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Abstract

The marriage between mean-field theory and reinforcement learning has shown a great
capacity to solve large-scale control problems with homogeneous agents. To break the
homogeneity restriction of mean-field theory, a recent interest is to introduce graphon
theory to the mean-field paradigm. In this paper, we propose a graphon mean-field con-
trol (GMFC) framework to approximate cooperative multi-agent reinforcement learning
(MARL) with nonuniform interactions and show that the approximate order is of O( 1√

N
),

with N the number of agents. By discretizing the graphon index of GMFC, we further
introduce a smaller class of GMFC called block GMFC, which is shown to well approx-
imate cooperative MARL. Our empirical studies on several examples demonstrate that
our GMFC approach is comparable with the state-of-art MARL algorithms while enjoying
better scalability.

1 Introduction
Multi-agent reinforcement learning (MARL) has found various applications in the field of trans-
portation and simulating [50, 1], stock price analyzing and trading [32, 31], wireless commu-
nication networks [12, 11, 13], and learning behaviors in social dilemmas [33, 28, 34]. MARL,
however, becomes intractable due to the complex interactions among agents as the number of
agents increases.

A recent tractable approach is a mean-field approach by considering MARL in the regime
with a large number of homogeneous agents under weak interactions [20]. According to the
number of agents and learning goals, there are three subtle types of mean-field theories for
MARL. The first one is called mean-field MARL (MF-MARL), which refers to the empirical
average of the states or actions of a finite population. For example, [52] proposes to approximate
interactions within the population of agents by averaging the actions of the overall population
or neighboring agents. [35] proposes a mean-field proximal policy optimization algorithm for a
class of MARL with permutation invariance. The second one is called mean-field game (MFG),
which describes the asymptotic limit of non-cooperative stochastic games as the number of
agents goes to infinity [30, 27, 8]. Recently, a rapidly growing literature studies MFG for
noncooperative MARL either in a model-based way [53, 6, 26] or by a model-free approach
[25, 48, 18, 14, 44]. The third one is called mean-field control (MFC), which is closely related
to MFG yet different from MFG in terms of learning goals. For cooperative MFC, the Bellman
equation for the value function is defined on an enlarged space of probability measures, and
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MFC is always reformulated as a new Markov decision process (MDP) with continuous state-
action space [43]. [9] shows the existence of optimal policies for MFC in the form of mean-field
MDP and adapts classical reinforcement learning (RL) methods to the mean-field setups. [24]
approximates MARL by a MFC approach, and proposes a model-free kernel-based Q-learning
algorithm (MFC-K-Q) that enjoys a linear convergence rate and is independent of the number
of agents. [44] presents a model-based RL algorithm M3-UCRL for MFC with a general regret
bound. [2] proposes a unified two-timescale learning framework for MFG and MFC by tuning
the ratio of learning rates of Q function and the population state distribution.

One restriction of the mean-field theory is that it eliminates the difference among agents and
interactions between agents are assumed to be uniform. However, in many real world scenarios,
strategic interactions between agents are not always uniform and rely on the relative positions
of agents. To develop scalable learning algorithms for multi-agent systems with heterogeneous
agents, one approach is to exploit the local network structure of agents [45, 38]. Another
approach is to consider mean-field systems on large graphs and their asymptotic limits, which
leads to graphon mean-field theory [39]. So far, most existing works on graphon mean-field
theory consider either diffusion processes without learning in continuous time or non-cooperative
graphon mean-field game (GMFG) in discrete time. [3] considers uncontrolled graphon mean-
field systems in continuous time. [17] studies MFG on an Erdös-Rényi graph. [19] studies
the convergence of weighted empirical measures described by stochastic differential equations.
[4] studies propagation of chaos of weakly interacting particles on general graph sequences. [5]
considers general GMFG and studies ε-Nash equilibria of the multi-agent system by a PDE
approach in continuous time. [29] studies stochastic games on large graphs and their graphon
limits. It shows that GMFG is viewed as a special case of MFG by viewing the label of agents
as a component of the state process. [21, 22] study continuous-time cooperative graphon mean-
field systems with linear dynamics. On the other hand, [7] studies static finite-agent network
games and their associated graphon games. [49] provides a sequential decomposition algorithm
to find Nash equilibria of discrete-time GMFG. [15] constructs a discrete-time learning GMFG
framework to analyze approximate Nash equilibria for MARL with nonuniform interactions.
However, little is focused on learning cooperative graphon mean-field systems in discrete time,
except for [41, 42] on particular forms of nonuniform interactions among agents. [42] proves
that when the reward is affine in the state distribution and action distribution, MARL with
nonuniform interactions can still be approximated by classic MFC. [41] considers multi-class
MARL, where agents belonging to the same class are homogeneous. In contrast, we consider
a general discrete-time GMFC framework under which agents are allowed to interact non-
uniformly on any network captured by a graphon.

Our Work In this work, we propose a general discrete-time GMFC framework to approximate
cooperative MARL on large graphs by combining classic MFC and network games. Theoreti-
cally, we first show that GMFC can be reformulated as a new MDP with deterministic dynamics
and infinite-dimensional state-action space, hence the Bellman equation for Q function is es-
tablished on the space of probability measure ensembles. It shows that GMFC approximates
cooperative MARL well in terms of both value function and optimal policies. The approxi-
mation error is at order O(1/

√
N), where N is the number of agents. Furthermore, instead of

learning infinite-dimensional GMFC directly, we introduce a smaller class called block GMFC by
discretizing the graphon index, which can be recast as a new MDP with deterministic dynamic
and finite-dimensional continuous state-action space. We show that the optimal policy ensemble
learned from block GMFC is near optimal for cooperative MARL. To deploy the policy ensemble
in the finite-agent system, we directly sample from the action distribution in the blocks. Empir-
ically, our experiments in Section 5 demonstrate that when the number of agents becomes large,
the mean episode reward of MARL becomes increasingly close to that of block GMFC, which
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verifies our theoretical findings. Furthermore, our block GMFC approach achieves comparable
performances with other popular existing MARL algorithms in the finite-agent setting.

Outline The rest of the paper is organized as follows. Section 2 recalls basic notations of
graphons and introduces the setup of cooperative MARL with nonuniform interactions and its
asymptotic limit called GMFC. Section 3 connects cooperative MARL and GMFC, introduces
block GMFC for efficient algorithm design, and builds its connection with cooperative MARL.
The main theoretical proofs are presented in Section 4. Section 5 tests the performance of block
GMFC experimentally.

2 Mean-Field MARL on Dense Graphs

2.1 Preliminary: Graphon Theory
In the following, we consider a cooperative multi-agent system and its associated mean-field
limit. In this system, each agent is affected by all others, with different agents exerting different
effects on her. This multi-agent system with N agents can be described by a weighted graph
GN = (VN , EN ), where the vertex set VN = {1, . . . , N} and the edge set EN represent agents
and the interactions between agents, respectively. To study the limit of the multi-agent system
as N goes to infinity, we adopt the graphon theory introduced in [39] used to characterize the
limit behavior of dense graph sequences. Therefore, throughout the paper, we assume the graph
GN is dense and leave sparse graphs for future study.

In general, a graphon is represented by a bounded symmetric measurable function W :
I × I → I, with I = [0, 1]. We denote by W the space of all graphons and equip the space W
with the cut norm ‖ · ‖�

‖W‖� = sup
S,T⊂I

∣∣∣∣∫
S×T

W (α, β)dαdβ

∣∣∣∣.
It is worth noting that each weighted graph GN = (VN , EN ) is uniquely determined by a step-
graphon WN

WN (α, β) = WN

(dNαe
N

,
dNβe
N

)
.

We assume that the sequence of WN converges to a graphon W in cut norm as the number of
agents N goes to infinity, which is crucial for the convergence analysis of cooperative MARL in
Section 3.

Assumption 2.1 The sequence (WN )N∈N converges in cut norm to some graphon W ∈ W
such that

‖WN −W‖� → 0.

