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Abstract This paper addresses the observer-based event-

triggered optimal control (ETOC) for nonlinear Itô-

type stochastic multi-agent systems (SMASs) with un-

known internal states and input constraints. To begin

with, the event-triggered stochastic Hamilton-Jacobi-

Bellman (HJB) equation with input constraints is p-

resented for the first time. Next, the observer-based i-

dentifier network is utilized to recover the knowledge

of unknown system dynamics. After that, the approxi-

mate event-triggered optimal controller is designed via

adaptive critic designs (ACDs) whose weights are only

updated at the triggering instants. It is worth mention-

ing that there is no published literature on the ETOC

for nonlinear SMASs with unknown internal states and

input constraints via the framework of ET-ACDs. This

study is the first attempt to solve this problem. More-

over, it is also proved that the Zeno behavior does not

exist in the closed-loop system. Finally, we present t-
wo examples to further verify the validity of the ETOC
scheme.

C. Liu · L. Liu (�)
College of Science, Hohai University, Nanjing 210098, China
e-mail: liulei hust@163.com

Z. Wu
School of Mathematics and Informational Science, Yantai U-
niversity, Yantai 264005, China

J. Cao
School of Mathematics, Southeast University, Nanjing
210096, China, and also with Yonsei Frontier Lab, Yonsei
University, Seoul 03722, South Korea

J. Qiu
School of Automation and Electrical Engineering, Linyi Uni-
versity, Linyi 276005, China

Keywords Stochastic multi-agent systems · Adaptive

critic designs · Event-triggered optimal control ·
Adaptive dynamic programming · Input constraints

1 Introduction

Recently, the distributed coordination control of nonlin-

ear multi-agent systems (MASs) has been widely used
in various fields, such as the manipulator works in trans-
portation equipment; the flocking phenomenon of bi-

ological systems; the formation control of UAVs; the

electronic circuit system. For more details, see [1–4] and

references therein. Actually, these fields are inevitably

affected by stochastic factors. Therefore, it is essential

to study the distributed coordination control of SMASs,
which has also aroused the interest of many researcher-
s [5–9].

As a typical topic in distributed coordination con-

trol of SMASs, the mean-square leader-following con-
sensus implies that all followers reach the leader in

mean-square sense by appropriate control strategies [7].

Ren et al. [8] and Wei et al. [9] studied the mean-square

leader-following consensus problem for SMASs under

the undirected and directed topology, respectively. Sim-
ilar to [5–9], the existing research results are mostly fo-
cused on the consensus. However, optimality, as another

important topic of SMASs, has not been paid enough

attention, which refers to minimizing the consumption

of the performance index on the basis of achieving con-

sensus. As we all know, the dynamic programming is a

method to study the optimal control problem by defin-

ing a Hamilton-Jacobi-Bellman (HJB) equation. While,

in practice, the use of the dynamic programming algo-

rithm to solve the analytical solution of the HJB equa-

tion has great limitations. To overcome these shortcom-
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ings, Werbos et al. [10] designed the adaptive dynamic

programming (ADP) algorithm by utilizing the idea of

function approximation for the first time and obtained

the numerical solution of the HJB equation. Since both

have almost the same principles, ADP is also called

ACDs. In recent years, many novel variants of the ADP

algorithm have been proposed. To work out the opti-

mal coordination control problem of nonlinear MASs, a
fuzzy ADP algorithm was designed by combining gen-
eralized fuzzy hyperbolic model with adaptive dynam-

ic programming in [11]. Later, a novel online learning

consensus control strategy for MASs was developed vi-

a goal representation heuristic dynamic programming

(GrHDP) techniques in [12]. For more details on the

ADP algorithm, see [13–16] and references therein.

It is well known that time-triggered control strate-

gies often lead to a large number of unnecessary com-
munication transmissions, which seriously reduces com-
munication efficiency. To overcome this shortcoming,
the event-triggered control (ETC) mechanism was pro-

posed, which can effectively reduce controller updates

and redundant communication between plants and ac-

tuators by designing an aperiodic method to transmit

the system signals [17]. Therefore, many studies com-
bined the ADP with the ETC mechanism [18–21]. A
novel optimal adaptive ETC algorithm for continuous-

time (CT) systems was proposed via the actor-critic al-

gorithm in [18]. Later, to simplify the architecture of the

algorithm, Zhao et al. [19] and Sun et al. [20] utilized

the critic-only network to design the ETOC for non-

linear MASs without and with external disturbances,
respectively. The ETOC problem of nonlinear stochas-
tic systems was sudied for the first time by utilizing the

ADP in [21], in which event-triggered conditions strict-

ly rely on the known system dynamics, and there is no

proof that the Zeno behavior has been excluded.

Due to the physical characteristics of actuators in

engineering applications, actuator saturation (i.e., in-

put constraints) needs to be considered [22–25]. To tack-

le this issue, Dong et al. [22] combined the ETC mecha-

nism with the actor-critic algorithm, designing the event-

triggered optimal controller of the nonlinear system with

input constraints. After that, by using the critic-only
network, Wang et al. [23] and Yang et al. [24] focused on
establishing the robust ETC strategy for constrained-
input nonlinear systems with matched and mismatched

perturbations, respectively. Recently, Shi et al. [25] ap-

plied the ET-ACDs to investigate the optimal control

problem of the CT nonlinear MASs with input satura-

tion.

Note that all the aforementioned results rely on the
full knowledge of system dynamics. Actually, it is d-

ifficult to acquire knowledge of the system dynamic-

s in practical applications completely. To handle with

the unknown nonlinear dynamics, partially models or
model-free based event-triggered adaptive dynamic pro-
gramming (ET-ADP) methods have been extensively
studied [26–30]. Zhu et al. [26] proposed a novel ADP

algorithm by combining the identifier network with the

actor-critic network to design the ETOC of partially

unknown constrained-input nonlinear systems. There-

after, to simplify the architecture of the algorithm, Zhang

et al. [27] and Huo et al. [28] applied the identifier-critic

framework to study the robust event-triggered control

strategy for unknown constrained-input nonlinear sys-

tems with matched and mismatched perturbations, re-

spectively. Recently, for unknown MASs, Zhang et al.

[29] addressed the optimal control problem with input

constraints by utilizing the ET-ADP technique. More

recently, Ding et al. [30] studied the optimal control

problem of CT nonlinear MASs with input constraints

by designing a new neural-network-based observer and

exploiting an actor-critic network.

Inspired by the aforementioned discussions, it should

be pointed out that the corresponding ETOC problem

of SMASs via the framework of ET-ACDs has not been

fully studied, let alone considering the case model-free

and input constraints at the same time. It motivates

our research interest and the main contributions of this

paper are:

(1) The ETOC problem for nonlinear SMASs with un-

known internal states and input constraints is in-

vestigated for the first time, and the ETOC strat-

egy induced by the event-triggered stochastic HJB

equation of SMASs with input constraints is pre-

sented via the Itô formula and Bellman’s optimality

principle.

(2) A sufficient criterion on optimal mean-square leader-

following consensus of SMASs with input constraints
via the ETOC strategy is derived and it is also
proved that the closed-loop system can exclude the
Zeno behavior.

(3) The observer-based identifier network is utilized to
reconstruct the unknown system dynamics and the

approximate event-triggered optimal controller of S-
MASs with input constraints is designed by utilizing
the framework of ET-ACDs. It is worth emphasiz-

ing that all error signals in the above two networks

are semi-globally uniformly ultimately bounded (S-

GUUB) in mean-square sense.

The rest of the paper is planned as follows. The prob-

lem formulation is described in Sect. 2. Sect. 3 gives the

ETOC strategy with input constraints. Sect. 4 presents

the system identification and the design of approximate
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event-triggered optimal controller of SMASs. Sect. 5

and 6 are the simulation and the conclusion, respec-

tively.

Notations: The set of all nonnegative real numbers,

the n-dimensional Euclidean space, the m× n real ma-

trices, and the n-dimensional identity matrix are de-
noted by R

+, Rn, Rm×n, and In, respectively. 1n =

[1, . . . , 1]T ∈ R
n. ‖ · ‖ represents the two-norm for vec-

tors or corresponding indeced two-norm for matrices.

M > 0(M < 0) denotesM is symmetric positive (nega-

tive) definite. C2,1 represents a class of functions V (x, t)

on R
n×R

+ → R
+ with twice continuously differentiable

in x and once in t. The minimum (maximum) eigenval-

ue of matrix M is denoted by λmin(M) (λmax(M)).

