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Abstract

This study addresses the problem of discrete signal reconstruction from the perspective of sparse Bayesian

learning (SBL). Generally, it is intractable to perform the Bayesian inference with the ideal discretization

prior under the SBL framework. To overcome this challenge, we introduce a novel discretization enforcing

prior to exploit the knowledge of the discrete nature of the signal-of-interest. By integrating the discretization

enforcing prior into the SBL framework and applying the variational Bayesian inference (VBI) methodology,

we devise an alternating optimization algorithm to jointly characterize the finite-alphabet feature and re-

construct the unknown signal. When the measurement matrix is i.i.d. Gaussian per component, we further

embed the generalized approximate message passing (GAMP) into the VBI-based method, so as to directly

adopt the ideal prior and significantly reduce the computational burden. Simulation results demonstrate

substantial performance improvement of the two proposed methods over existing schemes. Moreover, the

GAMP-based variant outperforms the VBI-based method with i.i.d. Gaussian measurement matrices but it

fails to work for non i.i.d. Gaussian matrices.

Keywords: Discrete signal reconstruction, sparse Bayesian learning (SBL), sparse representation, sparse

signal recovery.

1. Introduction

In the last decade, the problem of sparse signal recovery has attracted considerable attention in signal

processing, and the associated compressed sensing (CS) technique [1, 2] has been a paradigm for solving

many important practical problems in a variety of fields, including radar [3, 4], imaging processing [5, 6], face

recognition [7], wireless communications [8, 9, 10], and speech and audio processing [11]. Basically, CS aims

to recover an unknown signal vector x that has only a few nonzero coefficients from an underdetermined

measurement. There are two conventional classes of algorithmic approaches for CS, which are greedy pursuit
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and convex relaxation [12]. Greedy pursuit methods use a greedy strategy to determine the supports of x

(e.g., orthogonal matching pursuit (OMP) algorithm [13]); while convex relaxation methods try to relax

the nonconvex l0-norm optimization problem into a convex one (e.g., the basis pursuit denoising (BPDN)

algorithm [14] or the l1-norm minimization [15]). Although these methods work well for individual sparsity

(the significant entries of x are assumed to be i.i.d.) and block sparsity (the significant entries of x cluster

in blocks under a known specific sorting order), they cannot fully exploit additional sparsity structures, e.g.,

burst sparsity and grouping sparsity, and they may suffer from a significant performance degradation due

to any modeling mismatches.

Recently, sparse Bayesian learning (SBL) has become a very popular method for recovering sparse signals

[16, 17, 18, 19], which adopts a hierarchical sparsity-enforcing prior to characterize the sparse signal from

a Bayesian perspective. Compared with the l1-norm minimization, the SBL-based framework can provide

high flexibility to tackle the minimum l0-norm problem [17, 18], and it does not require the prior knowledge

about the sparsity level, noise variance, and dictionary mismatch, since it has an inherent learning capability

through the Bayesian inference. Furthermore, it can provide a flexible way to deal with a variety of sparsity

structures and/or modeling mismatches. For example, burst-sparsity structure was exploited from the

perspective of SBL to enhance the performance of sparse signal recovery in [20, 21, 22]. Some structure-

aware SBL methods or compressed sensing (CS) methods were also proposed to enhance the performance

of sparse signal recovery [23, 24]. The problem of joint signal recovery and common-sparsity grouping was

first tackled in [25], and then a more general sparsity model that has outliers deviated from the common-

sparsity pattern was addressed in [26]. Dictionary refinement SBL-based methods for coping with modeling

mismatches can be found in [27, 28, 29]. All these studies have demonstrated that the SBL-based framework

can significantly improve the recovery performance in many practical scenarios, if more sophisticated sparsity

structures and/or dictionary refinement techniques are exploited.

On the other hand, reconstructing discrete signals from incomplete linear measurements is also an im-

portant problem in signal processing. Discrete signals taking values in a finite alphabet are very common

in wireless communications, e.g., generalized spatial modulation [30], multiuser detection [31], and cogni-

tive spectrum sensing [32], as well as discrete-valued image reconstruction [33, 34]. Since reconstructing an

unknown discrete signal has a combinatorial nature, it will bring a NP-hard optimization problem whose

computational time is exponential [35]. If the discrete signal is sparse, we may apply a CS algorithm to

obtain a sparse solution, and then project the solution onto the discrete set as in [36], but the performance of

such separated operation is not optimal. Combining the sparsity and finite-alphabet property can improve

the reconstruction performance [37, 12, 38]. However, applying any existing CS algorithms to discrete signal

reconstruction requires an additional assumption about the finite alphabet, i.e., the finite alphabet should

necessarily contain zero with a much higher probability than other entries of the finite alphabet. Such

assumption about the finite alphabet may not always be valid in practice.
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To reconstruct discrete signals with an arbitrarily finite alphabet, a new algorithm named sum-of-

absolute-values (SOAV) optimization has been proposed in [35]. The SOAV scheme belongs to the class of

convex relaxation, which relaxes the l0-norm optimization problem with the use of l1-norm. Efficient algo-

rithms based on proximal splitting [39] and approximate message passing (AMP) [40] have been proposed for

the SOAV optimization in [31, 41]. The asymptotic performance of discrete-valued vector reconstruction was

analyzed from linear measurement [42]. Nevertheless, there are at least three limitations of the SOAV-based

methods: (i) it is designed for real-valued problems only; (ii) suboptimal parameter selection and l1-norm

convex relaxation might bring a performance loss; and (iii) the sparsity exploited in the l1-norm minimiza-

tion problem could be invalid for the finite alphabet with a large size. To overcome these shortcomings, in

this paper, we devise an SBL-based framework for general discrete signal reconstruction, as well as a fast

GAMP-based method if the measurement matrix is i.i.d. Gaussian per component. Our contributions are

summarized as follows:

• Discretization Enforcing Prior

We introduce a novel discretization enforcing prior, which can exploit the knowledge of the discrete

nature of the signal-of-interest (SOI). Compared with the ideal discretization prior, our discretization

enforcing prior might bring a performance loss. However, since the ideal prior is composed of several

Dirac delta functions, it is usually intractable to perform the Bayesian inference with the ideal prior.

To overcome this challenge, we alternatively adopt a Gaussian distribution to approximate the Dirac

delta function with a adjustable precision and assign a Gamma hyperprior for this precision. Such

treatment is a commonly used trick for the SBL-based methods, which can provide a tractable Bayesian

inference. To the best of our knowledge, this discretization enforcing prior has not been discussed for

discrete signal reconstruction in the literature.

• SBL-based Framework for Discrete Signal Reconstruction

We develop a general SBL-based framework for discrete signal reconstruction. The existing SBL-based

methods were designed for the sparse signal recovery, and have not been applied for discrete signal

reconstruction yet. To jointly characterize the finite alphabet feature and reconstruct the unknown

signal, we combine the discretization enforcing prior into the SBL-based framework, and then propose

an algorithm with alternating updates based on the variational Bayesian inference (VBI) methodol-

ogy [43] to perform the Bayesian inference. The proposed VBI-based method does not impose any

restrictions on the measurement matrix. To the best of our knowledge, the SOAV optimization is

the only method for discrete signal reconstruction with non i.i.d. Gaussian measurement matrices,

but it has several shortcomings. Our VBI method can overcome all the shortcomings of the SOAV

optimization, and achieve the best performance for non i.i.d. Gaussian measurement matrices. When

the measurement matrix is i.i.d. Gaussian distributed, we further embed the generalized approximate
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message passing (GAMP) [44] into the VBI-based method to propose a fast GAMP variant. It is worth

mentioning that the application of VBI or GAMP aims to perform the Bayesian inference with the new

discretization enforcing prior. Neither application is straightforward, because most of the updating

rules for the Bayesian inference are needed to be re-derived in the presence of the new discretization

enforcing prior.

