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Abstract

The purpose of this paper is to present a comprehensive study of a coherent feedback

network where the main component consists of two distant double quantum dot (DQD)

qubits which are directly coupled to a cavity. This main component has recently been

physically realized (van Woerkom, et al., Microwave photon-mediated interactions between

semiconductor qubits, Physical Review X, 8(4):041018, 2018). The feedback loop is closed

by cascading this main component with a beamsplitter. The dynamics of this coherent

feedback network is studied from three perspectives. First, an analytic form of the output

single-photon state of the network driven by a single-photon state is derived; in particular, it

is observed that coherent feedback elongates considerably the interaction between the input

single photon and the network. Second, excitation probabilities of DQD qubits are computed

when the network is driven by a single-photon input state. Moreover, if the input is vacuum

but one of the two DQD qubits is initialized in its excited state, the explicit expression of

the state of the network is derived, in particular, it is shown that the output field and the

two DQD qubits can form an entangled state if the transition frequencies of two DQD qubits

are equal. Finally, the exact form of the pulse shape is obtained by which the single-photon

input can fully excite one of these two DQD qubits at any controllable time, which may be

useful in the construction of 2-qubit quantum gates.
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1 Introduction

In the past few decades, quantum control has attracted much attention due to the rapid develop-

ment of quantum information science and technology. Efficient manipulation of the interaction

between photons (flying qubits) and finite-level quantum systems (stationary qubits) is neces-

sary for quantum control which enables quantum communication [17], quantum network [23]

and quantum filtering [3]. With the advancement of technology in quantum optics, the ultra-

strong coupling regime of quantum light-matter interaction is currently an active research field

[4, 25, 15]. The interaction between a DQD qubit and a nearby quantum point contact (QPC)

is investigated in [9, 10]. Particularly, Lyapunov-based control method is used in [9] to transfer

the charge qubit to its target state. In [10], the master equation for a DQD qubit is derived and

the measurement-induced backaction is considered. Moreover, a Hamiltonian feedback control

law is proposed to realize and stabilize the current convergent to the target value.

As the flying qubits, single photons are a promising candidate for quantum information pro-

cessing. For example, the strong nonlinear interaction between photons and optical emitters can

be used to engineer a single-photon transistor [6]. The operation principle of the single-photon

transistor is to use either zero or one photon in the storage step, then the subsequent trans-

mitted or reflected photons are controlled by the conditional flip of the “gate” pulse. Another

single-photon transistor is introduced in [27] to setup a circuit quantum electrodynamical (cir-

cuit QED) model, which consists of two two-level systems. Although no photons are exchanged

between the two transmission lines in this circuit, one photon can completely block or enable

the propagation of the other by the interaction between the two two-level systems. Recently,

the realization of an optical transistor is given in [7], which consists of a four-level system and

a stored photon to control the transmission of source photons.

From a control-theoretic point of view, analysis of quantum systems’ response to single-

photon states is an essential aspect of control systems engineering. The interaction of quantum

systems with single-photon states has been extensively studied, see e.g., [33, 13, 31, 42, 30, 44].

The transmission and reflection probabilities in terms of the stationary output photon state

are discussed by using the scattering matrix [33, 13, 31]. In [30], an analytical expression of

the output field state is derived for a class of quantum finite-level systems driven by single-

photon input states. Interestingly, it is shown that quantum linear systems theory [42, 43]

can be adopted to derive the pulse shapes of the output single-photon states. On the other

hand, the problem of quantum filtering for systems driven by single-photon states has been

attracting growing interest due to their promising applications in quantum communication and

measurement feedback control, see e.g., [19, 5, 41, 45, 12] and references therein.

Recently, the microwave photon-mediated interactions between semiconductor qubits have

been physically implemented in [36, 2, 38]. In this paper, we study an open quantum system

which has recently been physically implemented on a semiconducting platform [36]. In this
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system, two double quantum dots (DQDs) are modeled as two charge qubits. These two DQD

qubits are separated from one another; however they are both directly coupled to a microwave

cavity. In other words, the cavity enables information exchange between the distant two DQD

qubits, which is important for quantum information processing. In [36], the dynamics of this

system is studied when it is driven by a laser (namely a coherent state). In this paper, we are

interested in its dynamics when it is driven by a single photon. For easy reference, this system

is called the coupled system G in our paper. Moreover, we cascade a beamsplitter with G to

form a quantum coherent feedback network as shown in Fig. 1, and aim to study the dynamics

of this coherent feedback network. The contribution of this paper is three-fold as summarized

below.

Firstly, an analytic expression of the output single-photon state is derived when the coher-

ent feedback network is driven by a continuous-mode single-photon state; see Theorem 1. To

establish this result, the Routh like table and the Sign Pair Criterion (SPC) developed in [34]

are utilized. Moreover, techniques for single photon processing developed in [42, 30] are also

employed. Theorem 1 is illustrated by using a single photon of an exponentially rising pulse

shape to drive the coherent feedback network. Differences among red detuned, blue detuned,

and red+blue detuned dynamics are demonstrated. In particular, it is observed that coherent

feedback is able to elongate considerably the interaction between the input single photon and

the system.

Secondly, the excitation of the DQD qubits by a single-photon input state is investigated.

In particular, it is demonstrated that red+blue detunings allow higher excitation probabilities.

Moreover, assuming that one DQD qubit is initialized in its excited state while the coherent

feedback network is driven by a vacuum input, an explicit form of the state of the coherent

feedback network is derived by means of the quantum stochastic Schrödinger equation (QSSE).

In particular, when the transition frequencies of the two DQD qubits are equal to each other, it

is shown that the output field and the two DQD qubits form an entangled state; see Theorem

2. This interesting phenomenon cannot occur if there is only one DQD qubit in this coherent

feedback network.

Finally, we study the problem of how to fully excite a DQD qubit by using a single photon

with a special designed pulse shape; see Theorem 3. To derive this result, both the Schrödinger

picture and the Heisenberg picture of open quantum systems have to be used together. A related

problem is studied in [29], where it is shown how to design a single-photon pulse shape to excite

an atom residing in a cavity (Cavity QED).

The rest of this paper is organized as follows. Some preliminaries are summarized in Section

2, which include notation to be used, open quantum systems and single-photon states. The

quantum coherent feedback network is presented in Section 3. The steady-state output field

state of the coherent feedback network driven by a single-photon input is derived in Section
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4. Section 5 presents the master equations for the 1st DQD qubit and discusses the changes

of excitation probability with various system parameters. A single-photon inverting pulse is

designed in Section 6, which is able to fully excite a DQD qubit. Section 7 concludes this paper.

2 Preliminaries

In this section, we introduce the notation to be used in this paper. A concise introduction to

open Markovian quantum systems and continuous-mode single-photon states is also provided,

as the model studied in this paper lies in this framework.

