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Abstract We consider the long-term properties of a stochastic SVIR epidemic model with saturation
incidence rates and logistic growth in this paper. We firstly derive the fitness of a unique global positive
solution. Then we construct appropriate Lyapunov functions and obtain condition Rs

0 > 1 for existence
of stationary distribution, and conditions for persistence in the mean. Moreover, conditions including
Re

0 < 1 for exponential extinction to the infected individuals are figured out. Finally, by employing
Fokker-Planck equation and stochastic analysis, we derive the probability density function around the
quasi-endemic equilibrium point when critical value Rp

0 > 1 is valid. Consequently, some examples and
illustrative simulations are carried out to verify the main theoretical results.
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1. Introduction

Vaccines played a vital role when we controlled the spread of infectious diseases. Recently, Zhang et al.
[1] studied the dynamic behaviors of SVIR epidemic model with bilinear incidence rates and vaccinations,
they proposed the following model:





dS(t) = (µ− ζS − µS − βSI)dt + σ1SdB1(t),

dV (t) = (ζS − γ1V − β1V I − µV )dt + σ2V dB2(t),

dI(t) = (βSI + β1V I − τI − µI)dt + σ3IdB3(t),

(1)

where the bilinear incidence rate βSI described the unbounded increasing when the number of the
infected raised, and infectious diseases prevailed in an infinitely increasing way for a long time in [2, 3].
In 1978, Capasso and Serio [4] improved the bilinear incidence rate and governed the saturation incidence
rate in the form of g(I)S = βSI

1+aI to describe the spreading of infectious diseases, where the constant a
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is called the saturated constant in [5]. When the number of the infected became very large, g(I) tended
to a saturation level β

a in [6, 7, 8, 9, 10, 11, 12, 13, 14] and [15], which reflected the behavioral changes
and the crowdedness effect of the infected. Recently, Sahu and Dhar in [6] studied an epidemic model
with the saturation incidence rate, their conclusion revealed that the higher vaccination coverage rate
was, the basic regeneration number declined faster. Other types of the incidence rates could be found in
[16, 17, 18, 19] and the references therein.

Here, we notice that, in [1], µ is a positive constant and stands for the new recruitment rate of the
susceptible, the value of which is the same with the natural death rate of a local population. While, in this
paper, we do not think the constant recruitment rate µ is rational for describing the epidemic model with
fast mobility of a local population, so we always assume that the mobility of a local population obeys the
Logistic growth γS(1− S

K ) due to the fast transportation by metros, trains and airplanes within a period
of time, where γ = b−µ > 0. That is, the intrinsic rate γ equals the difference of the birth rate b and the
natural death rate µ, and K is the carrying capacity of a local population. Meanwhile, in this paper, we
adopt the saturation incidence rate to describe the crowdedness of the infected when infectious diseases
invade a local population. Precisely, we improve the constant recruitment rate µ of model (1) and govern
the Logistic growth γS

(
1 − S

K

)
into the equation of the susceptible, and we assume that the density of

the susceptible in the municipal cities on holidays or weekends is described by the Logistic growth, and
also that the vaccinated lose their temporary immunities over time and return to the susceptible again
due to immunity loss, we thus establish an SVIR epidemic model with the saturation incidence rates as
follows:





Ṡ(t) = γS
(
1− S

K

)
+ ϑV − ζS − βSI

1 + a1I
,

V̇ (t) = ζS − ϑV − βV I

1 + a2I
− µV,

İ(t) =
βSI

1 + a1I
+

βV I

1 + a2I
− (µ + δ + τ)I,

Ṙ(t) = τI − µR.

(2)

Here ϑ is the rate for immunity loss of vaccines to the vaccinated; ζ is the proportion of the susceptible who
take the vaccine; β is the transmission rate between the infected and the susceptible (or, the vaccinated);
τ is the recovered rate of the infected; δ means the mortality rate caused by infectious diseases to the
infected. Let x(t) = S(t) + V (t) + I(t) + R(t), by (2), which then follows

ẋ(t) = −µx + bS − b− µ

K
S2 − δI < −µx + bS − b− µ

K
S2.

Here, the expression bS − b−µ
K S2 admits the maximum m, so we have ẋ(t) < −µx + m, which gives that

x(t) → m
µ as t →∞, which further implies that the density of a local population is always varying with the

time, instead of a constant in model (1). The readers can find that the recent works in [20, 21, 22, 23, 24]
also govern the Logistic growth to discuss the long-term properties of their models. In model (2), the
saturation incidence rates

βI

1 + a1I
→ β

a1
,

βI

1 + a2I
→ β

a2
,

respectively reach their boundaries when the number of the infected increases to a large amount, here the
transmission rate β, the saturated constants a1 and a2 are positive constants. We further assume that
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the saturated constants satisfy the condition a1 < a2. In other words, the probability that the vaccinated
are infected by the infective is less than the probability that the susceptible are infected by the infective.

In the real world, many tiny and independent random fluctuations, such as small changes in temper-
ature, humidity, wind and the like, usually affect the population size. So, model (2) can be improved into
a stochastic epidemic model with the fluctuation circumstances by introducing Gaussian white noises
ξ(t) = dB(t)/dt, here dB(t) = B(t + ∆t)−B(t) is a Wiener increment with zero mean and ∆t variance.
Therefore, the epidemic models with fluctuations describe the real circumstances in the appropriate ways
when modelling infectious diseases. Motivated by the recent contributions in [25, 26, 27, 28], we assume
that the environmental noises are proportional to the variables S, V, I, R in this paper. Moreover, we
notice that, the first three equations of model (2) are independent of the recovered, so we leave the fourth
equation of model (2), and consider a stochastic epidemic model (3) with the saturation incidence rates
and the Logistic growth as follows:





dS(t) =
[
γS

(
1− S

K

)
+ ϑV − ζS − βSI

1 + a1I

]
dt + σ1SdB1(t),

dV (t) =
[
ζS − ϑV − βV I

1 + a2I
− µV

]
dt + σ2V dB2(t),

dI(t) =
[

βSI

1 + a1I
+

βV I

1 + a2I
− (µ + δ + τ)I

]
dt + σ3IdB3(t),

(3)

where B1(t), B2(t) and B3(t) are three independent standard Brownian motions (or Wiener processes),
σ1, σ2 and σ3 respectively are the intensities of the white noises; (Ω,F , {Ft}t>0,P) is a complete proba-
bility space with its filtration {Ft}t>0.

Next, we start to show the existence and uniqueness of a global positive solution of model (3). Then
the sufficient conditions for the persistence of model (3) are given in Section 2. Further, the sufficient
conditions of the existence of an ergodic stationary distribution to model (3) is obtained in Section 3. We
derive the sufficient conditions for the extinction of model (3) in Section 4. By means of the developed
approaches in solving the general three-dimensional Fokker-Planck equation, the exact expression of the
probability density function for the stationary distribution is presented in Section 5.

2. Fitness and persistence

We firstly concern the existence and uniqueness of a global positive solution to model (3) before we
investigate other long-term properties, further we concern the persistence in the mean of the density of
the infected to model (3) in this section.

2.1 Existence and uniqueness of a global solution

By the similar discussions in [8, 9, 10, 11], we derive the following Theorem 2.1.
Theorem 2.1. For any initial value (S(0), V (0), I(0)) ∈ R3

+, model (3) admits a unique solution
(S(t), V (t), I(t)) ∈ R3

+ for t > 0, and the solution will remain in R3
+ with probability one.

