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Quantum dynamical decoupling is a procedure to cancel the effective coupling between two sys-
tems by applying sequences of fast actuations, under which the coupling Hamiltonian averages out
to leading order(s). One of its prominent uses is to drive a target system in such a way as to decouple
it from a less protected one. The present manuscript investigates the dual strategy: acting on a
noisy “environment” subsystem such as to decouple it from a target system. The potential advan-
tages are that actions on the environment commute with system operations, and that imprecisions
in the decoupling actuation are harmless to the target. We consider two versions of environment-
side decoupling: adding an imprecise Hamiltonian drive which stirs the environment components;
and, increasing the decoherence rates on the environment. The latter can be viewed as driving the
environment with pure noise and our conclusions establish how, maybe counterintuitively, isolating
the environment from noise sources as much as possible is often not the best option. We explicitly
analyze the induced decoherence on the target system and establish how it is influenced by the
parameters in both cases. The analysis combines Lindbladian derivation, adiabatic elimination, and
Floquet modeling in a way that may be of independent interest.

I. INTRODUCTION

Several experimental realizations for quantum hard-
ware encounter the situation where a target system is di-
rectly coupled to a finite-dimensional “environment” sys-
tem whose decoherence is identified as the main source
of induced decoherence on the target. One example of
such environment systems are so-called TLS (two-level
system) defects in the oxide layer of superconducting
Josephson junctions, which decohere typically through
phonon channels and are a main mechanism inducing
decoherence of superconducting qudits [19, 23]. Another
such identified environment would be spurious box modes
that show some residual coupling to the target modes in
microwave resonators. Similar spurious degrees of free-
dom are likely present in atomic systems.

The idea of Quantum Dynamical Decoupling (QDD,
see [26] and a large set of follow-up work) is to reduce
the effective coupling between two quantum systems by
using tailored control actions at a faster timescale than
the Hamiltonian coupling. Starting from this idea, the
present paper proposes to reduce induced decoherence on
the target system by applying actions, in a very broad
sense, on the environment side. The potential advantages
are that those actions need not be particularly precise,
and that they commute with any system operations one
may want to do. In fact, we compute how even adding as
noisy dynamics as decoherence channels on the environ-
ment, can decrease the induced dissipation on the target
system.

Environment-actuated decoupling also opens the door
to refined contributions on analyzing the decoherence in-
duced on the target system. The timescale separation
between the effective inter-system coupling and all the
dominant dynamics acting on the environment, allows
for treating the induced decoherence experienced by the
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target in a perturbative manner, through the method
of adiabatic elimination[2]. This mathematical approach
remains fully compatible with control actions applied to
the environment over all ranges of magnitudes. More so,
since the goal is to reduce the effective coupling between
the target system and the environment, the validity of the
adiabatic elimination approach actually increases. Using
an extension of the adiabatic elimination formalism (see
app. B 2), plus Floquet-Markov-type [15] adjustment of
the environment decoherence channels themselves when
accounting for ultra-strong driving (see Appendix A),
we calculate the induced decoherence rate on the tar-
get when applying coherent drives or further decoherence
channels on the environment, paving the way for an op-
timization of the setting.

No control actions whatsoever can hope to decouple
from purely Markovian decoherence; or more concretely,
in mathematical terms: adding Hamiltonian actions on
a system does not enable to reduce the effect of a purely
Lindbladian dissipation channel on the same system.
Therefore, QDD has been considered to cancel spurious
effects in two cases. In the first proposal [26], the goal is
directly formulated as reducing the coupling to a spuri-
ous finite-dimensional “environment” system. The target
and spurious environment are both modeled as Hamilto-
nian systems. Control sequences are designed to make
the effective Hamiltonian coupling vanish up to a certain
order, the successive orders typically being given by a
Magnus expansion [3, 20] or an equivalent Hamiltonian
averaging technique [8]. As a result of the QDD controls,
the state of the target system undergoes a fast trajec-
tory and its quantum information is preserved in a so-
called toggling frame which must be safely followed. In
a second type of approach, it is acknowledged that Lind-
bladian dissipation models are in fact often an approxi-
mation, stemming from a direct interaction with a large
bath. Identifying the environment with this large bath in
a Hamiltonian model and introducing the QDD drives be-
fore making the typical Lindblad approximations (Born-
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Markov, secular approximations), one obtains that de-
coupling actions are able to counter low-frequency noise,
thus effectively modifying and reducing the Lindbladian
decoherence channels on target when QDD controls act
faster than the cut-off frequency of the noise-spectrum
of the bath [9, 11, 24]. The decoherence model in the
present work is somehow intermediate to these two view-
points, as it considers a target system coupled to a small
effective environment, which itself undergoes Lindbladian
decoherence. The small environment thus captures mem-
ory effects in the decoherence of the target, as motivated
by physically relevant examples like those mentioned in
the first paragraph.

More precisely, we analyze the reduction of induced
dissipation with two approaches, taking a TLS as the
simplest prototypical environment subsystem.

In section III, we consider the environment subject to
periodic drives. While acting on the environment comes
with the security of not deteriorating the target state
directly in the case of control imprecision, we also can-
not expect to control an environment system in a well-
calibrated manner. Neither can we expect to have ac-
curate knowledge of the bare environment Hamiltonian.
Using a simple model for both these uncertainties, we
show that for the case of a TLS environment, using suf-
ficient time-scale separation in the applied drive enables
efficient QDD despite control imprecisions. As a trade-
off for requesting a strong time-scale separation, we con-
sider a very simple control signal, consisting of only one
harmonic tone. The analysis is performed with a general-
ization of adiabatic elimination adapted to periodically-
driven systems, inspired by the basic Floquet property,
and which we believe to be novel. This analysis method
also differs from the more standard QDD analysis based
on Magnus expansion in a purely Hamiltonian setting.
We obtain an explicit Lindblad model for the leading-
order induced decoherence on the target. The procedure,
explained in Appendix B 2, would allow in principle to
obtain further perturbative corrections in powers of the
coupling strength.

In section IV, we consider the limit of extremely dis-
organized QDD actions, by adding decoherence channels
instead of Hamiltonians to the environment subsystem.
Indeed, increasing the decoherence strength on the en-
vironment also decreases its effective coupling with the
target system, and the scaling for induced dissipation
on the target often turns out to be favorable at higher
environment decoherence. Using second-order adiabatic
elimination formulas, we analyze the resulting behavior
in detail, providing some general results and character-
izing the optimal choice for typical settings with a TLS
environment.

II. MODEL DESCRIPTION

As a main setting throughout this work, we consider
a general target system T undergoing Hamiltonian dy-
namics, and whose main source of decoherence is an un-

desired Hamiltonian interaction with an environment E
which itself undergoes fast, Lindbladian decoherence. In
a rotating frame around the bare frequencies of both T
and E, the general evolution is described by:

d
dtρ = −i[HT +HE +HTE , ρ] +

∑
k

κkDLk(ρ) . (1)

Here we have introduced the general Lindbladian dissi-
pator

DX(ρ) = XρX† − 1

2

(
X†Xρ+ ρX†X

)
.

The Lk represent various decoherence channels of E, at
respective rates κk. The Hamiltonians HT , HE and HTE

respectively act on T, on E, and couple T with E. The
objective is to protect quantum information stored in
the target system T. Standard QDD works by apply-
ing well-designed sequences of control Hamiltonians HT .
The present paper rather assumes HT = 0 and analyzes
how one can decrease the induced decoherence on T, by
acting on the environment through HE on the one hand,
or through addition or modification of the κk on the other
hand.

A prototypical example for E is a set of two-level-
systems (TLS’s), like defects in the oxide layer of super-
conducting Josephson junctions [19, 23]. At the dominat-
ing order, we can consider the contribution to the overall
induced decoherence of each such TLS individually [13].
In a rotating frame of both the target system and TLS,
we consider a general stationary coupling

HTE = g(Tx ⊗ σx + Ty ⊗ σy + Tz ⊗ σz) . (2)

Here, g is a small coupling rate with the dimension of a
frequency (units where ~ = 1), Tx, Ty and Tz are arbi-
trary Hermitian operators acting on the target system,
and σx, σy, σz are the Pauli operators on the TLS.

The TLS’s themselves are thus assumed poorly pro-
tected and quickly dissipate according to a Lindbladian
model, as described in (1). When adding coherent drives
in Section III, we typically assume the dominating dissi-
pation channels:

Lk ∈ {σ−, σ+} , (3)

corresponding to loss and excitation in the σz-basis of E.
When adding/tuning dissipation channels in section IV,
the environment side is treated purely on the basis of a
given set of dissipation operators Lk whose rates κk may
be adjustable in some range.

In this way we mainly consider the Lindbladian dissi-
pation operators Lk as fixed, independently of the mech-
anisms added to reduce the coupling between T and E.
Since our goal towards QDD is to drive strongly, we also
compute corrections to the dissipation on E for the case
where ultra-strong driving has an effect on the dissipa-
tion model itself. For this, in Section III C 2, we rederive
a modified Lindbladian starting from a model where E
interacts with a large bath.
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In the remainder of this work, we compute and analyze
the decoherence that this setting induces on the target
system T.

III. COHERENT DECOUPLING WITH DRIVES

In this section, we pursue the strategy of applying co-
herent QDD controls HE to a TLS-type and decohering
environment, in order to decouple it from a general tar-
get system. The section is organized as follows. We start
in Section III A by recalling the concept of QDD more
explicitly, including previous work concerning continu-
ous bounded-strength decoupling drives in particular, ap-
plied through HT . Next, we translate the application of
QDD drives to the environment side HE . In section III B
we propose a continuous QDD control signal accounting
for inevitable control imprecision when acting on the en-
vironment. In section III C, we then calculate an explicit
Lindbladian model for the decoherence induced on the
target when applying the QDD controls. This involves an
extension of the adiabatic elimination approach to time-
periodic couplings which we summarize in Appendix B 2.
We analyze the obtained expressions, highlighting the ef-
ficiency of applying environment-side QDD drives. For
further consistency, in section III C 2, we re-discuss the
dissipation channels on the environment when the QDD
drives HE become significant compared to bare system
frequencies.

A. QDD and related work

Established QDD approaches consist in applying con-
trol pulses to the target system T that send its state
quickly wandering around its Hilbert space. The explicit
objective is that the average effect over one wandering
cycle of all relevant coupling operators goes to zero. The
simplest example is the case of a target qubit T with only
one coupling term involving σz. In this case, one can pe-
riodically apply π-pulses around the σx-axis of T, such
that it effectively accumulates phase around ±σz half of
the time each, thus canceling the coupling effect on av-
erage if there is no other motion in the meantime. The
shorter the period between subsequent pulses, the better
T is being decoupled from E. This is the well-known spin
echo sequence [17]. The generalization of this idea to
general systems with arbitrary stationary couplings was
introduced in [26], and versions replacing the instanta-
neous pulses with bounded drives in group-based decou-
pling schemes were established in [6, 18, 25, 27].

For the case of a target qubit T, a different type of
bounded-drive QDD scheme has been devised, using the
combination of a static field and a simple monochromatic
drive [5, 9, 10]. Explicitly, their control Hamiltonian to
decouple a single qubit takes the form

HT (t) =
ω

2
σz +

ω

4
(cos(ωt)σx + sin(ωt)σy). (4)

Under this drive, the qubit state is made to rotate around
the σx-axis in a frame which itself rotates around the σz-
axis at double the frequency. Indeed, HT (t) has been
designed to generate the unitary evolution

UT (t) = e−i
ω
2 σzte−i

ω
4 σxt

of the target qubit in absence of any further dynam-
ics. We can clearly see the composition of two rotations
around orthogonal axes in the Bloch sphere. The effec-
tiveness of this QDD scheme can be analyzed in a frame
that eliminates the QDD controls, called the toggling
frame. Indeed, it is easy to verify that the first-order
decoupling condition is satisfied [26], namely that any
coupling operator averages out to 0 under this unitary
evolution:

ω

2π

∫ 2π
ω

0

U†T (t)σaUT (t) dt = 0, for a ∈ {x, y, z} . (5)

When this first-order decoupling condition is satisfied,
the effect of any coupling between T and E can be made
arbitrarily small by ramping up ω. This is proven by
identifying the average coupling as the first and leading
order of a Magnus expansion of the effective dynamics in
powers of g

ω .
Such results are hence typically established by focus-

ing on the Hamiltonian part of the model, i.e. discarding
the Lk in (1) and showing that the effective coupling
between T and E is canceled up to some order(s). In
such setting, the QDD treats T and E in a symmetric
way, and one could in principle consider applying the
QDD drives to either system. The advantages of acting
on E rather than on T would be that (i) we minimize
the danger of perturbing quantum information with ac-
tuation imprecisions and (ii) we can keep applying QDD
drives irrespective of the system operations on T. Indeed,
standard QDD acting on T requires specific adaptations
when T is also subject to actions operating the quantum
information system, like logical gates [18]. On the down-
side, of course we can hope to act on E only if it is well
identified and of reasonably small dimension, like for in-
stance spurious TLS’s [19, 23]. In addition, the situation
is not as symmetric between T and E when one explicitly
introduces that E is a strongly decohering environment,
i.e. when introducing the Lk in (1). We therefore pro-
vide an analysis that explicitly considers the decoupling
Hamiltonian and the decoherence operators together.

In the remainder of this section we thus address three
main points in which the QDD methodology needs to be
extended, to show how it still works with environment-
side driving. Firstly, we need to include a significant
amount of control imprecision into the QDD drives, since
a TLS environment cannot be assumed as precisely ad-
dressable as the target system. Secondly, since the fastest
timescale is embodied on E, we propose an analysis of
the model (1) including the decoherence channels Lk.
With adiabatic elimination techniques we eliminate the
fast subsystem E and directly compute the induced de-
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coherence on T , rather than going through the compu-
tation of effective couplings with Hamiltonian averaging
techniques like the Magnus expansion. Lastly, the model
with dissipation channels Lk acting on E has to be re-
discussed under ultra-strong QDD driving, as this model
ultimately stems from interaction of E with further exter-
nal degrees of freedom in a way that can also be affected
by the driving.

B. Double-timescale QDD proposal

The E subsystem, i.e. the spurious TLS, is not an accu-
rately addressable subsystem. First, we will not assume
to know the eigenfrequency ΩE of E exactly. To account
for this, we split up ΩE into its best-guess value Ω̄E and
an uncertain constant deviation δΩE :

ΩE = Ω̄E + δΩE .

With this decomposition, the model (2) is defined in a
rotating frame w.r.t. Ω̄E , and HE features a residual
unknown detuning:

HE(t) =
δΩE

2
σz +Hc(t).

Here, Hc(t) stands for the applied control Hamiltonian.
As a second point of control imperfection, we will not

assume that a calibration is carried out for the actual
amplitude reaching E upon applying a signal in the lab.
Hence for the definition of Hc, we introduce the same
decomposition for the control parameters into best-guess
quantities and unknown deviations thereof. We propose
to use a simple continuous signal similar to (4), meant to
cancel the general coupling (2):

Hc(t) :=
ω1

2
σz +

ω2

2
(cos(ω̄1t)σx + sin(ω̄1t)σy),

with

ω1 = ω̄1 + δω1, (6)

ω2 = ω̄2 + δω2. (7)

Note that the drive frequency ω̄1 is well-known, whereas
the amplitudes of the static field and of the σx,y-drive
are only roughly known, involving uncertainties δω1 and
δω2 respectively. Defining

∆ = δω1 + δΩE ,

the total Hamiltonian can be written as

HE(t) :=
∆ + ω̄1

2
σz+

ω2

2
(cos(ω̄1t)σx + sin(ω̄1t)σy). (8)

Although our actual analysis will consider the full
model with decoherence channels, we can already take
a look at the implications of such control in a purely
Hamiltonian setting.

• The evolution of E under HE(t) alone can be under-
stood by first moving to a rotating frame w.r.t. ω̄1

2 σz,

yielding a remaining constant Hamiltonian ∆
2 σz + ω2

2 σx.
In this frame the state will rotate at a speed

Λ :=
√

∆2 + ω2
2 ,

around the axis

σαx = cos(α)σx + sin(α)σz,

where we have defined

cos(α) =
ω2

Λ
, sin(α) =

∆

Λ
.

Back in the original frame, the associated propagator
thus reads

UE(t) := e−iω̄1σzt/2e−iΛσαxt/2 . (9)

The E subsystem thus undergoes two composite rota-
tions around axes in the Bloch sphere which would be
orthogonal in absence of the detuning ∆. We see that
the presence of ∆ prevents us from applying exact σx ro-
tations, as would be required in a continuous-time analog
of the spin echo strategy. As the angle is determined by
∆/ω2, we should favor a large value of ω2. Considering
∆ of possibly the same order as ω̄1, this would suggest
to take ω2 � ω̄1 � g, where the latter is the strength of
the coupling Hamiltonian (2).
• Next, applying the propagator associated to HE(t)

on the coupling Hamiltonian (2), it is easy to verify that

U†E(t)σx,yUE(t) only involve terms oscillating at frequen-
cies ±ω̄1 and Λ± ω̄1, while

U†E(t)σzUE(t) = sin(α)σαx−cos(α)(eiΛtσα++e−iΛtσα−),

where σα± are lowering and raising operators with re-
spect to the eigenstates of σαx. Having Λ� ω̄1 � g, we
can perform a rotating-wave approximation (RWA) and
obtain the non-zero average coupling

g sin(α)σαx = g
∆

ω2
σαx + gO

(
∆3

ω3
2

)
. (10)

Thus taking ω2 � ∆ ∼ ω̄1 in this formula, and ω̄1 � g to
justify the RWA, indeed appears to reduce the effective
coupling between T and E.