Notation. Let i =
√
−1 be the imaginary unit and |Φ0〉 the vacuum state of a free-propagating

field. Given a column vector of complex numbers or operators X = [x1, · · · , xn]>, the complex

conjugate or adjoint operator of X is denoted by X# = [x∗1, · · · , x∗n]>. Let X† = (X#)>. Clearly,

when n = 1, X† = X∗. We use “†” instead of “∗” throughout this paper. [A,B] = AB − BA
denotes the commutator between operators A and B. Define two superoperators as

Lindbladian : LGX , −i[X,H] +DLX,

Liouvillian : L?Gρ , −i[H, ρ] +D?Lρ,
(1)

where DAB = A†BA − 1
2(A†AB + BA†A) and D?AB = ABA† − 1

2(A†AB + BA†A). We have

Tr[ρLGX] = Tr[XL∗Gρ] for a density operator ρ and a bounded operator X. Finally, ⊗ denotes

the tensor product.

2.1 System and field

Open Markovian quantum systems can be parameterized conveniently by the (S,L,H) formalism

[21, 18, 35, 41, 8, 22]. To be specific, for a quantum system driven by free-propagating Boson

fields, S is a unitary operator for example a phase shifter or beamsplitter. The coupling between

the system and the fields is described by the operator L, and the self-adjoint operator H is the

initial system Hamiltonian. S,L,H are all operators on the system Hilbert space HS . A free-

propagating field is described by its annihilation operator b(t) and creation operator b†(t) (the

adjoint of b(t)), which are operators on a Fock space HF and satisfy the following properties

b(t) |Φ0〉 = 0, [b(t), b(r)] = [b†(t), b†(r)] = 0, [b(t), b†(r)] = δ(t− r), ∀t, r ∈ R. (2)

The integrated annihilation operator and creation operator are defined as B(t) =
∫ t
t0
b(s)ds and

B†(t) =
∫ t
t0
b†(s)ds, respectively, where t0 is the time when the system and field start interaction.

An open quantum system exchanges energy/information with its environment — the free-

propagating Boson fields. Assuming S = I (the identity operator), the dynamical evolution

of the total system (the system of interest plus fields) can be described by a unitary operator
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U(t, t0) on the tensor product Hilbert space HS ⊗ HF , which is the solution to the following

quantum stochastic differential equation (QSDE) [16, 3, 18, 20, 30]

dU(t, t0) =

{
−
(

1

2
L†L+ iH

)
dt+ LdB†(t)− L†dB(t)

}
U(t, t0), t ≥ t0 (3)

with the initial condition U(t0, t0) = I. Let |Ψ(t)〉 be the state (wavefunction) of the total

system at time t ≥ t0. Then in the Schrödinger picture it is well-known that

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 . (4)

On the other hand, we can also study the dynamics of the system in the Heisenberg picture.

Based on (3), the time evolution of a system operator X on HS , defined as

jt(X) ≡ X(t) , U †(t)(X ⊗ I)U(t), (5)

is given by [3, 18, 20, 30]

djt(X) = jt(LGX)dt+ jt([L
†, X])dB(t) + jt([X,L])dB†(t). (6)

As terms dB(t) and dB†(t) are involved in the time evolution of jt(X), it is an operator on the

tensor product Hilbert space HS⊗HF . In this way, the system takes information from the input

fields. After system-field interaction, an output field is generated, which in the input-output

formalism is given by [3, 18, 20, 30]

dBout(t) = L(t)dt+ dB(t), (7)

where Bout(t) = U †(I ⊗B(t))U(t) denotes the integrated output annihilation operator. Clearly,

Bout(t) is an operator on the tensor product Hilbert space HS ⊗ HF . Thus, the output fields

carry the system’s information which can be measured. More discussions on open quantum

systems can be found in, e.g. [37, 39, 11, 1, 26, 28, 45].

2.2 Continuous-mode single-photon state

A continuous-mode single-photon state in the time domain can be defined as

|Φ1〉 , B†(ξ) |Φ0〉 , (8)

where ξ(t) is the temporal pulse shape which satisfies ‖ξ‖ ,
√∫∞
−∞ |ξ(t)|2dt = 1, and

B†(ξ) ,
∫ ∞
−∞

ξ(t)b†(t)dt. (9)

Simply speaking, (8) means that a photon is generated by the creation operator b†(t) from

the vacuum |Φ0〉 with probability |ξ(t)|2, thus the normalization condition ‖ξ‖ = 1 guarantees
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that exactly one photon is generated. Fourier transforming (8), yields the continuous-mode

single-photon state in the frequency domain,

|Φ1〉 =

∫ ∞
−∞

ξ[iω]b†[iω]dω |Φ0〉 , (10)

where square brackets are used to indicate that the designated operators or functions are in the

frequency domain. Generally speaking, the continuous-mode single-photon state |Φ1〉 in (10)

describes a single photon which is coherently superposed over a continuum of frequency modes,

with probability amplitudes given by the spectral density function ξ[iω]. In other words, the

probability of finding the photon in the frequency interval [ω, ω+dω) is |ξ[iω]|2, or equivalently,

the probability of finding the photon in the time interval [t, t + dt) is |ξ(t)|2. More discussions

on single-photon states can be found in, e.g., [24, 13, 32, 44].

3 Coherent feedback network

In this paper we focus our sight on the dynamics of the quantum coherent feedback network as

shown in Fig. 1. In this section, we describe the mathematical model.

The coupled system G consists of two DQD qubits which are directly coupled to a microwave

cavity. The system G has been recently physically implemented in a semiconductor platform

[36]. It is worthwhile to notice that the two DQD qubits are separated from each other, thus

their interaction is mediated by the microwave cavity which plays the role of a bus. In this

paper, we add a beamsplitter which cascades with G, thus forming a coherent feedback network

with input b0 and output b3.

Figure 1: Schematic of the coherent feedback network.

In the (S,L,H) formalism, the beamsplitter Sb in Fig. 1 has parameters (Sb, 0, 0) where

Sb =

[
µ

√
1− µ2√

1− µ2 −µ

]
(11)
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with µ being the reflection parameter (0 ≤ µ < 1). We consider the two DQDs are in the

Coulomb-blockade regime with strong intradot and interdot interaction, respectively. Thus,

each DQD can be spanned by two basis states |0〉 = |1, 0〉 and |1〉 = |0, 1〉. With furthermore

transformation, each DQD has a ground state |g〉 = α |0〉 − β |1〉 and an excited state |e〉 =

β |0〉 + α |1〉, where α and β represent the relationship between the coupling strength and the

energy offset. In this paper, a DQD qubit has a Hamiltonian of the from

HDQD =
ω0

2
σz, (12)

where σz = |g〉〈g| − |e〉〈e| is a Pauli matrix, and ω0 is the transition frequency between |g〉 and

|e〉, which is typically around 5 GHz [36, 15]. It should be noted that the transition frequency

ω0 is normalized as unit 1 throughout this paper. Therefore, the two DQD qubits in Fig. 1 are

expressed with the (S,L,H) parameters

(SDQDk , LDQDk , HDQDk) = (−,−, 1

2
δωkσz,k), k = 1, 2, (13)

where δωk = ωk − ωp (k = 1, 2) is the detuning between the transition frequency ωk of the

kth DQD qubit and the carrier frequency ωp of the input field. Moreover, δωk > 0 means

the red detuning, while the blue detuning is effected by δωk < 0. As the DQD qubits are

directly coupled to the cavity, instead of fields, they have no S and L parameters. Under the

rotating-wave approximation (RWA), the Hamiltonian of the coupled system G is

Hsys = δωra
†a+

1

2

2∑
k=1

δωkσz,k +
2∑

k=1

gk sin θk(σ−,ka
† + σ+,ka), (14)

where δωr is the frequency detuning between the cavity and the input field, and σ− = |g〉 〈e|,
σ+ = |e〉 〈g| are the lowering and raising operators of the DQD qubit. The third term in

(14) models the direct coupling between the two DQD qubits and the cavity. (A more detailed

description of direct coupling between quantum systems can be found in [40, 41]). The microwave

cavity is lossy, in other words, it exchanges energy with its environment. Let its coupling strength

be denoted by κ. Then, in the (S,L,H) formalism, the coupled system G is parameterized as

(Ssys, Lsys, Hsys) =

(
1,
√
κa, δωra

†a+
1

2

2∑
k=1

δωkσz,k +

2∑
k=1

gk sin θk(σ−,ka
† + σ+,ka)

)
. (15)

Remark 1. The coupled system G has recently been physically implemented on a semiconducting

platform [36]. The system Hamiltonian Hsys in (15) is the same as that in [36], cf. [36, (C7)].