Some common examples of graphons include

1) Erdős Rényi: W (α, β) = p, 0 ≤ p ≤ 1, α, β ∈ I;

2) Stochastic block model:

W (α, β) =

{
p if 0 6 α, β 6 0.5 or 0.5 6 α, β 6 1,
q otherwise,

where p represents the intra-community interaction and q the inter-community interaction;

3) Random geometric graphon: W (α, β) = f(min(|β − α|, 1− |β − α|)), where f : [0, 0.5]→
[0, 1] is a non-increasing function.
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2.2 Cooperative MARL with Nonuniform Interactions
In this section, we facilitate the analysis of MARL by considering a particular class of MARL
with nonuniform interactions, where each agent interacts with all other agents via the aggregated
weighted mean-field effect of the population of all agents.

Recall that we use the weighted graph GN = (VN , EN ) to represent the multi-agent system,
in which agents are cooperative and coordinated by a central controller. They share a finite
state space S and take actions from a finite action space A. We denote by P(S) and P(A) the
space of all probability measures on S and A, respectively. Furthermore, denote by B(S) the
space of all Borel measures on S.

For each agent i, the neighborhood empirical measure is given by

µi,WN

t (·) :=
1

N

∑
j∈VN

ξNi,jδsjt
(·), (2.1)

where δsjt denotes Dirac measure at sjt , and ξNi,j describing the interaction between agents i and
j is taken as either

ξNij = WN (
i

N
,
j

N
) (C1)

or

ξNi,j ∼ Bernoulli(WN (
i

N
,
j

N
)). (C2)

At each step t = 0, 1, · · · , if agent i, i ∈ [N ] at state sit ∈ S takes an action ait ∈ A, then she
will receive a reward

r
(
sit, µ

i,WN

t , ait

)
, i ∈ [N ], (2.2)

where r : S × B(S)×A → R, and she will change to a new state sit+1 according to a transition
probability such that

sit+1 ∼ P
(
·
∣∣∣ sit, µi,WN

t , ait

)
, i ∈ [N ], si0 ∼ µ ∈ P(S), (2.3)

where P : S × B(S)×A → P(S).
(2.2)-(2.3) indicate that the reward and the transition probability of agent i at time t depend

on both her individual information (sit, a
i
t) and neighborhood empirical measure µi,WN

t .
Furthermore, the policy is assumed to be stationary for simplicity and takes the Markovian

form

ait ∼ πi
(
·|sit
)
∈ P(A), i ∈ [N ], (2.4)

which maps agent i’s state to a randomized action. For each agent i, the space of all policies is
denoted as Π.

Remark 2.2 When ξNij ≡ 1, i, j ∈ [N ], it corresponds to classical mean-field theory with uni-
form interactions [9, 24]. Furthermore, our framework is flexible enough to include the non-
uniform interactions of actions via νi,WN

t = 1
N

∑
j∈VN ξ

N
i,jδajt

(·), and also to include heterogene-
ity of agents by allowing r and P to rely on the agent types i.
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The objective of the multi-agent system (2.1)-(2.4) is to maximize the expected discounted
accumulated reward averaged over all agents, i.e.,

VN (µ) = sup
(π1,...,πN )∈ΠN

JN (µ, π1, . . . , πN ) (2.5)

:= sup
(π1,...,πN )∈ΠN

1

N

N∑
i=1

E

[ ∞∑
t=0

γtr
(
sit, µ

i,WN

t , ait
) ∣∣∣∣∣ si0 ∼ µ, ait ∼ πi(·|sit)

]
,

subject to (2.1)-(2.4) with a discount factor γ ∈ (0, 1).

Definition 2.3 An ε-Pareto optimality of cooperative MARL (2.1)-(2.5) for ε > 0 is defined as
(π1,∗, . . . , πN,∗) ∈ ΠN such that

JN (µ, π∗1 , . . . , π
∗
N ) ≥ sup

(π1,...,πN )∈ΠN

JN (µ, π1, . . . , πN )− ε. (2.6)

2.3 Graphon Mean-Field Control
We expect the cooperative MARL (2.1)-(2.5) to become a GMFC problem as N → ∞. In
GMFC, there is a continuum of agents α ∈ I, and each agent with the index/label α ∈ I
follows

sα0 ∼ µα, aαt ∼ πα(·|sαt ), sαt+1 ∼ P (·|sαt , µ
α,W
t , aαt ), (2.7)

where µαt = L(sαt ), α ∈ I denotes the probability distribution of sαt , and µ
α,W
t is defined as the

neighborhood mean-field measure of agent α:

µα,Wt =

∫
I
W (α, β)µβt dβ ∈ B(S), (2.8)

with the graphon W given in Assumption 2.1.
To ease the sequel analysis, define the space of state distribution ensemblesMMM := P(S)I :=

{f : I → P(S)} and the space of policy ensembles ΠΠΠ := P(A)S×I . Then µµµ := (µα)α∈I and
πππ := (πα)α∈I are elements inMMM and ΠΠΠ, respectively.

The objective of GMFC is to maximize the expected discounted accumulated reward aver-
aged over all agents α ∈ I

V (µµµ) : = sup
πππ∈ΠΠΠ

J(µµµ,πππ) (2.9)

= sup
πππ∈ΠΠΠ

∫
I
E

[ ∞∑
t=0

γtr
(
sαt , µ

α,W
t , aαt

) ∣∣∣∣∣ sα0 ∼ µα, aαt ∼ πα(·|sαt )

]
dα.

3 Main Results

3.1 Reformulation of GMFC
In this section, we show that GMFC (2.7)-(2.9) can be reformulated as a MDP with deterministic
dynamics and continuous state-action spaceMMM × ΠΠΠ.

Theorem 3.1 GMFC (2.7)-(2.9) can be reformulated as

V (µµµ) = sup
πππ∈ΠΠΠ

∞∑
t=0

γtR(µµµt,πππ), (3.1)
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subject to

µαt+1(·) = ΦΦΦα(µµµt,πππ)(·), t ∈ N, µα0 = µα, α ∈ I, (3.2)

where the aggregated reward R : MMM × ΠΠΠ → R and the aggregated transition dynamics ΦΦΦ :
MMM×ΠΠΠ→MMM are given by

R(µµµ,πππ) =

∫
I

∑
s∈S

∑
a∈A

r(s, a, µα,W )πα(a|s)µα(s)dα, (3.3)

ΦΦΦα(µµµ,πππ)(·) =
∑
s∈S

∑
a∈A

P (·|s, µα,W , a)πα(a|s)µα(s). (3.4)

The proof of Theorem 3.1 is similar to the proof of Lemma 2.2 in [23]. So we omit it here.
(3.4) and (3.2) indicate the evolution of the state distribution ensemble µµµt over time. That

is, under the fixed policy ensemble πππ, the state distribution µαt+1 of agent α at time t + 1 is
fully determined by the policy ensemble πππ and the state distribution ensemble µµµt at time t.
Note that the state distribution of each agent α is fully coupled with state distributions of the
population of all agents via the graphon W .

With the reformulation in Theorem 3.1, the associated Q function starting from (µµµ,πππ) ∈
MMM×ΠΠΠ is defined as

Q(µµµ,πππ) = R(µµµ,πππ) + sup
πππ′∈ΠΠΠ

[ ∞∑
t=1

γtR
(
µµµt,πππ

′) ∣∣∣ sα0 ∼ µα, aα0 ∼ πα(·|sα0 )
]
. (3.5)

Hence its Bellman equation is given by

Q(µµµ,πππ) = R(µµµ,πππ) + γ sup
πππ′∈ΠΠΠ

Q(ΦΦΦ(µµµ,πππ),πππ′). (3.6)

Remark 3.2 (Label-state formulation) GMFC (2.7)-(2.9) can be viewed as a classical MFC
with extended state space S × I, action space A, policy π̃ ∈ P(A)S×I , mean-field information
µ̃ ∈ P(S × I), reward r̃((s, α), µ̃, a) := r(s,

∫
IW (α, β)µ̃(·, β)dβ, a), transition dynamics of

(s̃t, αt) such that

s̃t+1 ∼ P (·|s̃t, ãt,
∫
I
W (αt, β)µ̃t(·, β)dβ), αt+1 = αt, ãt ∼ π̃(·|s̃t, αt), s̃0 ∼ µ0, α̃0 ∼ Unif(0, 1).

It is worth pointing out such a label-state formulation has also been studied in GMFG [29, 15].