The rest of the paper is organized as follows. In Section II, we present the signal model and review the

state-of-the-art SOAV optimization for discrete signal reconstruction. In Section III, we devise the VBI-

based method for discrete signal reconstruction. In Section IV, we further develop the fast GAMP-based

method. Numerical experiments and discussions follow in Sections V and VI, respectively.

Notations : C denotes complex number, R denotes real number, ‖ · ‖p denotes p-norm, (·)T denotes

transpose, (·)H denotes Hermitian transpose, IN denotesN×N identity matrix, 1N denotesN×1 vector with

all entries being 1, ∝ denotes equality up to a multiplicative constant or an additive constant, CN (·|µ,Σ)

denotes complex Gaussian distribution with mean µ and covariance Σ, tr(·) denotes trace operator, diag(·)

denotes diagonal operator, [x = y] indicates whether x is equal to y or not (which returns 1 if x = y;

otherwise 0 is returned), Re(·) denotes real part, and Im(·) denotes imaginary part.

2. Data Model and Existing solutions

In this section, we first present the data model for discrete signal reconstruction, and then review the

SOAV optimization approach and its shortcomings.

2.1. Data Model

Consider the problem of recovering a complex-valued discrete vector x = [x1, x2, . . . , xN ]T ∈ CN×1 from

an underdetermined measurement vector y = [y1, y2, . . . , yM ]T ∈ CM×1:

y = Ax+ v, (1)

where A ∈ CM×N is a sampling matrix with M < N , and v = [v1, v2, . . . , vM ]T ∈ CM×1 stands for an

additive complex i.i.d. Gaussian noise vector with zero-mean and variance σ2 for each entry. Assume

that the elements of x are i.i.d. discrete variables from a given finite alphabet F = {fl}
L
l=1 with a prior

distribution:

P (xn = fl) = ρl, n = 1, 2, . . . , N, l = 1, 2, . . . , L, (2)

where fl ∈ C, ρl ≥ 0 and
∑L

l=1 ρl = 1. Obviously, the ideal discretization prior (2) can be rewritten as

p(xn) =

L∑

l=1

ρlδ(xn − fl), (3)
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where δ(·) stands for the Dirac delta function. The maximum a posterior (MAP) estimate of x is then:

x⋆ = argmax
x

p(x|y) = argmax
x

(

p(y|x) ·
N∏

n=1

p(xn)

)

. (4)

Since each p(xn) contains L Dirac delta functions, computing x⋆ requires a combinatorial search. Therefore,

(4) is a NP-hard optimization problem whose computational complexity is exponential.

2.2. SOAV Optimization

The SOAV optimization is the state-of-the-art method for real-valued discrete signal reconstruction. In

the following, we first review the SOAV optimization for the real-valued discrete signal reconstruction, and

then discuss how to extend it to handle complex-valued problems.

Assume that all the terms in (1) are real-valued (i.e., y ∈ RM×1, A ∈ RM×N , x ∈ RN×1 and v ∈ RM×1)

and fl ∈ R, ∀l. The SOAV optimization notices that the vector (x − fl · 1N ) has approximately ρlN zero

elements. Taking advantage of the CS paradigm, the real-valued discrete vector x can be obtained by [41]

min
x

L∑

l=1

ηl‖x− fl · 1N‖1 +
λ

2
‖y −Ax‖22, (5)

where λ > 0 is a regularization parameter which maintains a proper balance between empirical loss and

regularization level, and the coefficient ηl ≥ 0 is fixed as ηl = ρl in [35] and ηl = 1 in [45]. Note that the

solution to (5) is exactly equal to the MAP estimate with the prior distribution p(x) ∝ exp(−
∑L

l=1 ηl‖x−

fl · 1N‖1). Proximal-splitting-based algorithm [31] and AMP-based algorithm [41] have been proposed for

solving the l1-norm minimization problem (5). It has been demonstrated in [41] that the performance can

be improved if ηls are also considered as parameters to be optimized.

We may extend the SOAV optimization methods to handle the complex-valued problem as in [35, 31, 41].

Specifically, the complex-valued signal model (1) is transformed into a real-valued model as




Re(y)

Im(y)



 =




Re(A) − Im(A)

Im(A) Re(A)








Re(x)

Im(x)



+




Re(v)

Im(v)



 , (6)

and then SOAV optimization can be applied to such real-valued model. Actually, a natural extension is to

directly use (5) by replacing the real vectors/matrices with complex ones. However, the complex-valued form

of (5) prevents the SOAV optimization methods from adopting the proximal splitting algorithm proposed in

[31, 41]. On the other hand, a complex AMP algorithm was proposed in [46] for the complex discrete-valued

vector reconstruction, but it only works for i.i.d. Gaussian measurement matrices.

2.3. Shortcomings for SOAV Optimization

The main shortcomings of the SOAV optimization are:
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• Although the real-valued SOAV optimization methods can be used for the complex-valued discrete

signal reconstruction by transforming the complex-valued model (1) into the equivalent real-valued

model (6), but it cannot handle dependent real and imaginary parts [41]. What is worst, the size

of the finite alphabet may become twice in the worst case (i.e., Re(F) ∪ Im(F)), which may cause a

substantial performance degradation due to the possible nearby elements in the finite alphabet.

• The standard l1-norm minimization formulation (5) used for the SOAV optimization will bring a

performance loss, because (i) l1-norm is a simple approximation of l0-norm, which has a worse ap-

proximation performance than SBL [18]; and (ii) the regularization term λ is regarded as a genuine

nuisance parameter, and we usually select its suboptimal value only.

• The SOAV optimization exploits the sparsity from the fact that the vector (x− fl · 1N ) has approxi-

mately ρlN zero elements. However, for the finite alphabet F with a large size, the value of ρl could

be quite small, and thus the sparsity of the vector (x − fl · 1N) is hard to be guaranteed in this case.

To address the above issues, we will directly take knowledge of the discrete nature of the signal into

account inside the SBL framework, and devise an VBI-based approach for general discrete signal recon-

struction, as well as a fast GAMP variant when all entries in the measurement matrix A are i.i.d. Gaussian

distributed.

3. VBI for Discrete Signal Reconstruction

3.1. New Discretization Enforcing Prior

As will be shown later, it is usually intractable to perform the Bayesian inference with the ideal dis-

cretization prior (3). Hence, in this subsection, we design a novel discretization enforcing prior, which can

exploit the knowledge of the discrete nature of SOI under the SBL framework.