2 Preliminaries

2.1 Algebraic graph theory

The directed graph can be described as G = (Π, ξ,A),

where Π = {π0, π1, π2, · · · , πN} represents the node-
set, ξ = {ẽij = (πi, πj)} ⊆ Π ×Π denotes the edge-set,

and A = [aij ] ∈ R
N×N represents the weighted adja-

cency matrix with aij ≥ 0. The element aij > 0 only

if ẽji ∈ ξ, which means πi can receive the information

from πj ; otherwise aij = 0. Ni = {πj |ẽji ∈ ξ} denotes

the neighbor set of node πi. Define the pinning matrix

of leader as B = diag{bi, i = 1, 2, · · · , N} where bi de-
notes the pinning gain from π0 to πi. Let the in-degree

matrix of G be D = diag{di, i = 1, 2 · · · , N} with di =
∑

j∈Ni
aij . Then, the corresponding digraph Laplacian

matrix is defined as L = D − A = [lij ] ∈ R
N×N with

lii =
∑

j∈Ni
aij and lij = −aij(i 6= j). Let K = L + B

for convenience.

2.2 Problem formulation

For any (xis, s) ∈ R
n× [0,+∞), consider following non-

linear SMASs during t ∈ [s,+∞):
{

dxi(t) = f(xi(t), t)dt+ ui(t)dt+ g(xi(t), t)dw(t)

yi(t) = Cxi(t)
(1)

where xi(t) ∈ R
n and ui(t) ∈ R

n are the system s-
tate and control input of agent i, respectively; the ini-

tial data is defined as xi(s) = xis; yi(t) ∈ R
p is the

output vector of agent i; f : R
n × R

+ → R
n and

g : Rn × R
+ → R

n×k are both unknown smooth func-

tions with f(0, t) = g(0, t) = 0; C ∈ R
p×n is the known

output matrix. Let w(t) = (w1(t), · · · , wk(t))
T
be a k-

dimensional normal Brownian motion defined on a com-

plete probability space (Ω,F , {Ft}t≥s,P). E[·] repre-
sents the mathematical expectation of P.

The dynamics of the leader is defined as

dx0(t) = f(x0(t), t)dt+ g(x0(t), t)dw(t). (2)

Definition 1 [31] Consider a stochastic nonlinear sys-
tem

dx(t) = f(x(t), t)dt+ g(x(t), t)dw(t) (3)

for any V (x, t) ∈ C
2,1, associated with system (3), the

differential operator L is defined as:

L V (x, t) = Vt(x, t) + Vx(x, t)f +
1

2
Tr(gTVxxg) (4)

where Vt(x, t) = ∂V
∂t , Vx(x, t) = ∂V

∂x , Vxx(x, t) = ∂2V
∂x2 ,

and Tr(·) is the matrix trace.

Definition 2 [32] Considering the system (3), its tra-
jectory x(t) is said to be SGUUB in pth moment, if

for any initial data (xs, s), one has E [‖x (t)‖p] < ε for

all t > s + T (ε, xs) where ε and T (ε, xs) are positive

constants. When p = 2, it is also called SGUUB in

mean-square sense.

Lemma 1 [33] Let V : Rn×R
+ → R

+ be a continuous

function and V ∈ C
2,1. If there exist positive constants

a, b and two class k∞ functions α1(·), α2(·) such that

α1(‖x‖) ≤ V (x, t) ≤ α2(‖x‖) (5)

L V (x, t) ≤ −aV (x, t) + b. (6)

Then, it can be derived that

E[V (x, t)] ≤ V (x(0), 0)e−at +
b

a
(7)

for each x(0) ∈ R
n , ∀t ≥ 0. It indicates that the solu-

tion x(t) is SGUUB in mean-square sense.

Assumption 1 [34] For the directed graph G of S-

MASs (1), the leader π0 has a directed path (the root)

to any other follower πi ∈ Π (i = 1, . . . , N).

Assumption 2 [35] Assume that it exists a positive

constant Lf such that ‖f(x, t)−f(y, t)‖ ≤ Lf‖x−y‖ for
all x, y ∈ R

n. Moreover, gT g is bounded, i.e., ‖gT g‖ ≤
gM where gM is a positive constant.

3 The ETOC of SMASs with input constraints

3.1 The stochastic HJB equation with input

constraints

Let ei(t) = xi(t) − x0(t). For any t ∈ [s,+∞), the

consensus error system of agent i can be written as:

dei(t) = f̃(ei(t), t)dt+ ui(t)dt+ g̃(ei(t), t)dw(t). (8)
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Let x(t) = [xT1 (t), · · · , xTN (t)]T ∈ R
Nn, e(t) = [eT1 (t), · · ·

, eTN (t)]T∈RNn, F (e(t), t)=[f̃T (e1(t), t), · · ·, f̃T (eN (t), t)]T

∈ R
Nn where f̃(ei(t), t) = f(xi(t), t)−f(x0(t), t), u(t) =

[uT1 (t), · · · , uTN (t)]T ∈ R
Nn,G(e(t), t) = [g̃T (e1(t), t), · · ·

, g̃T (eN (t), t)]T ∈ R
Nn×k where g̃(ei(t), t)=g(xi(t), t)−

g(x0(t), t). Then, for any t∈[s,+∞), the global consen-

sus error system becomes

de(t) = F (e(t), t)dt+ u(t)dt+G(e(t), t)dw(t). (9)

For any initial data (zi, s) ∈ R
n × [0,+∞), the local

neighbor error system of agent i during t ∈ [s,+∞) is

depicted by

{

dζi(t)=
∑

j∈Ni

aij(dxi(t)−dxj(t))+bi(dxi(t)−dx0(t))

ζi(s)=zi.

(10)

Then, the global neighbor error is defined as

dζ(t) = (L ⊗ In)dx(t) + (B ⊗ In)(dx(t)− dx0(t))

= (L ⊗ In)(dx(t)− dx0(t)) + (B ⊗ In)de(t)

= (K ⊗ In)de(t) (11)

where x0(t) =
[

xT0 (t), · · · , xT0 (t)
]T ∈ R

Nn and ⊗ de-

notes the Kronecker product.

Remark 1 As the Laplacian matrix L has at least a zero
eigenvalue and the corresponding eigenvector is 1N , i.e.,

L1N = 0, (10) can be derived to (11). Additionally,

e(t) → 0 is equivalent to ζ(t) → 0 if K is nonsingular.

Definition 3 [36] If the control input ui guarantees

the performance index finite on the basis of making
the SMASs (1) stable, then, ui is called an admissible

control. We write as ui ∈ Ui[s,+∞) where Ui[s,+∞) =

{ui(·) is measurable in [s,+∞), and {Ft}t≥s-adapted}
is the admissible control set.

For any ŝ ∈ [s,+∞) and {Fŝ}ŝ≥s-measurable ran-
dom variable ẑi, the local non-quadratic performance

index of agent i is define as

Ji(ẑi, ŝ;ui, u(i))=Eŝ

[
∫ +∞

ŝ

(

ζTi Qiiζi+Mi(ui)
)

dt

]

(12)

where Eŝ[·] is the conditional expectation of {Fŝ}ŝ≥s,

‖ui‖ ≤ ūi with ūi being a positive constant, u(i) de-

notes a set containing all neighbor control vectors of
agent i, Mi(ui) = 2ūi

∫ ui

0
tanh−T (vi/ūi)Riidvi is posi-

tive definite with Qii > 0, Rii > 0.

Definition 4 (Optimal Control [36]) For given initial

data (zi, s), if there is an admissible control u∗i ∈ Ui[s,+∞)

minimizes (12), we say that u∗i is an optimal control.

The associated state trajectory is an optimal state at

(zi, s).