Proof. It is easy to verify that the coefficients of model (3) satisfy the local Lipschitz condition.
Therefore, model (3) admits a unique local solution (S(t), V (t), I(t)) on the interval [0, τe), where τe is
the explosion time. Next, we will prove that the assertion τe = ∞ holds almost surely. In other words,
the solution (S(t), V (t), I(t)) does not explode within a finite time. Let m0 > 1 be a sufficiently large
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number which can ensure each component of (S(t), V (t), I(t)) all lying within [ 1
m0

,m0]. For any integer
m > m0, we define the stopping time

τm = inf
{

t ∈ [0, τe) : min{S(t), V (t), I(t)} 6 1
m

or max{S(t), V (t), I(t)} > m
}

,

where inf ∅ = ∞. Obviously, τm is increasing as m → ∞. We denote lim
m→∞

τm = τ∞. The assertion
τ∞ 6 τe is valid by definition of the stopping time. We claim that the assertion τ∞ = ∞ is valid almost
surely. If the assertion is not valid, then there exist a pair of constants T > 0 and ε ∈ (0, 1) such that
P{τm 6 T} > ε for each integer m > m0. We define a C2-function V : R3

+ → R+ as follows:

V1(S, V, I) = S − 1− lnS + V − 1− lnV + I − 1− ln I,

by the nonnegativity of V and the generalized Itô’s formula, we get

dV1(S, V, I) = LV1(S, V, I)dt + (S − 1)σ1dB1(t) + (V − 1)σ2dB2(t) + (I − 1)σ3dB3(t),

where

LV1(S, V, I) =
(
1− 1

S

)[
γS

(
1− S

K

)
+ ϑV − ζS − βSI

1 + a1I

]

+
(
1− 1

V

)(
ζS − ϑV − βV I

1 + a2I
− µV

)

+
(
1− 1

I

)[ βSI

1 + a1I
+

βV I

1 + a2I
− (µ + δ + τ)I

]

+
1
2
(σ2

1 + σ2
2 + σ2

3),

after the proper simplification, which implies that

LV1(S, V, I) 6 γS
(
1− S

K

)
− µV − (µ + δ + τ)I +

γS

K
+ ζ +

βI

1 + a1I
+ ϑ

+
βI

1 + a2I
+ 2µ + δ + τ +

1
2
(σ2

1 + σ2
2 + σ2

3)

6 max
S∈R+

{
γS

(
1− γS

K

)
+

γS

K

}
+ ζ + ϑ + 2µ + δ + τ

+ β
( 1

a1
+

1
a2

)
+

1
2
(σ2

1 + σ2
2 + σ2

3) := G > 0.

It then follows that

dV1(S, V, I) 6 Gdt + (S − 1)σ1dB1(t) + (V − 1)σ2dB2(t) + (I − 1)σ3dB3(t).

For any t ∈ [0, T ] and m > m0, integrating from 0 to τm ∧ t and taking expectation, which gives

EV1(S(τm ∧ t), V (τm ∧ t), I(τm ∧ t)) 6 V1(S(0), V (0), I(0)) + E
∫ τm∧t

0

Gdt

6 V1(S(0), V (0), I(0)) + GT < ∞.

We set Ωm = {τm 6 T} for m > m0, so P(Ωm) > ε holds. And each component of (S(τm ∧ t), V (τm ∧
t), I(τm ∧ t)) equals either m or 1

m for all ω ∈ Ωm. Hence

∞ > V1(S(0), V (0), I(0)) + GT > ε min
{

m− 1− lnm,
1
m

− 1 + lnm
}

,
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letting m →∞, there arises a contradiction as follows:

∞ > V1(S(0), V (0), I(0)) + GT > ∞.

The proof is complete.

2.2. Persistence in the mean

By the results from [29, 30], we derive the following Lemma 2.1, we omit the proof herewith.
Lemma 2.1. For any initial value (S(0), V (0), I(0)) ∈ R3

+, model (3) has a unique positive solution
(S(t), V (t), I(t)) ∈ R3

+, the solution has the following properties

lim
t→∞

S(t)
t

= 0, lim
t→∞

V (t)
t

= 0, lim
t→∞

I(t)
t

= 0,

and

lim
t→∞

lnS(t)
t

6 0, lim
t→∞

lnV (t)
t

6 0, lim
t→∞

ln I(t)
t

6 0.

If µ > 0.5(σ2
1 ∨ σ2

2 ∨ σ2
3), then

lim
t→∞

1
t

∫ t

0

S(s)dB1(s) = 0, lim
t→∞

1
t

∫ t

0

V (s)dB2(s) = 0, lim
t→∞

1
t

∫ t

0

I(s)dB3(s) = 0 a.s..

By similar approaches in Theorem 3.1 of [31], Theorem 4.2 of [10] and Theorem 4.1 of [32], we next
provide the sufficient conditions of the persistence in the mean for the infected to model (3). Let

Rs
0 =

n1

n2n3

(
1 + a2γK

4(µ+δ+τ)

) , A = β

(
3n1

n2n3(1− σ2
1

2γ − ζ
γ )γ

+ c1

)
, (4)

where

n1 = βζK
(
1− σ2

1

2γ
− ζ

γ

)3

, n2 = ϑ + µ +
σ2

2

2
, n3 = µ + δ + τ +

σ2
3

2
.

Theorem 2.2. If the following conditions hold

Rs
0 > 1, µ > 0.5(σ2

1 ∨ σ2
2 ∨ σ2

3), σ2
1 < 2(γ − ζ), (5)

then density of the infected to model (3) is persistent in the mean

lim inf
t→∞

A〈I〉t >
(
1 +

a2γK

4(µ + δ + τ)

)
(Rs

0 − 1) > 0 a.s.. (6)

In other words, when Rs
0 > 1 is valid, the lower boundary of the infected exists and infectious diseases

will prevail for a long run.
Proof. We construct a non-negative C2-function

V2 =
a2

µ + δ + τ
(S + V + I)− c1 lnV − c2 ln I, (7)

where c1 and c2 are positive constants determined later. Itô’s formula implies that

dV2 = LV2dt +
a2Sσ1

µ + δ + τ
dB1(t) +

( a2V

µ + δ + τ
− c1

)
σ2dB2(t) +

( a2I

µ + δ + τ
− c2

)
σ3dB3(t), (8)
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where

LV2 =
a2

µ + δ + τ

[
γS

(
1− S

K

)
− µV − (µ + δ + τ)I

]
− c1

1
V

(
ζS − ϑV − βV I

1 + a2I
− µV

)

+
1
2
(c1σ

2
2 + c2σ

2
3)− c2

1
I

[ βSI

1 + a1I
+

βV I

1 + a2I
− (µ + δ + τ)I

]
.

(9)

Noticing that

max
S∈R+

{
γS

(
1− S

K

)}
=

γK

4
,

which then follows that

LV2 <
a2γK

4(µ + δ + τ)
− a2I − c1ζS

V
+

(
ϑ + µ +

σ2
2

2

)
c1

+
c1βI

1 + a2I
− c2βS

1 + a1I
− c2βV

1 + a2I
+ c2

(
µ + δ + τ +

σ2
3

2

)

< −c1ζS

V
− c2βV

1 + a2I
− (1 + a2I) + 1

+ c1

(
ϑ + µ +

σ2
2

2

)
+ c2

(
µ + δ + τ +

σ2
3

2

)
+

a2γK

4(µ + δ + τ)
+ c1βI

< −3 3
√

c1c2βζS + c1

(
ϑ + µ +

σ2
2

2

)
+ c2

(
µ + δ + τ +

σ2
3

2

)
+

a2γK

4(µ + δ + τ)
+ c1βI + 1.