C. Analysis of decoherence on target

In a rotating frame w.r.t. ω̄1

2 σz, and defining T± =
Tx ± iTy, the joint evolution of the target and TLS is
described by the master equation

d
dtρ = κ−D1T⊗σ−(ρ) + κ+D1T⊗σ+

(ρ) (11)

− iΛ
2

[1T ⊗ σαx, ρ]

− ig
[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρ

]
,
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when assuming drive-independent decoherence channels
Lk ∈ {σ−, σ+} on E. In the present section, we ana-
lyze the induced decoherence on T, by obtaining explicit
formulas for its reduced dynamics thanks to adiabatic
elimination of the environment E. For this we rely on a
timescale separation as E dissipates with rates κk � g
dominating the coupling Hamiltonian. The work of [2]
explains how to obtain the reduced dynamics of T as a
power expansion in g/κk, considering a stationary cou-
pling Hamiltonian as a perturbation. In appendix B 2, we
have derived a general extension of this adiabatic elimi-
nation approach for the case where the coupling Hamil-
tonian is time-periodic. The related formulas could be
of independent interest to treat other cases where first
performing a lowest-order RWA, then adiabatically elim-
inating the fastly decohering degrees of freedom, does not
yield the correct leading-order induced dissipation.

Before moving to the QDD results, we start by summa-
rizing the time-periodic adiabatic elimination extension
in the context of our bipartite T-E system.

In the absence of any coupling (g = 0), (11) features an
invariant subspace with zero dynamics, consisting of all
the states of the form ρT⊗ρ̄E , for an arbitrary state ρT of
the target system and where ρ̄E is the unique steady state
of the Lindbladian acting on E. The remaining degrees
of freedom in this subspace can thus be trivially identi-
fied with the state space of the target system. Moreover,
any state quickly relaxes towards this invariant subspace.
For a non-zero but weak constant coupling g, this in-
variant subspace is slightly perturbed [2]: there remains
an invariant subspace of the same dimension, in which
the dynamics is slow (perturbed eigenvalues of the su-
peroperator), and where the target subsystem is slightly
hybridized with E (perturbed eigenspaces of the super-
operator).

In Appendix B 2 we show how for a time-periodic
coupling of period 2π

ω̄1
like in (11), we can still identify

an invariant subspace — i.e. a subspace M such that
ρ(0) ∈M implies ρ(t) ∈M for all t — but this subspace
moves periodically in time with period 2π

ω̄1
. Moreover,

much like in the classical Floquet theorem for periodic
linear systems, the total dynamics on M can be decom-
posed into slow (i.e. order g), stationary Markovian dy-
namics on the one hand, and a fast periodic motion of
the invariant subspace as a whole on the other hand.
The periodic motion of the subspace can be described by
a global change of variables, completely agnostic of the
actual state or its dynamics. The slow Markovian dy-
namics can in turn be parametrized by a state ρs living
in a space of the same dimension as T, and thus essen-
tially describes the effective decoherence of T.

This picture leads to the following Ansatz for the so-
lution of (11) (and later (23)) within the invariant sub-
space:

ρ(t) = Kg(ρs(t), t), (12)

with

d
dtρs(t) = Ls,g(ρs(t)). (13)

Here, ρs is a state of the same dimension as T to represent
its slightly hybridized version; Kg(·, t) is a 2π

ω̄1
-periodic su-

peroperator close to ρs 7→ ρs⊗ρ̄E defining the embedding
of the invariant subspace in the total system space; and
Ls,g is a stationary Lindbladian representing the slow
Markovian dynamics occurring within the invariant sub-
space. In order to identify Ls,g and Kg, like in [2], we
write both as a power expansion. The small expansion
parameter is ε = g

ω̄1
� 1, with ω̄1 the frequency of the

driving as in (8), and we write

Kg(·, t) :=

∞∑
k=0

εkKk(·, t), (14)

Ls,g :=

∞∑
k=1

εkLs,k. (15)

Substituting this Ansatz into (11) and identifying equal
powers of ε then allows to solve for the unknowns Ls,k
and Kk order by order, as shown in Appendix B 2. In line
with standard adiabatic elimination, the convergence of
the series is ensured provided g

κ � 1, with κ the typical
dissipation rate of E. The validity of the expansion thus
depends on the timescale separation ω̄1 � g and κ� g.
However, we do not have to assume either ω̄1 or κ to be
larger than the other; in other words, we do not have
to perform standard adiabatic elimination with κ before
averaging over ω̄1 or conversely.

Equation (13) can rightfully be called a reduced model
for the induced decoherence on T, since we have elimi-
nated both the coupling to the TLS from the description,
as well as a fast periodic micromotion given by Kg(·, t).
We observe (see appendix C) that the first-order slow
dynamics Ls,1 is purely Hamiltonian. Since Hamiltonian
contributions can by definition be calibrated and do not
represent the decoherence we want to study, we will not
discuss them here. The leading-order decoherence pro-
cess is of second order, represented by Ls,2. The remain-
der of this section will thus focus on the effectiveness
of drives on E in reducing induced dissipation on T, by
examining the dependence of the decoherence operators
in Ls,2 on the QDD parameters of our proposal (8). A
discussion of the Hamiltonian terms in Ls,1 and Ls,2 in-
cluding Hamiltonian terms can be found in Appendix C.

1. Strong driving

A full derivation of the second-order reduced model
corresponding to (11),(13) can be found in Appendix C 1.
It takes the following form, with some Hamiltonian Hs

which we do not discuss here, and dissipation in operators
inherited from the coupling HTE :

d
dtρs ' −ig[Hs, ρs]

+ κs,zDTz (ρs) + κs,−DT−(ρs) + κs,+DT+
(ρs). (16)
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The decoherence rates κs,z, κs,± are given by

κs,z = −2g2Re(Tr(σzXz)), (17a)

κs,± = −2g2Re(Tr(σ±X∓)), (17b)

where Xz and X∓ respectively satisfy the following ma-
trix equations:

(σz − Tr(σz ρ̄E))ρ̄E = − i
2

[ω2σx + ∆σz, Xz] (18a)

+ κ−Dσ−(Xz) + κ+Dσ+(Xz),

(σ∓ − Tr(σ∓ ρ̄E))ρ̄E = − i
2

[ω2σx + ∆σz, X∓] (18b)

±iω̄1X∓ + κ−Dσ−(X∓) + κ+Dσ+
(X∓).

Here, ρ̄E is the unique steady state of the Lindbladian
acting on E, namely:

− i
2

[ω2σx + ∆σz, ρ̄E ] + κ−Dσ−(ρ̄E) + κ+Dσ+
(ρ̄E) = 0.

A unique solution for Xz,± is guaranteed by the formal-
ism in Appendix B 2. Given the number of variables
in play, expressions for the dissipation rates are alge-
braically complicated and computed with the help of a
computer algebra system (SymPy [21]). As a concrete re-
sult of this section, and in line with the double-timescale
QDD proposal detailed in section III B, we can focus on
the limiting case of strong driving, where ω2 dominates
the other parameters.

Theorem 1. Define 1
Ωk2

to signify any dimensionless

term consisting of the product of 1
ωk2

with positive pow-

ers of the other rates ω̄1, κ± or ∆ excluding ω2. The
decoherence rates defined by (18) display the following
asymptotic behavior for large ω2:

κs,z =
(κ− + κ+)g2

ω2
2

+ 4
∆2

ω2
2

g2

κ− + κ+
(19a)

+
g2

ω2
O
(

1

Ω3
2

)
κs,± =

(κ− + κ+)g2

(κ− + κ+)
2

+ 4ω̄2
1

(19b)

+
g2

ω2
O
(

1

Ω2

)
.

All these rates vanish in the limit ω̄1 � ω2 → ∞,
quantitatively confirming the QDD benefits. The general
form of these expressions can be understood intuitively
as follows. The expressions involve the sum (κ−+κ+) be-
cause the strongest drive ω2σx constantly exchanges the
roles of ground and excited states in E. This also explains
why κs,+ ' κs,−. The rates κs,± then take the standard
Purcell-type expression resulting from Jaynes-Cummings
type coupling under detuning ω̄1

2 . The main QDD effect
here is just the ω̄1-detuning reducing the effective cou-
pling between T and E. The first term of κs,z in fact has
a similar form, where κ−, κ+ terms don’t appear in the

denominator because they are dominated by ω2
2 . This

is no coincidence, since the Hamiltonian part is like the
usual Jaynes-Cummings coupling; up to exchanging the
roles of σx and σz. Indeed, neglecting the detuning ∆,
we are applying a constant drive along the σx direction
(in the ω̄1 rotating frame), orthogonal to the coupling in
the σz direction. Those two contributions would not be
present if we were only considering the average coupling
as derived in (10). They thus express the limitations, in
presence of κ±, of the RWA performed in Section III B.
The effect of the average coupling remaining in (10) is
captured by the second term of κs,z. One can recognize
the standard induced dissipation formula of type “g̃2/κ̃”
where g̃ is replaced by the average coupling g ∆

ω2
as de-

rived in Section III B.
We recall that, behind these interpretations, purely

mathematical derivations of the formulas (16), (19) are
detailed in Appendix C 1.

2. Case of ultra-strong driving

A Lindbladian dissipation model like Eq.(1) is an ide-
alization meant to summarize interactions of the TLS
with further external degrees of freedom, e.g. a large bath
involving phonon modes. Therefore, when significantly
modifying the system Hamiltonian, in other words when
we choose to add “ultra-strong” QDD drives on the TLS,
the dissipation model may have to be revised, depend-
ing on the type of bath and noise spectrum behind its
derivation. One might be tempted to design QDD drives
to purposefully modify the Lindbladian itself [9, 11, 24].
However, in the context of the present work this is typ-
ically a secondary effect. The present section provides
explicit formulas for such bath reconsideration, in order
to check to which point our conclusions of Thm. 1 remain
consistent.

We thus leave aside system T for a while and go back
to the lab frame for the TLS system E in order to re-
consider its decoherence channels. We can safely neglect
the coupling of E and T at this stage, as it involves a
weaker Hamiltonian, even weakened by the QDD drives,
and it would thus only appear at higher orders in any
possible modification of the Lindbladian dissipator of E.
We model the TLS relaxation as stemming from an in-
teraction of E with a large bath B that can be assumed
memoryless. For the sake of concreteness, the interaction
Hamiltonian is taken to be γσx ⊗R, thus

HEB =
ΩE
2
σz + H̃c(t) + γσx ⊗R+HB . (20)

Here R is a Hermitian operator acting on the bath Hilbert
space, γ is some small positive coupling rate, HB is the
bare bath Hamiltonian and H̃c(t) is the QDD drive, ex-
pressed back in the lab frame. For this reason, (20) also
includes the TLS bare frequency ΩE . As is common prac-
tice, we can consider a bath of harmonic oscillators, for
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which the coupling along σx leads to a Jaynes-Cummings-
type interaction with the different modes; similar conclu-
sions hold for more general couplings and baths [4, 7, 14].
We next summarize the results, while details of their
derivation can be found in Appendix A.

As a first step in obtaining a Lindbladian model, we
perform the Born-Markov approximation in the interac-
tion frame of the TLS and the bath. This interaction
frame must include all the dominant Hamiltonians, it
thus involves a rotating frame w.r.t the bath Hamilto-
nian, but also the toggling frame defined by (9), to in-
clude the drives on the TLS part. Next, we perform a
standard secular approximation (RWA), averaging over
the frequencies ±Ω̄E . The RWA introduces an error of

order κ2

Ω̄E
, where κ is the typical dissipation rate obtained

in the end. Since we assume the bare frequency of the
TLS to be much larger than the dissipation rate, we can
neglect this term. A final approximation is needed to
obtain a Lindbladian model. There are two possibilities
for this, and for any value of ω2, at least one of them is
valid in the context of our QDD protocol.

As a first possible condition, when the drive amplitude
ω2 is dominated by the bare qubit frequency ΩE , the
noise spectral density G of the bath (defined in (A7)) can
typically be considered flat in the ranges±[ΩE−ω2, ΩE+
ω2]. The Jaynes-Cummings type coupling assumed in
(20) then yields stationary dissipators in σ− and σ+, as
assumed in Section II.:

Lk ∈ {σ−, σ+ },

with respective rates κ∓ ' 2γ2G(±ΩE).
The second possible approximation for obtaining a

Lindbladian model is a second RWA, now over frequen-
cies ±Λ. This approximation remains valid as long as Λ
is much larger than the obtained dissipation rate, to be
checked a posteriori. For our TLS system coupled to the
bath, this yields (see appendix) decoherence through the
three dissipation operators

Lk ∈ {σαx, σα−, σα+ }, (21)

as defined in Section III B, with respective decoherence
rates:

καx =
γ2

2
(G(Ω̄E + ω̄1) +G(−Ω̄E − ω̄1)) cos2(α), (22a)

κα− =
γ2

2
G(
(
Ω̄E + ω̄1

)
+ Λ)(1 + sin(α))

2

+
γ2

2
G(−

(
Ω̄E + ω̄1

)
+ Λ)(1− sin(α))

2
, (22b)

κα+ =
γ2

2
G(−

(
Ω̄E + ω̄1

)
− Λ)(1 + sin(α))

2

+
γ2

2
G(
(
Ω̄E + ω̄1

)
− Λ)(1− sin(α))

2
. (22c)

The choice between a model with fixed decoherence
operators Lk ∈ {σ−, σ+}, or with drive-corrected ones
Lk ∈ {σαx, σα−, σα+}, depends on whether it is a better
approximation to consider G flat on the scale of ω2/ΩE ,

or to consider an RWA based on Λ� καx, κα−, κα+. The
former approach leads to an error of order κ Λ

ΩE
, whereas

the latter leads to an error of order κ2

Λ .
The two approximations are compatible and commute

with one another when both are justified, i.e. when
κ±,α±,αx � ω2 � ΩE . Indeed, first assuming a locally
flat bath spectrum, next transforming the σ− and σ+

dissipators to the rotating frame w.r.t. Λ
2 σαx, and finally

performing RWA over frequencies ±Λ, yields exactly the
dissipators associated to (22) with ω1 and Λ ' ω2 put to
zero in the bath spectrum G. In contrast, we can also see
that the two approaches do give different results in some
situations. For instance, for α = 0 and G depending on
frequencies on the scale of ω2, the dissipation rates κα±
along the ±1 eigenvectors of σαx = σx, thus obtained
using the second approximation, would differ (slightly).
Such asymmetry cannot be retrieved as an average effect
of ω2σx driving on given σ± dissipators, as would result
from the first type of approximation. Thus in this case,
applying the correct (second) type of approximation re-
sults in genuine corrections to the Lindbladian.

In summary, when the first type of approximation is
justified, we retrieve the original model and the induced
dissipation of Thm. 1. When ω2 becomes too large (ultra-
strong driving) and only the second type of approxima-
tion is justified, we must revise the dissipation model. In
the rest of this section, we derive formulas for the induced
dissipation on T under this revised dissipation model and
just considering general, non-vanishing rates καx,α−,α+.

Again in a rotating frame w.r.t. ω̄1

2 σz, the joint evo-
lution of the target and TLS is thus described by the
master equation

d
dtρ = κα−D1T⊗σα−(ρ) + κα+D1T⊗σα+

(ρ) (23)

− iΛ
2

[1T ⊗ σαx, ρ] + καxD1T⊗σαx(ρ)

− ig
[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρ

]
.

A full derivation of the reduced model corresponding
to (23) can be found in Appendix C 1, including all terms
in K1,Ls,1 and Ls,2. Again the expressions are alge-
braically complicated and computed with the help of
a computer algebra system (SymPy). We here report
simplified formulas in the limit where ω2 is the fastest
timescale in the joint system. The leading-order deco-
herence process contains the same dissipators as in (16),
thus

d
dtρs ' −ig[Hs, ρs]

+ κs,zDTz (ρs) + κs,−DT−(ρs) + κs,+DT+(ρs). (24)

Our main result consists of the formulas for the dominat-
ing order of the decoherence rates.