3.2 Approximation
In this section, we show that GMFC (2.7)-(2.9) provides a good approximation for the coop-
erative multi-agent system (2.1)-(2.5) in terms of the value function and the optimal policy
ensemble. To do this, the following assumptions on W , P , r, and πππ are needed.

Assumption 3.3 (graphon W ) There exists LW > 0 such that for all α, α′, β, β′ ∈ I

|W (α, β)−W (α′, β′)| ≤ LW ·
(
|α− α′|+ |β − β′|

)
.

Assumption 3.3 is common in graphon mean-field theory [21, 15, 29]. Indeed, the Lipschitz
continuity assumption on W in Assumption 3.3 can be relaxed to piecewise Lipschitz continuity
on W .
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Assumption 3.4 (transition probability P ) There exists LP > 0 such that for all s ∈
S, a ∈ A, µ1, µ2 ∈ B(S)

‖P (·|s, µ1, a)− P (·|s, µ2, a)‖1 ≤ LP · ‖µ1 − µ2‖1,

where ‖ · ‖1 denotes L1 norm here and throughout the paper.

Assumption 3.5 (reward r) There exist Mr > 0 and Lr > 0 such that for all s ∈ S, a ∈ A,
µ1, µ2 ∈ B(S),

|r(s, µ, a)| ≤Mr, |r(s, µ1, a)− r(s, µ2, a)| ≤ Lr · ||µ1 − µ2||1.

Assumption 3.6 (policy πππ) There exists LΠΠΠ > 0 such that for any policy ensemble πππ :=
(πα)α∈I ∈ ΠΠΠ is Lipschitz continuous, i.e.

max
s∈S
‖πα(·|s)− πβ(·|s)‖1 ≤ LΠΠΠ|α− β|.

Assumptions 3.4-3.6 are standard and commonly used to bridge the multi-agent system and
mean-field theory.

To show approximation properties of GMFC in the large-scale multi-agent system, we need
to relate policy ensembles of GMFC to policies of the multi-agent system. On one hand, one
can see that any πππ ∈ ΠΠΠ leads to a N -agent policy tuple (π1, . . . , πN ) ∈ ΠN with

ΓN : ΠΠΠ 3 πππ 7→ (π1, . . . , πN ) ∈ ΠN , with πi := πππ
i
N . (3.7)

On the other hand, any N -agent policy tuple (π1, . . . , πN ) ∈ ΠN can be seen as a step policy
ensemble πππN in ΠΠΠ:

πππN,α :=

N∑
i=1

πi1α∈( i−1
N , i

N ] ∈ ΠΠΠ. (3.8)

Theorem 3.7 (Approximate Pareto Property) Assume Assumptions 2.1, 3.3, 3.4, 3.5 and
3.6. Then under either the condition (C1) or (C2), we have for any initial distribution µ ∈ P(S)

|VN (µ)− V (µ)| → 0, as N →∞. (3.9)

Moreover, if the graphon convergence in Assumption 2.1 is at rate O( 1√
N

), then |VN (µ) −
V (µ)| = O( 1√

N
). As a consequence, for any ε > 0, there exists an integer Nε such that when

N ≥ Nε, the optimal policy ensemble of GMFC denoted as πππ∗ (if it exists) provides an ε-Pareto
optimality (π1,∗, . . . , πN,∗) := ΓN (πππ∗) for the multi-agent system (2.5), with ΓN defined in (3.7).

Directly learning Q function of GMFC in (3.6) will lead to high complexity. Instead, we will
introduce a smaller class of GMFC with a lower dimension in the next section, which enables a
scalable algorithm.

3.3 Algorithm Design
This section will show that discretizing the graphon index α ∈ I of GMFC enables to approx-
imate Q function in (3.6) by an approximated Q function in (3.10) below defined on a smaller
space, which is critical for designing efficient learning algorithms.
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Precisely, we choose uniform grids αm ∈ IM := {mM , 0 ≤ m ≤ M} for simplicity, and
approximate each agent α ∈ I by the nearest αm ∈ IM close to it. Introduce M̃MMM := P(S)IM ,
Π̃ΠΠM := P(A)S×IM . Meanwhile, µ̃µµ := (µ̃αm)m∈[M ] ∈ M̃MMM and π̃ππ := (π̃αm)m∈[M ] ∈ Π̃ΠΠM can be
viewed as a piecewise constant state distribution ensemble inMMM and a piecewise constant policy
ensemble in ΠΠΠ, respectively. Our arguments can be easily generalized to nonuniform grids.

Consequently, instead of performing algorithms according to (3.6) with a continuum of
graphon labels directly, we work with GMFC with M blocks called block GMFC, in which
agents in the same block are homogeneous. The Bellman equation for Q function of block
GMFC is given by

Q̃(µ̃µµ, π̃ππ) = R̃(µ̃µµ, π̃ππ) + γ sup
π̃ππ′∈Π̃ΠΠM

Q̃(Φ̃ΦΦ(µ̃µµ, π̃ππ), π̃ππ′), (3.10)

where the neighborhood mean-field measure, the aggregated reward R̃ : M̃MMM × Π̃ΠΠM → R and
the aggregated transition dynamics Φ̃ΦΦ : M̃MMM × Π̃ΠΠM →M̃MMM are given by

µ̃αm,W =
1

M

M−1∑
m′=0

W (αm, αm′)µ̃
αm′ ,m ∈ [M ], (3.11)

R̃(µ̃µµ, π̃ππ) =
1

M

M−1∑
m=0

∑
s∈S

∑
a∈A

r(s, a, µ̃αm,W )µ̃αm(s)π̃αm(a|s), (3.12)

Φ̃ΦΦ
αm

(µ̃µµ, π̃ππ)(·) =
∑
s∈S

∑
a∈A

P (·|s, a, µ̃αm,W )µ̃αm(s)π̃αm(a|s). (3.13)

We see from (3.10) that block GMFC is a MDP with deterministic dynamics Φ̃ΦΦ and contin-
uous state-action space M̃MMM × Π̃ΠΠM . The following Theorem shows that there exists an optimal
policy ensemble of block GMFC in Π̃ΠΠM .

Theorem 3.8 (Existence of Optimal Policy Ensemble) Given Assumptions 3.4, 3.5, as-
sume γ ·(LP +1) <∞, then for any fixed integer M > 0, there exists an π̃ππ∗ ∈ Π̃ΠΠM that maximize
Q̃(µ̃µµ, π̃ππ) in (3.10) for any µ̃µµ ∈ M̃MMM .

Furthermore, we show that with sufficiently fine partitions of the graphon index I, i.e.,
M is sufficiently large, block GMFC (3.10)-(3.13) well approximates the multi-agent system in
Section 2.2.

Theorem 3.9 Assume γ · (LP + 1) < 1 and Assumptions 2.1, 3.3, 3.4, 3.5 and 3.6. Under
either (C1) or (C2), for any ε > 0, there exists Nε, Mε such that for N ≥ Nε, the opti-
mal policy ensemble π̃ππ∗ of block GMFC (3.10) with Mε blocks provides an ε-Pareto optimality
(π̃1,∗, . . . , π̃N,∗) := ΓN (π̃ππ∗) for the multi-agent system (2.5) with N agents.

Theorem 3.9 shows that the optimal policy ensemble of block GMFC is near-optimal for all
sufficiently large multi-agent systems, meaning that block GMFC provides a good approximation
for the multi-agent system.

Recall that block GMFC can be viewed as a MDP with deterministic dynamics and contin-
uous state-action space. To learn block GMFC, one can adopt a similar kernel-based Q learning
method in [24] for MFC, a uniform discretization method or deep reinforcement algorithms like
DDPG [37] for MFC in [9] with theoretical guarantees. Since block GMFC has a higher di-
mension than classical MFC, we choose to adapt DRL algorithm Proximal Policy Optimization
(PPO) [47] to block GMFC and then apply the learned policy ensemble of block GMFC to the
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multi-agent system to validate our theoretical findings. We describe the deployment of block
GMFC in the multi-agent system in Algorithm 1, which we call it N-agent GMFC.