(10)

Again, we define

V3 =
2(S + V )

3γK
− lnS

γ
, (11)

we obtain by Itô’s formula that

dV3 = LV3dt +
( 2S

3γK
− 1

γ

)
σ1dB1(t) +

2V

3γK
σ2dB2(t), (12)

Lemma 4.2 in [33] and the proper simplification implies

LV3 =
( 2

3γK
− 1

γS

)[
γS

(
1− S

K

)
+ ϑV − ζS − βSI

1 + a1I

]

+
2

3γK

(
ζS − ϑV − βV I

1 + a2I
− µV

)
+

σ2
1

2γ

<
2S

3K

(
1− S

K

)
+

S

K
− 1 +

ζ

γ
+

βI

γ
+

σ2
1

2γ

<
3

√
S

K
+

βI

γ
−

(
1− σ2

1

2γ
− ζ

γ

)
.

(13)

We thus define

V4 = V2 + 3 3
√

c1c2βζKV3, (14)

combining (10) with (13), we can get

LV4 = LV2 + 3 3
√

c1c2βζKLV3

< 1 +
a2γK

4(µ + δ + τ)
+ c1

(
ϑ + µ +

σ2
2

2

)

+ c2

(
µ + δ + τ +

σ2
3

2

)
− 3 3

√
c1c2βζK

(
1− σ2

1

2
− ζ

γ

)
+

( 3
γ

3
√

c1c2βζK + c1

)
βI.

(15)
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By (4), we choose

c1 =
n1

n2
2n3

, c2 =
n1

n2n2
3

,

then

LV4 < −
(
1 +

a2γK

4(µ + δ + τ)

)
(Rs

0 − 1) + AI := −λ + AI. (16)

Further, it follows that

dV4 < LV4dt +
[ a2S

µ + δ + τ
+ 3 3

√
c1c2βζK

( 2S

3γK
− 1

γ

)]
σ1dB1(t)

+
( a2V

µ + δ + τ
+ 3

√
c1c2βζK

2V

γK
− c1

)
σ2dB2(t) +

( a2I

µ + δ + τ
− c2

)
σ3dB3(t).

(17)

We integrate both sides of (17) from 0 to t and divided by t, and we get

1
t
[V4(t)− V4(0)] < A〈I〉t − λ +

ϕ1(t)
t

, (18)

with

ϕ1(t) =
∫ t

0

[ a2S(s)
µ + δ + τ

+ 3 3
√

c1c2βζK
(2S(s)

3γK
− 1

γ

)]
σ1dB1(s)

+
∫ t

0

( a2V (s)
µ + δ + τ

+ 3
√

c1c2βζK
2V (s)
γK

− c1

)
σ2dB2(s) +

∫ t

0

( a2I(s)
µ + δ + τ

− c2

)
σ3dB3(s),

(19)

Lemma 2.1 and the strong law of large numbers in [34] give

lim sup
t→∞

V4(t)
t

= 0, lim sup
t→∞

ϕ1(t)
t

= 0,

it then by (18) follows

lim inf
t→∞

A〈I〉t > λ > 0. (20)

So, the infected admit the lower boundary as Rs
0 > 1 holds, which implies that infectious diseases thus

prevail for a long time.

3. Stationary distribution

In this section, we investigate the long-term property for the solution of model (3) by constructing
several Lyapunov functions and using Hasminskii’s theory in [35], the aim is to prove the solution of model
(3) declines outside some compact set. In other words, there exists an ergodic stationary distribution
within the compact set for model (3), which implies that the solution of model (3) is stable around
the endemic equilibrium point, instead of exploding to the infinity. Precisely, the solution of model (3)
provides some fluctuations, and the densities of the susceptible, the vaccinated and the infected are kind
of stable in a long run.

Lemma 3.1. [35] The Markov process x(t) has a unique ergodic stationary distribution ν(·), if there
exists a bounded domain D0 ⊂ Rn

+ with a regular boundary Γ and has the following two conditions:
(H1) there exists a positive number η such that

∑n
i,j=1 aij(x)ζiζj > η|ζ|2, x ∈ D0, ζ ∈ Rn

+;
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(H2) there exists a non-negative C2-function V such that LV is negative for any Rn
+\D0, then for all

x ∈ Rn
+, it follows

P
{

lim
T→∞

1
T

∫ T

0

g(x(t), t)dt =
∫

Rn
+

g(x)ν(dx)
}

= 1,

where g(·) is an integral function with respect to the measure ν(·).
Stationary distributions for a stochastic SEIR model in Theorem 3.3 of [11] and also for a stochastic

SIR model in Theorem 5.1 of [32] are investigated. We thus derive our main results in Theorem 3.1 as
follows.

Theorem 3.1. If Rs
0 > 1, then model (3) admits a unique stationary distribution ν(·), which has the

ergodic property.
Proof. According to Lemma 3.1, the solution (S(t), V (t), I(t)) of model (3) is Markov process,

because the infected (I) in a local population contact with the susceptible (S) or the vaccinated (V )
randomly, and the infected do not have any memories regarding the contacting histories. In other words,
the contact between the infected (I) and the susceptible (S) or the vaccinated (V ) are memoryless.
Moreover, the future state only depends on the present state, that is, the future state is independent of
the past state. We usually describe the SVI epidemic model by using the stochastic differential equations,
which are Markov processes for each equation of model (3).

We thus find a non-negative C2-function Ṽ and a bounded set Dε to satisfy conditions (H1) and (H2).
Therefore, the proof of Theorem 3.1 is split into two steps.

Step 1. Construct a bounded set Dε to make condition (H1) of Lemma 3.1 valid in this set. Firstly,
we define

Dε =
{

(S, V, I) ∈ R3
+, ε 6 S 6 1

ε
, ε2 6 V 6 1

ε2
, ε 6 I 6 1

ε

}
, (21)

here ε > 0 is a sufficiently small constant, the diffusion matrix of model (3) is as follows

Ã = diag{σ2
1S2, σ2

2V 2, σ2
3I2} = (aij)3×3,

for any (S, V, I) ∈ Dε, ζ = (ζ1, ζ2, ζ3) ∈ R3
+, we have

n∑

i,j=1

aijζiζj = (ζ1, ζ2, ζ3)Ã(ζ1, ζ2, ζ3)T = (σ1S)2ζ2
1 + (σ2V )2ζ2

2 + (σ3I)2ζ2
3 > η‖ζ‖2,

where

η = min
(S,V,I)∈Dε

{σ2
1S2, σ2

2V 2, σ2
3I2} > 0,

which means that condition (H1) in Lemma 3.1 holds.
Step 2. Find a C2-Lyapunov function Ṽ such that LṼ 6 −1 for any (S, V, I) ∈ R3

+\Dε. We define

Ṽ = M(V4 + V5) + V6 + V7, (22)

where

V5 =
A

µ + δ + τ
(V + I), V6 =

1
θ + 2

(S + I + V )θ+2, V7 = − lnV,

8
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where θ > 0 is a sufficiently small constant satisfying

θ <
µ− 0.5(σ2

1 ∨ σ2
2 ∨ σ2

3)
µ + 0.5(σ2

1 ∨ σ2
2 ∨ σ2

3)
,

and M > 0 is a sufficiently large constant satisfying

−Mλ + B + θ + µ +
σ2

2

2
+

β

a2
6 −2. (23)

Obviously, Ṽ (S, V, I) is a continuous function and takes minimum at the point (S̄, V̄ , Ī), so we define
a non-negative C2-function W : R3