Theorem 2. Consider the same notation 1
Ωk2

as in

Thm. 1. The induced decoherence rates associated to (24)
for the model (23) display the following asymptotic behav-
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ior for large ω2:

κs,z =
(καΣ + 4καx)g2

ω2
2

+ 2
∆2

ω2
2

g2

(
1− κ2

α∆

κ2
αΣ

)
καΣ

+
g2

ω2
O
(

1

Ω2
2

)
, (25a)

κs,± =

καΣ
g2
(

1− ∆2

ω2
2

)(
1− κ2

α∆

κ2
αΣ

)
2
(
κ2
αΣ

+ ω̄2
1

)
+
g2 (4καx + καΣ

)

4ω2
2

+
g2

ω2
O
(

1

Ω2
2

)
, (25b)

with καΣ = κα− + κα+ and κα∆ = κα− − κα+.

These rates can be understood intuitively in a similar

way as for (19). The extra factor (1 − κ2
α∆

κ2
αΣ

= 1 − x2
α,∞)

accounts for the generally nonzero average value xα,∞
of σαx in the TLS steady state. A larger xα,∞ reduces
the dissipative part at the expense of a deterministic,
Hamiltonian term (see Appendix C 2). In κs,±, we have
now kept a term of order 1/ω2

2 because the dominating
contribution of καx only appears at this order.

Taking into account the modified dissipation model for
E thus does affect induced decoherence for T, with sig-
nificant changes if κα− � κα+ such that κα∆ ' καΣ.
However, with a bath model at the origin of (22), this
would only happen under very peculiar conditions. The
standard conclusions with a reasonably flat bath noise
spectrum, and α � 1, are not too different from (19).

They quantitatively confirm the QDD benefits under this
model too.

3. Optimization: cold TLS and reducing ω2

The general formulas (19) and (25) quantify how QDD
controls containing two drives with amplitudes ω2 � ω1

reduce the decoherence induced on T under general con-
ditions. They can guide parameter choices in particular
situations, as long as we assume large ω2. Having large
ω̄1 and ω2 is always beneficial.

However, this does not mean that driving strongly in
both ω̄1 and ω2 is always the best choice. Indeed, in
very particular settings, it may be even better to take
some of the drives at their minimal value; in other words,
intermediate values of the drives would be the worst case.
Assume for instance the extreme situation of dispersive
coupling to a zero-temperature bath, i.e. Tx = Ty = κ+ =
0. Then, in absence of controls (in fact as long as ω2 =
0), the TLS is attracted towards its ground state, and
the resulting effect on T would be purely Hamiltonian.
This raises the question of how to choose ω2 to minimize
the Tz-decoherence. We next answer this question, as
an illustration of how to use our framework for design
choices.

We therefore reconsider the exact rate of the Tz-
decoherence channel at second order adiabatic elimina-
tion, valid as long as κ � g and ω̄1 � g. This is the
solution of (17a),(18a), thus assuming the model (11),
without considering the limit of large ω2:

κs,z =

2g2
(

4∆2 + (κ− + κ+)
2
)(

4κ+κ−

(
16∆2ω2

2 +
(

4∆2 + (κ− + κ+)
2
)2
)

+ 4(κ− + κ+)
2
ω2

2

(
2κ2
− + 2κ2

+ + ω2
2

))
(κ− + κ+)

3
(

4∆2 + (κ− + κ+)
2

+ 2ω2
2

)3 .

(26)

The bath temperature is characterized by nth, the mean
number of thermal photons, such that κ− = κ1(1 + nth)
and κ+ = κ1nth. Straightforward algebraic manipula-
tions of (26) allow for an optimization study, which we
summarize in the following result.

Theorem 3. The induced dissipation rate κs,z as defined
in (26) shows the following dependence on ω2:

• If nth <
√

3
3 −

1
2 ' 0.077 , then κs,z displays a single

local maximum as a function of ω2, for any values
of ∆ and κ1. The optimal value of ω2 is either zero
or the maximal achievable one, depending on the
experimentally achievable bound on the latter.

• If nth >
√

3
3 −

1
2 ' 0.077 and

∆2

κ2
1

<
(2nth+1)2

(
2
√

3(2nth+1)+
√

12n2
th+12nth−1

)
4
√

12n2
th+12nth−1

, (27)

then κs,z also displays a single local maximum as
a function of ω2, with the same conclusions for its
optimization.

• If nth >
√

3
3 −

1
2 ' 0.077 and (27) is not satisfied,

then κs,z is monotonically decreasing in ω2.

In the last case, in other words when ∆ is large, ramp-
ing up ω2 is always advantageous. In the first two cases,
the value of ω2 minimizing κs,z will thus depend on how
its value at the maximal achievable ω2 compares to its
value at ω2 = 0, which reads:

κs,z(ω2 = 0) =
8g2nth (nth + 1)

κ1 (8n3
th + 12n2

th + 6nth + 1)
. (28)

A numerical illustration of the dependence of κs,z on ω2

and nth is provided on Figure 1.
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FIG. 1. Dependence of κs,z as defined in (26) on ω2
κ1

, for

various values of nth between 0 and 0.1 and at fixed ∆
κ1

= 2.
The dashed black line indicates the local maximum in ω2 when
it is present. In the latter cases, induced dissipation κs,z is
minimized either at ω2 = 0 or at the largest achievable ω2,
depending on its value.

Note that Theorem 3 and Figure 1 have been estab-
lished by analyzing a single algebraic formula. Indeed,
the adiabatic elimination method on one hand yields ex-
plicit formulas for the induced dissipation rates, prevent-
ing the need for solving differential equations for each
parameter setting. On the other hand, our extended for-
malism as explained in appendix B 2 does not require
to select between either the dissipation being the largest
time-scale (standard adiabatic elimination), or drive fre-
quencies ω̄1, ω2 being the largest timescale (domain of
averaging techniques like RWA). A single formula thus
allows to consistently cover the full range of parameter
values.

We can also look at the values of induced decoherence
rates κs,± for ω2 = 0, yielding:

κs,− =
4κ−g

2

(κ− + κ+)
2

+ 4(ω̄1 + ∆)
2 , (29a)

κs,+ =
4κ+g

2

(κ− + κ+)
2

+ 4(ω̄1 + ∆)
2 . (29b)

As expected when taking ω2 = 0, the initial κ− and κ+

remain separated, such that κs,+ remains small for a
cold bath. We can also note that ω2 was decoupling the
effect of ∆ σz, and its absence reintroduces this detuning
in addition to ω̄1 in (29). Regarding the QDD effect, in
both cases we rely on large ω̄1 to reduce the induced
decoherence. In absence of ω2 however, there may be
a danger of being counterproductive by hitting ω̄1 ≈ −∆.

Such calculations illustrate how our formulas could be
used to optimize the parameter choices. In Section IV,
we will instead optimize the relative strengths of dissipa-
tion parameters in various situations, showing that the
optimum can similarly jump from strongest possible to

weakest possible “shaking” on some channels. For in-
stance, expressions like (28) seem to indicate that even in
absence of any drives, the lowest temperature (i.e. value
of nth) is not necessarily inducing the lowest κs,z; this
specific example will be treated in Section IV C 1. Before
this, we investigate more generally how induced dissipa-
tion on T can be decreased by acting on E not only with
coherent drives, but also with additional decoherence.

IV. PURELY DISSIPATIVE DECOUPLING

In Section III we are arguing that adding not too pre-
cise drives on E can decrease the decoherence that it in-
duces on the target system T, as environment and system
can be seen to dynamically decouple. It is tempting to
push this idea one step further and ask: what happens
if we drive E with a Hamiltonian H whose amplitude
is pure noise? In fact, this brings us to asking whether
we can achieve dynamical decoupling (or whether we can
lower the induced decoherence, if you prefer to be more
cautious with the naming QDD) by adding decoherence,
in the form of Lindblad operators, to the environment.
Indeed, taking dWt the increment at time t of a Brownian
motion process, we have:

ρ(t+ dt) =E
(
e−iHdWtρ(t)eiHdWt

)
=ρ(t)− i[H, ρ(t)] E(dWt)

+

(
Hρ(t)H − H2

2
ρ(t)− ρ(t)

H2

2

)
E(dW 2

t )

=ρ(t) +DH(ρ(t)) dt ,

which is a Lindblad equation with Hermitian decoherence
channel H. Adding such decoherence could be consid-
ered a “legitimate hack” in the sense that it increases en-
tropy production on the environment. One can also con-
sider adding non-Hermitian decoherence channels, like
the qubit relaxation channel Dσ− . While requesting to
add a very strong such cooling on the environment is
most probably not experiment-friendly, a more reason-
able setting of this type could be: let E be subject to

Dtotal = κ1(1 + nth)Dσ− + κ1nthDσ+ , (30)

with lower and upper bounds on κ1 and on nth; which
parameter choice minimizes the induced decoherence on
T? More generally, we can consider settings where the
environment is subject to decoherence

Dtotal =
∑
k

κkDLk , (31)

with the rates κk of the decoherence channels jointly tun-
able within a given set. The way in which these κk are
tuned in practice can depend on the particular experi-
ment. They might result from (noisy) drives and secu-
lar approximations, or for models like (30) they might
guide target values of κ1 and nth at the experiment de-
sign stage.
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We will thus focus on a setting where the joint state of
the system and environment are described by a master
equation like (1) with HT = 0, i.e.

d
dtρ = −i[HTE +HE , ρ] +Dtotal , (32)

where now HE is fixed and dissipation takes the form
(31) with tunable κk associated to Lk operators acting
on E only. Future work may want to add a tunable HE

as in Section III, but for a more efficient presentation we
here study both effects separately (see [13] for examples
on tuning both the κk and a time-independent drive HE).
The question is again: what are the values of the κk which
minimize the induced decoherence on T? In absence of
time-dependent drives, this induced decoherence can be
computed directly with standard adiabatic elimination
formulas [2]. We will show that the QDD principle carries
through at this purely dissipative level. Namely, selecting
large values of κk, which strongly shake the environment,
can lead to much less induced decoherence than selecting
the κk which make the environment as pure as possible.

This section is organized as follows. After quickly re-
calling the required formulas, we establish some prop-
erties on general systems, then we address some typical
settings for a TLS as environment. A preliminary and
different presentation of these ideas can be found in the
conference proceedings [12].

A. Adiabatic elimination formulas

We here recall the standard adiabatic elimination set-
ting in absence of drives, to make this self-contained for
readers skipping Section III.

The general purpose of adiabatic elimination is to elim-
inate all fast dissipative dynamics and only retain the de-
grees of freedom which evolve slowly, and which are thus
best protected from decoherence. A standard setting is
when a fast dissipating system (here E) is weakly cou-
pled to another system (here T). Under appropriate con-
ditions, the coupling induces a weak hybridization of the
two subsystems, in which a subsystem close to T can be
viewed as an autonomous system of state ρs undergoing
slow decoherence and slow Hamiltonian dynamics. Ap-
proximation formulas have been developed to compute
this hybridization and slow dynamics at various orders
[2].

We focus on the formulas expressing the dissipation on
ρs, thus induced on T by its coupling to E, taking the
viewpoint that a constant hybridization and Hamiltonian
can, by definition, be calibrated. The following procedure
gives the dominating terms of the dissipation, provided
the environment E alone has a unique steady state and
the latter is strongly attractive compared to the coupling
rate with T.

• Denote by ρ̄E the unique steady state of the envi-
ronment dynamics, thus taking HTE = 0 in (32).

• Writing HTE =
∑
k Tk ⊗ Ek, for each Ek compute

Ẽkρ̄E = Ekρ̄E − Tr(Ekρ̄E)ρ̄E .

• For each k, solve for a traceless operator Qk in
−i[HE , Qk] +Dtotal(Qk) = −Ẽkρ̄E .

• Construct the matrix X with components Xk,j =

Tr
(
QjE

†
k + EjQ

†
k

)
. This matrix is positive

semidefinite and the induced dissipation on T, at
second order adiabatic elimination, is given by

Dinduced =
∑
k

DLk

where Lk =
∑
j Λj,kTj for any decomposition X =

ΛΛ†.

In particular, the induced dissipation at this order
of approximation involves just linear combinations
of the coupling operators Tj in HTE .

In particular, when HTE = T ⊗ E and thus X is
a scalar, this X just gives the induced dissipation
rate on T associated to dissipation operator T .

We will use the result of this procedure to analyze how
the dissipation induced on a target system can be reduced
by varying the κk in (31). One should bear in mind that
this is only the dominating term, in an approximate for-
mula which is valid when dissipation on the environment
is fast. Thus, conclusions encouraging us to take mini-
mal dissipation on the environment should be taken with
caution. However, we will often encounter the conclusion
that more dissipation in the environment is better for the
target, and this regime is precisely the one well covered
by the adiabatic elimination conditions.

Moreover, when treating the example of a TLS envi-
ronment in more detail, we will illustrate how to adapt
the adiabatic elimination procedure when the dynamics
on E alone do not strongly attract it to a unique steady
state.

B. Some general properties

Before moving to our running example of a TLS en-
vironment, we can give some general results on induced
dissipation as computed with the above procedure. They
are very much in line with the QDD viewpoint that shak-
ing the environment more should lead to less effect on
the target system.

Proposition B.1. When HE is fixed and of the same or-
der as HTE or smaller, multiplying all the κk by α > 1
decreases the dissipation induced on the target system
by a factor α. The same conclusion holds for any HE if
it can be multiplied by α > 1 together with the κk.

Proof. There are two ways to consider HE . Under the
first condition, we consider it as part of the perturba-
tion, with a coupling H̃TE = HTE +1T ⊗HE . Under the
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second condition, we consider it as part of the fast dy-
namics, and just scale it together with all other Lindbla-
dian contributions on the environment. In the adiabatic
elimination procedure outlined above, both cases will not
change ρ̄E nor the Ẽk, yet the Qk will be α times smaller.
Thus the induced dissipation matrix X is α times smaller
and so will be the rates deduced from it. Another view-
point is to make a change of timescale re-establishing the
initial dissipation rate on the environment. In this new
timescale, the coupling to the target system is decreased
by α. According to the 2nd order adiabatic elimination
formulas, the induced dissipation is quadratic in the cou-
pling strength, therefore the lower coupling more than
compensates for the change of timescale.

Proposition B.2. Consider that HE = 0 and that all the
decoherence channels Lk on the environment are Hermi-
tian and can be tuned individually. Then, as soon as
adiabatic elimination conditions are satisfied, the diag-
onal elements of the induced decoherence matrix X are
all minimized by taking the maximal value of κk for each
Lk on the environment.

Proof. We say “as soon as” because if the conditions are
satisfied for some set of parameters, then they still hold
when we increase the dissipation rates. We summarize
the main ideas of the proof, whose full version is avail-
able in [12]. First note that the unique steady state ρ̄E of
the environment under Hermitian Lk must be ∝ Identity,
irrespective of the tuning choice. One can then write an
optimization problem for each diagonal element of X,
expressing the computations of the adiabatic elimination
procedure recalled above as constraints with Lagrange
multipliers. The necessary optimality conditions then
ensure that X can be minimal only at the extreme val-
ues of the κk. A local analysis shows that if its value
matters, then κk must be maximal to minimize the X-
element.

Since we know that X is positive semidefinite, the im-
plications of Proposition B.2 on its diagonal have similar
consequences for the induced dissipation rates.

Finally, we can try to give criteria under which the
induced dissipation on T can vanish at the limit where
some κk become very large. Note that this is the limit
where the adiabatic elimination becomes more and more
valid.

Proposition B.3. Consider (32) and let

Dtotal = Da + 1
δDb ,

such that, for fixed Da and Db, the κk remain within
their authorized domain as δ tends to 0. In other words,
Db is the part of the dissipation on E whose rates can
possibly tend to infinity.

If Db has a unique steady state, then the decoherence
induced on the target system vanishes as δ tends to 0.

Otherwise, the dynamics on E can first be reduced by
first-order adiabatic elimination of Db. The structure
for this can be more general than the formulas of Sec-
tion IV A, the procedure is recalled in Appendix B.1. The
resulting system can in turn be analyzed, either exactly
or with another round of adiabatic elimination, to show
if there remains induced dissipation or not.

Proof. When Db has a unique steady state, we can con-
sider just Db as the fast dynamics in order to perform
adiabatic elimination of E. The first-order formula gives
only Hamiltonian dynamics on T, while the contributions
of higher-order adiabatic elimination vanish as 1/δ gets
infinite.

When Db induces no unique steady state for E, it can-
not be used to adiabatically eliminate the whole Hilbert
space of E. Instead, we must keep as reduced model a sub-
space of linear operators on E supporting all the steady
states of Db.

To conclude on the behavior for δ → 0, we only need
to keep the first-order contributions resulting from adi-
abatically eliminating Db. The following possibilities for
the reduced system illustrate some possible rapid conclu-
sions.

• In some cases, the coupling between T and what
remains of E after adiabatic elimination of Db can
vanish; then, there would be no induced dissipation
when 1/δ gets infinite.

• By definition of the original problem, the reduced
dynamics on (what remains of) E has a unique
steady state ρ̄Ẽ . In particular, the dissipation there
cannot vanish, precluding the possibility of ending
up with a purely Hamiltonian joint system on T
and Ẽ.