For agent i, let local optimal value function V ∗
i (zi, s)

be

V ∗
i (zi, s) = min

ui∈Ui[s,+∞)
Ji(zi, s;ui, u(i)). (13)

Based on stochastic optimal control theory [37], the cor-

responding local stochastic HJB equation becomes

−V ∗
i,t= min

ui∈Ui[s,+∞)
(ζTi Qiiζi +Mi(ui)

+ V ∗T
ζi (Ki ⊗ In)(F (e(t), t) + u(t))

+
1

2
Tr

(

GT (KT
i ⊗ In)

∂2V ∗
i

∂ζ2i
(Ki ⊗ In)G

)

= min
ui∈Ui[s,+∞)

(ζTi Qiiζi+2ūi

∫ ui

0

tanh−T (vi/ūi)Riidvi

+ V ∗T
ζi ((lii + bii)⊗ In)(f̃i + ui(t))

+ V ∗T
ζi

∑

j∈Ni

((lij + bij)⊗ In)(f̃j + uj(t))

+
1

2
Tr

(

GT (KT
i ⊗ In)

∂2V ∗
i

∂ζ2i
(Ki ⊗ In)G

)

(14)

where V ∗
i,t =

∂V ∗

i (ζi,t)
∂t , V ∗

ζi
=

∂V ∗

i (ζi,t)
∂ζi

, f̃i = f̃(ei(t), t),

GT (KT
i ⊗ In)

∂2V ∗

i

∂ζ2
i

(Ki ⊗ In)G ∈ R
k×k, Ki = Li + Bi,

with Li and Bi being the ith row vectors of matrix L
and B, respectively. Simultaneously, the corresponding
local Hamilton function can be denoted by

Hi(ζi, Vζi , ui, u(i), t)

= ζTi Qiiζi + 2ūi

∫ ui

0

tanh−T (vi/ūi)Riidvi

+ V T
ζi (Ki ⊗ In) (F (e(t), t) + u(t))

+
1

2
Tr

(

GT (KT
i ⊗ In)

∂2Vi
∂ζ2i

(Ki ⊗ In)G

)

. (15)

Then, (14) can be rwritten as

−V ∗
i,t = min

ui∈Ui[s,+∞)
Hi

(

ζi, V
∗
ζi , ui, u(i), t

)

. (16)

From (16) and Bellman’s optimality principle, one gets

u∗i (t) = −ūi tanh(D∗
i ) (17)

where D∗
i=

1
2ūi

R−1
ii ((lii+bii)⊗ In)V

∗
ζi
. By (17), we have

Mi(u
∗
i ) = ūiV

∗T
ζi ((lii + bii)⊗ In) tanh(D

∗
i )

+ ū2i R̄ii ln(1n − tanh2(D∗
i )) (18)

where R̄ii = [r1, · · · , rn] ∈ R
1×n. Substituting (17) and

(18) into (16), the CT stochastic HJB equation of agent

i becomes

V ∗
i,t +Hi(ζi, V

∗
ζi , u

∗
i , u

∗
(i), t)

= V ∗
i,t + ζTi Qiiζi + V ∗T

ζi ((lii + bii)⊗ In)f̃i
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+ ū2i R̄ii ln(1n − tanh2(D∗
i ))

+ V ∗T
ζi

∑

j∈Ni

((lij + bij)⊗ In)(f̃j − ūj tanh(D
∗
j ))

+
1

2
Tr

(

GT (KT
i ⊗ In)

∂2V ∗
i

∂ζ2i
(Ki ⊗ In)G

)

= 0. (19)

To reduce controller updates and redundant communi-
cation between the plants and the actuators, the ETC

mechanism is adopted in this paper. Define an event-
triggered sequence of agent i as {tik}. For any t∈[tik, tik+1),

the measurement error is ri(t) = ζi(t
i
k) − ζi(t) and

r(t) = [rT1 (t), · · · , rTN (t)]T ∈ R
Nn. Meanwhile, the E-

TOC can be obtained during t ∈ [tik, t
i
k+1)

u∗i (t
i
k)=−ūi tanh(

1

2ūi
R−1

ii ((lii+bii)⊗In)V ∗
ζi(t

i
k)). (20)

Substituting (20) into (16), the event-triggered stochas-

tic HJB equation becomes

V ∗
i,t+Hi(ζi, V

∗
ζi , u

∗
i (t

i
k), u

∗
(i), t)

= V ∗
i,t + ζTi Qiiζi +Mi(u

∗
i (t

i
k))

+ V ∗T
ζi ((lii + bii)⊗ In)(f̃i − ūi tanh(D

∗
i (t

i
k)))

+ V ∗T
ζi

∑

j∈Ni

((lij + bij)⊗ In)(f̃j − ūj tanh(D
∗
j ))

+
1

2
Tr

(

GT (KT
i ⊗ In)

∂2V ∗
i

∂ζ2i
(Ki ⊗ In)G

)

= εui (21)

where εui is the transformation error generated from
(17) to (20). By (19) and (21), we have εui=Mi(u

∗
i (t

i
k))−

Mi(u
∗
i ) + 2ūiD

∗T
i Rii(u

∗
i (t

i
k)− u∗i ). Furthermore, it can

be observed that the event-triggered stochastic HJB e-

quation (21) is equal to zero only at the triggering in-

stants.

Remark 2 For unconstrained optimal control problems,
the performance index is usually quadratic, i.e.,Mi(ui) =

uTi Riiui where Rii > 0. For constrained-input opti-
mal control problems, the performance index is non-

quadratic, i.e.,Mi(ui) = 2ūi
∫ ui

0
tanh−T (vi/ūi)Riidvi >

0, which ensures that the control input is within an in-

terval. Compared with the unconstrained optimal con-

trol problem, the constrained-input optimal control prob-

lem has brought more difficulties to theoretical analysis

and numerical simulation.

Remark 3 The HJB equations of deterministic systems

have been fully studied in the past several years. Ad-
ditionally, the coupled Hamilton-Jacobi-Isaacs (HJI) e-

quations of zero-sum differential graphical games have

also been studied by many scholars [38–40]. However,

as far as we know, optimality, as another important

topic of SMASs, has not been adequately studied. In

this paper, by using the Itô formula and Bellman’s op-

timality principle, the stochastic HJB equation (21) of

SMASs with input constraints under ETC mechanis-
m is presented for the first time, in which the second-

order differential
∂2V ∗

i

∂ζ2
i

makes the design of the con-

troller much more difficult than that of the determin-

istic case. Therefore, the study of ETOC for unknown

nonlinear SMASs with input constraints is a meaningful

and challenging work.

3.2 Event-triggered optimal control strategy

Assumption 3 [26] Assume that there exists a pos-

itive constant LDi
such that ‖D∗

i (x1) − D∗
i (x2)‖ ≤

LDi
‖x1 − x2‖ for all x1, x2 ∈ R

n.

Assumption 4 For optimal value funtion V ∗
i (ζi, t) :

R
n × R

+ → R
+, suppose that there exist two posi-

tive scalars c1, c2 such that c1E[‖ζi‖2] ≤ E[V ∗
i (ζi, t)] ≤

c2E[‖ζi‖2].

Theorem 1 Let Assumptions 1-4 valid and V ∗
i (ζi, t)

be the solution of the stochastic HJB equation (19).
Then, the SMASs (1) will achieve the optimal mean-

square leader-following consensus under ETOC (20) and

following triggering condition

E[‖ri(t)‖2]≤
(1−χ2)λmin(Qii)

ū2iL
2
Di

‖Rii‖
E[‖ζi‖2]+

e−ǫt

ū2iL
2
Di

‖Rii‖
(22)

for t ∈ [tik, t
i
k+1), where 0 < χ < 1 and ǫ > 0 are event-

triggered parameters. Moreover, it is also proved that

the closed-loop system can exclude the Zeno behavior.

Proof Step 1. The optimal mean-square leader-following

consensus of SMASs (1) under the ETC mechanism can

be achieved. As the optimal value function V ∗
i (ζi, t) is

positive definite, it can be selected as the Lyapunov

function. By Definition 1, one has

dV ∗
i (ζi, t) = L V ∗(ζi, t)dt+ V ∗T

ζi (Ki ⊗ In)Gdw(t) (23)

where

L V ∗
i (ζi, t) = V ∗

i,t + V ∗T
ζi ((lii + bii)⊗ In)(f̃i + u∗i (t

i
k))

+ V ∗T
ζi

∑

j∈Ni

((lij + bij)⊗ In)(f̃j + u∗j (t))

+
1

2
Tr

(

GT (KT
i ⊗ In)

∂2V ∗
i

∂ζ2i
(Ki ⊗ In)G

)

. (24)

According to CT stochastic HJB equation (19), we have

V ∗T
ζi ((lii + bii)⊗ In)f̃i
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= −V ∗
i,t − ζTi Qiiζi − ū2i R̄ii ln

(

1n − tanh2(D∗
i )
)

− V ∗T
ζi

∑

j∈Ni

((lij + bij)⊗ In)(f̃j − ūj tanh(D
∗
j ))

− 1

2
Tr

(

GT (KT
i ⊗ In)

∂2V ∗
i

∂ζ2i
(Ki ⊗ In)G

)

. (25)

Substituting (25) into (24) gives

L V ∗
i (ζi, t) = −ζTi Qiiζi − ū2i R̄ii ln(1n − tanh2(D∗

i ))

+ V ∗T
ζi ((lii + bii)⊗ In)u

∗
i (t

i
k). (26)

By (18), one has

ū2i R̄ii ln(1− tanh2(D∗
i ))

=Mi(u
∗
i )− ūiV

∗T
ζi ((lii + bii)⊗ In) tanh(D

∗
i ). (27)

From the definition of Mi(u
∗
i ), one gets

Mi(u
∗
i )=Mi(u

∗
i (t

i
k))+2

∫ u∗

i (t)

u∗

i
(ti

k
)

ūitanh
−T (vi/ūi)Riidvi.