Definition 1. Discretization Enforcing Prior : Let γn be the precision of xn and gn = [gn,1, gn,2, . . . , gn,L]
T

be an assignment vector that takes values from e1, e2, . . . , eL, where el stands for an L×1 zero vector except

for the l-th element being 1, then we model the distribution of xn conditional on gn and γn as

p(xn|gn, γn) =

L∏

l=1

{
CN (xn|fl, γ

−1
n )
}gn,l

, (7)

where γn is further modeled as a Gamma hyperprior

p(γn) =Γ(γn|a, b) (8)

with a and b being some small constants (e.g., a = b = 10−6).
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Due to the introduction of the assignment vector gn and different discrete means fls into the Gaussian

distribution, the two-stage hierarchical prior (7) and (8) can exploit the knowledge of the discrete nature of

xn as follows. Without loss of generality, let gn = el and then we have

p(xn|gn = el, γn) = CN (xn − fl
︸ ︷︷ ︸

,x̃n,l

|0, γ−1
n ), (9)

which follows the definition (7) directly. With (9), we obtain

p(xn|gn = el) =

∫ ∞

0

p(xn|gn = el, γn)p(γn)dγn

=

∫ ∞

0

CN (x̃n,l|0, γ
−1
n )Γ(γn|a, b)dγn

∝
(
b+ |x̃n,l|

2
)−(a+ 1

2 ) . (10)

Here, we use (42) in [18] to derive (10). Clearly, p(xn|gn = el) is proportional to a Student-t distribution.

Since b is allowed to be very small, p(xn|gn = el) is recognized as encouraging sparsity of x̃n,l [18], which,

in return, enforces xn → fl. It is worth noting that the discrete signal x is non-sparse itself and the

discretization enforcing prior is used to exploit the discrete nature of x rather than its sparsity.

If the distribution of the finite alphabet F is available, the prior distribution of gn can be formulated as

a categorical distribution:

p(gn) =

L∏

l=1

ρ
[gn=el]
l , (11)

or, equivalently1

p(gn) =

L∏

l=1

ρ
gn,l

l , (12)

where ρl stands for the probability of the l-th element in the finite alphabet F . Otherwise, it may be

formulated as a non-informative distribution:

p(gn) =

L∏

l=1

(
1

L

)gn,l

. (13)

Note that the categorical distribution (11) is a special case of the multinomial distribution, which gives

the probabilities of potential outcomes of a single drawing only. When the entries of both x and γ =

[γ1, γ2, . . . , γN ]T are i.i.d., we have

p(x|G,γ) =

N∏

n=1

L∏

l=1

{
CN (xn|fl, γ

−1
n )
}gn,l

, (14)

p(γ) =

N∏

n=1

Γ(γn|a, b), (15)

1This equivalence follows from the fact that only one element of the assignment vector gn is activated on a single trial. For

example, if gn = e1, both (11) and (12) give the same value (ρ1)1(ρ2)0(ρ3)0 . . . (ρL)
0.
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where G = {gn}Nn=1.

Remark 1. Recall that the original SBL [16] adopts the well-known Gaussian mixture as the prior, i.e.,

p(xn|γn) = CN (xn|0, γ
−1
n ) (16)

and

p(γn) =Γ(γn|a, b). (17)

Compared with the above prior, our devised two-stage hierarchical prior in (7) and (8) can be seen as its

extension, and includes it as a special case if L = 1 and f1 = 0. The newly introduced assignment variables

gns will be automatically learned by the Bayesian inference, allowing different elements of the finite alphabet

to adaptively focus on different parts of the discrete SOI. In this case, the proposed method based on the

discretization enforcing prior will significantly improve the discrete signal reconstruction performance, in

contrary to placing fixed weight on each element of the finite alphabet in (5).

Remark 2. The ideal value of each γn should be infinite, since every xn exactly takes value in the finite

alphabet F [see (2)]. In this case, the distribution p(xn|gn, γn) reduces to

p(xn|gn) =

L∏

l=1

{δ(xn − fl)}
gn,l , (18)

which is equal to the ideal discretization prior (3), becasue

∑

gn∈{el}L
l=1

p(xn|gn)p(gn) =

L∑

l=1

ρlδ(xn − fl). (19)

Unfortunately, as will be shown later, it is intractable to perform the Bayesian inference with (18). Hence,

we alternatively consider γn as a variable and assign a Gamma hyperprior for it as in Definition 1. Such

treatment is a commonly used trick for the SBL-based methods, because a Gamma distribution is a conjugate

prior of a Gaussian distribution, which can provide a tractable Bayesian inference. Empirical evidence shows

that γns will be automatically set to some large values through the Bayesian inference.

Remark 3. In the next section, we will show that it is possible to adopt the ideal prior (18) directly, if

the marginal posterior p(xn|y), ∀n, can be approximately calculated. However, this approximation requires

the assumption that the elements of the measurement matrix A are i.i.d. Gaussian distributed. Without

such assumption, the approximation method in Section IV might give a very bad performance; while the

VBI-based method with the new discretization enforcing prior does not impose any assumption about A.

3.2. Proposed VBI-based Method

Utilizing the new discretization enforcing prior presented in Definition 1, we will develop a general VBI-

based method for discrete signal reconstruction in this subsection. Under the assumption of the additive
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complex i.i.d. Gaussian noises, we have

p(y|x, α) = CN (y|Ax, α−1I), (20)

where α = σ−2 stands for the noise precision, which can be similarly modeled as in (8)

p(α) = Γ(α|a, b). (21)

Let Ω , {α,x,γ,G} be the set of hidden variables to be estimated, and then the joint distribution p(y,Ω)

can be expressed as

p(y,Ω) = p(y|x, α)p(x|G,γ)p(α)p(γ)p(G). (22)

If we could calculate the MAP estimate of Ω from p(Ω|y) = p(y,Ω)/p(y), i.e.,

Ω⋆ = max
Ω

p(Ω|y) = max
Ω

p(y,Ω), (23)

the finite-alphabet feature and unknown signal will be jointly obtained. To determine the final discrete

signal, we may either project the MAP estimate of x onto the discrete set F , or find the maximum element

of the MAP estimate of gn. Both operations give very a similar estimation performance, but we prefer the

second one because it is much simpler than the first. Nevertheless, it is very challenging to solve the problem

(23) directly. The VBI methodology [43] is the state-of-the-art approach handling intractable MAP estimate

problems, which aims to find a simple approximate posterior instead of the true posterior. Besides it, only

numerical methods (e.g., Markov chain Monte Carlo (MCMC) method and Gibbs sampling) are available in

the literature. Following the main procedures adopted in our previous work [22], we propose an VBI-based

method to jointly exploit the finite-alphabet feature and reconstruct the unknown signal.