Algorithm 1 N-agent GMFC
Input Initial state distribution µ0, number of agents N , episode length T , the learned policy
π̃ππ ∈ Π̃ΠΠM learned by PPO
Initialize si0 ∼ µ0, i ∈ [N ]
for t = 1 to T do

for i = 1 to N do
Choose m(i) = arg min

m∈[M ]

| iN −
m
M |

Sample action ait ∼ π̃αm(i)(·|sit), observe reward rit and new state sit+1

end for
end for

4 Proofs of Main Results
In this section, we will provide proofs of Theorems 3.7-3.9.

4.1 Proof of Theorem 3.7
To prove Theorem 3.7, we need the following two Lemmas. We start by defining the step state
distribution µµµNt := (µN,αt )α∈I for notational simplicity

µN,αt (·) =
∑
i∈VN

δsit(·)1α∈( i−1
N , i

N ]. (4.1)

Lemma 4.1 shows the convergence of the neighborhood empirical measure to the neighbor-
hood mean-field measure.

Lemma 4.1 Assume Assumptions 2.1, 3.3, 3.4 and 3.6. Under either condition (C1) or (C2),
for any policy ensemble πππ ∈ ΠΠΠ, we have

N∑
i=1

∫
( i−1

N , i
N ]

E
[
‖µi,WN

t − µα,Wt ‖1
]
dα→ 0, as N →∞, (4.2)

where µit = µαt ≡ µ ∈ P(S).

Moreover, if the graphon convergence in Assumption 2.1 is at rate O( 1√
N

), then

N∑
i=1

∫
( i−1

N , i
N ]

E
[
‖µi,WN

t − µα,Wt ‖1
]
dα = O(

1√
N

).

Proof of Lemma 4.1 We first prove (4.2) under the condition (C1) and then show (4.2) also
holds under the condition (C2).
Case 1: ξNi,j = WN ( iN ,

j
N ). Note that under the condition (C1), µi,WN

t =
∫
IWN ( iN , β)µN,βt dβ

9



by the definition of µN,αt in (4.1). Then

N∑
i=1

∫
( i−1

N , i
N ]

E
[
‖µi,WN

t − µα,Wt ‖1
]
dα

=

N∑
i=1

∫
( i−1

N , i
N ]

E
[∥∥∥ ∫

I
WN (

i

N
, β)µN,βt dβ −

∫
I
W (α, β)µβt dβ

∥∥∥
1

]
dα

≤
N∑
i=1

∫
( i−1

N , i
N ]

E
[∥∥∥ ∫

I
WN (

i

N
, β)µN,βt dβ −

∫
I
WN (

i

N
, β)µβt dβ

∥∥∥
1

]
dα

+

N∑
i=1

∫
( i−1

N , i
N ]

E
[∥∥∥ ∫

I
WN (

i

N
, β)µβt dβ −

∫
I
W (α, β)µβt dβ

∥∥∥
1

]
dα

= : I1 + I2.

For the term I1, we adopt Theorem 2 in [15] and have that under the policy ensemble πππ and
N -agent policy (π1, . . . , πN ) := ΓN (πππ), with ΓN defined in (3.7)

I1 = E
[∥∥∥ ∫

I
WN (

i

N
, β)µN,βt dβ −

∫
I
WN (

i

N
, β)µβt dβ

∥∥∥
1

]
→ 0, as N →∞.

Moreover, if the graphon convergence in Assumption 2.1 is at rate O( 1√
N

), then the term I1 is
also at rate O( 1√

N
).

By noting that WN (α, β) = WN

( dNαe
N , dNβeN

)
,

I2 =

N∑
i=1

∫
( i−1

N , i
N ]

∥∥∥∫
I
WN

(dNαe
N

, β
)
µβt dβ −

∫
I
W (α, β)µβt dβ

∥∥∥
1
dα

=

N∑
i=1

∫
( i−1

N , i
N ]

∥∥∥∫
I
WN

(
α, β

)
µβt dβ −

∫
I
W (α, β)µβt dβ

∥∥∥
1
dα

=

∫
I

∥∥∥∫
I
WN

(
α, β

)
µβt dβ −

∫
I
W (α, β)µβt dβ

∥∥∥
1
dα

=
∑
s∈S

∫
I

∣∣∣ ∫
I
WN

(
α, β

)
µβt (s)dβ −

∫
I
W (α, β)µβt (s)dβ

∣∣∣dα
→ 0,

where the last inequality is from the fact in [39] that the convergence of ‖WN −W‖� → 0 is
equivalent to the convergence of

‖WN −W‖L∞→L1
:= sup
‖g‖∞≤1

∫
I

∣∣∣∣∫
I

(
WN (α, β)−W (α, β)

)
g(β)dβ

∣∣∣∣dα→ 0.

Combining I1 and I2, we prove (4.2) under the condition (C1).
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Case 2: ξNi,j are random variables with Bernoulli(WN ( iN ,
j
N )).

N∑
i=1

∫
( i−1

N , i
N ]

E‖µi,WN

t − µα,Wt ‖1dα

=

N∑
i=1

∫
( i−1

N , i
N ]

E
∥∥ 1

N

N∑
j=1

ξNij δsjt
−
∫
I
W (α, β)µβt dβ

∥∥
1
dα

≤
N∑
i=1

∫
( i−1

N , i
N ]

E
∥∥ 1

N

N∑
j=1

ξNij δsjt
−
∫
I
WN (

i

N
, β)µN,βt dβ

∥∥
1
dα

+

N∑
i=1

∫
( i−1

N , i
N ]

E
∥∥∫
I
WN (

i

N
, β)µN,βt dβ −

∫
I
W (α, β)µβt dβ

∥∥
1
dα

=: I1 + I2.

Note from Case 1 that I2 → 0 as N → ∞ and I2 = O( 1√
N

) if the graphon convergence in
Assumption 2.1 is at rate O( 1√

N
). Therefore, it is enough to estimate I1.

I1 = E
∥∥ 1

N

N∑
j=1

ξNij δsjt
−
∫
I
WN (

i

N
, β)µN,βt dβ

∥∥
1

≤ E
[
E
[

sup
f :S→{−1,1}

{ 1

N

N∑
j=1

ξNij f(sjt )−
1

N

N∑
j=1

WN (
i

N
,
j

N
)f(sjt )

}∣∣∣s1
t , . . . , s

N
t

]]
.

We proceed the same argument as in the proof of Theorem 6.3 in [24]. Precisely, condi-

tioned on s1
t , . . . , s

N
t ,
{
ξNij f(sjt ) − WN ( iN ,

j
N )f(sjt )

}N
j=1

is a sequence of independent mean-

zero random variables bounded in [−1, 1] due to E[ξNi,j ] = WN ( iN ,
j
N ). This implies that each

ξNij f(sjt ) −WN ( iN ,
j
N )f(sjt ) is a sub-Gaussian with variance bounded by 4. As a result, con-

ditioned on s1
t , . . . , s

N
t ,
{

1
N

∑N
j=1 ξ

N
ij f(sjt ) − 1

N

∑N
j=1WN ( iN ,

j
N )f(sjt )

}N
i=1

is a mean-zero sub-

Gaussian random variable with variance 4
N . By the equation (2.66) in [51], we have

I1 ≤ E
[
E
[

sup
f :S→{−1,1}

{ 1

N

N∑
j=1

ξNij f(sjt )−
1

N

N∑
j=1

WN (
i

N
,
j

N
)f(sjt )

}∣∣∣s1
t , . . . , s

N
t

]]
≤

√
8 ln(2)|S|√

N
.

Therefore, combining I1 and I2 in Case 2, we show that when ξNi,j are random variables with
Bernoulli(WN ( iN ,

j
N )), (4.2) holds under the condition (C2). 2

Lemma 4.2 shows the convergence of the state distribution of N -agent game to the state
distribution of GMFC.

Lemma 4.2 Assume Assumptions 2.1, 3.3, 3.4 and 3.6. For any uniformly bounded family G
of functions g : S → R, we have

sup
g∈G

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[g(sit)− g(sαt )]
∣∣∣→ 0, (4.3)
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where si0 ∼ µ0, sα0 ∼ µ0. Moreover, if the graphon convergence in Assumption 2.1 is at rate
O( 1√

N
), then

sup
g∈G

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[g(sit)− g(sαt )]
∣∣∣ = O(

1√
N

).

