to the cth eigenvalue. Knowing that
(
Σxij − λcI

)
~vc = 0 and

v2c1 + v2c2 = 1, as we assume unit eigenvectors, we can solve for vc1 and vc2 as
follows:

vc2 = ±

[(
σxσyρ

σ2
x − λc

)2

+ 1

]−1/2
; (A.3a)

vc1 = −σxσyρvc2
σ2
x − λc

. (A.3b)
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Further, as the eigenvectors are orthogonal, it can be shown that v21 = ∓v12
and v22 = ±v11. The angle of rotation θc is then:

θc = − tan−1
vc2
vc1

. (A.4)

Substituting (A.3b) in to (A.4) and simplifying yields:

θc = − tan−1
λc − σ2

x

σxσyρ
. (A.5)

For our implementation we rotate to align with the first principal axis or θ1.
The rotation applied to xij and Xij (0,Φji,l) is then:

Tc =

[
cos θc − sin θc
sin θc cos θc

]
, (A.6)

where:

cos θc =
σxσyρ√

(λc − σ2
x)

2 + (σxσyρ)2
; (A.7a)

sin θc =
λc − σ2

x√
(λc − σ2

x)
2 + (σxσyρ)2

. (A.7b)

Lastly, as we perform the inverse rotation in order to bring the tightened
constraint bounding box back to the original reference frame for use within
our motion planning algorithm, we note:

T−1c =

[
cos−θc − sin−θc
sin−θc cos−θc

]
. (A.8)

Appendix B. Unitray Scaling - Calculating T0

In order to efficiently compute the transformation matrix T0 = Σ
−1/2
xij , we

can take advantage of the fact that the covariance matrix Σxij is symmetric.
Due to symmetry, it is possible to orthogonally diagonalize the covariance
Σxij = V DV −1 = V DV T [42]. See Appendix A for how to compute D

and V . The square root by diagonalization is then simply Σ
1/2
xij = V D1/2V T ,
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where D1/2 =

[√
λ1 0
0
√
λ2

]
. To obtain T0 =

(
V D1/2V T

)−1
, we take the

inverse:

T0 =
1

(v11v22 − v21v12)2 λ
1
2
1 λ

1
2
2

A, (B.1)

where:

A = [
v212λ

1
2
1 + v222λ

1
2
2 −v11v12λ

1
2
1 − v21v22λ

1
2
2

−v11v12λ
1
2
1 − v21v22λ

1
2
2 v211λ

1
2
1 + v221λ

1
2
2

]
. (B.2)

Appendix C. Unitary Scaling - Decomposing T0

As mentioned previously, the transformation T0 can be decomposed into
three elementary operations: rotation, scaling, and shear. From a matrix
perspective this means T0 may be decomposed into T0 = RSH, where the
rotation matrix R, scaling matrix S, and shear matrix H are defined as:

R =

[
cosα − sinα
sinα cosα

]
; (C.1a)

S =

[
s1 0
0 s2

]
; (C.1b)

H =


[
1 h

0 1

]
for case 1,[

1 0

h 1

]
for case 2.

(C.1c)

Multiplying R, S, and H, and setting the elements of RSH equal to those

of T0 =
[t11 t12
t12 t22

]
yields a system of 4 equations. We first detail the solution

for case 1, followed by that for case 2.
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Appendix C.1. Case 1 - Longitudinal Conservatism

The system of equations for case 1 is:

t11 = s1 cosα; (C.2a)

t12 = s1h cosα− s2 sinα; (C.2b)

t12 = s1 sinα; (C.2c)

t22 = s1h sinα + s2 cosα, (C.2d)

with 4 unknowns, α, s1, s2, and h. Solving this yields:

α = tan−1
t12
t11

; (C.3a)

s1 =
√
t211 + t212; (C.3b)

s2 =
t11t22 − t212√
t211 + t212

; (C.3c)

h =
t12 (t22 + t11)

t212 + t211
. (C.3d)

Recalling we seek the transformation matrix T = SH, it is beneficial to
obtain (C.3b)-(C.3d) in terms of the eigenvalues and eigenvector elements.
Substituting the definitions of t11, t12, and t22 from (B.1) and (B.2) and
simplifying yields:

s1 =

(
v212λ1 + v211λ2

λ1λ2

) 1
2

; (C.4a)

s2 =
(
v212λ1 + v211λ2

) 1
2 ; (C.4b)

h =
v11v12 (λ2 − λ1)
v212λ1 + v211λ2

. (C.4c)