The basic idea of the VBI methodology is to find an approximate posterior q(Ω) instead of p(Ω|y). Here,

we adopt the mean field approximation:

q(Ω) = q(α)q(x)q(γ)q(G) (24)

which can make the approximate posterior analytically tractable [43], but it is not the only way to perform

the factorization. The “best” solution under the factorized constraint in (24) should have the minimum

Kullback-Leibler (KL) divergence between q(Ω) and p(Ω|y), i.e.,

q⋆(Ω) = min
q(Ω)

DKL(q(Ω)||p(Ω|y)), (25)

where DKL(q(x)||p(x)) ,
∫
q(x) ln q(x)

p(x)dx. As shown in [43, 22], the optimal solution to (25) should satisfy

the following equality

ln q⋆(Ωk) ∝ 〈ln p(y,Ω)〉∏
j 6=k q⋆(Ωj)

, k = 1, 2, 3, 4, (26)

9



where Ωk stands for the k-th element in Ω. Note that each solution q⋆(Ωk) given in (26) is dependent on

others (q⋆(Ωj), j 6= k). Therefore, it is intractable to find the optimal closed-form solution. Following the

alternating optimization algorithm proposed in [22], a stationary solution can be found instead by iteratively

updating q(α), q(x), q(γ) and q(G) as:

ln q(i+1)(α) ∝ 〈ln p(y,Ω)〉q(i)(x)q(i)(γ)q(i)(G) , (27)

ln q(i+1)(x) ∝ 〈ln p(y,Ω)〉q(i+1)(α)q(i)(γ)q(i)(G) , (28)

ln q(i+1)(γ) ∝ 〈ln p(y,Ω)〉q(i+1)(α)q(i+1)(x)q(i)(G) , (29)

ln q(i+1)(G) ∝ 〈ln p(y,Ω)〉q(i+1)(α)q(i+1)(x)q(i+1)(γ) , (30)

where (·)(i) denotes the i-th iteration. In the following, we will address the updates (27)–(30) in detail, and

discuss the convergence of the proposed algorithm.

3.3. Detailed Updates for (27)–(30)

In this subsection, we focus on dealing with the updates for q(α), q(x), q(γ) and q(G). Note that the

update for q(α) coincides with the one in [22] due to using the same Gaussian noise model, but the updates

for q(x), q(γ) and q(G) are different because of adopting the new discretization enforcing prior (7).

3.3.1. Update of q(α)

According to (27) and (22),

ln q(i+1)(α) ∝ 〈ln p(y|x, α)p(α)〉q(i)(x) . (31)

Substituting (20) and (21) into (31) yields

ln q(i+1)(α)

∝(a+M − 1) lnα− α ·
(

b+
〈
‖y −Ax‖22

〉

q(i)(x)

)

∝(a+M − 1) lnα− α ·
(

b+ ‖y −Aµ
(i)‖22 + tr(AΣ(i)AH)

)

, (32)

where µ(i) , 〈x〉q(i)(x) and Σ(i) ,
〈
(x− µ

(i))(x− µ
(i))H

〉

q(i)(x)
. Hence, q(i+1)(α) obeys a Gamma distribu-

tion

q(i+1)(α) =Γ(α|a+M, b(i+1)
α ), (33)

where b
(i+1)
α = ‖y−Aµ

(i)‖22 + tr(AΣ(i)AH).
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3.3.2. Update of q(x)

The update (28) leads to

ln q(i+1)(x)

∝ 〈ln p(y|x, α)p(x|G,γ)〉q(i+1)(α)q(i)(γ)q(i)(G) . (34)

Substituting (20) and (14) into (34), we have

ln q(i+1)(x)

∝− α̂(i+1)‖y −Ax‖22 −
N∑

n=1

L∑

l=1

φ
(i)
n,lγ̂

(i)
n |xn − fl|

2 (35)

∝− α̂(i+1)‖y −Ax‖22 −
L∑

l=1

(x− fl · 1)
HQ

(i)
l (x− fl · 1), (36)

where α̂(i+1) = 〈α〉q(i+1)(α), φ
(i)
n,l , q(i)(gn = el), γ̂

(i)
n = 〈γn〉q(i)(γn)

, Q
(i)
l = diag{φ

(i)
1,lγ̂

(i)
1 , φ

(i)
2,lγ̂

(i)
2 , . . . , φ

(i)
N,lγ̂

(i)
N }.

According to (36), q(i+1)(x) should obey a Gaussian distribution:

q(i+1)(x) = CN (x|µ(i+1),Σ(i+1)), (37)

where

µ
(i+1) =Σ(i+1)

(

α̂(i+1)AHy +

L∑

l=1

fl · 1
HQ

(i)
l

)

, (38)

Σ(i+1) =

(

α̂(i+1)AHA+

L∑

l=1

Q
(i)
l

)−1

. (39)

It is straightforward to extend the above updating rule to the case that x is factorized independently

in each element. The element-independent factorization method is called the space alternating variational

estimation (SAVE) method in [47]. Note that SAVE can provide an efficient Bayesian inference by avoiding

the matrix inverse in (39), but it suffers from a performance loss (as will be shown in the simulations later),

because it adopts more approximate operations.

3.3.3. Update of q(γ)

According to (29) and (22), we have

ln q(i+1)(γ) ∝ 〈p(x|G,γ)p(γ)〉q(i+1)(x)q(i)(G) . (40)

11



Substituting (14) and (15) into (40) yields

ln q(i+1)(γ)

∝
N∑

n=1

(

a+

L∑

l=1

φ
(i)
n,l − 1

)

ln γn −
N∑

n=1

γn

(

b+

L∑

l=1

φ
(i)
n,l

〈

|xn − fl|
2
〉

q(i+1)(xn)

)

(41)

∝
N∑

n=1

((a+ 1)− 1) ln γn −
N∑

n=1

γn

(

b+
L∑

l=1

φ
(i)
n,lχ

(i+1)
n,l

)

, (42)

where χ
(i+1)
n,l =

〈

|xn − fl|
2
〉

q(i+1)(xn)
. Since the terms related to each γn are separable in (42), q(i+1)(γn)

should obey a Gamma distribution:

q(i+1)(γn) = Γ
(

γn|a+ 1, b(i+1)
n

)

, (43)

where b
(i+1)
n = b+

∑L

l=1 φ
(i)
n,lχ

(i+1)
n,l .

3.3.4. Update of q(G)

The update (30) leads to

ln q(i+1)(G) ∝ 〈ln p(x|G,γ)p(G)〉q(i+1)(x)q(i+1)(γ) . (44)

Substituting (14) and (12) into (44), we obtain

ln q(i+1)(G) = −
N∑

n=1

L∑

l=1

gn,lγ̂
(i+1)
n

(∣
∣
∣µ(i+1)

n − fl

∣
∣
∣

2

+Σ(i+1)
n,n

)

+
N∑

n=1

L∑

l=1

gn,l l̂n γn
(i+1)

+
N∑

n=1

L∑

l=1

gn,l ln ρl,

(45)

where l̂n γn
(i+1)

= 〈ln γn〉q(i+1)(γn)
. Note that the assignment vector gn only takes values from e1, e2, . . . , eL,

where the definition el is found in Definition 1. Hence, we only have to calculate q(gn = el), l = 1, 2, . . . , L,

to characterize the posterior distribution q(gn), i.e.,

ln q(i+1)(gn = el) ∝ l̂n γn
(i+1)

− γ̂(i+1)
n χ

(i+1)
n,l + ln ρl

︸ ︷︷ ︸

,ν
(i+1)
n,l

. (46)

Since
∑L

l=1 q
(i+1)(gn = el) = 1, we have

φ
(i+1)
n,l = q(i+1)(gn = el) =

exp(ν
(i+1)
n,l )

∑L

l=1 exp(ν
(i+1)
n,l )

. (47)

The proposed alternating optimization algorithm proceeds to repeatedly updating (33), (37), (43) and

(47) until it converges. We will discuss the initialization and convergence property latter. Expressions used

12



during the update can be calculated as

α̂(i+1) =
a+M

b
(i+1)
α

, (48)

γ̂(i+1)
n =

a+ 1

b
(i+1)
n

, ∀n, (49)

l̂n γn
(i+1)

=Ψ(a+ 1)− ln
(

b(i+1)
n

)

, ∀n, (50)

χ
(i+1)
n,l =

(∣
∣
∣µ(i+1)

n − fl

∣
∣
∣

2

+Σ(i+1)
n,n

)

, ∀n, l, (51)

where µ
(i+1)
n and Σ

(i+1)
n,n stand for the n-th element and the n-th diagonal element of µ(i+1) and Σ(i+1),

respectively. Our VBI-based method for discrete signal reconstruction is outlined in Algorithm 1. Note that

the most demanding step in Algorithm 1 is to compute an inverse of an N × N matrix in Step 3-b. To

reduce the computational cost, we may adopt Woodbury matrix identity:

Σ = ∆−∆AH
(
α̂−1IM +A∆AH

)−1
A∆, (52)

where ∆ , (
∑L

l=1 Ql)
−1 and the iteration subscript is dropped for notational simplicity. Finally, the main

computational complexity per iteration is given as follows.