• If the remaining dynamics takes the form of dissi-
pation on what remains of E, with weak Hamil-
tonian coupling to T, then we can readily ap-
ply the second-order adiabatic elimination formu-
las of Section IV A to the remaining system. This
enables to directly either conclude to the nega-
tive (there already remains induced dissipation at
second-order), or observe that at least the dominat-
ing order of dissipation vanishes (thus according to
second-order adiabatic elimination formulas with fi-
nite Da). Note though that it does not seem true
that the adiabatic elimination of Db would always
yield such structure.

• In particular, in this last setting, if ρ̄Ẽ has full rank,
then induced dissipation cannot vanish. If ρ̄Ẽ has
reduced rank, then the induced dissipation cannot
vanish if the Hamiltonian coupling acts inside the
space supported by ρ̄Ẽ . The proof, worked out in
appendix B 3, follows similar steps as for proving
that the dissipation matrix X in Section IV A is
always non-negative (see [2] and related work).
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C. Minimizing decoherence induced by a qubit
environment (TLS)

We now focus in more detail on the case of a two-
level-system (TLS) environment. We consider Hermitian
dissipation channels plus relaxation in a thermal environ-
ment:

Dtotal = κxDσx + κyDσy + κzDσz (33)

+ κ−Dσ− + κ+Dσ+ .

We assume that κx, κy, κz are each tunable indepen-
dently within a given interval e.g. [κx, κx ], while κ− =
κ1 (1 + nth), κ+ = κ1 nth, with typically independent
bounds on the coupling strength κ1 and temperature
characteristic nth.

We will first consider two typical couplings between E
and T — almost-resonant and dispersive — while assum-
ing that E always has a strongly attractive unique steady
state. This happens as soon as two of the κx, κy, κz
take significant nonzero values, or κ1 takes a significant
nonzero value. When this is not the case, we can still ap-
ply adiabatic elimination but on a modified state space
splitting; we illustrate what this implies for induced dis-
sipation in a third example.

1. Dispersive coupling

As a first case, we consider (33) in conjunction with
the coupling Hamiltonian:

HTE = g Tz ⊗ σz .

This models the typical situation of dipolar coupling be-
tween the target system and a TLS which is far detuned
(dispersive coupling limit).

Following the adiabatic elimination procedure, we first
compute the steady state of the fast TLS relaxation
alone:

ρ̄E =
1 + z̄σz

2
with z̄ = −κ1

(1+2nth)κ1+2(κx+κy) .

From the coupling operator σz in E, we then compute

σ̃z ρ̄E = 1−z̄2

2 σz .

Next we must solve

Dtotal(Q) = −σ̃z ρ̄E ,

which fortunately reduces to a scalar equation on the
coefficient of σz. Plugging the solution into the formula
for the dissipation matrix gives:

X = 1−z̄2

(1+2nth)κ1+2(κx+κy) = 4c+c−
(c++c−)3

where c− = (1+nth)κ1+κx+κy and c+ = nthκ1+κx+κy.
This is the induced dissipation rate acting on T with the
operator Tz. We notice that κz plays no role here and
we can make the following observations.

• One checks that, for any values of the other param-
eters, this induced dissipation rate decreases when
κ1 increases. Thus we should fix κ1 at its maximal
bound. For κ1 dominating, the induced dissipation
decreases as 1/κ1.

• Once the value of κ1 is fixed, we can write κx+κy =
κ1nb such that the induced dissipation becomes a
function of neff = nth + nb only, namely

X = 4neff(neff+1)
(2neff+1)3 . (34)

This function increases from X = 0 at neff = 0 to-

wards a maximum at neff =
√

3−1
2 ≈ 0.366, then

slowly decreases to 0 as neff tends to infinity. Note
that the adiabatic elimination approximation re-
mains well valid near nth = 0, as long as κ1 itself is
significantly larger than the coupling Hamiltonian.

Thus, the minimal induced dissipation will be ob-
tained either at the lower or at the upper bound
of neff, depending on their values. In other words,
if a very low temperature can be achieved to keep
the TLS close to its ground state then this is fa-
vorable, but otherwise it is better to just make it
as mixing as possible. The judge about “very low
temperature” is the formula (34).

• Comparing to Propositions: There is nothing spe-
cial to say regarding Proposition B.1.

Proposition B.2 applies rigorously when κ1 = 0;
taking κ1 very low, we would indeed be in a regime
where neff ≈ nb =

κx+κy
κ1

is large, and we have seen

that as soon as nb >
√

3−1
2 it is beneficial to increase

it, be it through κx or κy. On the contrary, if κ1 is
the dominating dissipation, then increasing κx or
κy is not necessarily beneficial, as we may be in the

regime neff <
√

3−1
2 . This supports the condition

that all dissipation operators must be Hermitian
for Proposition B.2 to apply.

Regarding Proposition B.3, as soon as κ1 or two
other dissipation channels can be increased indefi-
nitely, we are in the situation whereDb has a unique
steady state, and the induced dissipation goes to
zero. There remains the case where only a single
Hermitian channel can be increased indefinitely.

– Taking this channel to be κz, the elimination
of Db yields a reduced state space of the type
pgρg ⊗ |g〉 〈g| + (1 − pg)ρe ⊗ |e〉 〈e| with free
parameters pg, ρg, ρe. The remaining fast dy-
namics will stabilize the value pg = p̄g in-
dependently of the coupled target system T.
The case κx = κy = nth = 0, thus with κ1

stabilizing |g〉 〈g| as p̄g = 1, would yield a
rank-deficient ρ̄E for which induced dissipa-
tion completely vanishes, even for finite κz;
otherwise, induced dissipation will always be
finite.
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– Taking the possibly infinitely strong chan-
nel to be κx, the elimination of Db yields
a reduced space of similar form but with
|+〉 , |−〉 replacing |g〉 , |e〉. At first-order adi-
abatic elimination of Db, the dispersive cou-
pling Hamiltonian cancels and there only re-
mains dissipation pushing p+ towards 1/2.
Hence, driving κx (or κy) towards infinity is
sufficient to drive the induced dissipation on
T towards 0. Since this stabilizes the most
mixed environment state, this might not have
been the most intuitive guess.

2. Almost-resonant coupling (Jaynes-Cummings)

As a second case, we consider (33) with adjustable κk,
in conjunction with the fixed Hamiltonian:

HTE = ∆
2 1⊗ σz + 2g(T+ ⊗ σ− + T− ⊗ σ+) (35)

= ∆
2 1⊗ σz + g(Tx ⊗ σx + Ty ⊗ σy) ,

where Tx = T− + T+ and Ty = −i(T− − T+).
In the adiabatic elimination formulas, the fast TLS dy-

namics now includes both HE = ∆
2 σz and Dtotal. Note

that this remains valid when ∆ is not dominating g, be-
cause we only need fast dissipation. However, when ∆
does take a large value, it enables to have a strongly at-
tractive unique TLS steady state even if just κx or κy is
nonzero. The steady state of the TLS alone is:

ρ̄E =
1 + z̄σz

2
with z̄ = −κ1

(1+2nth)κ1+2(κx+κy) .

For the coupling operators σx and σy, we then compute

σ̃xρ̄E =
σx−iz̄σy

2 , σ̃yρ̄E =
σy+iz̄σx

2 .

The solution of

− i[HE , Qk] +Dtotal(Qk) = −σ̃kρ̄E (36)

for k ∈ {x, y} is rather easy in Bloch coordinates, as the
dynamics decouple the coefficients of σx, σy from those
of σz,1. We can thus write Qk = qk,xσx+ qk,yσy and the
left side of (36) just becomes

∆
2 (qk,xσy − qk,yσx)

−2(κy + κz + (1 + 2nth)κ1

4 )qk,yσy

−2(κx + κz + (1 + 2nth)κ1

4 )qk,xσx .

Equating the components in σx and σy gives the solu-
tions, from which we construct the dissipation matrix:

X =
1

∆2

4 + cxcy

(
cy iz̄

cy+cx
2

−iz̄ cy+cx
2 cx

)
,

with cx,y = κx,y + κz + (1+2nth)κ1

4 . The parameters now
define not only the induced dissipation rate, but also the
associated operators (unitary combinations of Tx, Ty).
Considering any of them as equally bad for the target
system, we typically look at the spectrum of X. We can
make the following observations.

• ∆: increasing the detuning between E and T always
decreases induced dissipation, down to zero as ∆
gets infinite.

• Getting induced dissipation to zero at a finite value
of ∆, requires to increase both cx and cy to infinity
— this will be impossible if only κx or κy can be
made arbitrarily large.

• cx, cy, sum of rates: The sum of induced dissipation
rates (trace of X) as a function of cx, cy looks like
a saddle around the point cx = cy = ∆/2, where
induced dissipation is maximal as a function of cx+
cy and minimal as a function of |cx − cy|. Which
side gives the minimum induced dissipation, will
thus depend on the available range of κk.

In particular, for ∆ = 0, induced dissipation will al-
ways decrease when we increase κz, κ1, nth, κx, κy.
Thus even if we have the option nth = 0 to at-
tract the TLS towards a pure state with only σ−,
it is better to not do so and rather increase the
TLS temperature and other rates. This difference
with respect to dispersive coupling of course stems
from the fact that a ground state for E, although
pure, has no particular advantage under resonant
coupling.

In particular, for large ∆, it appears better to keep
low dissipation on the TLS. This can be understood
as keeping the TLS frequency well-defined, avoid-
ing any leakage towards the frequencies to which
the target system is sensitive. Be careful though
that the formulas are only valid if the dissipation
on the TLS remains significantly larger than its
coupling with the target system. Otherwise, the
correct viewpoint would rather be to first take the
dispersive coupling limit and then analyze the sys-
tem as in the previous Section IV C 1.

• cx, cy, individual rates: The difference between the
two induced dissipation rates may be interesting to
track when thinking e.g. of the interest of having
biased noise [22]. At fixed value of the sum, the
difference increases when |cx− cy| gets larger (thus
κx up and κy down), or when z̄2 gets larger (thus
e.g. κ1 up and nth down).

In particular, for z̄ = 0, increasing only e.g. κx
and thus cx, decreases one induced dissipation rate
as 1

cx+∆2/(4cy) (thus to 0 as κx gets infinite), but

increases the other one as 1
cy+∆2/(4cx) (or thus at

best keeps it constant if ∆ = 0, with finite limit
1/cy as κx gets infinite).

• Comparing to Propositions: The two regimes of
Proposition B.1 are well visible here. The one
where ∆ and all κk are scaled by α is trivial. The
case where ∆ is fixed shows two things: if ∆ is
small, then Proposition B.1 says that it is better to
increase the κk, as we see from the explicit formula
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here; however, if ∆ is fixed and large, then Proposi-
tion B.1 does not apply and we see indeed with the
present formula that the situation is not as clear.
In other words, the saddle at cx = cy = ∆/2 is very
consistent with the first case of Proposition B.1.

Proposition B.2 applies at least when ∆ = 0 (and
κ1 = 0). It predicts that in this setting, increasing
any of κx or κy can only be beneficial. In the par-
ticular case z̄ = 0 mentioned in the previous item,
we see how a nonzero ∆ moderates this conclusion.

Regarding Proposition B.3, like for the dispersive
coupling, the only nontrivial situation is when only
a single Hermitian channel can be increased indef-
initely.

– Taking this channel to be κz, the elimination
of Db cancels the Hamiltonian coupling; thus,
although convergence on E happens at a finite
rate as we need Da to finally converge to ρ̄E ,
the induced dissipation on T goes to 0 as κz
gets infinite.

– Taking this channel to be κx, the elimination
of Db yields a reduced state space of the type

p+ρ+ ⊗ |+〉 〈+| + (1− p+)ρ− ⊗ |−〉 〈−| ,

with free parameters p+, ρ+, ρ−. The remain-
ing fast dynamics stabilizes p+ = 1/2 indepen-
dently of T, while the Hamiltonian coupling
reduces to

−ig[Tx, ρ+]⊗ |+〉 〈+|+ ig[Tx, ρ−]⊗ |−〉 〈−| .

Since ρ̄E has full rank, the associated Tx dissi-
pation induced according to second-order adi-
abatic elimination is bound to stay finite, even
when κx tends to infinity.

3. Partly dissipative environment

We now address a setting where the fast decoherence
of the TLS does not converge to a unique steady state
ρ̄E . A typical example would be (33) where only κz is
large. If this were the only dynamics on the environment
qubit E, then implications for the target system T would
depend on the environment’s initial state. The interme-
diate case which we discuss hare, assumes that we also
have the unavoidable κ−, κ+ dissipation, but with rates
comparable to the coupling g between E and T.

Since adiabatic elimination fundamentally works by
splitting the fast and slow dynamics, it should thus
eliminate only the fast decay of E under κzDσz , i.e. the
quickly vanishing coherences among |e〉 and |g〉 states
of E. The κ−, κ+ dissipation on E has to be taken with
the slow dynamics, which thus cover both the target
system and the populations on |e〉〈e| or |g〉〈g| of the
environment E. To illustrate what this can imply for

the target system, we again investigate the two typical
coupling cases.

Dispersive coupling: First consider the case of a dis-
persive coupling:

d
dtρ = κzDσz + κ−Dσ− + κ+Dσ+

− ig[Tz ⊗ σz, ρ] , (37)

where we recall that only κz is supposed to be larger than
the other rates.

The set of states of the form ρ = ρg⊗|g〉〈g|+ρe⊗|e〉〈e|,
corresponding to the set where Dσz (ρ) = 0, is in fact
exactly invariant under (37). The dynamics for the slow
variables ρg and ρe (each positive Hermitian, but only
sum of their traces must equal one) write as:

d
dtρg = κ−ρe − κ+ρg + ig[Tz, ρg]
d
dtρe = κ+ρg − κ−ρe − ig[Tz, ρe] .

Consider an initial separable state between T and E, thus
ρ = ρT ⊗ (w|g〉〈g| + (1 − w)|e〉〈e|), where the environ-
ment populations are at steady-state value w = κ−

κ++κ−
.

In the eigenbasis of Tz, the diagonal elements of ρT do
not change. However, as the environment jumps be-
tween |e〉 and |g〉 implying opposite rotations with Tz,
the off-diagonal elements of ρT will undergo induced de-
cay. More precisely, for each pair of eigenvalues λj , λk of
Tz, the corresponding off-diagonal elements of ρg and ρe
will decay according to the eigenvalues

r± = −κ1(nth + 1
2 )±

√
κ2

1(nth + 1
2 )2 − L2 + iκ1L

with L = g(λj − λk) .

• When L is small compared to κ1(nth + 1
2 ) = (κ−+

κ+)/2, we would be in the regime where adiabatic
elimination of E still holds. The slowest eigenvalue
approximates as

r− ' i L
(2nth+1)

− L2

κ1(2nth+1) ( 1− 1
(2nth+1)2 ) .

In the second line we thus do find back the induced
dissipation rate in g2/κ, with an additional fac-
tor accounting for the fact that induced dissipation
vanishes if the environment is exclusively in |g〉. An
optimization like in the previous examples applies,
and larger dissipation on E implies lower induced
dissipation on T.

• When L is large compared to κ1(nth+ 1
2 ), the eigen-

values boil down to

r− ' κ− + iq and r+ ' κ+ − iq

for some real parameter q. Thus the induced dissi-
pation rates on T are equal to the ones of excitation
and loss on E, irrespective of the value of L. Con-
trary to the previous case, it is thus better to keep
environment dissipation low.
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These two cases in fact illustrate the transition from the
situation where highest environment dissipation is better
(“surprising” conclusion of adiabatic elimination) to the
case where lowest dissipation is better (truly i.e. not
only according to the standard formula for adiabatic
elimination of E, whose validity drops). According to
both these limit cases, an intermediate rate of dissipa-
tion appears worst. Note that we are comparing the
environment dissipation to L = g(λj − λk), thus in a
single multi-level system the different cases can arise for
different off-diagonal elements.

Resonant coupling: Consider the model

d
dtρ = κzDσz + κ−Dσ− + κ+Dσ+

(38)

−ig[Tx ⊗ σx + Ty ⊗ σy, ρ] ,

where again only κz is supposed to be larger than the
other rates.

The Hamiltonian coupling makes it difficult to exactly
identify the slow invariant subspace from intuition, so we
apply the mathematical adiabatic elimination procedure
as recalled in Appendix B 4. At order zero, the slow
subspace is parametrized as ρs = ρg⊗|g〉〈g|+ρe⊗|e〉〈e|,
with slow variables ρg and ρe (each positive Hermitian,
but only sum of their traces must equal one).

At order one in ε = (g, κ±)/κz, the slow dynamics
κzεLs,1 correspond to:

d
dtρg = κ−ρe − κ+ρg , d

dtρe = κ+ρg − κ−ρe .

The coupling Hamiltonian thus vanishes and the state of
T remains untouched in the sense that we have, at this
order, d

dt (ρg + ρe) = 0.

At order two though, we get the dissipative dynamics:

d
dtρs = κzεLs,1(ρs)

+ g2

κz
D(Tx+iTy)⊗|e〉〈g|(ρs)

+ g2

κz
D(Tx−iTy)⊗|g〉〈e|(ρs) .

