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Abstract.  Traditional methods of scheduling are mostly based on the use of 

pieces of information directly related to the performance of schedules, as for 

instance processing times, delivery dates, etc., assuming that the production 

system is operating normally.  In the case of malfunctions, the literature 

concentrates on the ensuing corrective operations, like scheduling with machine 

breakdowns or under remanufacturing considerations. These event-driven 

approaches are mainly used in dynamic scheduling or rescheduling systems. 

Unlike those, Smart Manufacturing and Industry 4.0 production environments 

integrate the physical and decision-making aspects of manufacturing processes in 

order to achieve their decentralization and autonomy. On these grounds we 

propose a data-driven architecture for scheduling, in which the system has real 

time access to data. Then, scheduling decisions can be made ahead of time, on the 

basis of more information. This promising approach is based on the architecture 

of cyber-physical systems, with a data-driven engine that uses, in particular, Big 

Data techniques to extract vital information for Industry 4.0 systems. 

Keywords: scheduling; Industry 4.0; Smart Manufacturing; Cyber-Physical 

systems; Big Data; Data driven; decision-making;  

1. Introduction 

The last few years have witnessed the emergence of a fourth industrial revolution, 

referred to as Industry 4.0 (Lu [2017]; Xu et al. [2018]). It amounts to a paradigm 

change in manufacturing processes, based on the heavy use of automated tools (Tao et 

al. 2017). Hermann et al. (2016) compiled all the practitioner and academic information 

on this issue and stated that Industry 4.0 is embodied in several technologies of which 

Cyber-Physical Systems (CPS) and the Internet of Things (IoT) provide the 
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foundations. CPS – which integrate computational systems with physical processes (Lee 

2008) – are, in particular, fundamental components of this new paradigm. Wang et al. 

(2015) present a thorough analysis of the future impact of CPS on manufacturing 

environments, based on their ten more salient characteristics. Many of them involve the 

decision-making procedures in production settings, endowing CPS with the ability to 

respond, autonomously and flexibly, to unforeseen situations. CPS have the additional 

advantage of generating virtual replicas of the production process (Lee et al. [2015]; 

Chen [2017a]), facilitating its remote administration through Cloud Computing (Wang 

et al. [2014]; Gao et al. [2015]). This, in turn, allows viewing the production 

environment as the embodiment of Cloud Manufacturing (Xu [2012]; Wang et al. 

[2015]). These and other applications of CPS have led to the wider concept of Cyber-

Physical Production Systems (CPPS) (Monostori [2014]; Monostori et al. [2016]), 

representing the ensemble of sub-systems connected to the environment and among 

them in these enhanced Industry 4.0 settings (Lu 2017). One of the benefits of CPS is 

the possibility of linking directly the shop floor with a high-level Decision Support 

System (DSS) (Rossit & Tohmé 2018). This allows providing real time data to the DSS 

as well as giving the shop floor the ability to rapidly adapt to the output of the DSS. 

On the other hand, a CPPS is able to collect data about its environment and the 

processes in which it intervenes, using sensors and wireless technologies. The amount 

of data generated by contemporary manufacturing industries has grown explosively, 

generating more than 1000 exabytes per year (Yin & Kaynak 2015). This information 

covers a wide range, from the properties of materials and the parameters of the 

processes to data about clients and suppliers (Kusiak [2017a]; Xu & Duan [2018]). So, 

for instance, Singh et al. (2017) explore Twitter to find out the opinion of clients about 

the quality of foods with the goal of improving the supply chain of this industry. Similar 

searches through non-traditional sources of information are extremely useful for 

managing manufacturing processes. A recent article in Nature (Kusiak 2017b) 

emphasizes the vital role that data analysis will play in the development of Smart 

Manufacturing processes. But, as pointed out by Choudhary et al. (2009), the analysis of 

attributes and patterns in very large databases demands intelligent and automatized data 

analysis methodologies. CPPS may be able to run such methodologies through Cloud 

Computing connections to high-performance computing facilities. This will allow 

translating data into knowledge, by means of intelligent tools, methods and frameworks 

(Choudhary et al. [2009]; Shukla & Tiwari [2017]). 
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These new manufacturing structures will induce changes in the way production 

planning is carried out (Almada-Lobo [2016]; Wang et al. [2016]). We propose here a 

data-driven approach to the solution of production scheduling problems, which are 

known for being NP-hard (Pinedo 2012), and thus computationally demanding even for 

small instances, as for example Flow Shop cases with at least four machines (Garey et 

al. 1976). Since schedules are usually chosen for short time frames, the planning 

process has to be repeated frequently (sometimes several times in a single week).  The 

quality of the solutions has a direct economic impact on the benefits of companies, and 

thus on their long-term ability to thrive in competitive markets (Framinan et al. 2014). 

This intrinsic criticality of scheduling processes becomes even more salient in their 

incorporation to the Smart Manufacturing processes of Industry 4.0. As pointed out by 

Monostori (2014), scheduling processes constitute one of the main challenges in the 

design of CPPS.  Data mining procedures can be, in principle, applied during the normal 

course of a fabrication process, in general without having to devote extra resources to 

data collection (Choudhary et al. 2009).  