(28)

Combining (27) and (28) yields

ū2i R̄ii ln(1n − tanh2(D∗
i ))

=Mi(u
∗
i (t

i
k)) + 2

∫ u∗

i (t)

u∗

i
(ti

k
)

ūitanh
−T (vi/ūi)Riidvi

− ūiV
∗T
ζi ((lii + bii)⊗ In) tanh(D

∗
i ). (29)

Furthermore, owing to 2ūiD
∗T
i Rii = V ∗T

ζi
((lii + bii) ⊗

In), one has

V ∗T
ζi ((lii + bii)⊗ In)u

∗
i (t

i
k)

=

∫ u∗

i (t
i
k)

u∗

i
(t)

V ∗T
ζi ((lii + bii)⊗ In)dvi

+ V ∗T
ζi ((lii + bii)⊗ In)u

∗
i (t)

=

∫ u∗

i (t
i
k)

u∗

i
(t)

2ūiD
∗T
i Riidvi

− ūiV
∗T
ζi ((lii + bii)⊗ In) tanh(D

∗
i ). (30)

Substituting (29) and (30) into (26), one gets

L V ∗
i (ζi, t) = −ζTi Qiiζi −Mi(u

∗
i (t

i
k))

+

∫ u∗

i (t
i
k)

u∗

i
(t)

2ūi(tanh
−1(vi/ūi) +D∗

i )
T
Riidvi. (31)

Let vi=−ūi tanh(τi), then dvi=−ūi
(

1n − tanh2(τi)
)

dτi.
Based on Assumption 3, (31) becomes

L V ∗
i (ζi, t) = −ζTi Qiiζi −Mi(u

∗
i (t

i
k))

−
∫ D∗

i (t
i
k)

D∗

i
(t)

2ū2i (−τi +D∗
i )

T
(1n − tanh2(τi))Riidτi

≤ −ζTi Qiiζi −Mi(u
∗
i (t

i
k)) +

∫ D∗

i (t
i
k)

D∗

i
(t)

2ū2i (τi −D∗
i )

T
Riidτi

= −ζTi Qiiζi −Mi(u
∗
i (t

i
k))

+ ū2i
(

D∗
i (ζi(t

i
k))−D∗

i (ζi)
)T
Rii(D

∗
i (ζi(t

i
k))−D∗

i (ζi))

≤ −χ2λmin(Qii)‖ζi‖2 − (1− χ2)λmin(Qii)‖ζi‖2

+ ū2iL
2
Di

‖Rii‖‖ri‖2. (32)

Taking the mathematical expectation on both sides of

(32), we can get

E[L V ∗
i (ζi, t)] ≤ −χ2λmin(Qii)E

[

‖ζi‖2
]

−
(

1− χ2
)

λmin(Qii)E
[

‖ζi‖2
]

+ ū2iL
2
Di

‖Rii‖E
[

‖ri‖2
]

. (33)

From condition (22) and Assumption 4, one gets

E[L V ∗
i (ζi, t)] ≤ −χ2λmin(Qii)E

[

‖ζi‖2
]

+ e−ǫt

≤ −c3E[V ∗
i (ζi, t)] + e−ǫt (34)

where c3=
χ2λmin(Qii)

c2
>0. By (23) and (34), we have

E[V ∗
i (ζi, t)]− E[V ∗

i (zi, s)]

=

∫ t

s

E[L V ∗
i (ζi(η), η)]dη

≤ −c3
∫ t

s

E[V ∗
i (ζi(η), η)]dη +

∫ t

s

e−ǫηdη. (35)

Thus, we get

E[V ∗
i (ζi, t)] ≤ E[V ∗

i (zi, s)]e
−c3(t−s) + e−c3t

∫ t

s

e(c3−ǫ)ηdη

= E[V ∗
i (zi, s)]e

−c3(t−s) +
1

c3 − ǫ
e−ǫt

− 1

c3 − ǫ
e−ǫse−c3(t−s)

= E[V ∗
i (zi, s)]e

−c3(t−s) + e−ǫsϕ0(t) (36)

where ϕ0(t) =
1

c3−ǫ (e
−ǫ(t−s)−e−c3(t−s)) ≥ 0 and limt→+∞

ϕ0(t) = 0. Therefore, we have limt→+∞E[V ∗
i (ζi, t)] =

0, which means that SMASs (1) achieves the optimal
mean-square leader-following consensus eventually un-
der the ETOC strategy.
Step 2. It will prove that the closed loop system does not

have Zeno behavior. By (9) and (11), for t ∈ [tik, t
i
k+1),

we have

dζi(t)=(Ki ⊗ In) (F (e(t), t)dt+u(t)dt+Gdw(t)) . (37)

Let Φi(t) = rTi (t)ri(t) where ri(t) = ζi(t
i
k)−ζi(t). Then,

from Definition 1, we can obtain that

LΦi(t) = −2rTi (t)[(Ki ⊗ In)(F (e(t), t) + u(t))]
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+Tr(GT (KT
i Ki ⊗ In)G). (38)

By Assumption 2, Young’s inequality, and ‖GTG‖ ≤
NgM , one gets

−2rTi (t)(Ki ⊗ In)F (e(t), t)

≤rTi (t)ri(t) + FT (e(t), t)(KT
i ⊗ In)(Ki ⊗ In)F (e(t), t)

≤rTi (t)ri(t) + L2
fζ

T
i (t)ζi(t)

≤‖ri(t)‖2 + L2
f‖ζi(t)‖2 (39)

−2rTi (t)(Ki ⊗ In)u(t) ≤ ‖ri(t)‖2 + ‖KT
i Ki‖ū2 (40)

Tr(GT (KT
i Ki⊗In)G)≤k

√
k‖GT (KT

i Ki⊗In)G‖

≤k
√
k

2
‖KT

i Ki‖
2
+
k
√
k

2
‖GTG‖2

≤k
√
k

2
‖KT

i Ki‖
2
+
k
√
k

2
N2g2M

(41)

where Lf , gM , and ū = maxNi=1{ūi} are positive con-

stants. Substituting (39), (40) and (41) into (38) yields

LΦi(t) ≤ 2‖ri(t)‖2 + ‖KT
i Ki‖ū2

+
k
√
k

2
‖KT

i Ki‖
2
+
k
√
k

2
N2g2M + L2

f‖ζi(t)‖
2

= 2‖ri(t)‖2 + ‖KT
i Ki‖ū2 +

k
√
k

2
‖KT

i Ki‖
2

+
k
√
k

2
N2g2M + L2

f

(

2‖ri(t)‖2 + 2‖ζi(tik)‖
2
)

= aΦi(t) + b (42)

where a=2 + 2L2
f and b=‖KT

i Ki‖ū2 + k
√
k

2 ‖KT
i Ki‖2 +

k
√
k

2 N2g2M+2L2
f‖ζi(tik)‖

2
are positive constants. Owing

to ri
(

tik
)

=0, during t ∈ [tik, t
i
k+1), we have

E [Φi(t)] = E

[

‖ri(t)‖2
]

≤ E[b]

a

(

ea(t−tik) − 1
)

. (43)

Based on condition (22), when t = tik+1, we have

E
[

‖ri(tik+1)‖
]2

=
(1− χ2)λmin(Qii)

ū2iL
2
Di

‖Rii‖
E

[

‖ζi‖2
]

+
e−ǫtik+1

ū2iL
2
Di

‖Rii‖
. (44)

Denote T i = tik+1 − tik. From (43) and (44), when t =

tik+1, we can derive that

T i ≥ 1

a
ln

(

a

E[b]
E[‖ri(tik+1)‖2] + 1

)

> 0. (45)

By (45), we can easily get T = inf{T i} > 0 for any i,

which means that the closed loop system does not have

the Zeno behavior. ⊓⊔

Remark 4 Since event-triggered condition (22) has an

exponential term e−ǫt, it is actually a special dynamic
event-triggered strategy. At the same time, the intro-

duction of exponential term e−ǫt extends the triggering

interval and effectively reduces the number of triggering

events.