The second-order dissipation combines (|e〉, |g〉)-
population mixing on E with induced decoherence on T.
To get an idea of the latter, we can consider the (quite
academic) special case where Tx = Ty and again obtain
autonomous dynamics for T, namely:

d
dt (ρg + ρe) = 2g2

κz
DTx(ρg + ρe) .

Thus, unlike for dispersive coupling, the induced dissipa-
tion (up to second order included) appears to be inde-
pendent of the values of κ−, κ+ as long as they remain
small compared to κz.

V. CONCLUSION

Protecting a target quantum system from decoher-
ence is a major objective towards quantum technology.
Although quantum information loss on a target phys-
ical system is often expressed via Markovian decoher-
ence channels, everyone acknowledges that this only ap-
proximates more intricate dynamics of a larger system.
Adding dynamics at the fast timescales of this larger sys-
tem may thus allow to change the induced decoherence on
target, and ideally reduce it. This is essentially the idea
behind 1/f noise mitigation methods, revised Floquet-
Markov Lindbladians, and spin echo or quantum dynam-
ical decoupling (QDD) techniques, among others.

In the present paper, we express the not entirely
Markovian dissipation on the target system T as a Hamil-
tonian coupling to a low-dimensional environment sub-
system E, which itself undergoes Markovian / Lindbla-
dian dissipation. This is in line with initial QDD settings
[26], which focus on the Hamiltonian part of T and E.

The specificity of our proposal is to mitigate decoher-
ence of T by acting on the intermediate environment E
instead of on the target system T. Such actions cannot
be assumed as precise as on T, but they need not be. In-
deed, we explicitly quantify how not only strong and im-
precise coherent drives, but also adding pure decoherence
channels on E (without introducing direct Markovian dis-
sipation on T itself), effectively reduces the decoherence
induced on T. Maybe surprisingly, we observe how only
particular circumstances would favor a very pure envi-
ronment as compared to a very mixing one.

The reduction of induced decoherence on T when in-
creasing the decoherence on E should not be too unfamil-
iar to researchers used to adiabatic elimination and the
“g2/κ” formula. In light of the present paper, this is in-
terpreted as a QDD effect, which can arise both through
coherent or incoherent driving, and which can be quan-
tified precisely in both cases.

Indeed, having all fast dynamics on subsystem E, we
can go beyond Hamiltonian decoupling arguments and
develop an adiabatic elimination procedure yielding ex-
plicit formulas for the decoherence of T induced by dis-
sipation on E. The resulting formulas are valid in the
limit of strong dissipation on E, which is precisely the
regime that is typically favored. They allow to explic-
itly examine trade-offs and dependencies on parameters,
as we illustrate on various typical settings when E is a
two-level system.
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Appendix A: Dissipation model of TLS under
ultra-strong driving

In this section, we rederive a Lindbladian model for
the dissipation of the environment TLS, starting from
a general model where this E subsystem is coupled to
a large bath B through a Hamiltonian coupling. The
Lindbladian obtained will explicitly account for the pos-
sibly strong drive Hc(t) on E, yielding a perturbative cor-
rection to the dissipators in the (σ−, σ+)-basis obtained
in the undriven case. We will see that this correction
becomes significant when the drive amplitude is non-
negligible w.r.t. the bare frequency of the TLS. For the
derivation we follow the standard approach of the Born-
Markov approximation [4], followed by a secular approx-
imation, averaging out over rapidly oscillating terms.

We consider a general bath B with bare Hamilto-
nian HB , and denote the bare frequency of E by ΩE =
Ω̄E + δΩE , with Ω̄E the nominal user-known value. In
the lab frame of both systems, we assume an inter-system
coupling γσx ⊗ R, with R some constant Hermitian op-
erator acting on the bath Hilbert space, and γ some
small positive coupling rate with the dimension of a fre-
quency. For example, if the bath can be modeled as a
thermal reservoir of harmonic oscillators, this leads to a
Jaynes-Cummings-type interaction with each of the dif-
ferent modes in the bath. Moving to the rotating frame
of both systems, and introducing the drive as in (8), we
obtain the total Hamiltonian

HE(t)⊗ 1B + γ(σ+e
iΩ̄Et + σ−e

−iΩ̄Et)⊗ R̃(t), (A1)

with R̃(t) = eiHBtRe−iHBt. Performing the toggling
frame transformation defined in (9) yields

γẼ(t)⊗ R̃(t), (A2)

with Ẽ(t) = ei(Ω̄E+ω̄1)tE+(t) + e−i(Ω̄E+ω̄1)tE−(t), where
we have defined

E+(t) := ei
Λ
2 σαxσ+e

−iΛ
2 σαx

=
cos(α)

2
σαx + i

1 + sin(α)

2
eiΛtσα+

+ i
1− sin(α)

2
e−iΛtσα− (A3a)

E−(t) := E†+(t). (A3b)

At this point we introduce the modified bare E-frequency
Ω̃E = Ω̄E+ω̄1. In line with the conclusions in section III,
we will consider ω̄1 � ΩE , so Ω̃E ' ΩE .

In the interaction frame of (A2), the evolution equa-
tion of the joint density matrix ρEB is thus

ρ̇EB(t) = −iγ
[
Ẽ(t)⊗ R̃(t), ρEB(t)

]
. (A4)

We can write this as an integral equation,

ρEB(t) = ρEB(0)− iγ
∫ t

0

[
Ẽ(s)⊗ R̃(s), ρEB(s)

]
ds,

and reinjecting this into (A4), we obtain

ρ̇EB(t) = −iγ
[
Ẽ(t)⊗ R̃(t), ρEB(0)

]
(A5)

− γ2

∫ t

0

[
Ẽ(t)⊗ R̃(t),

[
Ẽ(s)⊗ R̃(s), ρEB(s)

]]
ds.

Up until here, no approximations have been made,
so (A5) is exact. At this point we follow the standard
procedure of the Born-Markov approximation [4, 7, 14],
assuming the bath to be very large and unaffected by
the weak coupling with the E system, so it remains in a
steady state ρ̄B that is invariant under HB ([HB , ρ̄B ] =
0). Without loss of generality we can take Tr(R ρ̄B) = 0,
since otherwise this would just lead to a modification
of the bare E-Hamiltonian. Lastly, we assume the cor-
relation time of the bath to be the shortest timescale
present in the joint system. Taking the partial trace of
both sides in (A5) and performing these approximations
yields a Markovian equation for E:

ρ̇E(t)

γ2
=∫ ∞

0

Tr
([[

Ẽ(t 9 s)⊗ R̃(t 9 s), ρE(t)⊗ ρ̄B
]
, Ẽ(t)⊗ R̃(t)

])
ds

The right-hand side can be further worked out by defining
the two-point correlation function g(z) of the bath as

g(z) := Tr
(
R̃(t)R̃(t− z) ρ̄B

)
, z, t ∈ R,

yielding

ρ̇E(t)

γ2
=

∫ ∞
−∞

g(z)
([
Ẽ(t− z)ρE(t), Ẽ(t)

]
+
[
Ẽ(t), ρE(t)Ẽ(t+ z)

])
dz. (A6)

Plugging in the expression of Ẽ(t) as in (A3), terms oscil-

lating at frequencies ±2Ω̃E ,±2Λ, 2Ω̃E ± 2Λ,−2Ω̃E ± 2Λ
appear. Regarding oscillations as a function of z, we de-
fine the spectral density of the bath G as

G(ν) :=

∫ ∞
−∞

eiνzg(z) dz,∀ν ∈ R . (A7)

There remains to treat the terms oscillating as a function
of t. The bare TLS frequency Ω̃E can always be assumed
very large w.r.t. ρ̇E in (A6), justifying to average over

terms oscillating at frequencies ±Ω̃E . The case of ultra-
strong driving precisely assumes that we can similarly
average over frequencies ±Λ and, avoiding parametric
resonance, over the frequencies 2Ω̃E±2Λ and −2Ω̃E±2Λ.
Therefore, the final Lindbladian model is just obtained
by performing a last secular approximation (i.e. RWA)
as mentioned in the first paragraph, yielding:

ρ̇E(t) = καxDσαx + κα−Dσα− + κα+Dσα+
, (A8)
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where

καx :=
γ2

2

(
G(Ω̃E) +G(9Ω̃E)

)
cos2(α), (A9a)

κα− :=
γ2

2
G(Ω̃E + Λ)(1 + sin(α))

2

+
γ2

2
G(9Ω̃E + Λ)(1 9 sin(α))

2
, (A9b)

κα+ :=
γ2

2
G(9Ω̃E 9 Λ)(1 + sin(α))

2

+
γ2

2
G(Ω̃E 9 Λ)(1 9 sin(α))

2
(A9c)

while α and the associated operators are defined in the
main text. The model (A8) is used in the analysis of
section III C 2. In the final secular approximation, this

model neglects 2nd-order RWA-terms of order
κ2
αx,α+,α−

Ω̃E

and of order
κ2
αx,α+,α−

Λ .

a. Interpretation

We can briefly comment on how to consider the dissi-
pation rates (A9) as a function of our QDD parameters.

• The effect of ω̄1

2 σz just adds up to Ω̄E , so for ω2 = 0
the bath noise spectrum G is probed at altered fre-
quencies ±(Ω̄E+ ω̄1) to evaluate the excitation and
loss rates. Knowing ΩE up to δΩE anyways, if
we want to use these equations we have to assume
ω̄1, δΩE � ΩE , and G sufficiently flat for the in-
duced frequency shift to have negligible effect on
the induced Lindbladian.

• The stronger drive of amplitude ω2 introduces the
periodic time-dependence in the TLS Hamiltonian
(8). According to the general Floquet-Markov the-
ory [15], the eigenbasis in which the TLS decoheres
is then given by the Floquet Hamiltonian associ-
ated to E, in a frame given by a periodic change
of variables (often called the micromotion), and
Lindbladian dissipation rates are found by eval-
uating the bath noise spectrum at the Floquet
quasi-energies. In our case, the periodic change
of variables just corresponds to going to the ro-
tating frame w.r.t. ω̄1

2 σz, where we obtain a con-

stant Hamiltonian Λ
2 σαx on E. This special situa-

tion implies that the Floquet decomposition trivial-
izes to the more standard rotating-frame and aver-
aging approach, but thus still with correspondingly
modified dissipation channels on E.

b. Deriving the other Lindblad model

We can briefly review the derivation using the first
possible condition mentioned in Section III C 2, namely

for obtaining a Lindblad model whose dissipators do not
depend on the drive when Λ� ΩE (strong, yet not ultra-
strong driving).

The steps up to (A7) remain the same. From there,
with Λ � ΩE , we can still perform a final secular ap-
proximation over frequencies ±Ω̃E as well as 2Ω̃E ± 2Λ
and −2Ω̃E ± 2Λ. However, averaging over ±Λ may not
be justified and another standard type of approximation
is applied to obtain a stationary Lindbladian. This con-
sists in assuming that the bath spectral density G is suf-
ficiently flat to be considered invariant w.r.t. frequency
shifts of ±Λ around ΩE � Λ.

Thus concretely, averaging (A6) over t with only the

frequencies ±2Ω̃E , yields∫ ∞
−∞
g(z)eiΩ̃Ez

(
[E−(t9z)ρE , E+(t)] + [E−(t)ρE , E+(t+z)]

)
+

∫ ∞
−∞
g(z)e−iΩ̃Ez

(
[E+(t9z)ρE , E−(t)] + [E+(t), ρEE−(t+z)]

)
.

We next shift the z dependency of E− and E+ towards

g(z) and assume G(Ω̃E ± Λ) ' G(Ω̃E) ' G(ΩE) when
integrating over z. Finally, moving back to the lab frame
by undoing (9), we then readily obtain (3) where the
drive has no impact on the Lindbladian dissipation.

As explained in the main text, the conclusions obtained
with these two approaches do coincide (at least at lead-
ing orders) when both conditions — averaging over ±Λ,
and assuming a locally flat noise spectrum G(.) — are
satisfied.

Appendix B: Adiabatic elimination method

1. Summary of the formalism

Consider dynamics with the following timescale sepa-
ration

ρ̇ = L0(ρ) + εL1(ρ). (B1)

Here, ρ is a density operator acting on a Hilbert space H,
L0 a stationary Lindbladian of order 1, and L1 an order-
one Lindbladian providing a perturbation, since ε� 1 is
a small positive constant. We use the term Lindbladian
in the broad sense, as we assume any Hamiltonian parts
of the dynamics to be included in L0 or L1. The start-
ing point is that the fast dynamics are degenerate, i.e.
the linear superoperator L0, acting on the set of linear
operators on H, has a nontrivial kernel M0 associated
to eigenvalue 0. Furthermore, this kernel is strongly at-
tractive, in other words all the non-zero eigenvalues of
L0 have a strictly negative real part (spectral gap).

The goal of adiabatic elimination, as described in [2],
is then to obtain a reduced model describing the pertur-
bation of this degenerate kernel under the full Lindblad
dynamics L0 + εL1, for ε small. This reduced model
involves an invariant space Mr — dubbed the slow or
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reduced subspace — of the same dimension as the kernel
M0 of L0, and on which the perturbation of 0-eigenvalues
now imply some slow dynamics associated to eigenvalues
of order ε of the superoperator.

Both the invariant space Mr and the associated slow
dynamics Ls can be determined as a power series in ε.
For this we parameterize the reduced model with a vari-
able ρs ∈Ms 'Mr undergoing the dynamics

ρ̇s(t) = Ls,ε(ρs(t)) =

∞∑
k=1

εkLs,k(ρs) ; (B2)

and we express how this variable is embedded in the full
system, thus mapping the parameterization spaceMs to
the actual invariant eigenspace Mr, via the linear map:

ρ(t) = Kε(ρs(t)) =

∞∑
k=0

εkKk(ρs(t)). (B3)

Ideally, we want Ls,ε to have the typical Lindblad struc-
ture of positivity-preserving dynamics, and Kε to be a
Kraus map, so density matrices in Ms are mapped to
density operators in the total space. General expressions
satisfying this structure have been obtained when trun-
cating the series after 2nd order; we hence keep following
the procedure of [2].

Demanding that the equations (B2),(B3) be solution
of (B1), the Ls,k and Kk can be progressively identified
by matching terms of equal order in ε. Explicitly, one
obtains

L0(K0(ρs)) = 0,

K0(Ls,1(ρs)) = L0(K1(ρs)) + L1(K0(ρs)),

K0(Ls,2(ρs)) +K1(Ls,1(ρs)) = L0(K2(ρs)) + L1(K1(ρs)),

...

Since these equations should hold for any ρs ∈ Ms, we
write (with a slight abuse of notation, since all operators
are linear):

L0K0 = 0,

K0Ls,1 = L0K1 + L1K0,

K0Ls,2 +K1Ls,1 = L0K2 + L1K1,

...

where a product of superoperators stands for their com-
position.

The solution is not unique since we have a choice in the
parameterization of Mr via Ms, but it has been proved
that solutions exist [2]. At each order, we can first solve
for Ls,k by projecting the corresponding equation with

R := lim
t→+∞

exp(L0 t)

onto the subspace corresponding to the zero eigenvalues
of L0, i.e. the subspace whose perturbation we want to

compute. Mathematically, this decouples the unknowns
thanks to RL0 = L0R = 0 and choosing R(K0) = K0.
This choice for K0 is natural since Ms is isomorphic to
M0. Then in a second step, one can project the equations
with 1−R to determine Kk.

The results recalled at the beginning of Section IV A
have been obtained by applying this procedure to L0 sta-
bilizing one subsystem of a composite quantum system
towards a unique steady state, and L1 expressing Hamil-
tonian coupling between this subsystem and another one.
The leading order adiabatic elimination results for this
case have been explicitly computed in [2]. The present
paper has encountered situations where the set of steady
states of L0 has a different structure. We then resort to
the general procedure outlined in this section. This ex-
plains how we have treated the elimination of Db in ap-
plications of Proposition B.3 and how we have addressed
Section IV C 3. A more detailed discussion of these two
cases is included in Sections B 3 and B 4 respectively.

2. Time-periodic extension

This section aims to develop an extension of the ap-
proach of adiabatic elimination in systems with strongly
dissipative degrees of freedom, to the case where the per-
turbation displays a periodic time-dependence with a fre-
quency comparable in magnitude to the fast dissipation
rate. We consider dynamics with a similar timescale sep-
aration as before:

ρ̇ = L0(ρ) + εL1(ρ, t), (B4)

where we have the same assumptions on L0 as before,
but now L1(t) is a periodic Lindbladian perturbation
of period 2π

ω . Furthermore, this perturbation should be
rapidly oscillating, i.e. ω � ‖εL1‖. Thanks to Floquet
theory, we can expectM0 to be perturbed into a slightly
altered attractive subspace which now moves periodically
in time, and on which also some slow dynamics is present.