• The complexity in updating q(i+1)(α) is O(MN2).

• The complexity in updating q(i+1)(x) is O(MN2 +M3), which can be simplified to O(MN2) because

of N > M .

• The complexity in updating q(i+1)(γ) is O(LN).

• The complexity in updating q(i+1)(G) is O(LN).

Therefore, the total computational complexity of Algorithm 1 is O(MN2) per iteration.

3.4. Initialization and Convergence Analysis

To start the alternating optimization algorithm, initialization for q(0)(x), q(0)(γ), and q(0)(G) is needed.

According to (37), (43) and (47), these initial values are set as follows:

q(0)(x) =CN (x|(AHA+ IN )−1AHy, (AHA+ IN )−1), (53)

q(0)(γ) =

N∏

n=1

Γ (γn|a+ 1, b+ 1)) , (54)

φ
(0)
n,l =

1

L
, ∀n, l. (55)

Empirical evidence illustrates that the proposed method is very robust to the above initialization.

13



Algorithm 1 VBI-based Algorithm for Discrete Signal Reconstruction

1. Input: y, A, F = {fl}Ll=1 and {ρl}Ll=1.

2. Initialization: Let a = b = 10−10 and i = 0, and set q(i)(x), q(i)(γ) and φ
(i)
n,l, ∀n, l, to initial values as

in (53)–(55).

3. Repeat the following until it converges:

a) Update q(i+1)(α) = Γ(α|a+M, b
(i+1)
α ) with (33), and calculate α̂(i+1) with (48)

b) Update q(i+1)(x) = CN (x|µ(i+1),Σ(i+1)) with (37), and calculate χ
(i+1)
n,l , ∀n, l, with (51).

c) Update q(i+1)(γn) = Γ
(

γn|a+ 1, b
(i+1)
n

)

, ∀n, with (43), and calculate γ̂
(i+1)
n and l̂n γn

(i+1)
, ∀n,

with (49) and (50), respectively.

d) Calculate φ
(i+1)
n,l , ∀n, l, with (47).

e) i = i+ 1.

4. Output: xest
n = argminf∈F |µ

(i)
n − f |2, ∀n.

In general, the convergence (to a stationary point) for an alternating algorithm cannot be guaranteed.

However, the alternating algorithm for our problem can be parameterized and reformulated as a special

block majorization-minimization (MM) algorithm [48], which enables us to prove that it converges to a

stationary point as follows.

Lemma 1. If at each iteration, we do updates as in (27)–(30), the generated iterates converge to a stationary

point of the problem (25).

Proof. See Appendix A.

3.5. Challenge with Ideal Prior (18)

As mentioned in Remark 2, it is intractable to perform the Bayesian inference with the ideal prior under

the SBL framework, whose reason is given as follows. Replacing p(xn|gn, γn) by p(xn|gn), (34) can be

rewritten as

ln q(i+1)(x)

∝− α̂(i+1)‖y −Ax‖22 +
〈 N∑

n=1

ln
( L∑

l=1

gn,lδ(xn − fl)
)〉

q(i)(G)

=− α̂(i+1)‖y −Ax‖22, xn ∈ {f1, f2, . . . , fL}, ∀n, (56)

where the last equality comes from the definition of δ(xn − fl). Obviously, the feasible x can take values

from LN candidates (denoted by c1, c2, . . . , cLN ). If we can exhaustively calculate the value of ln q(i+1)(x =

cj), ∀j, the discrete distribution q(i+1)(x) can be obtained similarly as in (47). Since the value of N is
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usually large in discrete signal reconstruction problems, the massive computation involved in the exhaustive

calculation could make the Bayesian inference intractable for real applications.

In this paper, it is the first time to obtain a tractable SLB-based framework for discrete signal recon-

struction with the help of the new proposed discretization enforcing prior (7). Moreover, our VBI method

does not impose any restrictions on the measurement matrix. To the best of our knowledge, the SOAV

optimization is the only method for discrete signal reconstruction with non i.i.d. Gaussian measurement

matrices, but it has several shortcomings (see Section II-B). Our VBI method can overcome all the short-

comings of the SOAV optimization, and simulation results illustrate that our VBI method can achieve the

best performance for non i.i.d. Gaussian measurement matrices.

On the other hand, we may resort to the GAMP approximation [44] to overcome the challenge with ideal

prior (18). In the next section, we will embed GAMP into the VBI-based method to propose a fast GAMP

variant, so as to directly adopt the ideal prior and significantly reduce the computational burden. However,

it is worth noting that the GAMP-based method works for i.i.d. Gaussian measurement matrices only.

4. Fast GAMP for Discrete Signal Reconstruction

In this section, we assume that the elements of the measurement matrixA are i.i.d. Gaussian distributed.

In this case, the GAMP algorithm [44] can be adopted to handle the ideal discretization prior (3). However,

the original GAMP algorithm needs the knowledge of the noise variance, which is usually unknown in

practical scenarios. To jointly estimate the noise variance and reconstruct the unknown signal with the

ideal prior, we embed GAMP into the proposed VBI-based method, which is inspired by the works in

[49, 50, 51, 52]. With adopting the ideal prior, the GAMP variant can achieve an excellent recovery for an

i.i.d. Gaussian measurement matrix. Nevertheless, it might give a very bad performance when the i.i.d.

Gaussian assumption is violated.

4.1. GAMP Introduction

GAMP is a low-complexity algorithm developed in a loopy belief-propagation framework for efficiently

computing approximate marginal posteriors using the cental limit theorem. Since GAMP can deal with

arbitrary distributions on both input and output, it can be applied to a wider range of CS problems.

Following the convention in GAMP, we introduce zm ,
∑N

n=1 amnxn, ∀m, into (1), i.e.,

ym = zm + vm, ∀m, (57)

where amn stands for the (m,n) element of A. The original GAMP algorithm is outlined in Algorithm 2,

where Θout
m and Θin

n stand for the prior information about vm and xn, respectively. We refer the reader to

[44] for more details and background about GAMP. Here, we do not introduce the messages among xns and
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zms and also do not illustrate how to derive Algorithm 2 with the message approximation, because all the

messages and derivations remain unchanged when we combine the GAMP algorithm into the proposed VBI

method, except that the following two distribution expressions are needed to be recalculated only:

• In Steps 3-c and 3-d, p(zm|ym, µp
m, τpm,Θout

m ) corresponds to the approximation of the marginal poste-

rior p(zm|ym,Θout
m ).