Proof of Lemma 4.2 The proof is by induction as follows. To do this, first introduce

lg(s, µ, π) :=
∑
a∈A

∑
s′∈S

g(s′)P (s′|s, µ, a)π(a|s).

(4.3) holds obviously at t = 0. Suppose that (4.3) holds at t. Then for any uniformly bounded
function g with |g| ≤Mg at t+ 1

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[g(sit+1)− g(sαt+1)]
∣∣∣dα

=

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[lg(sit, µi,WN

t , πi)
]
− E

[
lg(s

α
t , µ

α,W
t , πα)

]∣∣∣dα
≤

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[lg(sit, µi,WN

t , πi)
]
− E

[
lg(s

i
t, µ

α,W
t , πi)

]∣∣∣dα
+

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[lg(sit, µα,Wt , πi)
]
− E

[
lg(s

α
t , µ

α,W
t , πi)

]∣∣∣dα
+

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[lg(sαt , µα,Wt , πi)
]
− E

[
lg(s

α
t , µ

α,W
t , πα)

]∣∣∣dα
= : I + II + III, (4.4)

where the first equality is by the law of total expectation.

First term of (4.4)

I =

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[lg(sit, µi,WN

t , πi)
]
− E

[
lg(s

i
t, µ

α,W
t , πi)

]∣∣∣dα
≤ MgLP

N∑
i=1

∫
( i−1

N , i
N ]

E
[
‖µi,WN

t − µα,Wt ‖1
]
dα

→ 0, as N →∞

where the second inequality is from the continuity of P , and the last inequality is from Lemma
4.1.

Second term of (4.4) One can view lg(s, µ
α,W
t , πi) as a function of s ∈ S for any fixed µα,Wt

and πi. Note that |lg(s, µα,Wt , πi)| ≤Mg, where Mg is a constant independent of µα,Wt and πi.
Since (4.3) holds at t, then

II =

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[lg(sit, µα,Wt , πi)
]
− E

[
lg(s

α
t , µ

α,W
t , πi)

]∣∣∣dα
→ 0, as N →∞.
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Third term of (4.4)

III =

N∑
i=1

∫
( i−1

N , i
N ]

∣∣∣E[lg(sαt , µα,Wt , πi)
]
− E

[
lg(s

α
t , µ

α,W
t , πα)

]∣∣∣dα
≤ Mg

N∑
i=1

∫
( i−1

N , i
N ]

E
[
‖πi(sαt )− πα(sαt )‖1

]
dα

≤ MgLΠ

N∑
i=1

∫
( i−1

N , i
N ]

max
α∈( i−1

N , i
N ]
| i
N
− α|dα

= O(
1

N
),

where the second inequality is by the uniform boundedness of g and the third inequality is from
Assumption 3.6. 2

Now we are ready to prove Theorem 3.7. We start by defining r̂ the aggregated reward over
all possible actions under the policy π

r̂(s, µ, π) :=
∑
a∈A

r(s, µ, a)π(a|s).

Proof of Theorem 3.7

|VN (µ)− V (µ)|

=

∣∣∣∣sup
ΠN

1

N

N∑
i=1

E

[ ∞∑
t=0

γtr
(
sit, µ

i,WN

t , ait
)]
− sup
πππ∈ΠΠΠ

∫
I
E

[ ∞∑
t=0

γtr
(
sαt , µ

α,W
t , aαt

)]
dα

∣∣∣∣
≤ sup
πππ∈ΠΠΠ

∣∣∣∣ 1

N

N∑
i=1

E

[ ∞∑
t=0

γtr
(
sit, µ

i,WN

t , ait
)]
−
∫
I
E

[ ∞∑
t=0

γtr
(
sαt , µ

α,W
t , aαt

)]
dα

∣∣∣∣
= sup
πππ∈ΠΠΠ

∣∣∣∣ ∞∑
t=0

γt
N∑
i=1

∫
( i−1

N , i
N ]

(
E
[
r̂(sit, µ

i,WN

t , πi)
]
− E

[
r̂(sαt , µ

α,W
t , πα)

])
dα

∣∣∣∣
≤ sup
πππ∈ΠΠΠ

∣∣∣∣ ∞∑
t=0

γt
N∑
i=1

∫
( i−1

N , i
N ]

(
E
[
r̂(sit, µ

i,WN

t , πi)
]
− E

[
r̂(sit, µ

α,W
t , πi)

])
dα

∣∣∣∣
+ sup

πππ∈ΠΠΠ

∣∣∣∣ ∞∑
t=0

γt
N∑
i=1

∫
( i−1

N , i
N ]

(
E
[
r̂(sit, µ

α,W
t , πi)

]
− E

[
r̂(sαt , µ

α,W
t , πi)

])
dα

∣∣∣∣
+ sup

πππ∈ΠΠΠ

∣∣∣∣ ∞∑
t=0

γt
N∑
i=1

∫
( i−1

N , i
N ]

(
E
[
r̂(sαt , µ

α,W
t , πi)

]
− E

[
r̂(sαt , µ

α,W
t , πα)

])
dα

∣∣∣∣
:= I + II + III, (4.5)

where we use (3.8) in the second inequality.

First term of (4.5)

I ≤ sup
πππ
Lr

∞∑
t=0

γt
N∑
i=1

∫
( i−1

N , i
N ]

E‖µi,WN

t − µα,Wt ‖1dα

= O(
1√
N

), (4.6)
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where the last equality is from Lemma 4.1 when the convergence in Assumption 2.1 is at rate
O(1/

√
N).

Second term of (4.5) From Lemma 4.2, we have II = O( 1√
N

).

Third term of (4.5)

III ≤ sup
πππ

∞∑
t=0

γt
N∑
i=1

∫
( i−1

N , i
N ]

max
s∈S
‖πi(s)− πα(s)‖1dα

≤ LΠ sup
πππ

∞∑
t=0

γt
N∑
i=1

∫
( i−1

N , i
N ]

| i
N
− πα|dα

= O(
1

N
).

Therefore, combining I, II and III yields the desired result. 2

4.2 Proof of Theorem 3.8
First, we see that (3.10) corresponds to the following optimal control problem

ṼM (µ̃µµ) := sup
π̃ππ∈Π̃ΠΠM

J̃M (µ̃µµ, π̃ππ)

= sup
π̃ππ∈Π̃ΠΠM

1

M

M∑
m=1

E

[ ∞∑
t=0

γtr
(
s̃αm
t , µ̃αm,W

t , ãαm
t

) ∣∣∣∣∣ s̃αm
0 ∼ µ̃αm , ãαm

t ∼ π̃αm(·|s̃αm
t )

]
.(4.7)

The associated Q function of (4.7) is defined as

Q̃(µ̃µµ, π̃ππ) = sup
π̃ππ′

1

M

M∑
m=1

E

[ ∞∑
t=0

γtr
(
s̃αm
t , µ̃αm,W

t , ãαm
t

) ∣∣∣∣∣ s̃αm
0 ∼ µ̃αm , ãαm

0 ∼ π̃αm(·|s̃αm
t )

]

= R(µ̃µµ, π̃ππ) + sup
π̃ππ′∈Π̃ΠΠM

∞∑
t=1

γtR̃(µ̃µµt, π̃ππ
′), (4.8)

subject to µ̃µµt+1 = Φ̃ΦΦ(µ̃µµt, π̃ππ), µ̃µµ0 = µ̃µµ.

We first show the verification result and then prove the continuity property of Q̃ in (4.8),
which thus leads to Theorem 3.8.

Lemma 4.3 (Verification) Assume Assumption 3.5. Then Q̃ in (4.8) is the unique function
satisfying the Bellman equation (3.10). Furthermore, if there exists π̃ππ∗ ∈ arg max

Π̃ΠΠM
Q̃(µ̃µµ, π̃ππ) for

each µ̃µµ ∈ M̃MMM , then π̃ππ∗ is an optimal stationary policy ensemble.

The proof of Lemma 4.3 is standard and very similar to the proof of Proposition 3.3 in [24].