The system G studied in [36] is driven by a laser which is modelled as a coherent state with

amplitude α. In this paper, the input is either the vacuum or a single-photon state, in either of

these two cases α = 0. As a result, the coupling operator in [36, (C13)] reduces to
√
κexta, which

is Lsys in (15) where κ is used instead of κext. Finally, the nonradiative losses and dephasing
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processes are neglected in our paper. An interested reader may refer to [36] for more details

of the physics and practical implementation of the coupled system G. Finally, for notational

simplicity, we denote gk sin θk by Γk in the remainder of this paper.

By means of the (S,L,H) parameters in Eq. (15), the quantum stochastic differential equa-

tions for the coupled system G in the Heisenberg picture can be derived as, σ̇−,1

σ̇−,2

ȧ

 =

 iδω1 0 −iΓ1σz,1

0 iδω2 −iΓ2σz,2

−iΓ1 −iΓ2 −iδωr − κ
2


 σ−,1

σ−,2

a

−
 0

0
√
κ

 b1,
b2 =

√
κa+ b1.

(16)

Clearly, (16) is a bilinear system. Let the coupled system G be initialized in the state |g1〉 ⊗
|g2〉⊗|0〉; in other words, the two DQD qubits are in their ground states and the cavity is empty.

Moreover, let the input field b1 to the coupled system G be in the vacuum state |Φ0〉. Denote

|Φ〉 = |g1〉 ⊗ |g2〉 ⊗ |0〉 ⊗ |Φ0〉 , (17)

and X(t) = [ σ−,1(t) σ−,2(t) a(t) ]T . Then, following the proofs of Lemma 3 and Theorem 5

in [30], it can be shown that

〈Φ|Ẋ(t) = A〈Φ|X(t) +B〈Φ|b1(t),

b2(t) = CX(t) + b1(t),
(18)

where B = [ 0 0 −
√
κ ]T , C = −BT , and

A =

 iδω1 0 −iΓ1

0 iδω2 −iΓ2

−iΓ1 −iΓ2 −iδωr − κ
2

 . (19)

Next, we look at the closed-loop system. The beamsplitter Sb in Fig. 1 is a static system,[
b3

b1

]
= Sb

[
b0

b2

]
. (20)

By the linear fractional transform [41, Section 4.4], the coherent feedback network in Fig. 1 can

be expressed in the (S,L,H) formalism as

(Stotal, Ltotal, Htotal) =

(
1,

√
1− µ
1 + µ

Lsys, Hsys

)
. (21)

Remark 2. By comparing the (S,L,H) parameters (21) of the quantum coherent feedback net-

work and (15) of the coupled system G, it can be seen that only the coupling operator has been
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changed by the beamsplitter. More specifically, κ is replaced with κ̃ , 1−µ
1+µκ. Thus, the coupling

strength between the coupled system and the input field, or the decay rate of the cavity, can be

tuned by changing the beamsplitter reflection parameter µ. Clearly, the coherent feedback network

reduces to the open-loop coupled system G when µ = 0.

By (21), only the coupling strength is changed by the beamsplitter. As a result, similar to

(18), the QSDEs for the quantum coherent feedback network acting on 〈Φ| is

〈Φ|Ẋ(t) = Ã〈Φ|X(t) + B̃〈Φ|b0(t),

b3(t) = C̃X(t) + b0(t),
(22)

where

Ã =

 iδω1 0 −iΓ1

0 iδω2 −iΓ2

−iΓ1 −iΓ2 −iδωr − κ̃
2

 , B̃ =
[

0 0 −
√
κ̃
]T
, C̃ = −B̃T . (23)

(Recall that κ̃ = 1−µ
1+µκ as defined in Remark 2.) System (22) is of the form of a linear quantum

system. By linear systems theory ([42, 28, 30]) we get

〈Φ| b3(t) = C̃eÃ(t−t0) 〈Φ|X(t0) +

∫ t

t0

gG̃(t− τ) 〈Φ| b0(τ)dτ, (24)

where the impulse response function gG̃(t) is given by

gG̃(t) =

{
δ(t) + C̃eÃtB̃, t ≥ 0,

0, t < 0,
(25)

whose corresponding transfer function is

G̃[s] =
2Γ2

1(s− iδω2) + 2Γ2
2(s− iδω1) + (s− iδω1)(s− iδω2)(2s− κ̃+ 2iδωr)

2Γ2
1(s− iδω2) + 2Γ2

2(s− iδω1) + (s− iδω1)(s− iδω2)(2s+ κ̃+ 2iδωr)
. (26)

It can be verified that G̃[s] is an all-pass filter, which only modulates the phase of the input

light. It can be easily seen that the coupled system G is an all-pass filter too.

4 The steady-state output field state

4.1 The steady-state output field state

In this section, assuming the coupled system G is initialized in the state |g1〉 ⊗ |g2〉 ⊗ |0〉 and

the input field b0 is in a single-photon state, we aim to derive an analytic expression of the

steady-state output field state in the output channel b3. We begin with the following lemma.

Lemma 1. All the eigenvalues of the matrix Ã have non-positive real part. Moreover, the matrix

Ã is marginally stable if and only if δω1 = δω2.
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Proof. Firstly, as the eigenvalues of the matrix Ã+ Ã† are {0, 0, − κ̃}, all the eigenvalues

of the matrix Ã have non-positive real part. In what follows, we show that the matrix Ã is

marginally stable if and only if δω1 = δω2. Let λ be an eigenvalue of the matrix Ã. Then the

characteristic polynomial equation is

λ3 + (p1 + q1i)λ
2 + (p2 + q2i)λ+ (p3 + q3i) = 0, (27)

where
p1 = κ̃,

q1 = 2(δωr − δω1 − δω2),

p2 = 4Γ2
1 + 4Γ2

2 − 4δω1δω2 + 4δω1δωr + 4δω2δωr,

q2 = −2κ̃(δω1 + δω2),

p3 = −4κ̃δω1δω2,

q3 = −8(Γ2
1δω2 + Γ2

2δω1 + δω1δω2δωr).