We again parametrize the slow dynamics using a vari-
able ρs living in a space Ms isomorphic to M0, and
propose

ρ(t) = Kε(ρs(t), t), (B5a)

ρ̇s(t) = Ls,ε(ρs(t)). (B5b)

as a solution staying in the “slow” invariant subspace
of (B4). Here, Kε(·, t) is a 2π

ω -periodic map characteriz-
ing the embedding of the perturbed slow subspace in the
total space and Ls,ε :Ms →Ms is a stationary superop-
erator parametrizing the slow dynamics. Plugging (B5)
into (B4), we obtain an invariance equation:

∂Kε
∂t

(t) +Kε(t)Ls,ε = L0Kε(t) + εL1(t)Kε(t), (B6)

where the domain of all terms is Ms. We again expand
both the stationary superoperator Ls,ε and the periodic
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map Kε(t) in powers of ε.

Kε(t) = K0(t) + εK1(t) + ε2K2(t) + · · · , (B7)

Ls,ε = Ls,0 + εLs,1 + ε2Ls,2 + · · · , (B8)

Collecting (B6) into powers in ε yields the set of recursive
equations

∂K0

∂t
(t) +K0(t)Ls,0 = L0K0(t), and for k ≥ 1 :

(B9)

∂Kk
∂t

(t) +

k∑
j=0

Kj(t)Ls,k−j = L0Kk(t) + L1(t)Kk−1(t).

(B10)

We can choose Ls,0 = 0 and K0 time-independent and
injective such that RK0 = K0, since for ε = 0, the so-
lutions in the slow subspace are stationary. For k = 1
we then obtain the following equation, to be satisfied by
Ls,1 and K1:

∂K1

∂t
(t) +K0Ls,1 = L0K1(t) + L1(t)K0 . (B11)

We split this equation up into four parts, by projecting
either with R or 1−R on the one hand, and by consid-
ering the time-average (̄·) and ripple (̃·) of the equation
separately on the other hand. Since in this way it will be
clear which terms depend on time, we drop the t argu-
ment in what follows.

Applying R and the time-average to (B11), we obtain

K0Ls,1 = RL̄1K0 . (B12)

This equation determines Ls,1 uniquely, since K0 can be
inverted on its image. The application ofR to the pertur-
bation (its average part here) corresponds to the Zeno-
effect that is well-known for stationary systems.

Applying R to (B11) and taking the ripple of the re-
sulting equation, we get

RK̇1 = RL̃1K0, (B13)

of which a solution can be obtained via taking the zero-
average time primitive:

RK1 = R∂−1
t L̃1K0 +RḠ1. (B14)

Here Ḡ1 is an integration constant, playing the role of a
gauge choice. Equation (B14) is reminiscent of an aver-
aging procedure, where oscillating terms are transformed
away using a coordinate change ε-close to identity (here
thus K0 + εK1) and generated by the integral of the os-
cillating terms; see [16] for a canonical treatment of this
averaging procedure. This is not surprising, since within
the slow subspace, the effect of L0 reduces to zero, and we
retain a small oscillating perturbation, which is exactly
the setting where averaging procedures work well.

Applying 1−R to Eq. (B11) by 1−R and taking the
average of the resulting equation, we get

0 = L0(1−R)K̄1 + (1−R)L̄1K0, (B15)

which has the formal solution

(1−R)K̄1 = −L−1
0 (1−R)L̄1K0. (B16)

Since L0 has a spectral gap, its restriction to the im-
age of (1−R) can rigorously be inverted, because it has
no eigenvalue zero there. This pseudo-inverse of L0 is
equally present in stationary adiabatic elimination and
it expresses how the stationary part of the perturbation
perturbs the slow subspace up to first order.

Lastly, applying 1−R to (B11) and taking the ripple
of the resulting equation, we get

(1−R)K̇1 = L0(1−R)K̃1 + (1−R)L̃1K0. (B17)

To determine (1−R)K̃1 from this equation, we introduce
a decomposition into Fourier modes. We can write

(1−R)L̃1(t) =
∑

n∈Z,n6=0

eint(1−R)L̃1,n,

for some superoperators L̃1,n, since L̃1 has zero average.
Decomposing in the same way the tentative solution

(1−R)K̃1(t) =
∑

n∈Z,n6=0

eint(1−R)K1,n,

and plugging this into (B17), we see that for every n 6=
0, we are looking for the stationary superoperator (1 −
R)K1,n such that

(L0 − in)(1−R)K1,n = −(1−R)L̃1,nK0. (B18)

Here we can really see that, since the time-dependence
of L1 is as fast as the dissipation L0, the combined effect
of the two has to be inverted to obtain the oscillating
part of the correction to the slow subspace in the (1−R)
subspace. We thus need L0 − in to be invertible on the
image of 1 − R. Because L0 restricted to the image of
1 − R only has eigenvalues with strictly negative real
part, a shift in its spectrum by −in, n ∈ Z can never
move an eigenvalue to the origin, and hence L0 − in can
formally be inverted in the above equation. This can be
done for every fixed n separately, or if available a spectral
decomposition of L0 could allow to define all inverses at
once.

Equation (B10) for k ≥ 2 can be treated in an analo-
gous way, and the general higher-order solution goes as
follows:

K0Ls,k = RĀk, (B19a)

RKk = R∂−1
t

(
Ãk − B̃k

)
+RḠk, (B19b)

(1−R)K̄k = −L−1
0 (1−R)

(
Āk − B̄k

)
, (B19c)

(1−R)K̃k = −(L0 − ∂t)−1
(1−R)

(
Ãk − B̃k

)
, (B19d)
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with

Ak = L1Kk91,

Bk =

k−1∑
j=1

KjLs,k9j .

Here, RḠk is a general gauge choice that can be made
at every order. All inverses are well-defined for the
same reasons as before, and it is easy to check that the
above recursive relation provides a solution, by plugging
it into (B10).

In appendix C, we apply the method of this section to
the model (11) (resp. (23) under ultra-strong driving) and
we show that K0 +εK1 can be written as a Kraus map up
to O(ε2) terms, choosing Ḡ1 = 0, so RK̃1 = R∂−1

t L̃1K0,
and RK̄1 = 0. Furthermore, Ls,1 is a Hamiltonian on
the target T, and Ls,2 is the sum of a Hamiltonian and a
Lindbladian on T. Thus the proposed perturbative series
preserves the quantum structure of Lindbladian reduced
dynamics and CPTP mappings up to second order. In
fact, one can prove that this remains the case for a general
bipartite scenario.

Theorem 4. Consider the model (B4) where the Lind-
bladian L0 acts only on one subsystem (F) of a bipar-
tite quantum system, and exponentially stabilizes F to-
wards a unique steady state at a rate κ; and, L1(t) ex-
presses a 2π

ω -periodic Hamiltonian coupling between the
F-subsystem and the second one (S). Assume ε‖L1‖ � κ
and ε‖L1‖ � ω. When choosing Ḡ1 = 0 in (B14),
Ls,1 takes the form of a Hamiltonian, Ls,2 is the sum
of Hamiltonian and a Lindbladian term, and K0 + εK1

can be written as a CPTP-map up to terms of order ε2.

Proof. Since L0 only acts on F, it trivially corresponds to
a Lindbladian LF acting on F such that L0 = identity⊗
LF . The proof then consists of a straightforward adapta-
tion of Lemma 4 and 5 in appendix A of [1] to a general

pseudo-inverse (LF − in)
−1
, n ∈ Z instead of only LF−1

in the original work.

3. Proof of Proposition B.3, last item

In Section IV, we also go back to the general proce-
dure for adiabatic elimination, namely when eliminating
fast degrees of freedom which do not necessarily coin-
cide with a subsystem. A first point where this appears
is Proposition B.3, where we consider the possibility to
first eliminate part of E, namely the one corresponding
to strictly negative eigenvalues of Db, and reconsider the
system from there. Our claims in Proposition B.3 involve
nothing special and can only be further worked out on
examples, except for the claim in the last item. We next
provide its proof.

We consider the system obtained after first-order adia-
batic elimination ofDb, according to the procedure of Ap-
pendix B 1, as being the new target-environment model,

and we denote things as if this was the starting situa-
tion (e.g. writing ρ̄E for the unique steady state of the
environment after already having reduced it with Db).
Without loss of generality, we assume that the Ek have
been redefined such that Tr(Ek ρ̄) = 0, and also that each
Ek is Hermitian. We denote by DE the remaining Lind-
bladian dissipation on this reduced environment. The
proof ideas are similar to those for proving positivity of
X in the adiabatic elimination theory paper [2].

The goal is thus to investigate when the induced
dissipation matrix X in Section IV A might vanish.
Since X is nonnegative, we can focus on its diago-
nal. This means, we want each diagonal element xk :=

Tr
(
Ek(Qk +Q†k)

)
= 0. Here Qk is the solution of

DE(Qk) = −Ekρ̄E . Using the integral formula for
the inverse of a negative operator, we can write Qk =∫∞

0
exp[DEt](Ekρ̄E)dt and thus

xk = Tr

(
Ek

∫ ∞
0

exp[DEt](Ekρ̄E)dt

)
= Tr

(∫ ∞
0

exp[D∗Et](Ek)dt (Ekρ̄E)

)
= Tr(Mk (Ekρ̄E))

where D∗ denotes the dual superoperator of D, and Mk

must satisfy D∗E(Mk) = −Ek. Replacing Ek in this way
in the expression of xk and using that DE(ρ̄E) = 0, we
get after a few computations:

xk =
∑
j

Tr
(
[Mk, Dj ] ρ̄E [Mk, Dj ]

†) ,
with Dj the dissipation channel operators of DE .

Now, when ρ̄E has full rank, the only way to get xk = 0
is to have [Mk, Dj ] = 0 for all Dj . But this would imply
D∗E(Mk) = 0, contradicting how Mk must be computed.
When ρ̄E has reduced rank we apply the same argument
to the block-diagonal part corresponding to the support
of ρ̄E .

4. Adiabatic elimination computations for
Section IVC3:

There is a second point in Section IV where we go
back to the general formalism of Appendix B 1, because
we eliminate degrees of freedom which do not necessarily
coincide with a subsystem. Indeed, in Section IV C 3, we
consider how to treat a case where the environment E
is allowed to keep slow degrees of freedom. We provide
formulas showing how on the considered example, the
“g2/κ ” scaling breaks down for dispersive coupling, while
it appears to keep holding under resonant coupling. We
here give some details on the computations behind those
formulas, focusing on the case of resonant interaction.

The fast dynamics happens at timescale κz, while the
slow one involves κ−, κ+, g thus (κ−, κ+, g)/κz are all of
order ε in the notation of Appendix B 1.
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Following the general structure explained there, we pa-
rameterize the slow dynamics with ρs = (ρg, ρe) where
both are nonnegative operators and Tr(ρg + ρe) = 1. In-
deed, the linear superoperator

K0(ρs) = ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|

maps this reduced state onto the steady states of the fast
dynamics Dσz . Furthermore, the convergence under the
fast dynamics happens according to

R(ρ) = (〈g|ρ|g〉 , 〈e|ρ|e〉) .

Applying R to the equation associated to ε1 (see gen-
eral expression above), we get

κzεLg,1 = κ−〈g|Dσ−(ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|)|g〉
+ κ+〈g|Dσ+(ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|)|g〉,

κzεLe,1 = κ−〈e|Dσ−(ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|)|e〉,
+ κ+〈e|Dσ+

(ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|)|e〉,

while the Hamiltonian moves |g〉〈g| and |e〉〈e| onto |g〉〈e|
and |e〉〈g| which get canceled by R. Working out the
above yields the reported equation for κzεLs,1.

Next, we go back to the ε1 equation, without apply-
ing R, and parameterize K1(ρs) =

∑
j,k∈{g,e}Kj,k(ρs)⊗

|j〉〈k|. We observe that Ke,e ⊗ |e〉〈e| and Kg,g ⊗ |g〉〈g|
cancel under application of L0 = κzDz, and therefore
these are gauge degrees of freedom associated to non-
uniqueness of the parameterization; we can take them as
Ke,e = Kg,g = 0 for simplicity. The remaining equations
impose:

εKe,g(ρs) = −g i
2κz

(Txρg − ρeTx + iTyρg − iρeTy)

εKg,e(ρs) = −g i
2κz

(Txρe − ρgTx + iρgTy − iTyρe) .

This can be plugged into the equation associated to
ε2, to which again we apply R in order to obtain Ls,2.
In the term L1(K1) from the abstract expression, now
only the Hamiltonian contribution remains as it can map
terms of the form |g〉〈e|, |e〉〈g| in K1 towards terms in
|e〉〈e|, |g〉〈g| which are conserved by R. Simple algebraic
computations then yield the dynamics announced in the
main text.

Appendix C: Derivation of the reduced model of section III C

In this section, we apply the general formulas derived in Appendix B to derive the reduced model of Section III C.
We are dealing with the particular case of a bipartite system, so in the notation of app. B, H = HT ⊗HE . For both
the model of (11) and (23), the fast dynamics acts only on E, and quickly drives it to a unique steady state ρ̄E were
it not for the T-E coupling, which is considered the perturbation with g � ω̄1,Λ, κ±, κα±, καx. We will calculate ρ̄E
explicitly below for both cases, but it is clear that the unperturbed slow subspace M0 is given by the set of linear
operators

XT ⊗ ρ̄E ,

where XT acts on HT . Hence, in the notation of app. B, it is natural to choose Ms as the space of operators acting
on HT , and

K0(ρs) = ρs ⊗ ρ̄E .

In this way, Ls,1, Ls,2 are superoperators corresponding to the target Hilbert space HT alone, and the reduced model
obtained can truly be seen as describing the induced decoherence on the target system. How the target becomes
entangled with the environment will be described by the map K1 up to first order in g.

1. Case of strong driving

We recapitulate the full model here:

ρ̇ = −iΛ
2

[1T ⊗ σαx, ρ] + κ−D1T⊗σ−(ρ) + κ+D1T⊗σ+
(ρ)

− ig
[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρ

]
.

In the notation of appendix B 2, assuming g � ω̄1, κ− at least, we can thus define ε = g
ω̄1

,

L0 = −iΛ
2

[1T ⊗ σαx, ·] + κ−D1T⊗σ− + κ+D1T⊗σ+
, (C1)
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and

L1(t) = −iω̄1

[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ·

]
.

It is straightforward to verify that the fast dynamics L0 drives the environment to a unique steady state

ρ̄E =
1E + ξ∞σ+ + ξ∗∞σ− + z∞σz

2
, (C2)

with

ξ∞ = −2Λ cos(α)
κ∆

κΣ

2Λ sin(α) + iκΣ

κ2
Σ + 2Λ2

(
1 + sin2(α)

) , (C3)

z∞ = −κ∆

κΣ

4Λ2 sin2(α) + κ2
Σ

κ2
Σ + 2Λ2

(
1 + sin2(α)

) , (C4)

where we have defined

κΣ := κ− + κ+, (C5)

κ∆ := κ− − κ+. (C6)

Since we are interested in the regime of strong driving where ω2 � κΣ, we also compute the leading order in 1
ω2

of

all quantities in this section. For this, cos(α) should be put to 1 since α goes to zero with ω2 →∞ , and it should be
remembered that Λ sin(α) = ∆. Thus

ξ∞ = −κ∆

κΣ

(iκΣ + 2∆)

ω2
+O

(
1

ω2
2

)
, (C7)

z∞ = −κ∆

κΣ

(
κ2

Σ + 2∆2
)

ω2
2

+O
(

1

ω3
2

)
. (C8)

The steady state thus converges to the maximally mixed state in the limit of strong driving.
For the projector R we have

R(XTE) = TrE(XTE)⊗ ρ̄E , ∀XTE.