Proof of Lemma 4.3 First, define Mr

1−γ -bounded function space Q := {f : M̃MMM × Π̃ΠΠM →
[− Mr

1−γ ,
Mr

1−γ ]}. Then we define a Bellman operator B : Q → Q

(Bq)(µ̃µµ, π̃ππ) := R̃(µ̃µµ, π̃ππ) + γ sup
π̃ππ′∈Π̃ΠΠM

q(Φ̃ΦΦ(µ̃µµ, π̃ππ), π̃ππ′),
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One can show that B is a contraction operator with the module-γ. By Banach fixed point
theorem, B admits a unique fixed point. As Q̃ function of (4.8) satisfies BQ̃ = Q̃, Q̃ is unique
solution of (3.10).

We next define Bπ̃ππ
′

: Q → Q under the policy ensemble π̃ππ′ ∈ Π̃ΠΠM with

(Bπ̃ππ
′
q)(µ̃µµ, π̃ππ) := R̃(µ̃µµ, π̃ππ) + γq(Φ̃ΦΦ(µ̃µµ, π̃ππ), π̃ππ′).

Similarly, we can show that Bπ̃ππ
′
is a contraction map with the module-γ and thus admits a

unique fixed point, which is denoted as Q̃π̃ππ
′
. From this, we have

Q̃π̃ππ
∗
(µ̃µµ, π̃ππ) = R̃(µ̃µµ, π̃ππ) + γQ̃π̃ππ

∗
(Φ̃ΦΦ(µ̃µµ, π̃ππ), π̃ππ∗)

= R̃(µ̃µµ, π̃ππ) + γ sup
π̃ππ′∈Π̃ΠΠM

Q̃(Φ̃ΦΦ(µ̃µµ, π̃ππ), π̃ππ′) = Q̃(µ̃µµ, π̃ππ),

which implies π̃ππ∗ is an optimal policy ensemble. 2

Lemma 4.4 Let Assumptions 3.4, 3.5 hold. Assume further γ · (1 +LP ) < 1. Then Q̃ in (4.8)
is continuous.

Proof of Lemma 4.4 We will show that as µ̃µµn → µ̃µµ, π̃ππn → π̃ππ in the sense that
∫
I ‖µ̃

α −
µ̃αn‖1dα+

∫
I maxs∈S ‖π̃α − π̃αn‖1dα→ 0,

Q̃(µ̃µµn, π̃ππn)→ Q̃(µ̃µµ, π̃ππ).

From (4.8),

|Q̃(µ̃µµn, π̃ππn)− Q̃(µ̃µµ, π̃ππ)|

≤
∣∣∣R̃(µ̃µµ, π̃ππ) + sup

π̃ππ′∈Π̃ΠΠM

∞∑
t=1

γtR̃(µ̃µµt, π̃ππ
′)− R̃(µ̃µµn, π̃ππn) + sup

π̃ππ′∈Π̃ΠΠM

∞∑
t=1

γtR̃(µ̃µµn,t, π̃ππ
′)
∣∣∣

≤
∣∣∣R̃(µ̃µµ, π̃ππ)− R̃(µ̃µµn, π̃ππn)

∣∣∣+ sup
π̃ππ′∈Π̃ΠΠM

∞∑
t=1

γt
∣∣∣R̃(µ̃µµn,t, π̃ππ

′)− R̃(µ̃µµt, π̃ππ
′)
∣∣∣

≤ Lr ·
∫
I
‖µ̃α,W − µ̃α,Wn ‖1dα+Mr ·

∫
I
‖µ̃α − µ̃αn‖1dα+Mr ·

∫
I

max
s∈S
‖π̃α − π̃αn‖1dα

+ sup
π̃ππ′∈Π̃ΠΠM

∞∑
t=1

γt ·
(
Lr ·

∫
I
‖µ̃α,Wt − µ̃α,Wn,t ‖1dα+Mr ·

∫
I
‖µ̃αt − µ̃αn,t‖1dα

)
≤

(
Lr +Mr

)
·
∫
I
‖µ̃α − µ̃αn‖1dα+Mr ·

∫
I

max
s∈S
‖π̃α − π̃αn‖1dα

+ sup
π̃ππ′∈Π̃ΠΠM

∞∑
t=1

γt ·
(
Lr +Mr

)
·
∫
I
‖µ̃αt − µ̃αn,t‖1dα.

By induction, we obtain∫
I
‖µ̃αt − µ̃αn,t‖1dα ≤ (LP + 1) ·

∫
I
‖µ̃αt−1 − µ̃αn,t−1‖1dα ≤ . . . ≤ (LP + 1)(t−1)

∫
I
‖µ̃α1 − µ̃αn,1‖1dα.

Therefore, if γ · (1 + LP ) < 1, then

|Q̃(µ̃µµn, π̃ππn)− Q̃(µ̃µµ, π̃ππ)| ≤ C
(∫
I
‖µ̃α − µ̃αn‖1dα+

∫
I

max
s∈S
‖π̃α − π̃αn‖1dα

)
.

where C is a constant depending on Lr,Mr, LP . 2
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Now we prove Theorem 3.8.

Proof of Theorem 3.8 By Lemma 4.4, along with the compactness of Π̃ΠΠM , there exists π̃ππ∗ ∈
Π̃ΠΠM such that π̃ππ∗ ∈ arg max

π̃ππ∈Π̃ΠΠM

Q(µ̃µµ, π̃ππ). By Lemma 4.3, there exists an optimal policy ensemble

π̃ππ∗ ∈ Π̃ΠΠM . 2

4.3 Proof of Theorem 3.9
We first prove the following Lemma, which shows that GMFC and block GMFC become in-
creasingly close to each other as the number of blocks becomes larger.

Lemma 4.5 Under Assumptions 3.3, 3.4 and 3.6, we have

M∑
m=1

∫
( m−1

M ,mM ]

‖µα,Wt − µ̃αm,W
t ‖1dα ≤

[
(1 + LP )t − 1

]LΠ + 2LPLW + LW
M

+
2LW
M

,

M∑
m=1

∫
( m−1

M ,mM ]

‖µαt − µ̃
αm
t ‖1dα ≤

[
(1 + LP )t − 1

]LΠ + 2LPLW + LW
M

.

Proof of Lemma 4.5

M∑
m=1

∫
( m−1

M ,mM ]

‖µα,Wt − µ̃αm,W
t ‖1dα (4.9)

≤
M∑
m=1

∫
( m−1

M ,mM ]

‖µα,Wt − µαm,W
t ‖1dα+

1

M

M∑
m=1

‖µαm,W
t − µ̄αm,W

t ‖1

+
1

M

M∑
m=1

‖µ̄αm,W
t − µ̃αm,W

t ‖1,

where µ̄αm,W := 1
M

∑M
m′=1W (αm, αm′)µ

αm′ .
By the definition of µα,Wt , µαm,W

t in (2.8), µ̃αm,W
t in (3.11) and µ̄αm,W , together with the

Lipschitz continuity of W in Assumption 3.3,

M∑
m=1

∫
( m−1

M ,mM ]

‖µα,Wt − µαm,W
t ‖1dα ≤

M∑
m=1

∫
( m−1

M ,mM ]

‖µαt − µ
αm
t ‖1dα+

LW
M

,

1

M

M∑
m=1

‖µαm,W
t − µ̄αm,W

t ‖1 ≤ LW
M

,

1

M

M∑
m=1

‖µ̄αm,W
t − µ̃αm,W

t ‖1 ≤ 1

M

M∑
m=1

‖µαm
t − µ̃αm

t ‖1.

Plugging these into (4.9),

M∑
m=1

∫
( m−1

M ,mM ]

‖µα,Wt − µ̃αm,W
t ‖1dα ≤ At +

2LW
M

,

where At :=
∑M
m=1

∫
( m−1

M ,mM ]
‖µαt − µ

αm
t ‖1dα+ 1

M

∑M
m=1 ‖µ

αm
t − µ̃αm

t ‖1.
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On the other hand,

M∑
m=1

∫
( m−1

M ,mM ]

‖µαt − µ̃
αm
t ‖1dα

≤
M∑
m=1

∫
( m−1

M ,mM ]

‖µαt − µ
αm
t ‖1dα+

1

M

M∑
m=1

‖µαm
t − µ̃αm

t ‖1 = At.

Therefore, it is enough to estimate At. We next estimate At+1 by an inductive way. Note that
A0 = 0.