(28)

The generalized Hurwitz matrix [34] is given by

M =



p1 q2i p3 0 0 0

1 q1i p2 q3i 0 0

0 p1 q2i p3 0 0

0 1 q1i p2 q3i 0

0 0 p1 q2i p3 0

0 0 1 q1i p2 q3i


. (29)

Let ∆j be the j-th order determinant of M , j = 1, . . . , 6. Then the Routh like table gives

R1 = 1, R2 = p1, Rj =
∆j−1

∆j−2
, j = 3, . . . , 6. (30)

All the three pairs of points P1(R1, R2), P2(R3, R4), P3(R5, R6) have the same signs (R3 and R4

are pure imaginary) is equivalent to

R1R2 > 0, R3R4 < 0, R5R6 > 0, (31)

which is equivalent to δω1 6= δω2. Consequently, according to the Sign Pair Criterion (SPC)

[34], all the eigenvalues λi of system matrix Ã are in the L.H.S. of the complex plane if and only

if δω1 6= δω2. Thus, the matrix Ã is marginally stable if and only if δω1 = δω2. �

With the aid of Lemma 1, we are ready to prove the main result of this section.

Theorem 1. Let the quantum coherent feedback network be driven by a single-photon input

state (10), and the coupled system G be initialized in the state |g1〉⊗ |g2〉⊗ |0〉. Then the steady-

state (t0 → −∞ and t → ∞) output field state of this quantum coherent feedback network is a

single-photon state with the spectral density function

η[iω] = G̃[iω]ξ[iω], (32)
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where the transfer function G̃ is given by (26).

Proof. The proof follows the techniques first developed in [42] for linear quantum systems

and further generalized in [30] to the quantum finite-level systems. The result holds if the

following critical conditions hold

C1. C̃eÃ(t−t0) 〈Φ|X(t0)→ 0 as t0 → −∞;

C2. The transfer function G̃[s] has no roots on the imaginary axis.

Clearly, if the matrix Ã is Hurwitz stable, then both C1 and C2 are naturally satisfied.

Hence, by Lemma 1, it suffices to check the marginal stability case of δω1 = δω2. Let δω1 =

δω2 = δωs. Then the system matrix Ã can be factorized as

Ã = V −1ΛsV, (33)

where Λs = diag {λs1 , λs2, λs3} with the eigenvalues

λs1 = iδωs,

λs2 =
1

4

[
−κ̃− 2i(δωr + ωs)−

√
(κ̃+ 2i(δωr + ωs))2 − 16(Γ2

1 + Γ2
2)

]
,

λs3 =
1

4

[
−κ̃− 2i(δωr + ωs) +

√
(κ̃+ 2i(δωr + ωs))2 − 16(Γ2

1 + Γ2
2)

]
.

(34)

We denote V = {vij} and V −1 = {wij} with i, j = 1, 2, 3. It can be directly calculated that

v13 = 0, v23 = 1, v33 = 1, and w31 = 0. Consequently, we have

C̃eÃ(t−t0) 〈Φ|X(t0) = C̃V −1eΛs(t−t0)V 〈Φ|X(t0)→ 0, (35)

as t0 → −∞. Thus, Condition C1 holds. Moreover, by means of (33) and (34), the impulse

response function gG̃(t) in (25) can be calculated as

gG̃(t) = δ(t) + C̃V −1eΛstV B̃ = δ(t)− κ̃
(
w32e

λs2t + w33e
λs3t
)
, t ≥ 0. (36)

Consequently, the transfer function G̃[s] in (26) is of the form

G̃[s] = 1− w32κ̃

s− λs2
− w33κ̃

s− λs3
. (37)

As λs2 and λs3 are both in the L.H.S. of the complex plane, the roots of G̃[s] are in the L.H.S.

of the complex plane too. Thus, Condition C2 holds. Consequently, employing the techniques

developed in [42, 30] one can show that the steady-state output field state is a single-photon

state with pulse shape given in (32). �

We end this subsection with a final remark.

Remark 3. From the proof of Lemma 1, it is easy to see that Lemma 1 does not depend on the

specific value of κ̃; hence it also holds for the matrix A. Moreover, when µ = 0, the coherent

feedback network reduces to the coupled system G. As a result, Theorem 1 is also true for the

coupled system G.
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4.2 Simulations for the pulse shape of single-photon output state

In this subsection, we illustrate Theorem 1 by driving the coherent feedback network with a

single photon of the rising exponential pulse shape

ξ(t) =

{ √
γe(

γ
2

+iωp)t, t ≤ 0,

0, t > 0,
(38)

where ωp is the carrier frequency of the input light field. It can be shown that in the frequency

domain this pulse shape has the Lorentzian spectrum and γ is the full width at half maximum

(FWHM), [24, 44]. In what follows, both the open-loop case (namely the coupled system G)

and the closed-loop case (namely the coherent feedback network) are simulated.

First, we look at the open-loop case. The simulation results are shown in Fig. 2. We have

the following observations:

• Firstly, it can be observed that the real parts of the output pulse shapes are monotonically

increasing for t < 0. When t > 0, they start to oscillate and eventually settle to 0; see the

black solid, red dot-dashed, blue dotted, and purple solid curves in Fig. 2(a). Recall that

the pulse shape of a single-photon state is the probability amplitude of the single-photon

state, which gives the probability of finding the photon. Hence, the oscillating nature of

the output pulse shape η(t) implies that the photon might be absorbed and emitted by

the two DQD qubits from time to time, thus giving rise to the quantum Rabi modes.

(This is indeed confirmed by the simulations in Subsection 5.1.) Rabi oscillations often

appear in the Jaynes-Cummings model (interaction between an atom and a resonator or

cavity), where the atom alternately emits photons into the resonator and reabsorbs them.

It is interesting to see that the Rabi-oscillation-like phenomenon can be observed in the

coupled system G driven by a single photon. It is noteworthy to mention that the quantum

state collapse and revival phenomena [4, 25] cannot emerge in this scenario as the photon

eventually leaves the system due to the lossy nature of the cavity.

• Secondly, the pulse shape of the output single photon for the red detuning case and that

for the blue detuning case have the same real parts (see the coincidence between the red

dot-dashed curve and the blue dotted curve in Fig. 2(a)); whereas their corresponding

imaginary parts are axisymmetric (see the red and blue dashed curves in Fig. 2(b)).

Consequently, the phases of the temporal pulse shapes of the output single photons in these

two cases are opposite to each other, which indicates that detunings affect significantly

phase-matching. Moreover, this is consistent with the all-pass filter property of the coupled

system G, in which only the phase of the output single-photon state is changed.

• Thirdly, when the three components are tuned into mutual resonance (δω1 = δω2 = δωr =

0), the imaginary part of the output pulse shape remains 0 all the time (the black dashed

12



Figure 2: The green curve is the pulse shape of the single-photon input state ξ(t). The black

solid curve in Fig. 2(a) is the real part of the output pulse shape when the three components (two

DQD qubits and the microwave cavity) are tuned into mutual resonance δω1 = δω2 = δωr = 0,

the corresponding imaginary part is presented in Fig. 2(b) by the black dashed curve. Similar

descriptions are applied to the other three cases: red detuning (δω1 = δω2 = 1× 10−3ω0), blue

detuning (δω1 = δω2 = −1 × 10−3ω0), and red+blue detunings (δω1 = 1 × 10−3ω0, δω2 =

−1 × 10−3ω0). The two DQD qubits are equally coupled to the cavity Γ1 = Γ2 = 1 × 10−3ω0.