• In Steps 3-i and 3-j, p(xn|y, µr
n, τ

r
n,Θ

in
n ) corresponds to the approximation of the marginal posterior

p(xn|y,Θin
n ).

These two distribution functions are closely related to our proposed method, which will be utilized to

approximately calculate (33) and (37), respectively. We will detailedly discuss their calculations in the next

subsection.

4.2. Approximation Details

Note that Θout
m = {α̂} and Θin

n = {ρ , {ρl}Ll=1}, ∀m,n, in our case, where the definition of ρn has been

given in (11). In the following, we recalculate the two approximate distributions p(zm|ym, µp
m, τpm,Θout

m ) and

p(xn|y, µr
n, τ

r
n,Θ

in
n ) one-by-one.

• Firstly, according to EQ. (26) in [44], the true marginal posterior p(zm|ym, α̂) can be approximately

calculated as:

p(zm|ym, µp
m, τpm, α̂) =

p(ym|zm, α̂)CN (zm|µp
m, τpm)

∫

z
p(ym|z, α̂)CN (z|µp

m, τpm)dz
, (58)

where µp
m and τpm vary with the GAMP iteration t (as shown in Steps 3-b and 3-a). Here, the iteration

index is dropped for simplicity. Under the assumption of the additive complex i.i.d. Gaussian noises,

we have p(ym|zm, α̂) = CN (ym|zm, α̂−1). Therefore, p(zm|ym, µp
m, τpm, α̂) obeys a complex Gaussian

distribution:

p(zm|ym, µp
m, τpm, α̂) = CN (zm|µz

m, τzm), (59)

where

µz
m =

α̂τpmym + µp
m

1 + α̂τpm
, (60)

τzm =
τpm

1 + α̂τpm
. (61)

• Secondly, according to EQ. (19) in [44], p(xn|y,ρ) can be approximately calculated as:

p(xn|y, µ
r
n, τ

r
n,ρ)

=
p(xn|ρ)CN (xn|µr

n, τ
r
n)∫

x
p(x|ρ)CN (x|µr

n, τ
r
n)dx

(62)

=
CN (xn|µr

n, τ
r
n) ·

∑

gn∈{el}L
l=1

p(xn|gn)p(gn)
∫

x
p(x|ρ)CN (x|µr

n, τ
r
n)dx

, (63)
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Algorithm 2 GAMP Algorithm in [44]

1. Input: y, A, Θout
m and Θin

n , ∀m,n.

2. Initialization: Set t = 1 and set Tmax, µ
x
n, τ

x
n and µs

m, ∀m,n.

3. Repeat the following until convergence or t ≤ Tmax:

% Output Linear Step

a) τpm =
∑N

n=1 |amn|2τxn , ∀m.

b) µp
m =

∑N

n=1 amnµ
x
n − τpmµs

m, ∀m.

% Output Nonlinear Step

c) µz
m = 〈zm〉p(zm|ym,µ

p
m,τ

p
m,Θout

m ), ∀m.

d) τzm =
〈
|zm − µz

m|2
〉

p(zm|ym,µ
p
m,τ

p
m,Θout

m )
, ∀m.

e) µs
m = (µz

m − µp
m)/τpm, ∀m.

f) τsm = (1− τzm/τpm)/τpm, ∀m.

% Input Linear Step

g) τrn =
(
∑M

m=1 |amn|2τsm

)−1

, ∀n.

h) µr
n = µx

n + τrn
∑M

m=1 amnµ
s
m, ∀n.

% Input Nonlinear Step

i) µx
n = 〈xn〉p(xn|y,µr

n,τ
r
n,Θ

in
n ), ∀n.

j) τxn =
〈
|xn − µx

n|
2
〉

p(xn|y,µr
n,τ

r
n,Θ

in
n )
, ∀n.

k) t = t+ 1.

4. Output: µz
m, τzm, µx

n and τxn , ∀n,m.
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where µr
n and τrn will be again updated in every iteration of GAMP (as shown in Steps 3-h and 3-g).

Substituting (18) and (12) into (63) results in

p(xn|y, µ
r
n, τ

r
n,ρ) =

CN (xn|µr
n, τ

r
n) ·

∑L

l=1 ρlδ(xn − fl)
∫

x
p(x|ρ)CN (x|µr

n, τ
r
n)dx

. (64)

Clearly, p(xn|y, µr
n, τ

r
n,ρ) is a discrete distribution which only takes values from the finite alphabet F

with the probabilities

pxnl =
ρl
cn

exp

(

−
|fl − µr

n|
2

τrn

)

, ∀n, l, (65)

where pxnl is short for p(xn = fl|y, µr
n, τ

r
n,ρ) and cn = π|τrn| ·

∫

x
p(x|ρ)CN (x|µr

n, τ
r
n)dx is a constant.

Since
∑L

l=1 p
x
nl = 1, cn can be alternatively calculated as

cn =

L∑

l=1

ρl exp

(

−
|fl − µr

n|
2

τrn

)

. (66)

Based on the definitions of µx
n and τxn in Steps 3-i) and 3-j), we have

µx
n =

L∑

l=1

flp
x
nl, (67)

τxn =

L∑

l=1

|fl − µx
n|

2pxnl. (68)

It is seen from (64) that the GAMP-based method separates p(x|y,ρ) into N independent discrete

marginal posteriors approximately (i.e., p(x|y,ρ) ≈
∏N

n=1 p(xn|y, µr
n, τ

r
n,ρ)). Such separation can reduce

the number of the total discrete candidates from LN to NL. Hence, it is tractable to calculate the discrete

distribution p(x|y,ρ) approximately with the GAMP-based method.

4.3. Propposed GAMP-based Extension

Recall that our method proposed in Section III only has to repeatedly update (33), (37), (43) and (47).

In the following, we illustrate how to embed the approximations (59) and (64) into these updates. For ease

of notation, the iteration subscript is dropped in this subsection.

4.3.1. Approximation for (33)

In order to combine the approximation (59) with (33), we rewrite (32) as

ln q(α) ∝(a+M − 1) lnα− α ·

(

b+

M∑

m=1

〈
|ym − zm|2

〉

p(zm|ym,µ
p
m,τ

p
m,α)

)

(69)

∝(a+M − 1) lnα− α ·

(

b+

M∑

m=1

(
|ym − µz

m|2 + τzm
)

)

. (70)
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Hence, we obtain

q(α) ≈Γ(α|a+M,
M∑

m=1

(|ym − µz
m|2 + τzm)) (71)

and

α̂ = 〈α〉q(α) ≈
a+M

∑M

m=1(|ym − µz
m|2 + τzm)

. (72)

4.3.2. Approximation for (37)

We approximate q(xn) by the discrete distribution p(xn|y, µr
n, τ

r
n,ρ), where xn only takes values from

the finite alphabet F with the probabilities pxn,l defined in (65). Note that pxn,ls fully indicate the alphabet

xn should take.