+ → R as follows:

W = M(V4 + V5) + V6 + V7 − Ṽ (S̄, V̄ , Ī). (24)

Applying Itô’s formula to V5, together with inequality (16), we get

LV5 =
A

µ + δ + τ

[
ζS − (ϑ + µ)V +

βSI

1 + a1I
− (µ + δ + τ)I

]

<
AζS

µ + δ + τ
+

AβSI

(1 + a1I)(µ + δ + τ)
−AI,

(25)

then

L(V4 + V5) < −λ +
AζS

µ + δ + τ
+

AβSI

(1 + a1I)(µ + δ + τ)
. (26)

Similarly, one obtains that

LV6 = (S + V + I)θ+1
[
γS

(
1− S

K

)
− µV − (µ + δ + τ)I

]

+
θ + 1

2
(S + V + I)θ(σ2

1S2 + σ2
2V 2 + σ2

3I2)

< γS(S + V + I)θ+1 − γ

K
Sθ+3 − µV θ+2 − (µ + δ + τ)Iθ+2

+
θ + 1

2
(S + V + I)θ+2(σ2

1 ∨ σ2
2 ∨ σ2

3)

= γS(S + V + I)θ+1 − γ

2K
Sθ+3 − γ

2K
Sθ+3 − µ(1− θ)V θ+2

− µθV θ+2 − (µ + δ + τ)(1− θ)Iθ+2 − θ(µ + δ + τ)Iθ+2

+
θ + 1

2
(S + V + I)θ+2(σ2

1 ∨ σ2
2 ∨ σ2

3),

(27)

letting

B = max
(S,V,I)∈R3

+

{
− γ

2K
Sθ+3 − µ(1− θ)V θ+2 − (µ + δ + τ)(1− θ)Iθ+2

+
θ + 1

2
(S + V + I)θ+2(σ2

1 ∨ σ2
2 ∨ σ2

3) + γS(S + V + I)θ+1
}

,

then

LV6 < − γ

2K
Sθ+3 − µθV θ+2 − θ(µ + δ + τ)Iθ+2 + B, (28)

LV7 = −ζS

V
+

βI

1 + a2I
+ ϑ + µ +

σ2
2

2
6 −ζS

V
+ ϑ + µ +

β

a2
+

σ2
2

2
. (29)
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We combine inequalities (26), (28) and (29), and derive that

LW < M
[
− λ +

AζS

µ + δ + τ
+

AβSI

(1 + a1I)(µ + δ + τ)

]
− γ

2K
Sθ+3 − µθV θ+2

− θ(µ + δ + τ)Iθ+2 + B − ζS

V
+ ϑ + µ +

β

a2
+

σ2
2

2
,

(30)

where ε is a sufficiently small constant in the set Dε, and ε satisfies the following conditions

AMβ

µ + δ + τ
ε 6 min

{ a1β

a1ζ + β
,
γ(θ + 3)

2K
,
(θ + 3)(1− C)

θ + 2

}
, (31)

E + 1 6 min
{ζ

ε
,

γ

4Kεθ+3
,
θ(µ + δ + τ)

εθ+2
,

µθ

ε2θ+4

}
, (32)

where

C = sup
S∈R+

{
AMζS

µ + δ + τ
+

AMβεSθ+3

(µ + δ + τ)(θ + 3)
− γ

2K
Sθ+3

}
,

E = sup
(S,V,I)∈R3

+

{
AMζS

µ + δ + τ
+

AMβS

a1(µ + δ + τ)
− γ

4K
Sθ+3 + B + µ + ϑ +

σ2
2

2
+

β

a2

}
.

We next separate R3
+\Dε into six parts to prove the assertion LW 6 −1 in R3

+\Dε as follows:

D1 =
{

(S, V, I) ∈ R3
+, 0 < S < ε

}
, D2 =

{
(S, V, I) ∈ R3

+, 0 < I < ε
}

,

D3 =
{

(S, V, I) ∈ R3
+, S > ε, I > ε, 0 < V < ε2

}
, D4 =

{
(S, V, I) ∈ R3

+, S >
1
ε

}
,

D5 =
{

(S, V, I) ∈ R3
+, I >

1
ε

}
, D6 =

{
(S, V, I) ∈ R3

+, V >
1
ε2

}
,

and Dc
ε = D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6.

Case 1. When (S, V, I) ∈ D1, by (23), (30), (31), one can derive

LW < −2 +
AMζε

µ + δ + τ
+

AMβε

a1(µ + δ + τ)
6 −1. (33)

Case 2. When (S, V, I) ∈ D2, we can obtain an inequality

SI

1 + a1I
6 SI 6 εS 6 ε

θ + 2 + Sθ+3

θ + 3
. (34)

It follows from (23), (30), (31) that

LW < −2 +
AMζS

µ + δ + τ
+

AMβε(θ + 2)
(µ + δ + τ)(θ + 3)

+
AMβεSθ+3

(µ + δ + τ)(θ + 3)
− γ

2K
Sθ+3

6 −2 + C +
AMβε(θ + 2)

(µ + δ + τ)(θ + 3)

6 −2 + 1 = −1.

(35)

Case 3. When (S, V, I) ∈ D3, according to the inequalities (30) and (32), we obtain

LW < −Mλ +
AMζS

µ + δ + τ
+

AMβS

a1(µ + δ + τ)
− γ

4K
Sθ+3 − γ

4K
Sθ+3 − µθV θ+2

− θ(µ + δ + τ)Iθ+2 + B − ζS

V
+

(
ϑ + µ +

β

a2
+

σ2
2

2

)

6 −ζ

ε
+ E 6 −1.

(36)
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Case 4. For any (S, V, I) ∈ D4, it follows from (30) and (32) that

LW < − γ

4K
Sθ+3 + E < − γ

4Kεθ+3
+ E 6 −1. (37)

Case 5. When (S, V, I) ∈ D5, by (30) and (32), we get

LW < −(µ + δ + τ)θIθ+2 + E 6 − (µ + δ + τ)θ
εθ+2

+ E 6 −1. (38)

Case 6. When (S, V, I) ∈ D6, by (30) and (32), we derive

LW < −µθV θ+2 + E 6 − µθ

ε2θ+4
+ E 6 −1. (39)

Hence, model (3) admits a unique ergodic stationary distribution ν(·).

4. Extinction

There are several techniques to investigate the extinction in [7, 9, 10, 11, 20, 21, 30, 31, 32, 33, 36].
Extinction in the epidemiology usually means the elimination of infectious diseases over a long period
of time. In this section, we adopt the approaches in Theorem 1 of [9] and Theorem 3.1 of [10, 32], by
constructing moderate Lyapunov functions, together with the generalized Itô’s formula and the strong
law of large numbers, we obtain the critical value for the extinction of infectious diseases to model (3),
which implies that infectious diseases eventually disappear in a local population.

Theorem 4.1. If the following conditions hold

Re
0 =

βγK(µ + θ + ζ)

4
(
µ + δ + τ + σ2

3
2

)
ζµ

< 1, 2µ > σ2
1 ∨ σ2

2 ∨ σ2
3 , (40)

then the solution (S(t), V (t), I(t)) of model (3) has

lim sup
t→∞

ln I(t)
t

<
(
µ + δ + τ +

σ2
3

2

)
(Re

0 − 1) < 0, (41)

which means that infectious diseases to model (3) will exponentially go to extinction.
Proof. Integrating the first equation of model (3) from 0 to t, and then divided by t gives

1
t
[S(t)− S(0)] =

〈
γS

(
1− S

K

)〉
t
+ ϑ〈V 〉t − ζ〈S〉t −

〈 βSI

1 + a1I

〉
t
+

σ1

t

∫ t

0

S(s)dB1(s)

<
γK

4
+ ϑ〈V 〉t − ζ〈S〉t + ϕ2(t),

(42)

according to Lemma 2.1, we obtain

lim sup
t→∞

ϕ2(t) = lim sup
t→∞

{
σ1

t

∫ t

0

S(s)dB1(s)− 1
t
[S(t)− S(0)]

}
= 0.