Proof From (45) and T i = tik+1 − tik > 0, one has

T i ≥ 1

a
ln

(

a

E[b]

(

β1E[‖ζi(tik)‖2] + β2e
−ǫtik+1

)

+ 1

)

>
1

a
ln

(

a

E[b]

(

β1E[‖ζi(tik)‖2]
)

+ 1

)

= T̄ i (46)

where β1 =
(1−χ2)λmin(Qii)

ū2
i
L2

Di
‖Rii‖ and β2 = 1

ū2
i
L2

Di
‖Rii‖ . T̄

i

is the triggering interval without the exponential term

e−ǫt. Thus, T = inf
k
{T i} > inf

k
{T̄ i} > 0. The proof is

completed. ⊓⊔

Remark 5 As we all known that stochastic factors are

inevitable in certain dynamical systems, such as the

multiple one-link manipulators and the UAVs. Inspired

by the optimal control of the constrained-input non-

linear system in Reference [26], this paper considers

the ETOC problems for SMASs with input constraints.

Moreover, it is also proved that the closed-loop system

can exclude the Zeno behavior.

4 Implementation Of approximate optimal

controller of SMASs via ET-ACDs

In the process of implementing the approximate ETOC
of nonlinear SMASs with unknown internal states and
input constraints, it is hard to obtain analytical so-

lutions of stochastic HJB equations via the classical

on-policy algorithm. To tackle this issue, the identifier-

critic algorithm is utilized where observer-based identi-

fier networks are established to recover the knowledge of

unknown system dynamics, and critic networks are es-

tablished to approximate the value function. The struc-

ture of the approximate ETOC algorithm is presented
in Fig. 1.

4.1 System identification

According to [41], the neural-network-based observers

of SMASs (1) can be designed as follows:

{

˙̂xi(t) = Ax̂i(t) + ω̂T
hiφhi(Ẑi) + L(yi − ŷi)

ŷi(t) = Cx̂i(t)
(47)

where the Hurwitz matrix A ∈ R
n×n is chosen to make

sure the pair (C,A) observable; Ẑi = Y T
hi [x̂

T
i (t), u

T
i (t)]

T
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with Yhi ∈ R
(2n×Nh,h); ω̂hi ∈ R

(Nh,h×n) is an estimation

of the ideal weight matrix ωhi; φhi ∈ R
Nh,h and Nh,h

are the activation function and number of the hidden

nodes of the identifier network, respectively. Let the

state estimation error and identifier weight estimation

error be x̃i = xi − x̂i and ω̃hi = ω∗
hi − ω̂hi, respectively.

By (1) and (47), the dynamics of state estimation error

system become

dx̃i(t) = AC x̃i(t)dt+ (f(xi(t), t) + ui(t)−Axi(t))dt

− ŵT
hiφhi(Ẑi)dt+ g(xi(t), t)dw(t) (48)

where AC = A − LC is a Hurwitz matrix. Based on

neural networks, one has

f(xi(t), t)+ui(t)−Axi(t) = ω∗T
hi φhi(Zi)+εhi(xi) (49)

where Zi = Y T
hi [x

T
i (t), u

T
i (t)]

T and εhi ∈ R
n is the

structural error.

Assumption 5 [35] The ideal identifier weight ω∗
hi,

activation function φhi and structural error εhi are bound-

ed by the positive constants ωhM , φhM and εhM , re-

spectively, i.e., ‖ω∗
hi‖≤ωhM , ‖φhi‖≤φhM and ‖εhi‖≤εhM .

Theorem 2 Consider the dynamics of state estima-

tion error system (48). Let Assumptions 1-5 valid and

the updating rule of the estimated weight matrix ω̂hi is

defined as

˙̂ωhi = −li1φhiỹTi CA−1
C − li2ω̂hi (50)

where li1 and li2 are positive weight parameters. Then,

the x̃i and ω̃hi are SGUUB in mean-square sense.

Proof Select the Lyapunov function candidate as fol-

lows:

Vi(x̃i(t), t) = x̃Ti Px̃i +
1

2
Tr

(

ω̃T
hil

−1
i1 ω̃hi

)

(51)

where P is a symmetric positive definite matrix that

satisfies AT
CP + PAC = −βIn with β > 1. Let Vi =

Vi(x̃i(t), t) for simplicity. From Definition 1, we have

L Vi = x̃Ti (A
T
CP + PAC)x̃i

+ 2x̃Ti P
[

(f(xi(t), t)+ui(t)−Axi(t))−ω̂T
hiφhi(Ẑi)

]

+Tr
(

gTPg
)

+Tr
(

ω̃T
hil

−1
i1

˙̃ωhi

)

. (52)

Furthermore, by Assumption 2 and Young’s inequality,

the following inequalities can be obtained:

Tr(gTPg) ≤ k
√
k‖gTPg‖ ≤ k

√
k‖P‖‖gT g‖

≤ k
√
k

2
‖P‖2 + k

√
k

2
g2M . (53)

Substituting (49) and (53) into (52) gives

L Vi ≤ −β‖x̃i‖2

+ 2‖x̃i‖‖P‖(2ωhMφhM + εhM + ‖ω̃hi‖φhM )

+
k
√
k

2
‖P‖2 + k

√
k

2
g2M +Tr

(

ω̃T
hil

−1
i1

˙̃ωhi

)

. (54)

By (50) and Tr(MN) = Tr(NM) = NM for all M ∈
R

n×1 and N ∈ R
1×n, one has

Tr
(

ω̃T
hil

−1
i1

˙̃ωhi

)

= Tr
(

ω̃T
hil

−1
i1 (li1φhiỹ

T
i CA

−1
C + li2ω̂hi)

)

= ỹTi CA
−1
C ω̃T

hiφhi + li2Tr
(

ω̃T
hil

−1
i1 ω̂hi

)

. (55)

Based on ω̃hi = ω∗
hi − ω̂hi, the following equation can

be obtained

Tr
(

ω̃T
hil

−1
i1 ω̂hi

)

=
1

2
Tr

(

ω∗T
hi l

−1
i1 ω

∗
hi

)

− 1

2
Tr

(

ω̃T
hil

−1
i1 ω̃hi

)

− 1

2
Tr

(

ω̂T
hil

−1
i1 ω̂hi

)

. (56)

Thus, combining (55) and (56), we have

Tr
(

ω̃T
hil

−1
i1

˙̃ωhi

)

≤ ỹTi CA
−1
C ω̃T

hiφhi

+ li2

[

1

2
Tr

(

ω∗T
hi l

−1
i1 ω

∗
hi

)

− 1

2
Tr

(

ω̃T
hil

−1
i1 ω̃hi

)

]

. (57)

Substituting (57) into (54) gives

L Vi ≤ −β‖x̃i‖2 + ‖x̃i‖ψ

+ li2

[

1

2
Tr

(

ω∗T
hi l

−1
i1 ω

∗
hi

)

− 1

2
Tr

(

ω̃T
hil

−1
i1 ω̃hi

)

]

+
k
√
k

2
‖P‖2 + k

√
k

2
g2M (58)

where ψ = 4‖P‖ωhMφhM+2‖P‖εhM+2‖P‖‖ω̃hi‖φhM+

‖CTCA−1
C ω̃T

hi‖φhM . By Young’s inequality, one gets

‖x̃i‖ψ ≤ ‖x̃i‖2 +
1

4
ψ2. (59)

Substituting (59) into (58) gives

L Vi ≤ − (β − 1)

λmax(P )
x̃Ti Px̃i

+ li2

[

1

2
Tr

(

ω∗T
hi l

−1
i1 ω

∗
hi

)

− 1

2
Tr

(

ω̃T
hil

−1
i1 ω̃hi

)

]

+
1

4
ψ2 +

k
√
k

2
‖P‖2 + k

√
k

2
g2M

≤ −̟
[

x̃Ti Px̃i +
1

2
Tr

(

ω̃T
hil

−1
i1 ω̃hi

)

]

+ ϑ

= −̟Vi + ϑ (60)

where̟=min
(

(β−1)
λmax(P ) ,

li2
2

)

and ϑ= li2
2 Tr

(

ω∗T
hi l

−1
i1 ω

∗
hi

)

+

1
4ψ

2+ k
√
k

2 ‖P‖2+ k
√
k

2 g2M are positive constants. Then,

by Lemma 1, we have

E[Vi(x̃i(t), t)] ≤ Vi (x̃i(0), 0) e
−̟t +

ϑ

̟
, ∀t > 0. (61)
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which means that E[Vi(x̃i(t), t)] is bounded by ϑ/̟

eventually. Therefore, we can get that x̃i and ω̃hi are
SGUUB in mean-square sense. ⊓⊔

Remark 6 Reference [21] has studied the optimal con-

trol strategy for stochastic nonlinear systems based on

the framework of ACDs for the first time, in which

event-triggered conditions strictly rely on the known

system dynamics, and there is no proof that the Zeno

behavior has been excluded. Actually, it is difficult to

acquire knowledge of the system dynamics in practical

applications completely. To overcome the disadvantage

of relying on known system dynamics, the observer-

based identifier network is established in this paper, and

it is also proved that the Zeno behavior does not exist

in the closed loop system via the Itô formula. Addi-

tionally, to better meet the needs of actual production,

the input-saturation problem is also considered in this

paper.