Moreover, κ = γ = 1× 10−3ω0 and δωr = 0.
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curve in Fig. 2(b)). The same result can be found when the detunings for these two DQD

qubits with the opposite signs (the purple dashed curve in Fig. 2(b)). Hence, phase shift

can be eliminated in these two scenarios. These phenomena can be verified theoretically.

Here we only demonstrate the mutual resonance case. Since the input pulse shape ξ(t)

in (38) is purely real, it suffices to prove that the impulse response function gG(t) is a

real-valued function. In the resonance case, gG(t) can be calculated to be

gG(t) = δ(t)− κ
(

cosh
[χ

4
t
]
− κ

χ
sinh

[χ
4
t
])

e−
κ
4
t, (39)

where χ =
√
κ2 − 16(Γ2

1 + Γ2
2). Clearly, no matter whether χ is real nor not, gG(t) is

always a real-valued function. Therefore, in the case of mutual resonance, the imaginary

part of the output pulse shape remains 0 all the time. The case of red+blue detunings can

be easily verified.

• Finally, compared with the cases of mutual resonance, red detuning and blue detuning, the

oscillation of the output single photon is more obvious for the case of red+blue detunings

(the purple solid curve in Fig. 2(a)), which means that the incident photon escapes from

the coupled system much more slowly than that for the other three cases. Since the incident

photon escapes from the coupled system much slowly in the case of red+blue detunings,

it results in a relatively higher excitation probability for DQD qubits, which is shown in

Fig. 6 of Subsection 5.1.

Next, we look at the closed-loop case. Choose the beamsplitter reflection parameter µ = 0.6.

The other parameters are set as those for Fig. 2. The simulation results are shown in Fig. 3. It

can be seen that in contrast to the open-loop case, the oscillations of both real and imaginary

parts of the output pulse shapes in all cases persist for a much longer time; in other words,

coherent feedback elongates the interaction between the system and the input single photon.

5 The excitation probabilities

In Section 4, we studied how the coherent feedback network in Fig. 1 processes a single photon

input. In this section we investigate a closely related problem: how the DQD qubits are excited

by an input single photon? In particular, we compute the excitation probabilities of the first

DQD qubit, thus it is named the target DQD qubit in this section.

5.1 The excitation probability of the target DQD qubit

In this subsection, we firstly present the reduced master equations for the target DQD, then we

demonstrate them by some simulators.
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Figure 3: The single-photon input pulse shape ξ(t) is plotted with the green curve, while the real

and imaginary parts of the output single-photon pulse shapes for the cases of mutual resonance,

red detuning, blue detuning and red+blue detunings are shown as black, red, blue and purple

curves in Fig. 3(a) and (b), respectively. The two DQD qubits are equally coupled to the cavity

Γ1 = Γ2 = 1× 10−3ω0. We choose κ = γ = 1× 10−3ω0, δωr = 0, and µ = 0.6.
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Recall that |Φ1〉 is a single-photon state and |Φ0〉 is the vacuum state of the input field.

Denote the expectations

ωmnt (X) = 〈ηΦm|jt(X)|ηΦn〉, m, n = 0, 1, (40)

where |η〉 is the initial state of the coupled system G, and by (6)

djt(X) = jt(LtotalX)dt+ dB†(t)jt([X,Ltotal]) + jt([L
†
total, X])dB(t) (41)

with LtotalX = −i[X,Htotal] + L†totalXLtotal − 1
2L
†
totalLtotalX − 1

2XL
†
totalLtotal. Define matrices

ρmn(t) by means of

Tr[ρmn(t)†X] , ωmnt (X), m, n = 0, 1. (42)

The following result presents the master equations for the quantum coherent feedback net-

work driven by the single-photon state |Φ1〉 in the Schrödinger picture.

Lemma 2. [19, 44] Master equations for the quantum coherent feedback network driven by the

single-photon state |Φ1〉 in (8) in the Schrödinger picture are given by

ρ̇
11

(t) = L?totalρ
11(t) + ξ(t)[ρ01(t), L†total] + ξ∗(t)[Ltotal, ρ

10(t)],

ρ̇
10

(t) = L?totalρ
10(t) + ξ(t)[ρ00(t), L†total],

ρ̇
01

(t) = L?totalρ
01(t) + ξ∗(t)[Ltotal, ρ

00(t)],

ρ̇
00

(t) = L?totalρ
00(t),

(43)

where the initial conditions are

ρ11(0) = ρ00(0) = |η〉〈η|, ρ10(0) = ρ01(0) = 0, (44)

with |η〉 being the initial state of the coupled system G.

In what follows, we focus on the density operator of the target DQD qubit by tracing over

the cavity and the 2nd DQD qubit, the reduced density operator for the target DQD qubit is

given by

ρDQD1
(t) = TrDQD2

[Trcav[ρ(t)]] = 〈g20|ρ(t)|g20〉+ 〈g21|ρ(t)|g21〉+ 〈e20|ρ(t)|e20〉+ 〈e21|ρ(t)|e21〉.
(45)

Let the input single-photon state |Φ1〉 have a Gaussian pulse shape,

ξ(t) =

(
Ω2

2π

) 1
4

exp

(
−Ω2

4
(t− tpeak)2

)
, (46)

where Ω denotes the photon frequency bandwidth, tpeak is the peak arrival time of the photon

and fixed to be 3ω0 in the following simulations. The initial state of the coupled system G is
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Figure 4: The excitation probability of the target DQD qubit with different couplings Γ2. The

decay rate of the cavity is κ = 1.5 × 10−3ω0, the photon frequency bandwidth Ω = 2.75κ.

(δω1 = δω2 = δωr = 0 and µ = 0.2.)

Figure 5: The excitation probability of the target DQD qubit with different detunings δω2. The

decay rate of the cavity is κ = 1.5 × 10−3ω0, the photon frequency bandwidth Ω = 2.75κ, the

couplings are Γ1 = Γ2 = 1× 10−3ω0, and µ = 0.2.
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chosen to be |η〉 = |g1〉 ⊗ |g2〉 ⊗ |0〉. The excitation probabilities of the target DQD qubit are

simulated.

In Figs. 4 and 5, we plot the excitation probability of the target DQD qubit with different

couplings and detunings, respectively. It can be observed that the excitation probability of the

target DQD qubit can be significantly improved by reducing the coupling Γ2 or increasing the

detuning δω2 of the 2nd DQD qubit, which results in a weak interaction between the cavity and

the 2nd DQD qubit.

Figure 6: The excitation probability of the target DQD qubit with the cases of red detuning,

blue detuning and red+blue detunings. The decay rate of the cavity is κ = 1.5 × 10−3ω0, the

photon frequency bandwidth Ω = 2.75κ, the couplings are Γ1 = Γ2 = 1× 10−3ω0, and µ = 0.2.