Taking superior limit on both sides of (42), we have

lim sup
t→∞

〈S〉t <
γK

4ζ
+

ϑ

ζ
lim sup

t→∞
〈V 〉t. (43)
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Similarly, all three equations of model (3) imply

1
t
[S(t)− S(0)] +

1
t
[V (t)− V (0)] +

1
t
[I(t)− I(0)]

=
〈
γS

(
1− S

K

)〉
t
− µ〈V 〉t − (µ + δ + τ)〈I〉t

+
σ1

t

∫ t

0

S(s)dB1(s) +
σ2

t

∫ t

0

V (s)dB2(s) +
σ3

t

∫ t

0

I(s)dB3(s),

(44)

which gives that

µ〈V 〉t <
γK

4
+ ϕ3(t), (45)

with

ϕ3(t) =
{σ1

t

∫ t

0

S(s)dB1(s) +
σ2

t

∫ t

0

V (s)dB2(s) +
σ3

t

∫ t

0

I(s)dB3(s)

− 1
t
[S(t)− S(0)]− 1

t
[V (t)− V (0)]− 1

t
[I(t)− I(0)]

}
.

Lemma 2.1 implies lim sup
t→∞

ϕ3(t) = 0, taking superior limit on both sides of (45) gives

lim sup
t→∞

〈V 〉t <
γK

4µ
. (46)

By the same discussion, for ln I(t), generalized Itô’s formula implies

1
t
[ln I(t)− ln I(0)] =

〈 βS

1 + a1I

〉
t
+

〈 βV

1 + a2I

〉
t
− σ2

3

2
+

σ3B3(t)
t

− (µ + δ + τ)

< β〈S〉t + β〈V 〉t −
(
µ + δ + τ +

σ2
3

2

)
+

σ3B3(t)
t

,

(47)

the strong law of large numbers in [34] yields

lim
t→∞

B3(t)
t

= 0,

taking superior limit on both sides of (47), by (40), one derives

lim sup
t→∞

ln I(t)
t

< β lim sup
t→∞

〈S〉t + β lim sup
t→∞

〈V 〉t −
(
µ + δ + τ +

σ2
3

2

)

<
βγK

4

(1
ζ

+
θ

ζµ
+

1
µ

)
−

(
µ + δ + τ +

σ2
3

2

)

=
(
µ + δ + τ +

σ2
3

2

)
(Re

0 − 1) < 0.

(48)

So, the number of the infected declines to zero with an exponential rate in a long run.

5. Probability density function analysis

Obviously, model (49) admits a unique quasi-endemic equilibrium point, we wonder what the solu-
tion of model (49) with fluctuations looks like around the quasi-endemic equilibrium point. By using

12

Stationary distribution and density function of a stochastic SVIR epidemic model



Fokker-Planck equation and stochastic analysis, we derive the expression of the probability density func-
tion around the quasi-endemic equilibrium point under some moderate conditions, which reflects the
distribution of the density of the solution to model (3).

5.1. Linearization of model (3)

Firstly, let (u1, u2, u3)T = (lnS, lnV, ln I)T , by Itô’s formula, it follows from model (3) that




du1 =
[
γ
(
1− eu1

K

)
+ ϑeu2−u1 − βeu3

1 + a1eu3
−

(
ζ +

σ2
1

2

)]
dt + σ1dB1(t),

du2 =
[
ζeu1−u2 − βeu3

1 + a2eu3
−

(
µ + ϑ +

σ2
2

2

)]
dt + σ2dB2(t),

du3 =
[

βeu1

1 + a1eu3
+

βeu2

1 + a2eu3
−

(
µ + δ + τ +

σ2
3

2

)]
dt + σ3dB3(t),

(49)

assume that

Rp
0 =

βϑζ(ζ + ϑ + µ + 0.5σ2
2)

(ϑ + µ + 0.5σ2
2)[ γ

K (ϑ + µ + 0.5σ2
2)(µ + δ + τ + 0.5σ2

3) + β(ζ − γ + 0.5σ2
1)(ζ + ϑ + µ + 0.5σ2

2)]
> 1,

(50)

then there exists a unique quasi-endemic equilibrium point F ∗ = (S∗, V ∗, I∗) = (eu∗1 , eu∗2 , eu∗3 ), which is
determined by the following equations:





γ
(
1− eu∗1

K

)
+ ϑeu∗2−u∗1 − βeu∗3

1 + a1eu∗3
−

(
ζ +

σ2
1

2

)
= 0,

ζeu∗1−u∗2 − βeu∗3

1 + a2eu∗3
−

(
µ + ϑ +

σ2
2

2

)
= 0,

βeu∗1

1 + a1eu∗3
+

βeu∗2

1 + a2eu∗3
−

(
µ + δ + τ +

σ2
3

2

)
= 0.

(51)

We obtain

S∗ =
bc

h(m2 + I∗
1+a2I∗ )

− m1 + I∗
1+a1I∗

h
, V ∗ =

bc2

h(m2 + I∗
1+a2I∗ )

− c(m1 + I∗
1+a1I∗ )

h(m2 + I∗
1+a2I∗ )

,

and I∗ satisfies the following quadratic equation

F̃ (I) = g1I
4 + g2I

3 + g3I
2 + g4I + g5 = 0, (52)

with

g1 = a2
1a

2
2hm2

2m3 + 2a2
1a2hm2m3 + a2

1hm3,

g2 = a2
1a2(2hm2

2m3 − bc2) + a1a
2
2m2(2hm2m3 − bc) + a1a2c(m2 − b)

+ a1a
2
2cm1m

2
2 + a2

1a2cm1m2 + 2a2
1hm2m3 + 4a1a2hm2m3

+ a2
1cm1 + 2a1a2m1m2 + a2

2m
2
2 + 2a1hm3 + a1c + a1m1 + 2a2m2 + 1,

g5 = hm2
2m3 − bc2 − bcm2 + cm1m2 + m1m

2
2

= (hm2
2m3 + cm1m2 + m1m

2
2)(1−Rp

0),
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and

h =
γ

βK
> 0, b =

ϑ

β
> 0, c =

ζ

β
> 0, m1 =

ζ + 0.5σ2
1 − γ

β
,

m2 =
ϑ + µ + 0.5σ2

2

β
> b > 0, m3 =

µ + δ + τ + 0.5σ2
3

β
> 0.

(53)

From (53), we can get g1 > 0,

2hm2
2m3 − bc2 > hb2

2m3 − bc2 > b(hb2m3 − c2) = b
γϑ(µ + δ + τ + 0.5σ2

3)− βζ2K

β3K
,

2hm2m3 − bc > b(hm3 − c) = b
γ(µ + δ + τ + 0.5σ2

3)− βζK

β2K
.