Remark 7 After approximating the system dynamics

through the observer-based identifier network, approx-

imate dynamics f̂ should be utilized in the subsequent

analysis. Actually, it can be seen from (49) and As-

sumption 5 that the use of approximate dynamics f̂
hardly introduces any difficulties. At the same time, to

avoid confusion in symbols, the approximate dynamics
are still represented by f in the following theoretical

analysis.

4.2 Critic network design

By the critic network, the optimal value function can

be written as:

V ∗
i (ζi(t)) = ωT

ciφci
(

Y T
ci ζi(t)

)

+ εci (62)

where Yci ∈ R
n×Nch and ωci ∈ R

Nch are the ideal weight

matrix of the critic network; φci ∈ R
Nch , εci, and Nch

are the activation function, structural error, and the
number of the hidden nodes of critic network, respec-
tively. The derivative of V ∗

i (ζi(t)) with respect to ζi(t)

is:

V ∗
ζi = ∇φTci

(

Y T
ci ζi(t)

)

ωci +∇εci. (63)

Then, the ETOC can be described by

u∗i (t
i
k) = −ūi tanh(D∗

i (t
i
k)), t ∈ [tik, t

i
k+1) (64)

whereD∗
i (t

i
k) =

1
2ūi

R−1
ii ((lii + bii)⊗ In)(∇φTciωci+∇εci).

Assumption 6 [23] In the critic network: (1) ωci,

∇φci and∇εci are bounded, i.e., ‖ωci‖ ≤ ωcM , ‖∇φci‖ ≤
∇φcM , ‖∇εci‖ ≤ ∇εcM where ωcM , ∇φcM , and ∇εcM
are positive constants.

Substituting (63) and (64) into (21), the event-triggered

stochastic HJB equation becomes

V ∗
i,t +Hi(ζi, ωci, u

∗
i (t

i
k), u

∗
(i), t)

= V ∗
i,t + ζTi Qiiζi +Mi(u

∗
i (t

i
k))

+ ωT
ci∇φci((lii + bii)⊗ In)(f̃i − ūi tanh(D

∗
i (t

i
k)))

+ ωT
ci∇φci

∑

j∈Ni

((lij + bij)⊗ In)(f̃j − ūj tanh(D
∗
j ))

+
1

2
Tr

(

GT (KT
i ⊗ In)ω

T
ci

∂2φci
∂ζ2i

(Ki ⊗ In)G

)

− εHi

= εui, t ∈ [tki , t
k
i+1) (65)

where εHi=−∇εTci(Ki ⊗ In)(F (e(t), t)+u(t)) is a bound-

ed residual error, i.e., |εHi| ≤ εHM with εHM > 0. Let

the weight estimation error be ω̃ci = ωci − ω̂ci with

ω̂ci being an estimation of ωci. Then, the actual value

function can be approximated by

V̂i(ζi) = ω̂T
ciφci

(

Y T
ci ζi(t)

)

(66)

where V̂i(ζi) is an estimation of V ∗
i (ζi(t)). Thus, the

approximate ETOC is described by

û∗i (t
i
k) = −ūi tanh(D̂∗

i (t
i
k)), t ∈ [tik, t

i
k+1) (67)

where D̂∗
i (t

i
k) = 1

2ūi
R−1

ii ((lii + bii)⊗ In)∇φTciω̂ci. Sub-

stituting (64) and (66) into (21), the estimated event-

triggered stochastic HJB equation becomes

V ∗
i,t +Hi(ζi, ω̂ci, u

∗
i (t

i
k), u

∗
(i), t)

= V ∗
i,t + ζTi Qiiζi +Mi(u

∗
i (t

i
k))

+ ω̂T
ci∇φci((lii + bii)⊗ In)(f̃i − ūi tanh(D

∗
i (t

i
k)))

+ ω̂T
ci∇φci

∑

j∈Ni

((lij + bij)⊗ In)(f̃j − ūj tanh(D
∗
j ))

+
1

2
Tr

(

GT (KT
i ⊗ In)ω̂

T
ci

∂2φci
∂ζ2i

(Ki ⊗ In)G

)

= εi, t ∈ [tki , t
k
i+1) (68)

where εi is the estimated residual error. By (65) and

(68), one gets

εi = −ω̃T
ci∇φci(Ki ⊗ In)(F (e(t), t) + u(t))

+ εHi + εui. (69)

Then, the gradient descent method is used to minimize

the following error function Ei

Ei =
1

2
ε2i . (70)

Thus, the updated rule of estimated weight ω̂ci is as

follows:
{

˙̂ωci=0, t ∈ (tik, t
i
k+1)

ω̂+
ci=ω̂ci−lci( ki1k

T
i1

(kT
i1
ki1+1)2

ω̂ci+
ki1

(kT
i1
ki1+1)2

Ψi), t=t
i
k

(71)
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Fig. 1. Diagram of approximate ETOC mechanism

where ki1 = ∇φci((lii+bii)⊗In)(f̃i−ūi tanh(D∗
i (t

i
k)))+

∇φci
∑

j∈Ni

((lij + bij)⊗ In)(f̃j − ūj tanh(D
∗
j )) ∈ R

Nch ,

Ψi = V ∗
i,t+ ζ

T
i Qiiζi+Mi(u

∗
i (t

i
k))+

1
2Tr(G

T (KT
i ⊗ In)×

ωT
ci

∂2φci

∂ζ2
i

(Ki ⊗ In)G) and lci > 0 is the learning rate.

Remark 8 From (21), one has εui=Hi(ζi, V
∗
ζi
, u∗i (t

i
k), u

∗
(i), t)

−Hi(ζi, V
∗
ζi
, u∗i , u

∗
(i), t)=Mi(u

∗
i (t

i
k))−Mi(u

∗
i )+2ūiD

∗T
i ×

Rii(u
∗
i (t

i
k)−u∗i ). Firstly, we know from (18) and Remark

2 that Mi(u
∗
i (t

i
k)) and Mi(u

∗
i ) are bounded. Then, by

‖ωci‖ ≤ ωcM , ‖∇φci‖ ≤ ∇φcM , and ‖∇εci‖ ≤ ∇εcM in

Assumption 6, one gets 2D∗T
i ūiRii(u

∗
i (t

i
k)− u∗i ) is also

bounded. Thus, the transformation error εui is bound-

ed, i.e., |εui| ≤ εuM with εuM > 0.

Remark 9 εHi is a residual error caused by structural

error εci in the critic network. Theoretically, the ideal

weight vector ωci is updated along the gradient direc-
tion where the residual error εHi tends to zero. How-

ever, since ωci is unknown, the estimated weight ω̂ci

is used to approximate the actual output V̂i. In this

process, due to the weight estimation error ω̃ci, the es-
timated residual error εi is generated. What’s more,

εi = −ω̃T
ci∇φci(Ki ⊗ In)(F (e(t), t) + u(t)) + εHi + εui.

Thus, the estimated weight ω̂ci is updated along the
gradient direction where the estimated residual error εi
tends to zero. When εci → 0, the approximate optimal

value function approaches to the optimal value func-

tion eventually, i.e.,V̂i(ζi) → V ∗
i (ζi). By formula (67),

we can get that û∗i (t
i
k) → u∗i (t

i
k).

Theorem 3 Consider the nonlinear constrained-input

SMASs (1) with event-triggered strategy (67). The weight-

s of the critic network are updated as (71). Let Assump-

tions 1-6 valid and the event-triggered condition satis-

fies

E

[

‖ri(t)‖2
]

≤ (1− χ2)λmin(Qii)

a1
E

[

‖ζi‖2
]

+
e−ǫt

a1
(72)

where a1 = 2ū2iL
2
Di

‖Rii‖ and 0 < χ < 1 are positive

constants. Then, ζi(t) and ω̃ci are SGUUB in mean-

square sense and the SMASs (1) will achieve the opti-

mal mean-square consensus eventually. Moreover, it is

also proved that the closed-loop system can exclude the

Zeno behavior.

Proof Step 1. The following two cases are considered.