Equation (B12) yields the following expression for the first-order reduced dynamics:

εLs,1(ρs)⊗ ρ̄E = εR(L1(ρs ⊗ ρ̄E))

= −igTrE([Tz ⊗ σz, ρs ⊗ ρ̄E ])⊗ ρ̄E
= −igz∞[Tz, ρs]⊗ ρ̄E ,

readily yielding

εLs,1(ρs) = −igz∞[Tz, ρs]. (C9)

Equation (B14) in turn yields

εRK1(ρs) = εR∂−1
t L̃1K0(ρs)

= − g

ω̄1
TrE(

[
eiω̄1tT− ⊗ σ+ − e−iω̄1tT+ ⊗ σ−, ρs ⊗ ρ̄E

]
)⊗ ρ̄E

= − ig

2ω̄1

[
iξ∗∞e

iω̄1tT− − iξ∞e−iω̄1tT+, ρs
]
⊗ ρ̄E , (C10)

where we have put the integration constant to zero as a gauge choice. Equation (B16) yields a second part of K1:

εL0(1−R)K̄1(ρs) = −ε(1−R)L̄1K0(ρs)

= ig[Tz ⊗ σz, ρs ⊗ ρ̄E ]

− igTrE([Tz ⊗ σz, ρs ⊗ ρ̄E ])⊗ ρ̄E
= ig(Tzρs ⊗ σ̄z ρ̄E − ρsTz ⊗ ρ̄E σ̄z), (C11)
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with σ̄z = σz −Tr(σz ρ̄E)1E = σz − z∞1E . Note that taking the partial trace over E of the right-hand side gives zero,
since Tr(σ̄z ρ̄E) = 0. Hence L0 can be inverted to obtain, formally,

ε(1−R)K̄1(ρs) = ig
(
Tzρs ⊗ L−1

0 (σ̄z ρ̄E)− ρsTz ⊗ L−1
0 (ρ̄E σ̄z)

)
. (C12)

To carry out the inversion we use matrix representations in the Pauli basis. In the standard Pauli basis (σx, σy, σz),
we obtain the following matrix representation for L0:

[L0] =

 −κΣ

2 −Λ sin(α) 0
Λ sin(α) −κΣ

2 −Λ cos(α)
0 Λ cos(α) −κΣ

, (C13)

with det[L0] = −κΣ

4

(
κ2

Σ + 2Λ2(1 + sin2(α))
)
. For its inverse

[
L−1

0

]
we hence obtain

1

det[L0]


κ2

Σ

2 + Λ2 cos2 (α) −κΣΛ sin (α) Λ2 sin (2α)
2

κΣΛ sin (α)
κ2

Σ

2 −κΣΛ cos (α)
2

Λ2 sin (2α)
2

κΣΛ cos (α)
2

κ2
Σ

4 + Λ2 sin2 (α)

.
In turn, σ̄z ρ̄E takes the following vector representation in the Pauli basis:

[σ̄z ρ̄E ] =
1

2

−iy∞ − x∞z∞ix∞ − y∞z∞
1− z2

∞

. (C14)

Straightforward but tedious calculations then give

[
L−1

0 (σ̄z ρ̄E)
]

=
1

8 det[LE ]

−4κΣω2 (ix∞ − y∞z∞) sin (α)− 2ω2
2

(
z2
∞ − 1

)
sin (2α)− 2

(
κ2

Σ + 2ω2
2 cos2 (α)

)
(x∞z∞ + iy∞)

2κΣ

(
κΣ (ix∞ − y∞z∞) + ω2

(
z2
∞ − 1

)
cos (α)− 2ω2 (x∞z∞ + iy∞) sin (α)

)
2κΣω2 (ix∞ − y∞z∞) cos (α)− 2ω2

2 (x∞z∞ + iy∞) sin (2α) +
(
1− z2

∞
) (
κ2

Σ + 4ω2
2 sin2 (α)

)
.

(C15)
Focussing on the leading-order in 1

ω2
yields the following:

[
L−1

0 (σ̄z ρ̄E)
]

=


−∆+iκ∆

κΣω2
1

2ω2

∆(−∆+iκ∆)−κΣ(2iκ∆+κΣ)
4

κΣω2
2

, (C16)

and further

ε(1−R)K̄1(ρs) =
g

Λ
(iTz ⊗ M̄z)(ρs ⊗ ρ̄E) +

g

Λ
(ρs ⊗ ρ̄E)

(
iTz ⊗ M̄z

)†
,

with

[
M̄z

]
=


− 2∆
κΣ

1
−4∆2+4κ2

∆−κ
2
Σ

2κΣω2
κ∆(2∆−κΣ)

κΣω2

+ i


2κ∆

κΣ

0
4∆κ∆

κΣω2

− 2κ2
∆

κΣω2

. (C17)

For the last part of K1, consider (B17):

ε(L0 − ∂t)(1−R)K̃1(ρs) = ig(1−R)
([
eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρs ⊗ ρ̄E

])
. (C18)

Introducing

σ̄+ := σ+ − Tr(σ+ρ̄E)1E = σ+ −
ξ∗∞
2

1E ,

σ̄− := σ− − Tr(σ−ρ̄E)1E = σ− −
ξ∞
2

1E ,
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we can write the right-hand side of (C18) as

ig
[
eiω̄1tT− ⊗ σ̄+ + e−iω̄1tT+ ⊗ σ̄−, ρs ⊗ ρ̄E

]
= igeiω̄1tT−ρs ⊗ σ̄+ρ̄E + ige−iω̄1tT+ρs ⊗ σ̄−ρ̄E + h.c.

At this point we can split (1−R)K̃1 up into two parts:

ε(1−R)K̃1(ρs) = igeiω̄1t(L0 − iω̄1)
−1

(T−ρs ⊗ σ̄+ρ̄E) + ige−iω̄1t(L0 + iω̄1)
−1

(T+ρs ⊗ σ̄−ρ̄E) + h.c.

= igeiω̄1tT−ρs ⊗ (L0 − iω̄1)
−1

(σ̄+ρ̄E) + ige−iω̄1tT+ρs ⊗ (L0 + iω̄1)
−1

(σ̄−ρ̄E) + h.c. (C19)

We obtain the following matrix representations:

[σ̄+ρ̄E ] =
1

8

 −2z∞ − (ξ∞ + ξ∗∞) ξ∗∞ + 2
i (−2z∞ − 1 (ξ∞ − ξ∗∞) ξ∗∞ + 2)

(2− 2z∞) ξ∗∞

,
and

det[L0 ∓ iω̄1]
[
(L0 ∓ iω̄1)

−1
]

=

1

2

κ2
Σ + 3iκΣω̄1 + 2ω2

2 cos2 (α)− 2ω̄2
1 −2ω2 (κΣ + iω̄1) sin (α) ω2

2 sin (2α)
2ω2 (κΣ + iω̄1) sin (α) κ2

Σ + 3iκΣω̄1 − 2ω̄2
1 −ω2 (κΣ + 2iω̄1) cos (α)

ω2
2 sin (2α) ω2 (κΣ + 2iω̄1) cos (α)

κ2
Σ

2 + 2iκΣω̄1 + 2ω2
2 sin2 (α)− 2ω̄2

1

,
with

det[L0 ∓ iω̄1] = −κ
3
Σ

4
+
κΣω

2
2 cos2 (α)

2
− κΣω

2
2 + 2κΣω̄

2
1 ± i

(
5κ2

Σω̄1

4
− ω2

2ω̄1 + ω̄3
1

)
. (C20)

Tedious calculations then show that

(L0 − iω̄1)
−1

(σ̄+ρ̄E) =
1

κΣ + iω̄1
M̄+ρ̄E , (C21a)

(L0 + iω̄1)
−1

(σ̄−ρ̄E) =
1

κΣ − iω̄1
M̄−ρ̄E , (C21b)

with M̄± operators such that Tr
(
M̄±ρ̄E

)
= 0, and that, up to leading-order in 1

ω2
take the form

[
M̄+

]
=

1

2


−1 +O

(
1
ω2

)
− (κΣ+2iω̄1)(4∆2κ∆+κΣ(2∆κ∆+2i∆κΣ−2∆ω̄1+2κ∆κΣ+2iκ∆ω̄1−κ2

Σ−3iκΣω̄1+2ω̄2
1))

2κΣω2
2(iκΣ−2ω̄1)

+O
(

1
ω3

2

)
−∆+iκ∆−

iκΣ
2 +ω̄1

ω2
+O

(
1
ω2

2

)
κ∆

ω2
+O

(
1
ω2

2

)

, (C22)

[
M̄−

]
=

1

2


−1 +O

(
1
ω2

)
− (κΣ−2iω̄1)(4∆2κ∆+κΣ(2∆κ∆+2i∆κΣ+2∆ω̄1+2κ∆κΣ−2iκ∆ω̄1+κ2

Σ−3iκΣω̄1−2ω̄2
1))

2κΣω2
2(iκΣ+2ω̄1)

+O
(

1
ω3

2

)
−∆+iκ∆+

iκΣ
2 +ω̄1

ω2
+O

(
1
ω2

2

)
κ∆

ω2
+O

(
1
ω2

2

)

. (C23)

Hence we can write

M̄+ = M̄− = −σx
2

+O
(

1

ω2

)
. (C24)

Putting all this together, we can write

ε(1−R)K̃1(ρs) =

(
ig

κΣ + iω̄1
eiω̄1tT− ⊗ M̄+

)
(ρs ⊗ ρ̄E) + (ρs ⊗ ρ̄E)

(
ig

κΣ + iω̄1
eiω̄1tT− ⊗ M̄+

)†
+

(
ig

κΣ − iω̄1
e−iω̄1tT+ ⊗ M̄−

)
(ρs ⊗ ρ̄E) + (ρs ⊗ ρ̄E)

(
ig

κΣ − iω̄1
e−iω̄1tT+ ⊗ M̄−

)†
.
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For the second-order reduced dynamics, (B19) for k = 2 gives

K0Ls,2(ρs) = Ls,2(ρs)⊗ ρ̄E (C25)

=RL1K1(ρs) = TrE(L1K1(ρs))⊗ ρ̄E , (C26)

so

Ls,2(ρs) = TrE(L̄1(1−R)K̄1(ρs)) + TrE

(
L̃1RK̃1(ρs)

)
+ TrE

(
L̃1(1−R)K̃1(ρs)

)
. (C27)

It is straightforward to verify that

TrE(L̄1(1−R)K̄1(ρs)) =
ω̄2

1

ω2
Tr
(
σzM̄z ρ̄E

)(
T 2
z ρs − TzρsTz

)
+
ω̄2

1

ω2
Tr
(
σz ρ̄EM̄

†
z

)(
ρsT

2
z − TzρsTz

)
, (C28)

and using

Tr
(
σzM̄z ρ̄E

)
= −4∆2 + κ2

Σ

2κΣω2
+ i

κ∆ (2∆− κΣ)

κΣω2
,

we obtain that

TrE(L̄1(1−R)K̄1(ρs)) = ω̄2
1

(
4∆2 + κ2

Σ

)
κΣω2

2

DTz (ρs)− iω̄2
1

κ∆ (−2∆ + κΣ)

κΣω2
2

[
T 2
z , ρs

]
. (C29)

For the second term in equation (C27) we obtain

TrE

(
L̃1RK̃1(ρs)

)
= i

ξ∞
2
ω̄1 Tr(σ+ρ̄E)[T−, [T+, ρs]]− i

ξ∗∞
2
ω̄1 Tr(σ−ρ̄E)[T+, [T−, ρs]], (C30)

and using Tr(σ+ρ̄E) =
ξ∗∞
2 we obtain that

TrE

(
L̃1RK̃1(ρs)

)
= −i ξ

∗
∞ξ∞

4
ω̄1[[T+, T−], ρs]. (C31)

For the third term in equation (C27) we obtain

TrE

(
L̃1(1−R)K̃1(ρs)

)
= a+(T−T+ρs − T+ρsT−)− a∗−(T−ρsT+ − ρsT+T−) (C32)

+ a−(T+T−ρs − T−ρsT+)− a∗+(T+ρsT− − ρsT−T+), (C33)

with

a+ =
Tr
(
σ+M̄−ρ̄E

)
κΣ − iω̄1

ω̄2
1 , (C34)

a− =
Tr
(
σ−M̄+ρ̄E

)
κΣ + iω̄1

ω̄2
1 . (C35)

Retaining the leading-order terms in 1
ω2

for a+ and a−, we readily obtain

TrE

(
L̃1(1−R)K̃1(ρs)

)
=

κΣω̄
2
1

κ2
Σ + 4ω̄2

1

(
DT− +DT−

)
+ i

ω̄3
1

κ2
Σ + 4ω̄2

1

[[T+, T−], ρs]. (C36)

Putting all of the calculations of this section together, we obtain the following second-order reduced model. For
the slow dynamics we obtain an explicit Lindbladian model

Ls,g(ρs) = −i
[
ωs,z,1Tz + ωs,z,2T

2
z + ωs,c[T+, T−] + ωs,a(T+T− + T−T+), ρs

]
+ κs,zDTz (ρs) + κs,±

(
DT− +DT+

)
+O

(
gε2
)
, (C37)



26

with, up to leading order in 1
ω2

,

ωs,z,1 = −
κ∆g

(
4∆2 + κ2

Σ

)
2κΣω2

2

, (C38)

ωs,z,2 =
κ∆g

2 (−2∆ + κΣ)

2κΣω2
2

, (C39)

ωs,c =
g2ω̄1

κ2
Σ + 4ω̄2

1

, (C40)

κs,z =
g2
(
4∆2 + κ2

Σ

)
κΣω2

2

, (C41)

κs,± =
κΣg

2

κ2
Σ + 4ω̄2

1

. (C42)

For the embedding of the slow subspace we obtain a completely positive map up to second order terms:

Ks,g(ρs) = Kg(ρs ⊗ ρ̄E)K†g +O(ε2), (C43)

with, up to leading-order in 1
ω2

for every term,

Kg := 1− iκ∆

κΣ

g

ω2
Hs ⊗ 1E + i

g

ω2
Tz ⊗ σy − i

2g∆

κΣω2
Tz ⊗ σx − i

g√
κ2

Σ + 4ω̄2
1

Hs,± ⊗ σx − 2
κ∆

κΣ

g

ω2
Tz ⊗ σx, (C44)

and we have defined

Hs = −κΣ + 2i∆

2ω̄1
eiω̄1tT− −

κΣ − 2i∆

2ω̄1
e−iω̄1tT+, (C45)

Hs,± =
(κΣ − 2iω̄1)eiω̄1tT− + (κΣ + 2iω̄1)e−iω̄1tT+√

κ2
Σ + 4ω̄2

1

. (C46)

We here reported the leading-order of all different terms in 1
ω2

, hence approximating the exact expression of K1

as defined in (C10), (C12) and (C19) in the limit of large ω2. When using the exact expressions, it is straight-
forward to show that Tr(K1(ρs)) = 0, since (C10), (C15) and (C21), are traceless expressions. We then obtain
that TrE(Ks,g(ρs)) = Tr(K0(ρs)) + εTr(K1(ρs)) + O(ε2) = Tr(ρs) + O(ε2), and thus up to order ε2, Ks,g is also
trace-preserving, and hence CPTP.

Discussion of Hamiltonian terms

The exact first-order slow dynamics Ls,1 is given by the Hamiltonian ωs,z,1Tz, with

ωs,z,1 = −κ− − κ+

κ− + κ+

4∆2 + (κ− + κ+)
2

4∆2 + (κ− + κ+)
2

+ 2ω2
2

.

Regarding the system parameters, we can see that this contribution is largest for a TLS coupled to a cold bath,
and disappears in the limit of a hot bath, where κ− = κ+. Since the imperfect detuning ∆ appears, we cannot
expect to have exact knowledge of ωs,z,1. However, if ∆ can be assumed constant, then the term can be calibrated
experimentally and corrected for. Remark that such a Lamb-shift type Hamiltonian is present in the absence of
driving as well, and only the frequency is altered through the driving. Regarding the QDD control, the term goes like
∼ 1

ω2
2

for large ω2, and hence it is suppressed for strong driving, although this was not explicitly part of our goal.

For the first Hamiltonian term at second order, we obtain

ωs,z,2 = − 16∆κ∆ω
2
2g

2

κΣ (4∆2 + κ2
Σ + 2ω2

2)
2 .

We obtain the same conclusion as for ωs,z,1, namely ωs,z,2 is minimal for a hot bath, and decreases like 1
ω2

2
under the

QDD controls. The full expressions for the remaining two Hamiltonian terms are more involved. Directly focussing



27

in the regime for large ω2, we obtain a Hamiltonian ωs,c[T+, T−] with

ωs,c = − ω̄1

κ2
Σ + 4ω̄2

1

+O
(

1

ω2
2

)
, (C47)

as above, but also an additional Hamiltonian ωs,a(T+T− + T−T+), with

ωs,a = −
κ∆ω̄1

(
4∆ω̄1 + κ2

Σ

)
2κΣω2

2 (κ2
Σ + 4ω̄2

1)
+O

(
1

ω4
2

)
. (C48)

We can again see that the QDD controls suppress these Hamiltonian contributions asymptotically for large ω̄1 and
ω2.

2. Case of ultra-strong driving

We recapitulate the full model here, the dissipation model being given in (A8):

ρ̇ = −iΛ
2

[1T ⊗ σαx, ρ] + καxD1T⊗σαx(ρ) + κα−D1T⊗σα−(ρ) + κα+D1T⊗σα+
(ρ)

− ig
[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρ

]
.

In the notation of appendix B 2, we can similarly write ε = g
ω̄1

,

L0 = −iΛ
2

[1T ⊗ σαx, ·] + καxD1T⊗σαx + κα−D1T⊗σα− + κα+D1T⊗σα+ , (C49)

and we still have

L1(t) = −iω̄1

[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ·

]
.

It is straightforward to verify that the fast dynamics L0 drives the environment to a unique steady state

ρ̄E =
1E + xα,∞σαx

2
, (C50)

with

xα,∞ =
κα+
− κα−

κα+
+ κα−

. (C51)

For the following it is instructive to define

καΣ := κ− + κ+, (C52)

κα∆
:= κ− − κ+, (C53)

so xα,∞ = −κα∆

καΣ
. Remark that the steady-state is independent of the driving amplitude Λ.

For the projector R we have

R(XTE) = TrE(XTE)⊗ ρ̄E , ∀XTE.