When (50) is valid and

γ(µ + δ + τ + 0.5σ2
3)− βζK > 0, γϑ(µ + δ + τ + 0.5σ2

3)− βζ2K > 0, (54)

we derive g2 > 0 and g5 < 0, so equation (52) admits a unique positive root.
Next, let xi = ui − u∗i for i = 1, 2, 3, linearized equations of system (49) are followed





dx1 = (−a11x1 + a12x2 − a13x3)dt + σ1dB1(t),

dx2 = (a21x1 − a21x2 − a23x3)dt + σ2dB2(t),

dx3 = (a31x1 + a32x2 − a33x3)dt + σ3dB3(t),

(55)

where

a11 =
γ

K
eu∗1 + ϑeu∗2−u∗1 > 0, a12 = ϑeu∗2−u∗1 > 0, a13 =

βeu∗3

(1 + a1eu∗3 )2
,

a21 = ζeu∗1−u∗2 , a23 =
βeu∗3

(1 + a2eu∗3 )2
, a31 =

βeu∗1

(1 + a1eu∗3 )
,

a32 =
βeu∗2

(1 + a2eu∗3 )
, a33 =

a1βe(u∗1+u∗3)

(1 + a1eu∗3 )2
+

a2βe(u∗2+u∗3)

(1 + a2eu∗3 )2
.

It is easy to check

a11 − a12 > 0, a13 − a23 > 0, a33 > a13, a13 =
βeu∗3

(1 + a1eu∗3 )2
< 1. (56)

Let X = (x1, x2, x3)T, B(t) = (B1(t), B2(t), B3(t))T, M = diag{σ1, σ2, σ3} and

A =




−a11 a12 −a13

a21 −a21 −a23

a31 a32 −a33


 .

Therefore, equation (55) can be equivalently rewritten as

dX(t) = AX(t)dt + MdB(t).
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By relative theory in Gardiner [37], a unique density function Φ(X) around quasi-endemic equilibrium
point F ∗ satisfies the following Fokker-Planck equation:

−
3∑

i=1

σ2
i

2
∂2Φ
∂x2

i

+
∂

x1
[(−a11x1 + a12x2 − a13x3)Φ] +

∂

x2
[(a21x1 − a21x2 − a23x3)Φ]

+
∂

x3
[(a31x1 + a32x2 − a33x3)Φ] = 0,

(57)

according to Roozen [38], which can be approximated by a Gaussian distribution

Φ(X) = Φ(x1, x2, x3) = C0e
− 1

2 (x1,x2,x3)Q(x1,x2,x3)
T
,

where C0 is a positive constant which is determined by
∫

R3
Φ(x1, x2, x3)dx1dx2dx3 = 1,

and the real symmetric inverse matrix Q satisfies the following algebraic equation

QM2Q + QA + ATQ = 0,

letting Σ = Q−1, then we obtain

M2 + AΣ + ΣAT = 0. (58)

In addition, we can calculate that the corresponding constant is C0 = (2π)−
3
2 |Σ|− 1

2 .

5.2. Density function of stationary distribution

Lemma 5.1. [39] Let Υ0 be a symmetric positive definite matrix, such that the three dimensional
algebraic equation

G2
0 + A0Υ0 + Υ0A

T

0 = 0, (59)

holds, where G0 = diag{1, 0, 0} and

A0 =




−c1 −c2 −c3

1 0 0
0 1 0


 ,

and also that c1 > 0, c3 > 0 and c1c2 − c3 > 0, then Υ0 follows

Υ0 =
1

2(c1c2 − c3)




c2 0 −1
0 1 0

−1 0
c1

c3


 .

Lemma 5.2. [39] Let Υ1 be a symmetric positive semi-definite matrix, such that the three-dimensional
algebraic equation

G2
0 + Ã0Υ1 + Υ1Ã

T

0 = 0, (60)
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holds, where G0 = diag{1, 0, 0} and

Ã0 =




−d1 −d2 −d3

1 0 0
0 0 d33


 ,

and also that d1 > 0, d2 > 0, thus Υ1 takes the form

Υ1 = diag
{ 1

2d1
,

1
2d1d2

, 0
}

.

Theorem 5.3. For any initial value (S(0), V (0), I(0)) ∈ R3
+, if

Rp
0 > 1, 2a1 + a2

1 > a2, γθ(µ + δ + τ + 0.5σ2
3) > max{ζ, θ}βζK, (61)

then model (3) has a probability density function

Φ(S, V, I) = (2π)−
3
2 |Σ|− 1

2 e−
1
2

(
ln S

S∗ ,ln V
V ∗ ,ln I

I∗
)
Σ−1

(
ln S

S∗ ,ln V
V ∗ ,ln I

I∗
)T

,

the special form of positive definite matrix Σ is given as follows.
Proof. By the finite independent superposition principle, equation (58) can be written as the sum

of the solutions of the following algebraic sub-equations,

M2
k + AΣk + ΣkAT = 0, k = 1, 2, 3, (62)

where M1 = diag(σ1, 0, 0),M2 = diag(0, σ2, 0),M3 = diag(0, 0, σ3), clearly Σ = Σ1 + Σ2 + Σ3,M
2 =

M2
1 + M2

2 + M2
3 .

Firstly, we prove that A is a Hurwitz matrix. Equivalently, the characteristic polynomial of matrix
A is

ϕA(λ) = λ3 + p1λ
2 + p2λ + p3, (63)

by (56), we find that

p1 = a11 + a21 + a33 > 0,

p2 = (a11 − a12)a21 + a11a33 + a13a31 + a21a33 + a23a32 > 0,

p3 = (a11 − a12)a21a33 + a11a23a32 + a12a23a31 + a13a21a31 + a13a21a32 > 0,

(64)

and

p1p2 − p3 = (a11 − a12)a11a21 + (a11 − a12)a2
21 + a2

11a33 + (a11a13 − a12a23)a31

+ 2a11a21a33 + a11a
2
33 + (a21a

2
33 + a21a32a23 − a13a21a32)

+ a13a31a33 + a21a23a32 + a23a32a33 > 0.

(65)

Since

a11a13 − a12a23 > (a11 − a12)a23 > 0, a21a
2
33 − a13a21a32 > a21a13(a33 − a32),
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and by (55), direct substitution gives that

a21a13(a33 − a32) + a21a32a23 = a21β
2eu∗2+u∗3

2a1e
u∗3 + a2

1e
2u∗3 − a2e

u∗3

(1 + a2eu∗3 )3(1 + a1eu∗3 )2

>
a21β

2eu∗2+2u∗3

(1 + a2eu∗3 )3(1 + a1eu∗3 )2
(2a1 + a2

1 − a2) > 0,

from (64), we can get A is a Hurwitz matrix when 2a1 + a2
1 > a2 > a1 > 1.

Now we will prove that Σ is positive definite by three steps.
Step 1. We consider the algebraic equation

M2
1 + AΣ1 + Σ1A

T = 0, (66)

and choose J1 such that A1 = J1AJ−1
1 , where

J1 =




1 0 0
0 1 0

0 −a31

a21
1


 , A1 =




−a11 a12 − a13a31

a21
−a13

a21 −a21 − a23a31

a21
−a23

0 k1 −a33 +
a23a31

a21




, (67)

with

k1 = a31 + a32 − a31a33

a21
+

a2
31a23

a2
21

,

the relevant discussions will be given by the value of k1 into two cases:
Case 1. If k1 6= 0, by Zhou et al [39], we choose H1 such that B1 = H1A1H

−1
1 , where the standardized

transformation matrix is

H1 =




a21k1 −(a21 + a33)k1 ∆1

0 k1 −a21a33 − a23a31

a21

0 0 1


 , (68)

with

∆1 = −a2
21a23k1 − a2

21a
2
33 + 2a21a23a31a33 − a2

23a
2
31

a2
21

.