In Fig. 6, we plot the excitation probability of the target DQD qubit for three cases of red

detuning (δω1 = δω2 = 1 × 10−3ω0), blue detuning (δω1 = δω2 = −1 × 10−3ω0) and red+blue

detunings (δω1 = 1× 10−3ω0, δω2 = −1× 10−3ω0). It can be observed that when the detunings

for the two DQD qubits are with the same sign, the excitation probabilities of the target DQD

qubit are identical for the two cases of red detuning and blue detuning. On the other hand, one

can increase the excitation probability by setting the two DQD qubits to red+blue detunings

(the green dashed curve), which is consistent with the discussions on the oscillation of the output

pulse shapes in Fig. 2.

Finally for comparison, we consider the cases that the coherent feedback network is driven

by the vacuum state |Φ0〉 instead of the single-photon state; however, one of the DQD qubits is

in its excited state or there is a photon initially in the cavity. The simulation results are shown

in Fig. 7 in which all three transitions are tuned into mutual resonance δω1 = δω2 = δωr = 0.

In Fig. 7, it can be observed that the excitation probability of the target DQD qubit

approaches 0.25 when the two DQD qubits are equally coupled to the cavity and the initial

state of the coupled system is |e1〉 ⊗ |g2〉 ⊗ |0〉 or |g1〉 ⊗ |e2〉 ⊗ |0〉. This result is consistent with

the vacuum Rabi mode splitting with two identical qubits as studied in [14], where the photon
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Figure 7: The excitation probability of the target DQD qubit with different initial states. We

choose Γ1 = Γ2 = 1× 10−3ω0, κ = 1.5× 10−3ω0 and µ = 0.2.

is in each of the DQD qubit with the probability 1/4.

Remark 4. It is noteworthy to mention that the discussions above is based on the assumption

that all three transitions are tuned into mutual resonance δω1 = δω2 = δωr = 0. Not only that,

when the two DQD qubits are both equally red- (blue-) detuned with the single-photon input state

δω1 = δω2 6= 0, simulations show that eventually the excitation probability of the target DQD

qubit settles to the same value as that for the mutual resonance case. However, when the two

DQD qubits are with red+blue detunings δω1 = −δω2 6= 0, the excitation probability is eventually

0, which means that the single photon eventually escapes from the quantum coherent feedback

network.

5.2 An analytic result

The simulation results in Fig. 7 indicate that, when the quantum coherent feedback is driven

by a vacuum state while one of the DQD qubits is initially in the excited state, the excitation

probability of the target DQD qubit eventually settles to a non-zero value. In this subsection,

we present an analytic result to explain these simulations.

The main result of this subsection is the following theorem.

Theorem 2. Assume that the first DQD is initialized in the excited state, the second DQD is

initialized in the ground state, the cavity is initially empty and the quantum coherent feedback

network is driven by the vacuum input state, i.e., the initial joint system-field state is |e1g20Φ0〉.
If the central frequencies of the two DQD qubits are not equal (or equivalently δω1 6= δω2), then

the steady state of the two DQD qubits is a pure state |ΦDQD(∞)〉 = |g1g2〉. Otherwise, the

steady-state of the joint system-field system is

|Ψ(∞)〉 = s1(∞) |g1g20Φ1〉+ s2(∞)|g1e20 |Φ0〉+ s3(∞)|e1g20 |Φ0〉 , (47)
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where |Φ1〉 is a single-photon state in the output field, and

s1(∞) =
α√

α2 + 1
, s2(∞) = − α

α2 + 1
, s3(∞) =

1

α2 + 1
(48)

with α = Γ1/Γ2. As a result, the steady state of the two DQD qubits is a mixed state of the form

ρDQD(∞) = |s1(∞)|2|g1g2〉〈g1g2|+ |s2(∞)|2|g1e2〉〈g1e2|+ s2(∞)s3(∞)∗|g1e2〉〈e1g2|

+s3(∞)s2(∞)∗|e1g2〉〈g1e2|+ |s3(∞)|2|e1g2〉〈e1g2|. (49)

Proof. As there is only one excitation, the joint system-field state |Ψ(t)〉 is of the form

|Ψ(t)〉 = s1(t)

∫ t

0
η(τ)b†(τ)dτ |g1g20 |Φ0〉+ s2(t)|g1e20 |Φ0〉+ s3(t)|e1g20 |Φ0〉+ s4(t)|g1g21 |Φ0〉 ,

(50)

where the initial condition is s2(0) = s4(0) = 0, s3(0) = 1. η(τ) denotes the pulse shape of

the single-photon output state with ‖η‖ = 1. As the integral is 0 at t = 0, it is not necessary

to impose an initial condition on s1(t). Thus, we just assume s1(0) = 1. The normalization

condition for |Ψ(t)〉 is

|s1(t)|2
∫ t

0
|η(τ)|2dτ +

4∑
j=2

|sj(t)|2 = 1, (51)

and in the stationary state (t→∞)

4∑
j=1

|sj(∞)|2 = 1. (52)

By (3)-(4) and [16, Eq. (11.2.18)], we have the following Itō quantum stochastic Schrödinger

equation (QSSE)

d |Ψ(t)〉 =

{
−
(

1

2
L†sysLsys + iHsys

)
dt+ LdB†(t)

}
|Ψ(t)〉

=

{[
− iδωr −

i

2
δω1 −

i

2
δω2 −

κ̃

2

]
s4(t)− iΓ1s3(t)− iΓ2s2(t)

}
|g1g21 |Φ0〉 dt

+

[
− i

2
(δω1 − δω2)s2(t)− iΓ2s4(t)

]
|g1e20 |Φ0〉 dt

+

[
i

2
(δω1 − δω2)s3(t)− iΓ1s4(t)

]
|e1g20 |Φ0〉 dt

+

[
− i

2
(δω1 + δω2)s1(t)

∫ t

0
η(τ)b†(τ)dτ

]
|g1g20 |Φ0〉 dt+

√
κ̃s4(t)dB†(t)|g1g20 |Φ0〉 .

(53)

On the other hand, differentiating (50) with respect to t, yields

d|Ψ(t)〉 =ṡ4(t)|g1g21 |Φ0〉 dt+ ṡ2(t)|g1e20 |Φ0〉 dt+ ṡ3(t)|e1g20 |Φ0〉 dt

+

[
ṡ1(t)

∫ t

0
η(τ)b†(τ)dτ

]
|g1g20 |Φ0〉 dt+ s1(t)η(t)dB†(t)|g1g20 |Φ0〉 .

(54)
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By comparing the first 3 terms in (53) and (54), one gets that

ṡ2(t) = − i
2

(δω1 − δω2)s2(t)− iΓ2s4(t),

ṡ3(t) =
i

2
(δω1 − δω2)s3(t)− iΓ1s4(t),

ṡ4(t) =

[
− iδωr −

i

2
δω1 −

i

2
δω2 −

κ̃

2

]
s4(t)− iΓ1s3(t)− iΓ2s2(t)

(55)

with the initial condition [s2(0) s3(0) s4(0)] = [0 1 0].

In what follows, we find the stationary solution of (55) by sending t→∞.

If δω1 6= δω2, it can be readily shown that the stationary solution is

s2(∞) = s3(∞) = s4(∞) = 0, s1(∞) = 1. (56)

Thus, in this case, the stationary state of the coherent feedback network is

|Ψ(∞)〉 =

∫ ∞
0

η(τ)b†(τ)dτ |g1g20 |Φ0〉 ≡ |g1g20Φ1〉 , (57)

where |Φ1〉 ,
∫∞

0 η(τ)b†(τ)dτ |Φ0〉 is a single-photon state. In other words, eventually the two

DQD qubits are in the ground state, the cavity is empty, and the output field contains a single

photon.