Now to see if this equation is unbounded we will look at the limits of
(C.4c) with respect to the eigenvectors and eigenvalues. We know that the
eigenvector elements are bounded by [−1, 1] and v211+v212 = 1, as we assumed
unit eigenvectors. It is easy to see that if v11 = ±1 and v12 = 0, or vice
versa, h = 0. Therefore, we are interested in the limits with respect to the
eigenvalues. Taking the limit of (C.4c) as λ2 → ±∞ and using L’Hôpital’s
rule yields v12/v11, which is the tangent of the eigenvector and therefore un-
bounded. Similarly, taking the limit as λ1 → ±∞ yields −v11/v12, which is
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the negative of the cotangent of the eigenvector and also unbounded. Al-
though, the shear is theoretically unbounded, from a practical perspective,
if you can characterize and bound the spectral radius of Σxij , the shear, and
conservatism is therefore bounded.

Appendix C.2. Case 2 - Lateral Conservatism

The system of equations for case 2 is:

t11 = s1 cosα− s2h sinα; (C.5a)

t12 = −s2 sinα; (C.5b)

t12 = s1 sinα + s2h cosα; (C.5c)

t22 = s2 cosα. (C.5d)

Solving the systems results in:

α = tan−1−t12
t22

; (C.6a)

s1 =
t11t22 − t212√
t212 + t222

; (C.6b)

s2 =
√
t212 + t222; (C.6c)

h =
t12 (t22 + t11)

t212 + t222
. (C.6d)

As we did with case 1, we substitute in to (C.5b)-(C.5d) from (B.1) and (B.2)
and simplify to obtain:

s1 =
(
v211λ1 + v212λ2

) 1
2 ; (C.7a)

s2 =

(
v211λ1 + v212λ2

λ1λ2

) 1
2

; (C.7b)

h =
v11v12 (λ2 − λ1)
v211λ1 + v212λ2

. (C.7c)

Comparing (C.4c) of case 1 and (C.7c) of case 2, we can see the only
difference is the eigenvalues are weighted by the opposite elements of the
eigenvector in the denominator. The results for analyzing the limits with
respect to v11 and v12, therefore, still hold. However, the limit of h as λ1 →
±∞ is now −v12/v11, and the limit of h as λ2 → ±∞ is v11/v12. Again, this
is unbounded.
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Appendix D. Probability Threshold Search Algorithm

The probability threshold search (PTS) algorithm is used within step 3
of the process in Section 3.3.1 for finding the tightened constraint minimum
bounding box. PTS (Algorithm 1) is based on Newton’s method.

Algorithm 1 Probability Threshold Search (PTS) Algorithm

Input: Threshold δ, maximum iterations N i, tolerance ε, initial guess µx′2,0 ,{
Pr (φji ∈ Φji,l) , a

′′

l , b
′′

l

}
∀l ∈ {1, ..., nφ}, Σx′ij

, and Pr
(
x
′
1 ∈

[
x
′

1,l, x
′

1,l

])
Output: Distance µ∗x′2

, Probability Pr
(
x
′
ij ∈ X′′ij (0)

)
, Iteration number i

1: Initialize µ∗x′2
= µx′2,0 , i = 1, µ

x′2
= 0, µx′2 = 1e5

2: while i ≤ N l do

3: Calculate Pr

(
x
′
ij ∼ N

([
0
µ∗x′2

]
,Σx′ij

)
∈ X′′ij (0)

)
4: Calculate deviation to δ: dP = Pr

(
x
′
ij ∈ X′′ij (0)

)
− δ

5: if |dP | ≤ ε then
6: break while
7: end if
8: if dP < 0 and µ∗x′2

< µx′2 then
9: µx′2 = µ∗x′2

10: end if
11: if dP > 0 and µ∗x′2

> µ
x′2

then

12: µ
x′2

= µ∗x′2
13: end if
14: Calculate the derivative ∂

∂µ∗
x′2

Pr
(
x
′
ij ∈ X′′ij (0)

)
15: if µ∗x′2

− dP/ ∂
∂µ∗

x′2

Pr
(
x
′
ij ∈ X′′ij (0)

)
> µx′2 then

16: µ∗x′2
=
(
µx′2 + µ

x′2

)
/2

17: else if µ∗x′2
− dP/ ∂

∂µ∗
x′2

Pr
(
x
′
ij ∈ X′′ij (0)

)
< µ

x′2
then

18: µ∗x′2
=
(
µx′2 + µ

x′2

)
/2

19: else
20: µ∗x′2

= µ∗x′2
− dP/ ∂

∂µ∗
x′2

Pr
(
x
′
ij ∈ X′′ij (0)

)
21: end if
22: i = i+ 1
23: end while
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