Equation (B12) yields the following expression for the first-order reduced dynamics:

εLs,1(ρs)⊗ ρ̄E = εR(L1(ρs ⊗ ρ̄E))

= −igTrE([Tz ⊗ σz, ρs ⊗ ρ̄E ])⊗ ρ̄E
= −igxα,∞ sin(α)[Tz, ρs]⊗ ρ̄E ,

readily yielding

εLs,1(ρs) = −igxα,∞ sin(α)[Tz, ρs]. (C54)
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Equation (B14) in turn yields

εRK1(ρs) = εR∂−1
t L̃1K0(ρs)

= − g

ω̄1
TrE(

[
eiω̄1tT− ⊗ σ+ − e−iω̄1tT+ ⊗ σ−, ρs ⊗ ρ̄E

]
)⊗ ρ̄E

= −ixα,∞ cos(α)
g

2ω̄1

[
ieiω̄1tT− − ie−iω̄1tT+, ρs

]
⊗ ρ̄E , (C55)

where we have put the integration constant to zero as a gauge choice. Equation (B16) yields a second part of K1:

εL0(1−R)K̄1(ρs) = −ε(1−R)L̄1K0(ρs)

= ig[Tz ⊗ σz, ρs ⊗ ρ̄E ]− igTrE([Tz ⊗ σz, ρs ⊗ ρ̄E ])⊗ ρ̄E
= ig(Tzρs ⊗ σ̄z ρ̄E − ρsTz ⊗ ρ̄E σ̄z), (C56)

with σ̄z = σz − Tr(σz ρ̄E)1E = σz − xα,∞ sin (α)1E . Remark that taking the partial trace over E of the right-hand
side gives zero, since Tr(σ̄z ρ̄E) = 0. Hence L0 can be inverted to obtain, formally,

ε(1−R)K̄1(ρs) = ig
(
Tzρs ⊗ L−1

0 (σ̄z ρ̄E)− ρsTz ⊗ L−1
0 (ρ̄E σ̄z)

)
.

For this inversion we again use matrix representations in the Pauli basis.
In a rotated Pauli basis (cos(α)σz − sin(α)σx, σy, σαx), we obtain the following matrix representation for L0:

[L0] =

−καΣ

2 − 2καx −Λ 0
Λ −καΣ

2 − 2καx 0
0 0 −καΣ

, (C57)

with

det[L0] = −
καΣ

(
4Λ2 + κ2

αΣ
+ 8καΣ

καx + 16κ2
αx

)
4

. (C58)

For its inverse we obtain

[
L−1

0

]
=

1

det[L0]


καΣ(καΣ

+4καx)
2 −ΛκαΣ

0

ΛκαΣ

καΣ(καΣ
+4καx)

2 0

0 0 Λ2 +
κ2
αΣ

4 + 2καΣ
καx + 4κ2

αx

.
In turn, σ̄z ρ̄E takes the following vector representation in the Pauli basis:

[σ̄z ρ̄E ] =


− iκα∆

cos (α)

2καΣ
cos (α)

2
(−κ2

α∆
+κ2

αΣ
) sin (α)

2κ2
αΣ

0

. (C59)

Straightforward calculations then give

[
L−1

0 (σ̄z ρ̄E)
]

=


(2ΛκαΣ

+iκα∆(καΣ
+4καx)) cos (α)

καΣ(4Λ2+κ2
αΣ

+8καΣ
καx+16κ2

αx)
(2iΛκα∆

−καΣ(καΣ
+4καx)) cos (α)

καΣ(4Λ2+κ2
αΣ

+8καΣ
καx+16κ2

αx)
(κα∆

−καΣ)(κα∆
+καΣ) sin (α)

2κ3
αΣ

. (C60)

Focussing on the leading-order in 1
ω2

yields the following:

[
L−1

0 (σ̄z ρ̄E)
]

=
1

2ω2


1

iκα∆

καΣ

∆(κ2
α∆
−κ2

αΣ
)

κ3
αΣ

+O
(

1

ω2
2

)
, (C61)
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and further

ε(1−R)K̄1(ρs) = i
g

ω2

[
Tz ⊗ M̄z, ρs ⊗ ρ̄E

]
,

with

[
M̄z

]
=


1
0

− ∆
καΣ

−∆κα∆

κ2
αΣ

+O
(

1

ω2

)
. (C62)

For the last part of K1, consider (B17):

ε(L0 − ∂t)(1−R)K̃1(ρs) = ig(1−R)
([
eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρs ⊗ ρ̄E

])
. (C63)

Introducing

σ̄+ := σ+ − Tr(σ+ρ̄E)1E = σ+ +
κα∆

cos (α)

2καΣ

1E ,

σ̄− := σ− − Tr(σ−ρ̄E)1E = σ− +
κα∆ cos (α)

2καΣ

1E ,

we can write the right-hand side of (C63) as

ig
[
eiω̄1tT− ⊗ σ̄+ + e−iω̄1tT+ ⊗ σ̄−, ρs ⊗ ρ̄E

]
= igeiω̄1tT−ρs ⊗ σ̄+ρ̄E + ige−iω̄1tT+ρs ⊗ σ̄−ρ̄E + h.c.

At this point we can split (1−R)K̃1 up into two parts:

ε(1−R)K̃1(ρs) = igeiω̄1t(L0 − iω̄1)
−1

(T−ρs ⊗ σ̄+ρ̄E) + ige−iω̄1t(L0 + iω̄1)
−1

(T+ρs ⊗ σ̄−ρ̄E) + h.c.

= igeiω̄1tT−ρs ⊗ (L0 − iω̄1)
−1

(σ̄+ρ̄E) + ige−iω̄1tT+ρs ⊗ (L0 + iω̄1)
−1

(σ̄−ρ̄E) + h.c.

We obtain the following matrix representations:

[σ̄+ρ̄E ] =


i(κα∆

sin (α)+καΣ)
4καΣ

−κα∆
+καΣ

sin (α)

4καΣ

(−κ2
α∆

+κ2
αΣ

) cos (α)

4κ2
αΣ

,

[σ̄−ρ̄E ] =


i(κα∆

sin (α)−καΣ)
4καΣ

κα∆
−καΣ

sin (α)

4καΣ

(−κ2
α∆

+κ2
αΣ

) cos (α)

4κ2
αΣ

,
and

[
(L0 ∓ iω̄1)

−1
]

=


−2καΣ

−8καx∓4iω̄1

4Λ2+κ2
αΣ

+8καΣ
καx±4iκαΣ

ω̄1+16κ2
αx±16iκαxω̄1−4ω̄2

1

4Λ
4Λ2+κ2

αΣ
+8καΣ

καx±4iκαΣ
ω̄1+16κ2

αx±16iκαxω̄1−4ω̄2
1

0

− 4Λ
4Λ2+κ2

αΣ
+8καΣ

καx±4iκαΣ
ω̄1+16κ2

αx±16iκαxω̄1−4ω̄2
1

−2καΣ
−8καx∓4iω̄1

4Λ2+κ2
αΣ

+8καΣ
καx±4iκαΣ

ω̄1+16κ2
αx±16iκαxω̄1−4ω̄2

1
0

0 0 1
−καΣ

∓iω̄1

.
Again focussing on the leading-order in 1

ω2
, putting cos(α) to 1, and using Λ sin(α) = ∆, we obtain

(L0 − iω̄1)
−1

(σ̄+ρ̄E) = −
(

1

2ω2
B† +

cos(α)

2(καΣ + iω̄1)

(
κα∆

καΣ

1E + σαx

))
ρ̄E , (C64)

(L0 + iω̄1)
−1

(σ̄−ρ̄E) = −
(

1

2ω2
B +

cos(α)

2(καΣ
− iω̄1)

(
κα∆

καΣ

1E + σαx

))
ρ̄E , (C65)
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with

[B] =


∆−

iκαΣ
2 −2iκαx−ω̄1

ω2
+O

(
1
ω2

2

)
−i+O

(
1
ω2

)
0
0

. (C66)

Putting all this together, we can write

ε(1−R)K̃1(ρs) =− i g
2Λ

[
eiω̄1tT− ⊗B† + e−iω̄1tT+ ⊗B, ρs ⊗ ρ̄E

]
− i g cos(α)

2
√
κ2

Σ + ω̄2
1

[(
κΣ − iω̄1√
κ2

Σ + ω̄2
1

eiω̄1tT− +
κΣ + iω̄1√
κ2

Σ + ω̄2
1

e−iω̄1tT+

)
⊗
(
κα∆

καΣ

1E + σαx

)
, ρs ⊗ ρ̄E

]
.

For the second-order reduced dynamics, (B19) for k = 2 gives

K0Ls,2(ρs) = Ls,2(ρs)⊗ ρ̄E = RL1K1(ρs) = TrE(L1K1(ρs))⊗ ρ̄E (C67)

so

Ls,2(ρs) = TrE(L̄1(1−R)K̄1(ρs)) + TrE

(
L̃1RK̃1(ρs)

)
+ TrE

(
L̃1(1−R)K̃1(ρs)

)
. (C68)

It is straightforward to verify that

TrE(L̄1(1−R)K̄1(ρs)) =
ω̄2

1

ω2
Tr
(
σzM̄z ρ̄E

)(
T 2
z ρs − TzρsTz

)
+
ω̄2

1

ω2
Tr
(
σz ρ̄EM̄z

)(
ρsT

2
z − TzρsTz

)
, (C69)

and using

Tr
(
σzM̄z ρ̄E

)
=
iκα∆

καΣ

+

∆2

(
κ2
α∆

κ2
αΣ

− 1

)
καΣ

ω2
− καΣ

2ω2
− 2καx

ω2
+O

(
1

ω2
2

)
,

we obtain that

TrE(L̄1(1−R)K̄1(ρs)) =

2

∆2

(
1− κ2

α∆

κ2
αΣ

)
καΣ

+ καΣ
+ 4καx

 ω̄2
1

ω2
2

DTz (ρs)− i
κα∆ ω̄

2
1

καΣ
ω2

[
T 2
z , ρs

]
+O

(
1

ω3
2

)
. (C70)

For the second term in equation (C68) we obtain

TrE

(
L̃1RK̃1(ρs)

)
= −i cos(α)

κα∆

2καΣ

ω̄1 Tr(σ+ρ̄E)[T−, [T+, ρs]] + i cos(α)
κα∆

2καΣ

ω̄1 Tr(σ−ρ̄E)[T+, [T−, ρs]], (C71)

and using Tr(σ+ρ̄E) = Tr(σ−ρ̄E) = −κα∆
cos (α)

2καΣ
we obtain that

TrE

(
L̃1RK̃1(ρs)

)
= −i

(
κα∆

καΣ

)2
cos2(α)

4
ω̄1[[T+, T−], ρs]. (C72)

For the third term in equation (C68) we obtain

TrE

(
L̃1(1−R)K̃1(ρs)

)
=
ω̄2

1

2Λ

(
c+(T+ρsT− − T−T+ρs) + c∗−(T−ρsT+ − ρsT+T−)

)
(C73)

+
ω̄2

1

2Λ

(
c−(T−ρsT+ − T+T−ρs) + c∗+(T+ρsT− − ρsT−T+)

)
(C74)

+
d ω̄2

1

κ2
Σ + ω̄2

1

(κΣ + iω̄1)(T−ρsT+ − T−T+ρs + T+ρsT− − ρsT+T−) (C75)

+
d ω̄2

1

κ2
Σ + ω̄2

1

(κΣ − iω̄1)(T+ρsT− − T+T−ρs + T−ρsT+ − ρsT−T+), (C76)
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with

c+ = Tr(σ+Bρ̄E), (C77)

c− = Tr
(
σ−B

†ρ̄E
)
, (C78)

d = Tr(σ+(1E + σαx)ρ̄E) = Tr(σ−(1E + σαx)ρ̄E) =
1

2

(
1−

κ2
α∆

κ2
αΣ

)
cos2(α). (C79)

Using

c+ = − iκα∆

2καΣ

+
4i∆ + καΣ + 4καx − 2iω̄1

4ω2
+O

(
1

ω2
2

)
, (C80)

c− = − iκα∆

2καΣ

+
−4i∆ + καΣ

+ 4καx + 2iω̄1

4ω2
+O

(
1

ω2
2

)
, (C81)

we readily obtain

TrE

(
L̃1(1−R)K̃1(ρs)

)
=

(
καΣ

d ω̄2
1

κ2
αΣ

+ ω̄2
1

+
καΣ

+ 4καx
4ω2

2

ω̄2
1 +O

(
1

ω3
2

))(
DT−(ρs) +DT+(ρs)

)
(C82)

+ i

(
ω̄3

1 d

2
(
κ2
αΣ

+ ω̄2
1

) +O
(

1

ω2
2

))
[[T+, T−], ρs] (C83)

+ i

(
ω̄2

1

4ω2

κα∆

καΣ

+O
(

1

ω3
2

))
[T+T− + T−T+, ρs]. (C84)

Putting all of the calculations of this section together, we obtain the following second-order reduced model. For
the slow dynamics we obtain an explicit Lindbladian model, where we have kept the leading-order in 1

ω2
for every

different type of term:

Ls,g(ρs) = −i
[
ωs,z,1Tz + ωs,z,2T

2
z + ωs,c[T+, T−] + ωs,a(T+T− + T−T+), ρs

]
+ κs,zDTz (ρs) + κs,±

(
DT− +DT+

)
+O

(
gε2
)

(C85)

with

ωs,z,1 = −κα∆

καΣ

g∆

ω2
, (C86)

ωs,z,2 =
κα∆

g2

καΣω2
, (C87)

ωs,c =

(
κα∆

καΣ

)2
g2

4ω̄1
− 1

4

(
1−

κ2
α∆

κ2
αΣ

)
ω̄1g

2

κ2
αΣ

+ ω̄2
1

, (C88)

ωs,a = −κα∆

καΣ

g2

4ω2
, (C89)

κs,z =

∆2

(
1− κ2

α∆

κ2
αΣ

)
καΣ

ω2
+
καΣ

2ω2
+

2καx
ω2

2g2

ω2
, (C90)

κs,± =
1

2

(
1−

κ2
α∆

κ2
αΣ

)
καΣ

g2

κ2
αΣ

+ ω̄2
1

+
g2 (καΣ

+ 4καx)

4ω2
2

. (C91)

For the embedding of the slow subspace we obtain, up to second-order terms:

Ks,g(ρs) = e−iHg (ρs ⊗ ρ̄E)eiHg +O(ε2), (C92)

with

Hg :=
κα∆

καΣ

g

2ω̄1
Hs ⊗ 1E +

g

2
√
κ2
αΣ

+ ω̄2
1

Hs,± ⊗ (1E + σα,x)− g

ω2
Tz ⊗ M̄z −

g

2ω2
Hs ⊗ σy. (C93)
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Here we have defined

Hs = ie−iω̄1tT+ − ieiω̄1tT−, (C94)

Hs,± =
(καΣ

− iω̄1)eiω̄1tT− + (καΣ
+ iω̄1)e−iω̄1tT+√

κ2
αΣ

+ ω̄2
1

, (C95)

M̄z = σαx −
∆

καΣ

(
κα∆

καΣ

1E + σαx

)
. (C96)

It is easy to verify that Hg is Hermitian, since Hs, Hs,± and M̄z are Hermitian, and hence Kg can be written as an
entangling unitary up to O(ε2). In particular, Kg is therefore a CPTP map up to O(ε2) terms.

Discussion of Hamiltonian terms

All the Hamiltonian terms are suppressed asymptotically for large ω̄1 and ω2, although this was not explicitly
part of our goal. Note that in contrast to the case of strong driving where κ− dominates κ+ for a cold bath, with
ultrastrong driving we typically keep κα− and κα+ of the same order. The resulting conclusions are consistent with
the induced dissipations and Hamiltonians derived when both viewpoints hold, i.e. taking the limit of large ω2 in the
expressions obtained with the dissipation model of strong driving on E.

[1] R. Azouit, F. Chittaro, A. Sarlette, and P. Rouchon.
Structure-preserving adiabatic elimination for open bi-
partite quantum systems. In IFAC-PapersOnLine, vol-
ume 50, pages 13026–13031. Elsevier, jul 2017.

[2] Remi Azouit, Francesca Chittaro, Alain Sarlette, and
Pierre Rouchon. Towards generic adiabatic elimination
for bipartite open quantum systems. Quantum Sci. Tech-
nol, 2, 2017.

[3] S. Blanes, F. Casas, J. A. Oteo, and J. Ros. The Magnus
expansion and some of its applications, 2009.

[4] H.-P. Breuer and F. Petruccione. The Theory of Open
Quantum Systems. Oxford University Press, 2007.

[5] Adam Zaman Chaudhry and Jiangbin Gong. Decoher-
ence control: Universal protection of two-qubit states and
two-qubit gates using continuous driving fields. Physi-
cal Review A - Atomic, Molecular, and Optical Physics,
85(1), 2012.

[6] Pochung Chen. Geometric continuous dynamical de-
coupling with bounded controls. Physical Review A -
Atomic, Molecular, and Optical Physics, 73(2), 2006.

[7] C Cohen-Tannoudji, J Dupont-Roc, and G Grynberg.
Processus d’interaction entre photoons et atomes. EDP
Sciences/CNRS Editions, 2001.
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