Obviously, neither γ nor G is required for updating q(α) and q(xn)s. Once q(xn) are obtained, the

final discrete value of xn can be determined by the maximum element of {pxn,1, p
x
n,2, . . . , p

x
n,L}. Therefore,

the updates (43) and (47) can be safely removed from the fast GAMP-based method. Empirical evidence

shows that it remains very robust to the above GAMP approximations. We can always set Tmax = 1 when

Algorithm 2 is evoked, which means just one iteration is sufficient for the GAMP approximation. The

proposed fast GAMP-based algorithm for discrete signal reconstruction is outlined in Algorithm 3.

Finally, the main computational burden of Algorithm 3 is given as follows.

• The complexity in Step 3-a is O(M) per iteration.

• The complexity in Step 3-b is O(MN) per iteration.

Therefore, the total computational complexity of Algorithm 3 is O(MN) per iteration, which is much less

than O(MN2) for Algorithm 1. Simulation results in Section V will illustrate that the GAMP-based method

can achieve an excellent recovery for an i.i.d. Gaussian measurement matrix because the ideal prior (18) is

exploited, but its performance will degrade substantially for a non i.i.d. Gaussian A.

5. Simulation Results

In this section, we present simulation results to illustrate the performance of our method, with comparison

to the following schemes:

• Baseline 1 (Original SOAV): The discrete signal is recovered using the original SOAV method [35].

• Baseline 2 (Optimal SOAV): The discrete signal is recovered using the optimal SOAV method pro-

posed in Section IV of [41].

• Baseline 3 (BODAMP): The discrete signal is recovered using the Bayes optimal discreteness-aware

AMP method proposed in Section V of [41].
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Algorithm 3 Fast GAMP-based Algorithm for Discrete Signal Reconstruction

1. Input: y, A, F = {fl}Ll=1 and {ρl}Ll=1.

2. Initialization: Set µx
n = [(AHA+ I)−1AHy]n, τ

x
n = 1 and µs

m = 0, ∀m,n, and let a = b = 10−10 and

µz
m =

∑N

n=1 amnµ
x
n.

3. Repeat the following until convergence:

a) Approximate q(α) using (71), and calculate α̂ with (72).

b) Approximate q(xn), ∀n, by evoking the GAMP approximation:

– τpm =
∑N

n=1 |amn|
2τxn , ∀m.

– µp
m =

∑N

n=1 amnµ
x
n − τpmµs

m, ∀m.

– µz
m = (α̂τpmym + µp

m)/(1 + α̂τpm), ∀m.

– τzm = τpm/(1 + α̂τpm), ∀m.

– µs
m = (µz

m − µp
m)/τpm, ∀m.

– τsm = (1− τzm/τpm)/τpm, ∀m.

– τrn =
(
∑M

m=1 |amn|2τsm

)−1

, ∀n.

– µr
n = µx

n + τrn
∑M

m=1 amnµ
s
m, ∀n.

– pxnl =
ρl exp

(

−
|fl−µr

n|2

τr
n

)

∑

L
l=1 ρl exp

(

−
|fl−µr

n|2

τr
n

) , ∀n, l.

– µx
n =

∑L

l=1 flp
x
nl, ∀n.

– τxn =
∑L

l=1 |fl − µx
n|

2pxnl, ∀n.

4. Output: xest
n = argminf∈F |µx

n − f |2, ∀n.
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• Baseline 4 (Standard SBL): x is recovered by using the standard SBL method [16] and the discrete

signal is obtained by projecting x onto the discrete set F .

Two types of measurement matrices will be used: 1) i.i.d. Gaussian measurement matrix and 2) correlated

measurement matrix. For i.i.d. Gaussian measurement matrixA, it has i.i.d. zero-mean circularly symmetric

complex Gaussian entries with variance 1/M ; while for a correlated measurement matrix A, it is in the form

ofA = R
1
2

MAiidR
1
2

N [41, 53], whereRM (orRN ) stands for anM×M (orN×N) positive definite matrix with

(i, j) element being J0(|i− j|π) and J0(·) stands for the zeroth-order Bessel function of the first kind. Unless

otherwise specified, in the following, we assume that the L elements of the finite alphabet F are uniformly

located on the unit circle in the complex plane, and the corresponding probabilities ρls are randomly chosen

with a uniform distribution. All the simulations are conducted on an Intel Core i5-11400 CPU with 32 GB

RAM using MATLAB R2020b.

5.1. MSE Performance Versus Iteration Number

In Figs. 1 and 2, we study the convergence and mean square error (MSE) performance for different

discrete signal reconstruction strategies. Let N = 100 and ∆ = M/N , and the MSE at the i-th iteration is

defined as

MSE(i) =
‖x

(i)
µ − xtrue‖22

N
(73)

with x
(i)
µ being the estimate of the true signal xtrue at the i-th iteration (without a hard decision). Fig. 1

shows the MSE performance of the discrete signal reconstruction achieved by the different strategies with

an i.i.d. Gaussian measurement matrix versus the number of iterations; while Fig. 2 shows the MSE

performance of the discrete signal reconstruction achieved by the different strategies with a correlated

measurement matrix versus the number of iterations. It is observed that (i) the GAMP-based method can

yield the minimum MSE with an i.i.d. Gaussian measurement matrix (see Figs. 1a and 1b), as well as

the fastest convergence, because it can adopt the ideal prior (18) directly; (ii) the GAMP-based method

fails to work with a correlated measurement matrix (see Figs. 2a and 2b), as the GAMP approximation is

designed for an i.i.d, Gaussian measurement matrix only; (iii) the VBI-based method works well for either

an i.i.d. Gaussian measurement matrix or a correlated measurement matrix; (iv) the VBI-based method can

achieve very similar performance in the noise-free case (see Figs. 1b and 2b); (v) the SOAV-type methods

outperforms BODAMP with a correlated measurement matrix (see Figs. 2a and 2b), because the AMP-based

method (BODAMP) also relies on the i.i.d. Gaussian assumption; (vi) the standard SBL method always

fails to work as it cannot handle the discrete signal; (vii) the VBI-based method has much smaller MSE

than the SOAV-type method, no matter what the measurement matrix is used; and (viii) the VBI-based

method may require more iteration numbers in some cases, but it almost converges within 70 iterations.
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Figure 1: MSE versus the number of iterations with an i.i.d. Gaussian measurement matrix and N = 100. a) ∆ = 0.7, L = 8

and SNR= 30 dB; b) ∆ = 0.8, L = 16 and noise-free.
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Figure 2: MSE versus the number of iterations with a correlated measurement matrix and N = 100. a) ∆ = 0.7, L = 8 and

SNR= 30 dB; b) ∆ = 0.8, L = 16 and noise-free.
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5.2. SER Performance Versus SNR

In Figs. 3 and 4, Monte Carlo trials are carried out to investigate the impact of the signal-to-noise ratio

(SNR) on the symbol error rate (SER) performance, where the SER is defined as

1

McN

Mc∑

m=1

∥
∥xest,m − xtrue

∥
∥
0
, (74)

where xest,m is the estimate of xtrue at the m-th Monte Carlo trial and Mc = 200 is the number of trials. The

maximum number of iterations for each strategy is fixed to 100. Fig. 3 shows the SER performance of the

discrete signal reconstruction based on different strategies with an i.i.d. Gaussian measurement matrix versus

SNR. Fig. 4 shows the SER performance of the discrete signal reconstruction with a correlated measurement

matrix versus SNR. It is seen that (i) the GAMP-based method again gives the best performance with an i.i.d.