By direct calculation, one obtains

B1 =




−y1 −y2 −y3

1 0 0
0 1 0


 ,

where

y1 = a11 + a21 + a33,

y2 = a11a21 + a11a33 + a13a31 + a21a33 + a23a32 − a12a21,

y3 = a11(a21a33 + a23a32) + a13a21(a31 + a32) + a12a23a31 − a12a21a33.
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Moreover, algebraic equation (66) is equivalently transformed into

(H1J1)M2
1 (H1J1)T + B1(H1J1)Σ1(H1J1)T + (H1J1)Σ1(H1J1)TBT

1 = 0,

letting

Θ1 = %−2
1 (H1J1)Σ1(H1J1)T, %1 = a21k1σ1,

algebraic equation (66) is converted as

G2
0 + B1Θ1 + Θ1B

T
1 = 0. (69)

Noting that A has all negative real-part eigenvalues, then B1 is a Hurwitz matrix. By Lemma 5.1,
Θ1 is positive definite and takes the form

Θ1 =
1

2(y1y2 − y3)




y2 0 −1
0 1 0

−1 0
y1

y3


 .

Therefore, Σ1 = %2
1(H1J1)−1Θ1[(H1J1)T]−1.

Case 2. If k1 = 0, we choose Ĥ1 such that B̂1 = Ĥ1A1Ĥ
−1
1 , where

Ĥ1 =




a21 −a2
21 + a23a31

a21
−a23

0 1 0
0 0 1


 , B̂1 =




−b1 −b2 −b3

1 0 0

0 0 −a33a21 − a23a31

a21


 .

One can equivalently transform (66) into

(Ĥ1J1)M2
1 (Ĥ1J1)T + B̂1(Ĥ1J1)Σ1(Ĥ1J1)T + (Ĥ1J1)Σ1(Ĥ1J1)TB̂T

1 = 0,

letting

Θ̂1 = %̂−2
1 (Ĥ1J1)Σ1(Ĥ1J1)T, %̂1 = a21σ1,

algebraic equation by Lemma 5.2, (66) becomes

G2
0 + B̂1Θ̂1 + Θ̂1B̂

T
1 = 0, (70)

with

Θ̂1 = diag
{ 1

2b1
,

1
2b1b2

, 0
}

. (71)

Therefore, Σ1 = %̂2
1(Ĥ1J1)−1Θ̂1[(Ĥ1J1)T]−1.

Step 2. For the algebraic equation

M2
2 + AΣ2 + Σ2A

T = 0, (72)
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we find the corresponding elimination matrix J2 such that A2 = J2AJ−1
2 , where

J2 =




0 1 0

0 −a12

a32
1

1 0 0


 , A2 =




−a21 −a23 +
a12a21

a32
a21

a32 −a33 +
a12a31

a32
a31

0 k2 −a11 − a12a31

a32




,

with

k2 = −a13 +
a12

a32

(
a33 − a11 − a12a31

a32

)
.

Similarly, the following two cases are considered.
Case 1. If k2 6= 0, let B2 = H2A2H

−1
2 , where

H2 =




a32k2 −(a11 + a33)k2 ∆2

0 k2 −a11 − a12a31

a32

0 0 1


 , (73)

with

∆2 =
a2
11a

2
32 + 2a11a12a31a32 + a2

12a
2
31 + a31a

2
32k2

a2
32

.

In fact, one can equivalently transform (72) into

(H2J2)M2
2 (H2J2)T + B2[(H2J2)Σ2(H2J2)T] + [(H2J2)Σ2(H2J2)T]BT

2 = 0,

letting

Θ2 = %−2
2 (H2J2)Σ2(H2J2)T, %2 = a32k2σ2,

which by Lemma 5.1 can be simplified as

G2
0 + B2Θ2 + Θ2B

T
2 = 0, (74)

with

B2 =




−q1 −q2 −q3

1 0 0
0 1 0


 , Θ2 =

1
2(q1q2 − q3)




q2 0 −1
0 1 0

−1 0
q1

q3


 .

In other words, Σ2 = %2
2(H2J2)Θ2[(H2J2)T]−1.

Case 2. If k2 = 0, we choose Ĥ2 such that B̂2 = Ĥ2A2Ĥ
−1
2 , where Ĥ2 and B̂2 are given by

Ĥ2 =




a32
a12a31 − a32a33

a32
a31

0 1 0
0 0 1


 , B̂2 =




−w1 −w2 −w3

1 0 0

0 0 −a11 − a12a31

a32


 .

One can equivalently transform (72) into

(Ĥ2J2)M2
2 (Ĥ2J2)T + B̂2[(Ĥ2J2)Σ2(Ĥ2J2)T] + [(Ĥ2J2)Σ2(Ĥ2J2)T]B̂T

2 = 0,
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letting

Θ̂2 = %̂−2
2 (Ĥ2J2)Σ2(Ĥ2J2)T, %̂2 = a32σ2,

which by Lemma 5.2 is simplified as

G2
0 + B̂2Θ̂2 + Θ̂2B̂

T
2 = 0, (75)

with

Θ̂2 = diag
{ 1

2w1
,

1
2w1w2

, 0
}

.

In other words, Σ2 = %̂2
2(Ĥ2J2)Θ̂2[(Ĥ2J2)T]−1.

Step 3. For the following algebraic equation

M2
3 + AΣ3 + Σ3A

T = 0, (76)

we find the corresponding elimination matrix J3 such that A3 = J3AJ−1
3 , where

J3 =




0 0 1
1 0 0

−a23

a13
1 0


 , A3 =




−a33 a31 +
a32a23

a13
a32

−a13 −a11 +
a23a12

a13
a12

0 k3 −a21 − a23a12

a13


 ,

with

k3 = a21 +
a23a11

a13
+

a23(−a23a12 − a13a21)
a2
13

.

Similarly, the following two cases are discussed.
Case 1. If k3 6= 0, we find H3 such that B3 = H3A3H

−1
3 , where

H3 =




−a13k3 −(a11 + a21)k3 ∆3

0 k3 −a12a23 + a13a21

a13

0 0 1


 ,

where

∆3 =
a2
12a

2
23 + a12a

2
13k3 + 2a12a13a21a23 + a2

13a
2
21

a2
13

.

So, (76) is equivalently transformed into

(H3J3)M2
3 (H3J3)T + B3[H3J3Σ3(H3J3)T] + [(H3J3)Σ3(H3J3)T]BT

3 = 0,

letting

Θ3 = %−2
3 (H3J3)Σ3(H3J3)T, %3 = a13k3σ3,

by Lemma 5.1, thus (76) is simplified as

G2
0 + B3Θ3 + Θ3B

T
3 = 0, (77)
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where

B3 =




−s1 −s2 −s3

1 0 0
0 1 0


 , Θ3 =

1
2(s1s2 − s3)




s2 0 −1
0 1 0

−1 0
s1

s3


 .

In other words, Σ3 = %2
3(H3J3)Θ3[(H3J3)T]−1.

Case 2. If k3 = 0, we choose Ĥ3 such that B̂3 = Ĥ3A3Ĥ
−1
3 , where

Ĥ3 =




−a13
−a11a13 + a12a23

a13
a21

0 1 0
0 0 1


 , B̂3 =




−z1 −z2 −z3

1 0 0

0 0 −a11 − a12a31

a32


 .