Case 1: Events are not triggered (tik < t < tik+1).
Construct a candidate Lyapunov function as follows:

Vi(t) = Vi1(t) + Vi2(t) + Vi3(t) (73)

where Vi1(t)=V
∗
i (ζi(t), t), Vi2(t) = V ∗

i (ζi(t
i
k), t

i
k), Vi3(t) =

1
lci

Tr(ω̃T
ciω̃ci). During t ∈ (tik, t

i
k+1), L Vi2(t) = L Vi3(t) =

0. Based on Theorem 1, we have

L V ∗
i1(t) = L V ∗

i (ζi, t)

≤ −ζTi Qiiζi−Mi(û
∗
i (t

i
k))+

∫ D̂∗

i (t
i
k)

D∗

i
(t)

2ū2i (τi−D∗
i )

T
Riidτi

= −ζTi Qiiζi+ū
2
i (D̂

∗
i (t

i
k)−D∗

i (t))
T
Rii(D̂

∗
i (t

i
k)−D∗

i (t))

≤ −χ2λmin(Qii)‖ζi‖2−
(

1−χ2
)

λmin(Qii)‖ζi‖2

+ū2i ‖Rii‖
∥

∥

∥
D̂∗

i (t
i
k)−D∗

i (t)
∥

∥

∥

2

. (74)

According to Assumption 3 and 6, one gets

‖D̂∗
i (t

i
k)−D∗

i (t)‖
≤ ‖D̂∗

i (t
i
k)−D∗

i (t
i
k)‖+ ‖D∗

i (t
i
k)−D∗

i (t)‖
≤ LR‖∇φTciω̂ci−(∇φTciωci+∇εci)‖+ LDi

‖ri‖
≤ LR(∇φcM‖ω̃ci‖+∇εcM ) + LDi

‖ri‖. (75)

Substituting (75) into (74) and taking the expectation

yields

E[L V ∗
i (ζi, t)] ≤ −χ2λmin(Qii)E

[

‖ζi‖2
]

−
(

1− χ2
)

λmin(Qii)E
[

‖ζi‖2
]

+ a1E
[

‖ri(t)‖2
]

+ a2 (76)

where a1 = 2ū2iL
2
Di

‖Rii‖, a2 = 2ū2iL
2
R‖Rii‖(∇φcM‖ω̃ci‖+

∇εcM )2, and LR = ‖ 1
2ūi

R−1
ii ((lii+bii)⊗In)‖. According

to event-triggered condition (72), we have

E[L V ∗
i (ζi, t)] ≤ −χ2λmin(Qii)E

[

‖ζi‖2
]

+ a2 + e−ǫt

≤ −a0E[V ∗
i (ζi, t)] + a2 + e−ǫt (77)

where a0=
χ2λmin(Qii)

c2
>0. Similar to (34)-(36), one has

E[V ∗
i (ζi, t)]≤E[V ∗

i (zi, s)]e
−a0(t−s)+

1

a0 − ǫ
e−ǫt

− 1

a0 − ǫ
e−ǫse−a0(t−s)+

a2
a0

=E[V ∗
i (zi, s)]e

−a0(t−s)+e−ǫsϕ1(t)+
a2
a0

(78)
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where ϕ1(t) =
1

a0−ǫ (e
−ǫ(t−s)−e−a0(t−s)) ≥ 0 and limt→+∞

ϕ1(t) = 0. Thus, ζi(t) and w̃ci are SGUUB in mean-
square sense. Furthermore, we can conclude that limt→+∞
E[V ∗

i (ζi, t)] = 0 by choosing a proper parameter a2 s-

mall enough.

Case 2: Events are triggered (t = tik). For the same
Lyapunov function:

Vi(t) = Vi1(t) + Vi2(t) + Vi3(t). (79)

Since û∗i (t
i
k) is an admissible control on Ui[s,+∞), one

gets E[V ∗
i (ζ

+
i (t), t)], E[V ∗

i (ζi(t), t)], E[V ∗
i (ζ

+
i (tik), t

i
k)],

and E[V ∗
i (ζ(t

i
k), t

i
k)] are finite, i.e., ΦLi ≤ E[V ∗

i ] ≤ ΦUi

where ΦLi and ΦUi are positive constants. Thus,

E[∆Vi1(t)]=E[V ∗
i (ζ

+
i (t), t)]−E[V ∗

i (ζi(t), t)]≤2ΦUi (80)

E[∆Vi2(t)]=E[V ∗
i (ζ

+
i (tik), t

i
k)]−E[V ∗

i (ζi(t
i
k), t

i
k)] ≤ 2ΦUi.

(81)

The first-order difference of the third term is:∆Vi3(t) =
1/lci · (Tr(ω̃T+

ci ω̃+
ci)−Tr(ω̃T

ciω̃ci)). Based on ω̂+
ci = ω̂ci−

lci(
ki1k

T
i1

(kT
i1
ki1+1)2

ω̂ci +
ki1

(kT
i1
ki1+1)2

Ψi) and (65), we have

ω̃+
ci = ω̃ci − lci(Ξ1ω̃ci − Ξ2(k

T
i1ωci + Ψi))

= ω̃ci − lci(Ξ1ω̃ci − Ξ2εTi) (82)

where Ξ1=
ki1k

T
i1

(kT
i1
ki1+1)2

∈ R
Nch×Nch and Ξ2=

ki1

(kT
i1
ki1+1)2

∈
R

Nch are utilized for normalization, εTi = εHi+εui with

|εTi| ≤ εHM + εuM = εTM . Then,

Tr(ω̃T+
ci ω̃+

ci)− Tr(ω̃T
ciω̃ci)

= Tr
(

(ω̃ci−lci(Ξ1ω̃ci−Ξ2εTi))
T
(ω̃ci−lci(Ξ1ω̃ci−Ξ2εTi))

)

− Tr(ω̃T
ciω̃ci)

= −2lciTr
(

ω̃T
ci(Ξ1ω̃ci − Ξ2εTi)

)

+ l2ciTr
(

(Ξ1ω̃ci − Ξ2εTi)
T (Ξ1ω̃ci − Ξ2εTi)

)

. (83)

By the definition of Ξ1 and Ξ2, we can derive that

‖Ξ1‖≤ 1
4 and ‖Ξ2‖≤ 3

√
3

16 . Thus,

Tr(ω̃T+
ci ω̃+

ci)− Tr(ω̃T
ciω̃ci)

= −2lciω̃
T
ciΞ1ω̃ci + 2lciω̃

T
ciΞ2εTi

+ l2ciTr
(

(Ξ1ω̃ci − Ξ2εTi)
T (Ξ1ω̃ci − Ξ2εTi)

)

≤ −2lciλmin(Ξ1)‖ω̃ci‖2 +
3
√
3

8
lci‖ω̃ci‖εTM

+ l2ci‖Ξ1ω̃ci − Ξ2εTi‖2. (84)

According Young’s Inequality, we can obtain

lci‖ω̃ci‖εTM ≤ lci
2

(

‖ω̃ci‖2 + ε2TM

)

(85)

l2ci‖Ξ1ω̃ci − Ξ2εTi‖2 ≤ l2ci(2Ξ
2
1‖ω̃ci‖2 + 2Ξ2

2ε
2
TM )

≤ l2ci(
1

8
‖ω̃ci‖2 +

27

128
ε2TM ). (86)

Substituting (85) and (86) into (84), one gets

Tr(ω̃T+
ci ω̃+

ci)− Tr(ω̃T
ciω̃ci)

≤ −2lciλmin(Ξ1)‖ω̃ci‖2 +
3
√
3

16
lci(‖ω̃ci‖2 + ε2TM )

+ l2ci(
1

8
‖ω̃ci‖2 +

27

128
ε2TM )

≤ (−2lciλmin(Ξ1) +
3
√
3

16
lci +

l2ci
8
)‖ω̃ci‖2

+ (
3
√
3

16
lci +

27

128
l2ci)ε

2
TM . (87)

Thus, the first-order difference of Vi1(t) is:

∆Vi3(t) = (Tr(ω̃T+
ci ω̃+

ci)− Tr(ω̃T
ciω̃ci))/lci

≤ −a3‖ω̃ci‖2 + a4 (88)

where a3=2λmin(Ξ1)− 3
√
3

16 − lci
8 and a4=( 3

√
3

16 + 27
128 lci)ε

2
TM .

Thus, based on (80), (81) and (88), one has E[∆Vi(t)]≤0

when ‖ω̃ci‖>((a4+4ΦUi) /a3)
1/2

. That is, E[Vi(ζi(t
i
k))]

≤E[Vi(ζi(s))], i.e., all error signals are SGUUB at the

triggering instants.

From Cases 1 and 2, we can conclude that ζi(t)

and ω̃ci are SGUUB in mean-square sense and the S-
MASs (1) will achieve the optimal mean-square leader-

following consensus under ETC mechanism eventually.