If δω1 = δω2, substituting Γ1 = αΓ2 into (55) and solving it under the initial condition

[s2(0) s3(0) s4(0)] = [0 1 0], we get

s2(t) =
Γ1Γ2

2(Γ2
1 + Γ2

2)λ′3

[
(−eλ′1t + eλ

′
2t)(κ̃+ 2iδω2 + 2iδωr) + λ′3e

λ′1t + λ′3e
λ′2t − 2λ′3

]
,

s3(t) =
1

2(Γ2
1 + Γ2

2)λ′3

[
2Γ2

2λ
′
3 + 4λ′2Γ2

1e
λ′1t − 4λ′1Γ2

1e
λ′2t

]
,

s4(t) =
2iΓ1(−eλ′1t + eλ

′
2t)

λ′3
,

(58)

where

λ′1 =
1

4

[
−κ̃− 2i(δω2 + δωr)−

√
−16(Γ2

1 + Γ2
2) + (κ̃+ 2iδω2 + 2iδωr)2

]
,

λ′2 =
1

4

[
−κ̃− 2i(δω2 + δωr) +

√
−16(Γ2

1 + Γ2
2) + (κ̃+ 2iδω2 + 2iδωr)2

]
,

λ′3 =
√
−16(Γ2

1 + Γ2
2) + (κ̃+ 2iδω2 + 2iδωr)2.

(59)

Sending t→∞, we obtain

s2(∞) = − α

α2 + 1
, s3(∞) =

1

α2 + 1
, s4(∞) = 0. (60)

By the normalization condition (52), we have |s1(∞)|2 = α2

α2+1
. Furthermore, if we let the phase

of s1(∞) be absorbed by the pulse shape η, then s1(∞) is a positive number α√
α2+1

. In this
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case, the stationary state of the whole system is Eq. (47). Finally, by tracing over the cavity

and the field, the steady state of the two DQD qubits is given by

ρDQD = 〈0Ψ1|Ψ(t)〉〈Ψ(t)|0Φ1〉+ 〈0Φ0|Ψ(t)〉〈Ψ(t)|0 |Φ0〉 . (61)

Substituting (47) into (61), yields (49). �

Remark 5. When the two DQD qubits have the same central frequency, by Theorem 2 we see

that in the steady state the output field and the two DQD qubits are in a superposition pure

state (47), which means that a photon exists simultaneously in the output field and inside the

2-DQD qubit system. If α = 0, i.e., the first DQD qubit is decoupled from the other components.

In this case, the whole system is in the state |e1g20 |Φ0〉. This is confirmed by (49). On the

other hand, if α = ∞, then the second DQD qubit is decoupled. In this case s1(∞) = 1 and

s2(∞) = s3(∞) = 0 and Eq. (47) reduces to |g1g20Φ1〉, in other words, the output field contains

a single photon, both DQD qubits are in the ground state and the cavity is empty.

Remark 6. By comparing the last two terms in (53) and (54), one gets that

ṡ1(t) = − i
2

(δω1 + δω2)s1(t), (62)

s1(t)η(t) =
√
κ̃s4(t), (63)

with the initial conditions s1(0) = 1 and s4(0) = 0. As the system of equations (55) is linear,

s4(t) can be obtained. Moreover, s1(t) can be obtained from (62). As a result, the pulse shape

η(t) in both cases (δω1 = δω2 and δω1 6= δω2) can be calculated.

Remark 7. Comparing the expression (49) with the bright states |±〉r3 for the coherent input

case in [36, Fig. 2], each DQD qubit being in its excited state shares the same ratio of probability

Γ2
1/Γ

2
2 = α2. However, in contrast to the fixed probability 1/2 in [36, Fig. 2], the probability of

the two coupled DQD qubits in the ground state |g1g2〉 is controllable with the value α2

α2+1
, which

is also the probability of the single-photon escaping from the coupled system. By Theorem 2, it

can be seen that the steady state of the two coupled DQD qubits is independent of the cavity decay

rate κ and beamsplitter parameter µ when the quantum coherent feedback network is driven by

vacuum input.

6 Full inversion of the target DQD qubit

The discussions in Subsection 5.1 tell us that the target DQD qubit cannot be fully excited by

the single-photon input state with a Gaussian pulse shape. In this section, we study whether

there is a desired input pulse shape with which the input single photon is able to fully excite

the target DQD qubit. For simplicity, assume that all three transitions are tuned into mutual

resonance, i.e., δω1 = δω2 = δωr = 0.

The following lemma can be proved in the similar way as that for [30, Lemma 3].
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Lemma 3. Let the initial state for the coherent feedback network be |Φ〉 = |g1〉⊗|g2〉⊗|0〉⊗|Φ0〉
in (17). Then

U(t, t0)|Φ〉 = eiαt |Φ〉. (64)

As eiαt only adds a global phase to the state of the whole system, we ignored it in the

following discussions.

The following theorem is the main result of this section, it gives an analytic form of the pulse

shape of the single-photon input state, by which the input single photon can fully excite the

target DQD qubit at a prescribed time.

Theorem 3. Assume that the two DQD qubits are initialized in the ground state and the cavity

is empty, i.e., the initial state of the coupled system G is |η〉 = |g1〉 ⊗ |g2〉 ⊗ |0〉. If the pulse

shape of the single-photon input state is

ν̃k(r) =
2iΓk
√
κ̃√

κ̃2 − 16Γ2
k

(
e
−κ̃−
√
κ̃2−16Γ2

k
4

(t−r) − e
−κ̃+
√
κ̃2−16Γ2

k
4

(t−r)

)
, r ≤ t, k = 1, 2, (65)

where t is the terminal time of the single-photon input pulse shape, then the k-th DQD qubit

can be transferred from the ground state |gk〉 to the excited state |ek〉 at the controllable time t.

Moreover, in this case, the other DQD qubit must be decoupled from the cavity.

Proof. Conjugating both sides of (22) yields

Ẋ†(t)|Φ〉 = X†(t)|Φ〉Ã† + b†(t)|Φ〉B̃T , (66)

whose solution is

X†(t)|Φ〉 =
[
σ+,1(t)|Φ〉 σ+,2(t)|Φ〉 a†(t)|Φ〉

]
=X†(t0)eÃ

†(t−t0)|Φ〉+

∫ t

t0

B̃T eÃ
†(t−r)b†(r)|Φ〉dr.