We equivalently transform (76) into

(Ĥ3J3)M2
3 (Ĥ3J3)T + B̂3[(Ĥ3J3)Σ3(Ĥ3J3)T] + [(Ĥ3J3)Σ3(Ĥ3J3)T]B̂T

3 = 0,

letting

Θ̂3 = %̂−2
3 (Ĥ3J3)Σ3(Ĥ3J3)T, %̂3 = a13σ3,

so, (76) is simplified as

G2
0 + B̂3Θ̂3 + Θ̂3B̂

T
3 = 0, (78)

with

Θ̂3 =




1
2z1

0 0

0
1

2z1z2
0

0 0 0


 .

In other words, Σ3 = %̂2
3(Ĥ3J3)Θ̂3[(Ĥ3J3)T]−1.

6. Numerical simulations

Milstein’s higher order method for stochastic differential equations was established in [40]. In this
section, we adopt Milstein’s method to write the equations of discretization to model (3), the details are
suggested to read [10, 17, 22, 31], and other methods for simulations are suggested to read [18, 41] and
references therein.

Example 6.1. We present numerical simulations to illustrate our main theoretical results about
persistence. We assume that a1 < a2, and let the initial values of model (3) be S(0) = 2, V (0) =
0.5, I(0) = 0.5, and other parameters be γ = 0.7,K = 5, β = 0.5, τ = 0.25, δ = 0.15, ζ = 0.07, ϑ =
0.005345, µ = 0.002, σ1 = 0.05, σ2 = 0.05, σ3 = 0.05, a1 = 1.5, a2 = 4. It is easy to check that conditions
of Theorem 2.2 are satisfied as follows:

Rs
0 = 1.3492 > 1, 0.002 = µ > 0.5(σ2

1 ∨ σ2
2 ∨ σ2

3) = 0.00125, 1.26 = 2(γ − ζ) > σ2
1 = 0.0025.
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Figure 1 shows that the susceptible, the vaccinated and the infected are persistent in the mean for a
long run. Figure 2 presents the persistence of the infected when a1 and a2 vary, the corresponding
simulations reveal that the density of the infected decreases when a1 and a2 increase. The persistence
for the susceptible and the vaccinated could be found in Figure 3 as ϑ varies and Figure 4 as ζ varies.
More precisely, the density of the susceptible increases, and the density of the vaccinated decreases as ϑ

increases in Figure 3. The density of the susceptible decreases, and the density of the vaccinated increases
as ζ increases in Figure 4.
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Figure 1: Persistence in the mean of the susceptible, the vaccinated and the infected.
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Figure 2: Persistence in the mean of the infected, as a1 and a2 increase.
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Figure 3: Densities of the susceptible and the vaccinated as ϑ increases.

Example 6.2. The extinction will be discussed here, let the initial values of model (3) be S(0) =
2, V (0) = 1, I(0) = 1, and other parameters be γ = 0.1,K = 4, β = 0.5, τ = 0.5, δ = 0.5, ζ = 0.8, ϑ = 0.5,
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Figure 4: Densities of the susceptible and the vaccinated as ζ increases.

µ = 0.3, σ1 = 0.05, σ2 = 0.05, σ3 = 0.05, a1 = 3, a2 = 4. It is easy to check that conditions of Theorem
4.1 are satisfied as follows:

Re
0 = 0.2562 < 1, 0.3 = µ > 0.5(σ2

1 ∨ σ2
2 ∨ σ2

3) = 0.00125.

Thus corresponding simulations reveal that the extinction will occur for a long run. The density of the
infected exponentially tends to the extinction as β decreases and as δ, τ, µ, ζ, σ3 increase as well in Figures
5-7.
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Figure 5: Extinction of the infected with an exponential rate as β and δ increase.
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Figure 6: Extinction of the infected with an exponential rate as τ and µ increase.

Example 6.3. Let the initial values of model (3) be S(0) = 2, V (0) = 1, I(0) = 1 and other
parameters be γ = 0.5,K = 1, β = 0.3, τ = 0.35, δ = 0.08, ζ = 0.8, ϑ = 0.2, µ = 0.08, σ1 = 0.05, σ2 =
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Figure 7: Extinction of the infected with an exponential rate as ζ and σ3 increase.
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Figure 8: Solid lines for model (3), dashed dots for model (2) on left panel. Distributions of the densities
to model (3) with the intensities (σ1, σ2, σ3) = (0.05, 0.05, 0.05) on right panel.
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0.05, σ3 = 0.05, a1 = 3, a2 = 4. It is easy to check that the equilibrium point is F ∗ = (0.494, 1.373, 0.025),
and k1 = 0.5015 6= 0, k2 = −1.3981 6= 0, k3 = 0.2727 6= 0, and also that conditions (61) are satisfied as
follows:

Rp
0 = 1.08797 > 1, 2a1 + a2

1 − a2 = 8 > 0,

γ(µ + δ + τ + 0.5σ2
3)− βξK = 0.041525 > 0, γϑ(µ + δ + τ + 0.5σ2

3)− βξ2K = 0.015625 > 0.

By Theorem 5.3, we obtain that model (3) has a unique stationary distribution, which is ergodic.
Remark 6.1. The main results for model (1) and model (3) had shown that the corresponding sample

paths of the stochastic models had less impacts on the persistence and the stability, compared with those
in the deterministic models. That was to say, both model (1) and model (3) admitted the persistence in
the mean and the ergodic stationary distributions under some moderate conditions. Precisely, σ1, σ2, σ3

did not take great impacts on the persistence for the corresponding sample paths in Figure 2 in [1] and
Figure 1 of our paper. Further, under the condition Rs

0 > 1, the parameters ϑ, ζ, a1, a2 in Figures 2-4
change the densities of model (3).

Remark 6.2. The extinction was derived in Theorem 2 of [1] and Theorem 4.1 under the correspond-
ing suitable conditions, which are demonstrated in Figure 1 of [1] and in Figures 5-7 at Example 6.2. In
addition, we found that the parameters β, δ, τ, µ, σ3, ζ in model (3) played some roles on the extinction
as Re

0 < 1 was valid. Especially, the parameters δ, τ, µ had great impacts on the time for the infected
whose density declined to zero.

7. Conclusions and discussions

In this paper, we study the dynamic behaviors of a stochastic SVIR model with the saturation inci-
dence. Two critical thresholds Rs

0 and Re
0 by constructing appropriate Lyapunov functions are obtained,

we further prove the existence of a unique ergodic stationary distribution when Rs
0 > 1 holds, and the

extinction of infectious diseases for a long time when Re
0 < 1 holds. Further, the numerical simulations

show that the parameters of model (3) have the crucial impacts on the persistence and the extinction as
demonstrated in Theorem 2.2 and Theorem 4.1 respectively. Meanwhile, we find the expression of the
probability density function in Theorem 5.3 around the quasi-endemic equilibrium point by applying the
asymptotic analysis and Fokker-Planck equation when Rp

0 > 1 holds. Figure 8 presents the sample paths
and the distributions of the densities of the susceptible, the vaccinated and the infected.

Model (1) assumes that the vaccinated return to the recovered and do not get infected any more.
According to the mechanism of the spreading of COVID-19, we further propose the assumption of model
(3) that the vaccinated lose their immunities and return to the susceptible. Moreover, model (1) governs
the bilinear incidence to describe transmission rates, but for the pandemic COVID-19, the infected
produce the crowdedness effect when the number of the infected is large enough, so we modify the
bilinear incidence into the saturation incidence by using the saturated constants a1 and a2. We notice
that, the persistence and the extinction are studied in both model (1) and model (3), the research results
show that the time that the density of the infected tends to zero is less when the intensities of the
white noises are larger. Meanwhile, we also provide the expression of the probability density function in
Theorem 5.3 in this paper, instead of the existence of a nontrivial periodic solution of model (1).
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