At+1

=

M∑
m=1

∫
( m−1

M ,mM ]

‖µαt+1 − µ
αm
t+1‖1dα+

1

M

M∑
m=1

‖µαm
t+1 − µ̃

αm
t+1‖1

=

M∑
m=1

∫
( m−1

M ,mM ]

∥∥∥∑
s∈S

∑
a∈A

(
P (·|s, µα,Wt , a)πα(a|s)µαt (s)− P (·|s, a, µαm,W

t )µαm
t (s)παm(a|s)

)∥∥∥
1
dα

+
1

M

M∑
m=1

∥∥∥∑
s∈S

∑
a∈A

(
P (·|s, µαm,W

t , a)παm(a|s)µαm
t (s)− P (·|s, a, µ̃αm,W

t )µ̃αm
t (s)π̃αm(a|s)

)∥∥∥
1

≤
M∑
m=1

∫
( m−1

M ,mM ]

(
LP · ‖µα,Wt − µαm,W ‖1 +

LΠ

M
+ ‖µαt − µ

αm
t ‖1

)
dα

+
1

M

M∑
m=1

(
LP · ‖µαm,W

t − µ̃αm,W ‖1 + ‖µαm
t − µ̃αm

t ‖1
)

≤ (1 + LP )At + (LΠ + 2LPLW + LW )
1

M
,

where the second equality is from (3.4) and (3.13), and we use Assumptions 3.3, 3.4 and 3.6 in
the third inequality.
By induction, we have

At+1 ≤
[
(1 + LP )t − 1

]LΠ + 2LPLW + LW
M

.

2

Based on Lemma 4.5, we have the following Proposition.

Proposition 4.6 Assume Assumptions 3.3, 3.4, 3.5, 3.6, and γ · (LP + 1) < 1. Then we have
for any µ ∈ P(S)

sup
πππ∈ΠΠΠ

∣∣J̃M (µ,πππ)− J(µ,πππ)
∣∣→ 0, asM → +∞, (4.10)

where J̃M and J are given in (4.7) and (2.9), respectively.

Proof of Proposition 4.6 Recall from (3.11) that

J̃M (µ, π̃ππ) =

∞∑
t=0

γtR̃(µ̃µµt, π̃ππ),
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subject to µ̃αm
t+1 = Φ̃ΦΦ

αm

(µ̃αm
t , π̃αm), t ∈ N+, µ̃α0 ≡ µ, and µ̃

αm,W
t given in (3.11).

J(µ,πππ) =

∞∑
t=0

γtR(µµµt,πππ),

subject to µαt+1 = ΦΦΦα(µαt , π
α), t ∈ N+, µα0 ≡ µ, and µ

α,W
t given in (2.8). Since π̃ππ := (π̃αm)m∈[M ] ∈

Π̃ΠΠM can be viewed as a piecewise-constant projection of πππ ∈ ΠΠΠ onto Π̃ΠΠM . Then,

sup
πππ∈ΠΠΠ

∣∣J̃M (µ,πππ)− J(µ,πππ)
∣∣

≤ sup
πππ∈ΠΠΠ

∞∑
t=0

γt
∣∣∣R̃(µ̃µµt, π̃ππ)−R(µµµt,πππ)

∣∣∣
≤ sup

πππ∈ΠΠΠ

∞∑
t=0

γt
∣∣∣R̃(µ̃µµt, π̃ππ)−R(µµµt, π̃ππ)

∣∣∣+ sup
πππ∈ΠΠΠ

∞∑
t=0

γt
∣∣∣R(µµµt, π̃ππ)−R(µµµt,πππ)

∣∣∣
:= I + II.

In terms of the term I, we first estimate
∣∣∣R̃(µ̃µµt, π̃ππ)−R(µµµt, π̃ππ)

∣∣∣:∣∣∣R̃(µ̃µµt, π̃ππ)−R(µµµt, π̃ππ)
∣∣∣

=

∣∣∣∣ M∑
m=1

∫
( m−1

M ,mM ]

∑
s∈S

∑
a∈A

r(s, a, µ̃αm,W
t )µ̃αm

t (s)π̃αm(a|s)dα

−
M∑
m=1

∫
( m−1

M ,mM ]

∑
s∈S

∑
a∈A

r(s, a, µα,Wt )µαt (s)π̃αm(a|s)dα
∣∣∣∣

≤
∣∣∣∣ M∑
m=1

∫
( m−1

M ,mM ]

∑
s∈S

∑
a∈A

r(s, a, µ̃αm,W
t )µ̃αm

t (s)π̃αm(a|s)dα

−
M∑
m=1

∫
( m−1

M ,mM ]

∑
s∈S

∑
a∈A

r(s, a, µα,Wt )µ̃αm
t (s)π̃αm(a|s)dα

∣∣∣∣
+

∣∣∣∣ M∑
m=1

∫
( m−1

M ,mM ]

∑
s∈S

∑
a∈A

r(s, a, µα,Wt )µ̃αm
t (s)π̃αm(a|s)dα

−
M∑
m=1

∫
( m−1

M ,mM ]

∑
s∈S

∑
a∈A

r(s, a, µα,Wt )µαt (s)π̃αm(a|s)dα
∣∣∣∣

≤ Lr ·
M∑
m=1

∫
( m−1

M ,mM ]

‖µα,Wt − µ̃αm,W
t ‖1dα+Mr ·

M∑
m=1

∫
( m−1

M ,mM ]

‖µαt − µ̃
αm
t ‖1dα.

By Lemma 4.5,

I ≤ C(γ, LΠ, LP , LW , Lr,Mr)

M
.

For the term II,

sup
πππ∈ΠΠΠ

∞∑
t=0

γt
∣∣∣R(µµµt, π̃ππ)−R(µµµt,πππ)

∣∣∣ ≤ sup
πππ∈ΠΠΠ

∞∑
t=0

γtMr

M∑
m=1

∫
( m−1

M ,mM ]

max
s∈S
‖πα − πα

m

‖1dα

≤ LΠMr

1− γ
1

M
.
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2

Proof of Theorem 3.9 Suppose that π̃ππ∗ ∈ Π̃ΠΠM ⊂ ΠΠΠ and (π1,∗, . . . , πN,∗) ∈ ΠN are optimal
policies of the problems (4.7) and (2.5), respectively. From Proposition 4.6, for any ε > 0, there
exists sufficiently large Mε > 0

|J̃Mε(µ, π̃ππ∗)− J(µ, π̃ππ∗)| ≤ ε

3
,

where by (3.8), πππN,∗ :=
∑N
i=1 π

i,∗1α∈( i−1
N , i

N ].
From Theorem 3.7, for any ε > 0, there exists Nε such that for all N ≥ Nε

|JN (µ, π̃1,∗, . . . , π̃N,∗)− J(µ, π̃ππ∗)| ≤ ε

3
, |JN (µ, π1,∗, . . . , πN,∗)− J(µ,πππN,∗)| ≤ ε

3
.

Then we have

JN (µ, π̃1,∗, . . . , π̃N,∗)− JN (µ, π1,∗, . . . , πN,∗)

≥ JN (µ, π̃1,∗, . . . , π̃N,∗)− J(µ, π̃ππ∗)︸ ︷︷ ︸
I1

+ J(µ, π̃ππ∗)− J̃Mε(µ, π̃ππ∗)︸ ︷︷ ︸
I2

+ J̃Mε(µ, π̃ππ∗)− J̃Mε(µ,πππN,∗)︸ ︷︷ ︸
I3

+ J̃Mε(µ,πππN,∗)− JN (µ, π1,∗, . . . , πN,∗)︸ ︷︷ ︸
I4

≥ −ε
3
− ε

3
− ε

3
= −ε.

where I3 ≥ 0 due to the optimality of π̃ππ∗ for ṼMε . This means that the optimal policy of block
GMFC provides an ε-optimal policy for the multi-agent system with (π̃∗1 , . . . , π̃

∗
N ) := ΓN (π̃ππ∗).

2

5 Experiments
In this section, we provide an empirical verification of our theoretical results, with two examples
adapted from existing works on learning MFGs [16, 10] and learning GMFGs [15].