Step 2. Let Φi(t) = rTi (t)ri(t) where ri(t) = ζi(t
i
k)−

ζi(t). Based on (67), identifier-critic networks, and As-

sumptions 1-6, it’s easy to derive that E[LΦi(t)] ≤
āE[Φi(t)] + E[b̄] during t ∈ [tik, t

i
k+1) where ā and E[b̄]

are positive constants. Then, the rest of the proofs for

the exclusion of Zeno behavior are similar to Step 2 of

Theorem 1, which are omitted here. Thus, the closed-

loop system under event-triggered condition (72) can

exclude the Zeno behavior. ⊓⊔

Remark 10 Literatures [35,42] adopted the actor-critic

algorithm to design the approximate optimal control

where the boundedness of the weights of actor network

and critic network both need to be proved. To simplify

the architecture of the algorithm, Zhang et al. [11] pro-

posed a critic-only network to solve the optimal consen-

sus problem of MASs by using the relationship between

optimal control and value function induced by the HJB

equation, which eliminates the approximation error of

the actor network and improves the efficiency of weight

updating. Thus, by using the critic-only network, the

ETOC strategies for SMASs with input constraints are

designed in this paper.
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5 Simulation

This section is devoted to verifying the validity of the

theoretical analysis using two examples.

Example 1 Consider SMASs (1) with the directed com-
munication topology shown in Fig. 2. The edge weights

Fig. 2. Directed communication topology

of all followers are defined as a13 = a21 = a24 = a32 =

a43 = 1 and the pinning matrix is B = diag{1, 0, 0, 0}.
Let initial states of agent i and the leader be xi(0) =

[i, 3i]T , (i = 1, 2, 3, 4) and x0(0) = [2, 1]T , respectively.

Similar to [19], the dynamics of agents are selected as:
f(xi) = [−xi1 + xi2;−0.5 (xi1 + xi2) − 0.5xi2sin

2 (xi1)]

and g(xi) = [2 + sin2(xi1); 1 + cos2(xi2)] with xi =

[xi1;xi2]. Let the step size of each update be 0.01s.

Firstly, the observer-based identifier network is u-

tilized to recover the knowledge of unknown system
dynamics instead of utilizing the system dynamics di-
rectly. The structure of the identifier network is 4-6-2

(four input neurons, six hidden neurons and two out-
put neurons) and the matrices in (47) are selected as
A = [−1, 3;−3.5,−5] and L = [1;−0.1]. Secondly, the

structure of the critic network is 2-3-1 where φci(ζi) =

[tanh(ζ2i1); tanh(ζi1ζi2); tanh(ζ
2
i2)] with ζi = [ζi1; ζi2] for

i = 1, 2 · · · , 4. The event-triggered parameters in con-

dition (72) are selected as: ūi = 1, LDi
= 1.83, Qii =

0.01I2, Rii = I2, χ = 0.58 and ǫ = 1. In addition, the

parameters in the identifier-critic algorithm are depict-
ed in Table 1:

Table 1: Parameters of the identifier-critic algorithm

Parameter Meaning Value

lci Learning rate of CN 1× 10−3

li1, li2 Learning rate of IN 1× 10−2

Nc, Ni Internal cycles of CN and IN 200
TEc, TEi Thresholds of CN and IN e−10

Fig. 3 (a)-(b) demonstrate the real and identified

state trajectories xi(t) and x̂i(t). Fig. 3 (c)-(d) demon-

strate two components of the identifier error x̃i(t) of all

followers. Fig. 4 displays weights of the identifier-critic

network. The triggering thresholds and measuremen-

t errors of all followers under ET-ACDs are depicted

in Fig. 5. Fig. 6 shows the approximate ETOC of all

followers under ET-ACDs and CT-ACDs, respectively.

Fig. 7 demonstrates the cumulative costs of all follow-

ers under ET-ACDs, CT-ACDs, ET, and CT strategies

where the traditional control gain is K = [0.6, 0.5]. It

can be seen that ACDs can effectively save cumulative

costs. Fig. 8 shows the event-triggered instants under

ET-ACDs.
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Fig. 4. Network weights. (a) Identifier network (b) Critic network
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Example 2 During the operation of one-link manipula-

tor, the friction and impact force between mechanical
parts will cause random vibration of parts and shells.

Therefore, consider four one-link manipulators in ran-
dom vibration environments with the communication
topology shown in Fig. 9.

Fig. 9. Directed communication topology.

The dynamics of each manipulator is described by

[43]:

dqi1=qi2dt

dqi2=J
−1
i [ui −Bi

rqi2 −Migli sin(qi1)]dt+ giΣdw (89)

where qi = [qi1; qi2] and ui are the state and control of

manipulator i. The physical meaning of all the param-
eters Ji, B

i
r, Mi, g, and li can be found in [43]. w rep-

resents the 2-dimensional normal Brownian motion to
describe the random vibration environment. The values
of these parameters are selected as Ji = 2, Bi

r = 0.04,

Mi = 1
3 , g = 9.8m/s2, li = 3

10 , gi = [0; sin(qi1)],

Σ = diag{0.001, 0.001} respectively. Then, the system

(89) can be rewritten as

dqi1=qi2dt

dqi2=[−0.49 sin(qi1)−0.02qi2 + 0.5ui]dt+ giΣdw. (90)

The dynamics of the leader is

dq01 = q02dt

dq02 = [−0.49 sin(q01)− 0.02q02]dt+ g0Σdw. (91)

To verify the validity of the proposed algorithm, the

ET-ACDs and traditional ET strategies are applied to
the multiple one-link manipulators, respectively, with

the control gain of ET strategy being K = [2, 3]. For
ET-ACDs, the structure of the identifier network and

critic network are 4-6-2 and 2-3-1, respectively, and the

activation function is the same as that in Example 1.

The control time Ttotal = 60s and the step size of each

update is 0.1s.

Fig. 10 (a)-(b) demonstrate the states of all agents
with/without ET-ACDs strategies, respectively. Fig. 10

(c)-(d) demonstrate two components of the identifier er-
ror. The triggering thresholds and measurement errors
of all followers under ET-ACDs is depicted in Fig. 11.
Fig. 12 shows the approximate ETOC of all followers

under ET-ACDs and ET strategies, respectively. Fig.

13 displays the weights of the identifier-critic network.

Fig. 14 presents the event-triggered instants under ET-

ACDs with the triggering numbers of all followers being

198, 219, 194, respectively. Fig. 15 demonstrates the cu-

mulative costs of all followers under ET-ACDs and ET

strategies, respectively. It can be seen that the frame-

work of ACDs can effectively save the cumulative costs.
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Fig. 10. (a) States under ET-ACDs. (b) States without ET-ACDs.
(c) Identifier error q̃1i. (d) Identifier error q̃2i

Fig. 11. Triggering thresholds and measurement errors under ET-
ACDs
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Fig. 12. Control strategies under ET-ACDs and ET strategies

0 10 20 30 40 50 60

t/s

-1

-0.6

-0.2

0.2

0.6

1

W
ei

gh
t 

of
 c

ri
ti

c 
ne

tw
or

k

(b)

0 10 20 30 40 50 60

t/s

-3

-2

-1

0

1

2

3

W
ei

gh
t 

of
 i

de
nt

if
ie

r 
ne

tw
or

k

(a)

Fig. 13. Network weights. (a) Identifier network (b) Critic network
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Remark 11 Since many fields are inevitably influenced
by stochastic factors in the real world, the autonomous

cooperative control of many unmanned systems is more

suitable to be modeled as the mean-square consensus

problem of the SMASs. At the same time, due to the

complexity and diversity of tasks undertaken by the

multiple one-link manipulators, higher requirements are

put forward for the control strategy design. In this pa-

per, the optimal mean-square consensus of SMASs with

input constraints is studied and the corresponding ap-

proximate event-triggered optimal controller is designed

via the identifier-critic algorithm, which makes the con-

trol system more efficient and energy saving.

6 Conclusion

In this paper, the observer-based ETOC for nonlinear

SMASs with unknown internal states and input con-

straints has been studied, and the event-triggered s-

tochastic HJB equation with input constraints has been

presented for the first time. The observer-based identi-
fier network has been established to recover the knowl-
edge of unknown system dynamics. Then, the approx-
imate event-triggered optimal controller has been de-

signed via ACDs. It is worth mentioning that there has
not been literature on the ETOC for nonlinear stochas-
tic SMASs with unknown internal states and input con-

straints via the framework of ET-ACDs. Moreover, it

has been proved that the Zeno behavior does not exist

in the closed-loop system. Finally, two simulation exam-

ples have been presented to further verify the validity

of the ETOC scheme.
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