Gaussian measurement matrix, but fails to work with a non i.i.d. Gaussian measurement matrix; (ii) the

VBI-based method always retains a reasonable SER performance with either an i.i.d. Gaussian measurement

matrix or a correlated measurement matrix; and (iii) BODAMP can achieve a good SER performance with

an i.i.d. Gaussian measurement matrix but it also fails to work with a correlated measurement matrix; and

(iv) the optimal SOAV method outperforms the original SOAV method, but it is inferior to the VBI-based

method.

5.3. SER Performance Versus L

In Fig. 5, we study the impact of the size of the finite alphabet F on the SER performance. Assume that

N = 100, ∆ = 0.8 and SNR is set to 20 dB. Fig. 5 shows the SER of the discrete signal reconstruction versus

the number of elements in the finite alphabet F . It is observed that(i) the SERs of all the methods increase

as L increases, because the distance between the two nearby elements in the finite alphabet F becomes small

which will definitely cause a high SER; (ii) the simulation results reconfirm that the GAMP-based scheme

works perfectly with an i.i.d. Gaussian measurement matrix, and the type of measurement matrix does not

affect the performance of the VBI-based method; and (iii) the VBI-based approach always outperforms the

state-of-the-art methods.

5.4. Success Rate Versus ∆

In Figs. 6 and 7, Monte Carlo trials are carried out to investigate the rate of the success recovery, which

is defined as

1

Mc

Mc∑

m=1

[xest,m = xtrue]. (75)

Fig. 6 shows the success rate of the discrete signal reconstruction with an i.i.d. Gaussian measurement

matrix versus ∆. Fig. 7 shows the success rate of the discrete signal reconstruction with a correlated
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Figure 3: SER versus SNR with an i.i.d. Gaussian measurement matrix and N = 100. a) ∆ = 0.7 and L = 4; b) ∆ = 0.8 and

L = 8; c) ∆ = 0.9 and L = 16.
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Figure 4: SER versus SNR with a correlated measurement matrix and N = 100. a) ∆ = 0.7 and L = 4; b) ∆ = 0.8 and L = 8;

c) ∆ = 0.9 and L = 16.
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Figure 5: SER versus the number of elements in the finite alphabet F , where N = 100, ∆ = 0.8 and SNR = 20 dB. a) correlated

measurement matrix; b) i.i.d. Gaussian measurement matrix.
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measurement matrix versus ∆. Note that we consider the noise-free case in both figures. It is seen that (i)

the success rates of all the methods increase as ∆ increases; (ii) the GAMP-based method still provides the

best performance with an i.i.d. Gaussian measurement matrix; and (iii) compared with the GAMP-based

method, there is a little performance loss for the VBI-based scheme, but it retains a good success rate with

a correlated measurement matrix and always outperforms the state-of-the-art methods.

5.5. Runtime Versus N

Finally, we carry out the computational complexity comparison versus the dimension of discrete signal

N , where ∆ = 0.8, L = 8, and SNR is set to 20 dB. Fig. 8-a shows the average runtime over 200 Monte Carlo

trials with an i.i.d. Gaussian measurement matrix, and Fig. 8-b shows the corresponding SER performance

for reference. The element-independent factorization method (named SAVE) is additionally included in

each sub-figure. Note that the difference between SAVE and the proposed VBI-based method is in the

adopted approximation factorization for x only (as discussed in Section 3.3.2). It is observed that (i) the

runtime of all the methods increases with N ; (ii) the VBI-based method and the standard SBL method are

much slower than other methods, but the VBI-based method can achieve the best SER performance; (iii)

SAVE can provide a fast solution, but it suffers from a performance loss; (iv) the GAMP-based method can

significantly reduce the computational complexity, and has very similar runtime as the SOAV-type methods;

and (v) the GAMP-based method achieves almost the perfect SER performance with an i.i.d. Gaussian

measurement matrix, whose curve is out of the range of Fig. 8-b.

6. Conclusion

The discrete signal reconstruction problem is tackled in this paper from the perspective of SBL. Since the

ideal discretization prior (18) is composed of several Dirac delta functions, it is usually intractable to perform

the Bayesian inference with (18). To obtain a tractable Bayesian inference, we provide a novel discretization

enforcing prior (7) to exploit the knowledge of the discrete nature of the SOI. Then, we combine the new

prior (7) into the SBL framework and resort the VBI methodology to jointly characterize the finite-alphabet

feature and reconstruct the unknown signal. Finally, we propose a fast GAMP-based method to exploit

the ideal discretization prior directly, as well as to reduce the computational burden significantly, in the

presence of i.i.d. Gaussian measurement matrices. Simulation results show that the VBI-based solution

always outperforms the state-of-the-art SOAV optimization methods, and the GAMP-based scheme can

further improve the discrete signal reconstruction performance if the measurement matrix is i.i.d. Gaussian.

However, for non i.i.d. Gaussian measurement matrices, the GAMP-based method will fail to work; while

the VBI-based method with the new prior (7) does not require any assumption about the measurement

matrix.
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Figure 6: Success rate versus ∆ with an i.i.d. Gaussian measurement matrix and N = 100 int the noise-free case. a) L = 4; b)

L = 8.
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Figure 7: Success rate versus ∆ with a correlated measurement matrix and N = 100 in the noise-free case. a) L = 3; b) L = 6.
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Figure 8: Runtime and SER versus the dimension of discrete signal with an i.i.d. Gaussian measurement matrix, ∆ = 0.8,

L = 8, and SNR = 20 dB.
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Appendix A. Proof of Lemma 1

The following proof is similar to the one in [22]. Let Cα , {bα}, Cx = {µ,Σ}, Cγ , {bn}
N
n=1 and

CG , {φn,l}
N,L
n=1,l=1. According to (33), (37), (43) and (47), each factor in q(Ω) = q(α)q(x)q(γ)q(G) can be

considered as a parameterized function, i.e.,

q(α) =Γ(α|Cα), (A.1)

q(x) =CN (x|Cx), (A.2)

q(γ) =Γ (γ|Cγ) , (A.3)

and q(G) is a discrete distribution parameterized by CG. Therefore, the functional optimization problem

(25) can be formulated as a parameterized optimization problem

{C⋆
α, C

⋆
x, C

⋆
γ , C

⋆
G} = min

Cα,Cx,Cγ ,CG

DKL(Cα, Cx, Cγ , CG) (A.4)

where DKL(Cα, Cx, Cγ , CG) is the parameterized objective function for DKL(q(Ω)||p(Ω|y)). Then, (27)–(30)

become:

C(i+1)
α = argmin

Cα

DKL

(

Cα, C
(i)
x , C(i)

γ , C
(i)
G

)

, (A.5)

C(i+1)
x = argmin

Cx

DKL

(

C(i+1)
α , Cx, C

(i)
γ , C

(i)
G

)

, (A.6)

C(i+1)
γ = argmin

Cγ

DKL

(

C(i+1)
α , C(i+1)

x , Cγ , C
(i)
G

)

, (A.7)

C
(i+1)
G = argmin

CG

DKL

(

C(i+1)
α , C(i+1)

x , C(i+1)
γ , CG

)

. (A.8)

Note that each subproblem has a unique solution, given in (33), (37), (43) and (47). According to

Theorem 2-b in [48], the iterates generated by (A.5)–(A.8) converge to a stationary point of the problem

(A.4) or, equivalently, (25).
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