5.1 SIS Graphon Model
We consider a SIS graphon model in [16] under a cooperative setting. In this model, each agent
α ∈ I shares a state space S = {S, I} and an action space A = {C,NC}, where S is susceptible,
I is infected, C represents keeping contact with others, and NC means keeping social distance.
The transition probability of each agent α is represented as follows

P (st+1 = I|st = S, at = C, µα,Wt ) = β1µ
α,W
t (I),

P (st+1 = I|st = S, at = NC,µα,Wt ) = β2µ
α,W
t (I),

P (st+1 = S|st = I, µα,Wt ) = δ,

where β1 is the infection rate with keeping contact with others, β2 is the infection rate under
social distance, and δ is the fixed recovery rate. We assume 0 < β2 < β1, meaning that keeping
social distance can reduce the risk of being infected. The individual reward function is defined
as

r(s, µα,Wt , a) = −c11{I}(s)− c21{NC}(a)− c31{I}(s)1{C}(a),
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where c1 represents the cost of being infected such as the cost of medical treatment, c2 represents
the cost of keeping social distance, and c3 represents the penalty of going out if the agent is
infected.

In our experiment, we set β1=0.8, β2=0, δ = 0.3 for the transition dynamics and c1=2,
c2=0.3, c3 = 0.5 for the reward function. The initial mean field µ0 is taken as the uniform
distribution. We set the episode length to 50.

5.2 Malware Spread Graphon Model
We consider a malware spread model in [10] under a cooperative setting. In this model, let
S = {0, 1, . . . ,K−1}, K ∈ N, denote the health level of the agent, where st = 0 and st = K−1
represents the best level and the worst level, respectively. All agents can take two actions:
at = 0 means doing nothing, and at = 1 means repairing. The state transition is given by

st+1 =

{
st + b(K − st)χtc, if at = 0,

0, if at = 1,

where χt, t ∈ N are i.i.d. random variables with a certain probability distribution. Then after
taking action at, agent α will receive an individual reward

r(st, µ
α,W
t , at) = −(c1 + 〈µα,Wt 〉)st/K − c2at.

Here considering the heterogeneity of agents, we use W (α, β) to denote the importance effect
of agent β on agent α. 〈µα,Wt 〉 :=

∫
β∈I

∑
s∈S sW (α, β)µβt (s)dβ is the risk of being infected by

other agents and c2 is the cost of taking action at.
In our experiment, we set K=3, c1=0.3, and c2=0.5. In addition, to stabilize the training

of the RL agent, we fix χt to a static value, i.e., 0.7. In this model, we set the episode length to
10.

5.3 Performance of N-agent GMFC on Multi-Agent System
For both models, we use PPO [47] to train the block GMFC agent in the infinite-agent envi-
ronment and obtain the policy ensembles and further use Algorithm 1 to deploy them in the
finite-agent environment. We test the performance of N-agent GMFC with 10 blocks to different
numbers of agents, i.e., from 10 to 100. For each case, we run 1000 times of simulations and
show the mean and standard variation (Green shadows in Figure 1 and Figure 2) of the mean
episode reward. We can see that in both scenarios and for different types of graphons, the mean
episode rewards of the N-agent GMFC become increasingly close to that of block GMFC as
the number of agents grows. (See Figure 1 and Figure 2). This verifies our theoretical findings
empirically.

Figure 1: Experiments for different graphons in SIS finite-agent environment
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Figure 2: Experiments for different graphons in Malware Spread finite-agent environment

5.4 Comparison with Other Algorithms
For different types of graphons, we compare our algorithm N-agent GMFC with three existing
MARL algorithms, including two independent learning algorithms, i.e., independent DQN [40],
independent PPO [47] and a powerful centralized-training-and-decentralized-execution(CTDE)-
based algorithm QMIX [46]. We test the performance of those algorithms with different numbers
of blocks, i.e., 2, 5, 10, to the multi-agent systems with 40 agents. The results are reported in
Table 1 and Table 2.

In the SIS graphon model, N-agent GMFC shows dominating performance in most cases
and outperforms independent algorithms by a large margin. Only QMIX can reach comparable
results. And in the malware spread graphon model, N-agent GMFC outperforms other algo-
rithms in more than half of the cases. Only independent DQN has comparable performance in
this environment. And we can see that in both environments, the performance gap between
N-agent GMFC and other MARL algorithms is shrinking as the number of blocks goes larger.
This is mainly because the action space of block GMFC increases more quickly than MARL
algorithms as the block number increases. And it is hard to train RL agents when the action
space is too large.

Beyond the visible results shown in Tables 1 and 2, when the number of agents N grows
larger, classic MARL methods become infeasible because of the curse of dimensionality and the
restriction of memory storage, while N-agent GMFC is trained only once and independent of the
number of agents N , hence is easier to scale up in a large-scale regime and enjoys a more stable
performance. We can see that N-agent GMFC shows more stable results when N increases as
shown in Figure 1 and Figure 2.

Table 1: Mean Episode Reward for SIS with 40 agents

Graphon Type M Algorithm

N-agent GMFC I-DQN I-PPO QMIX

Erdős Rényi
2 -15.37 -17.58 -20.63 -20.51
5 -15.74 -16.17 -20.42 16.94
10 -15.67 -17.55 -21.38 -14.45

Stochastic Block
2 -13.58 -16.05 -18.38 -17.69
5 -13.67 -15.91 -20.13 -13.79
10 -13.57 -15.52 -14.87 -13.86

Random Geometric
2 -12.45 -17.93 -14.82 -14.52
5 -9.82 -12.81 -12.99 -10.84
10 -10.52 -11.68 -12.66 -12.60
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Table 2: Mean Episode Reward for Malware Spread with 40 agents

Graphon Type M Algorithm

N-agent GMFC I-DQN I-PPO QMIX

Erdős Rényi
2 -5.21 -5.11 -5.31 -6.05
5 -5.21 -5.30 -5.26 -6.13
10 -5.21 -5.14 -5.27 -5.21

Stochastic Block
2 -5.16 -5.21 -5.37 -5.88
5 -5.10 -5.19 -5.31 -5.70
10 -5.09 -5.05 -5.28 -5.27

Random Geometric
2 -5.02 -5.21 -5.27 -5.35
5 -4.85 -5.03 -5.04 -5.05
10 -4.82 -4.83 -5.14 -4.83

5.5 Implementation Details
We use three graphons in our experiments: (1) Erdős Rényi: W (α, β) = 0.8; (2) Stochastic
block model: W (α, β) = 0.9, if 0 6 α, β 6 0.5 or 0.5 6 α, β 6 1, W (α, β) = 0.4, otherwise; (3)
Random geometric graphon: W (α, β) = f(min(|β − α|, 1− |β − α|)), where f(x) = e−

x
0.5−x .

For the RL algorithms, we use the implementation of RLlib [36] (version 1.11.0, Apache-2.0
license). For PPO used to learn an optimal policy ensemble in block GFMC, we use a 64-
dimensional linear layer to encode the observation and 2-layer MLPs with 256 hidden units per
layer for both value network and actor network. For independent DQN and independent PPO,
we use the default weight-sharing model with 64-dimensional embedding layers. We train the
GMFC PPO agent for 1000 iterations, and other three MARL agents for 200 iterations. The
specific hyper-parameters are listed in Table 3.

Table 3: RL Algorithm Settings

Algorithms GMFC PPO I-DQN I-PPO QMIX

Learning rate 0.0005 0.0005 0.0001 0.00005
Learning rate decay True True True False
Discount factor 0.95 0.95 0.95 0.95
Batch size 128 128 128 128
KL coefficient 0.2 - 0.2 -
KL target 0.01 - 0.01 -
Buffer size - 2000 - 2000
Target network update frequency - 2000 - 1000

6 Conclusion
In this work, we have proposed a discrete-time GMFC framework for MARL with nonuniform
interactions on dense graphs. Theoretically, we have shown that under suitable assumptions,
GMFC approximates MARL well with approximation error of order O( 1√

N
). To reduce the

dimension of GMFC, we have introduced block GMFC by discretizing the graphon index and
shown that it also approximates MARL well. Empirical studies on several examples have verified
the plausibility of the GMFC framework. For future research, we are interested in establishing
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theoretical guarantees of the PPO-based algorithm for block GMFC, learning the graph struc-
ture of MARL and extending our framework to MARL with nonuniform interactions on sparse
graphs.
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