(67)

Define exponentially rising functions ν̃1(r)

ν̃2(r)

ν̃3(r)


T

= B̃T eÃ
†(t−r), r ≤ t. (68)

Then define  ν1(r)

ν2(r)

ν3(r)

 =

 ν̃1(r)Θ(t− r)
ν̃1(r)Θ(t− r)
ν̃1(r)Θ(t− r)

 , (69)
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where Θ(s) is the Heaviside function. Similar to the proof of Theorem 1, by sending t0 → −∞,

the solution (67) can be derived as[
σ+,1(t)|Φ〉 σ+,2(t)|Φ〉 a†(t)|Φ〉

]
=

∫ ∞
−∞

[
ν1(r) ν2(r) ν3(r)

]
b†(r)|Φ〉dr

=
[
B†(ν1)|Φ〉 B†(ν2)|Φ〉 B†(ν3)|Φ〉

]
,

(70)

where B†(νi) is the creation operator as defined in (9), which can generate a single-photon state

with the pulse shape νi(t), i = 1, 2, 3. Particularly,

σ+,1(t)|Φ〉 = B†(ν1)|Φ〉, σ+,2(t)|Φ〉 = B†(ν2)|Φ〉. (71)

Without loss of generality, let k = 1. Let the single-photon input state be

|Φ1〉 = B†(ν1) |Φ0〉 = B†(ν̃1) |Φ0〉 . (72)

By the Schrödinger equation (4), the state of the quantum coherent feedback network at time t

can be calculated as

|Ψ(t)〉 = U(t, t0)|g1〉 ⊗ |g2〉 ⊗ |0〉 ⊗ |Φ1〉

= U(t, t0)B†(ν1)|g1〉 ⊗ |g2〉 ⊗ |0〉 ⊗ |Φ0〉

= U(t, t0)σ+,1(t)|Φ〉

= U(t, t0)σ+,1(t)U †(t, t0)U(t, t0)|Φ〉

= U(t, t0)σ+,1(t)U †(t, t0)|Φ〉

= σ+,1(t0)|Φ〉

= |e1〉 ⊗ |g2〉 ⊗ |0〉 ⊗ |Φ0〉 ,

(73)

where (71) has been used in the 3rd step and Lemma 3 is used in the 4th step. By the last step

of (73), it is obvious that the 1st DQD is fully excited. In what follows, we derive the explicit

expression of the input photon pulse shape, which transfers the state of the 1st DQD qubit at

any controllable time t. Actually, by (23) and (68), one can obtain

ν̃1(r) =
2iΓ1

√
κ̃√

κ̃2 − 16g2
c

(
e
−κ̃−
√
κ̃2−16g2c
4

(t−r) − e
−κ̃+

√
κ̃2−16g2c
4

(t−r)

)
, r ≤ t, (74)

where g2
c = Γ2

1 + Γ2
2. It should be noted that as |Φ1〉 = B†(ν̃1) |Φ0〉 is a single-photon state, the

input pulse shape ν̃1(r) must satisfy the normalization condition∫ t

−∞
|ν̃1(r)|2dr = 1, (75)
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which in turn yields g2
1/g

2
c = 1. Thus, the pulse shape ν̃1(r) in (74) is exactly that in (65) for

k = 1. Moreover, in this case, we have Γ2 = 0, in other words, the 2nd DQD qubit must be

decoupled from the cavity. Similar derivations can be applied to the case of the 2nd DQD qubit.

�

Figure 8: The excitation probability of the 1st DQD qubit for different terminal time t. (µ = 0.2,

κ = 7.5× 10−3ω0, Γ1 = 1× 10−3ω0, and Γ2 = 0.) The terminal time of the single-photon input

pulse shape, also known as the controllable time for the DQD qubit excitation, is given by t = 0,

t = 4, and t = 8, respectively.

In Fig. 8, the excitation probabilities of the 1st DQD qubit with different terminal times of

the single-photon input pulse shape are plotted, which demonstrate that the pulse shape (65) of

the single-photon input state can be used to fully excite the target DQD qubit at a controllable

time t. Interestingly, when the decay rate κ of the cavity and the coupling Γ1 satisfy κ̃ < 4Γ1,

the matrix Ã has a pair of complex eigenvalues, thus the Rabi oscillation phenomenon can be

observed both in the master equations for the 1st DQD qubit (Fig. 9) and the corresponding

output single-photon distributions (Fig. 10); see the curves for Γ1 = 3 × 10−3ω0 and Γ1 =

5×10−3ω0 in Figs. 9-10. This reveals consistency between the atomic excitation and the output

photon distribution.

Finally, let the pulse shape of the single-photon input state be

|Φ1〉 =
[
γ1B

†(ν̃1) + γ2B
†(ν̃2)

]
|Φ0〉 , (76)

where ν̃1 and ν̃2 are those in (65), and the complex numbers γ1 and γ2 satisfy |γ1Γ1 + γ2Γ2|2 =

Γ2
1 + Γ2

2 so that the state |Φ1〉 in (76) is normalized. According to Theorem 65, a single-photon

input state B†(ν̃1) |Φ0〉 is able to fully excite the 1st DQD qubit at time t when the 2nd DQD

qubit is decoupled from the cavity, and likewise, a single-photon input state B†(ν̃2) |Φ0〉 is able
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Figure 9: The excitation probability of the 1st DQD qubit under different Γ1. We fix the

terminal time t = 0 and choose µ = 0.2, κ = 7.5 × 10−3ω0, and Γ2 = 0. The coupling between

the 1st DQD qubit and the cavity is chosen to be Γ1 = 1 × 10−3ω0, Γ1 = 3 × 10−3ω0, and

Γ1 = 6× 10−3ω0, respectively.

Figure 10: The probability distributions for the output single-photon states with respect to the

three cases discussed in Fig. 9, in which Rabi oscillation phenomena occur when the decay rate

of the cavity and the coupling satisfy κ̃ < 4Γ1.
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to fully excite the 2nd DQD qubit at time t when the 1st DQD qubit is decoupled from the

cavity. We are interested in how the DQD qubits are excited by a single-photon state that is

a superposition of B†(ν̃1) |Φ0〉 and B†(ν̃2) |Φ0〉, namely |Φ1〉 in (76). Actually, by the proof of

Theorem 3, it can be readily shown that the state |Ψ(t)〉 of the total system at the terminal

time t in (73) is

|Ψ(t)〉 = (γ1|e1g2〉+ γ2|g1e2〉) |0Φ0〉 . (77)

In other words, the two DQD qubits form a superposition state and are decoupled from the

rest of the coherent feedback network. The excitation probability of the 1st DQD qubit with

the single-photon input state (76) is shown in Fig. 11. In Fig. 11, it can be observed that the

maximum value of the excitation probability is only 0.5 when the two DQD qubits are equally

coupled to the cavity. However, the excitation probability can approximately attains 1 if Γ1 is

sufficiently larger than Γ2, as predicted by Theorem 3.

Figure 11: The excitation probability of the 1st DQD qubit, we fix the terminal time t = 4 and

choose µ = 0.2 and κ = 7.5× 10−3ω0.

7 Conclusion

In this paper, we have studied in detail the dynamics of a quantum coherent feedback network

of two distant quantum double dot (DQD) qubits which are directly coupled to a cavity. We

have derived an exact form of the steady-state output single-photon state when the network is

driven by a continuous-mode single-photon input state. By means of the analytic result, we have

analyzed the influence of red, blue, and red+blue detunings on the network dynamics. We have

also investigated the excitation probabilities of DQD qubits when the network is driven by a
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single photon of Gaussian pulse shape. On the other hand, when the input is vacuum while the

1st DQD qubit is in its excited state, the analytic expression of the state of the whole system

(field plus the network) is derived, which shows that the output field and the two DQD qubits

can be entangled. Finally, we have shown explicitly how to design a temporal pulse shape for a

single photon so that it can fully excite a DQD qubit in the network.
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