Scheduling problems are traditionally solved taking as data parameters as 

processing times, delivery dates, preparation times, sequence dependent preparation 

times, etc. Negative impacts on the schedule, like machine breakdowns or quality 

losses, are handled by taking into consideration also all other aspects of the system as 

extra constraints on potential solutions. In this way we get alternative approaches, like 

flow-shop scheduling under machine breakdowns or job shop scheduling with 

remanufacturing, when a product does not satisfy the specifications and has to be 

processed again (Kis & Pesch [2005]; Ruiz & Vázquez-Rodríguez [2010]; Rossit et al 

[2018a]). These two approaches are naturally event-driven, since they address the issues 

once they have happened and afterwards proceed to restate the scheduling problem 

(Vieira et al [2003]; Ouelhadj & Petrovic [2009]; Rossit et al [2018b]). The importance 

of those constraints is that inside organizations there exist system specifically destined 

to provide support in those areas, as quality control or maintenance systems, usually 

associated to level 3 of the control standard ANSI/ISA-95. 

Here we intend to take advantage of the potentialities of CPPS to use data from 

previous experiences, collecting it through the access to the physical processes of 

production and processing it to yield useful information (Chen 2017b). Besides, CPPS 

will absorb a good deal of the business functions of manufacturing companies 

(Monostori 2014), gaining access to other data, as for instance on inventory 
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management, quality control and predictive maintenance. All this digitalized 

information can be shared and used to solve problems that might arise in carrying out a 

production plan. These possibilities lead us to propose a data-driven DSS for scheduling 

activities in Smart Manufacturing environments, using both the classical data used in 

the search for optimal schedules as well as that on other functionalities that may have an 

impact on the performance or execution of production plans. Our contribution lays the 

groundwork for addressing rescheduling from a new perspective. Instead of waiting for 

an event to happen, the data already available becomes accessible in real time. This 

allows the system to anticipate events as machine breakdowns.  In order to be able to do 

that, the system must be based on a data-driven architecture in which all level 3 and 

below data in ISA-95 have to accessible to all systems, in particular to the scheduler, 

which executes the orders of clients. Our scheme of data-driven DSS oriented to 

scheduling will, thus, run algorithms of Big Data Analytics (BDA), profiting from the 

data-intensive capabilities of CPPS. We will discuss the features of this scheme and the 

shortcomings that can be overcome by means of the technologies of CPPS.  

The plan of the paper is as follows. In section 2 covers the impact of new 

technologies, fundamentally CPS and CPPS on production planning. Also, we will 

show the impact of Big Data on Smart Manufacturing and scheduling. Furthermore, we 

will present a methodology of design, based on which to develop a data-driven DSS.  In 

section 3 we will analyze the large volume of data that may influence the scheduling 

process. Section 4, describes the decision-making process following the ANSI/ISA 95 

protocol, showing that decisions are made at different levels in several autonomous 

components. In section 5, we present our design of a data-driven scheduling DSS for 

Smart Manufacturing. We will also show how the standard architecture of CPS makes it 

possible to link all the components required to develop such DSS. We will validate this 

alternative design, comparing it to possible implementations in more traditional 

configurations.  

2. Smart Manufacturing and Big Data Scenario 

In this section we introduce the main features of Smart Manufacturing production 

environments as well as a brief review on the use of Big Data in Manufacturing. For the 

former part we will focus on the technologies collectively denominated Industry 4.0, 

with emphasis on CPS. For the uses of Big Data in Manufacturing we will review the 
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literature on data-driven applications in production activities. Finally, we will present 

the approach of Helu et al. (2016) to the development of data-driven systems. 

2.1. CPS and CPPS 

As briefly discussed in the Introduction, CPS are some of the main components of 

Industry 4.0 systems, facilitating the confluence of physical and virtual spaces, 

integrating computational and communication processes in interaction with physical 

processes, adding new capabilities to physical systems (Wang et al. [2015]; Lu & Da 

Xu [2018]). Unlike traditional embedded systems, in which components tend to be 

independent, CPS feature a network of interactive I/O physical elements. Later years 

have witnessed great advances in this area. New intelligent CPS spur innovation and 

competition in different industries (aerospace, automobile, chemical, energy, 

infrastructure, transportation, etc.). A relevant instance of CPS is constituted by 

intelligent manufacturing lines, in which a single machine can carry out a variety of 

procedures communicating with the other components (Wang & Wang 2018b).  

A more precise description of CPS can be given in terms of the five-level 

architecture introduced in Lee et al. (2015). They define a 5C architecture outlining the 

main design levels of CPS: 1) Connection level, 2) Conversion level, 3) Cyber level, 4) 

Cognition level and 5) Configuration level.  Figure 1 illustrates this architecture. 

The Connection level is the one at which information from the environment is 

collected, coming from sensors, controllers or enterprise manufacturing systems (ERP, 

SCM, etc). At this level it is necessary to have well designed protocols (managing 

different types of data) and select the proper sensors. Then, the Conversion level is the 

one at which data is transformed into useful information, bringing some sort of self-

awareness to the machines. The Cyber level is the third one, playing a central role in the 

architecture, since it gathers information from all the components of the system. The 

fourth level is the Cognition level, at which a thorough knowledge of the system is 

generated. This knowledge can be used by expert users and supports the decision-

making process. The final level is the Configuration level, where the information at the 

cyber space is fed back to the physical space. This fifth level acts as a resilience control 

system (RCS).  
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Figure 1. Architecture of Cyber-Physical Systems. Lee et al. (2015) 

Lee et al. (2015) apply this five-level architecture in a Prognostics and Health 

Management (PHM) application, aiming to ensure the correct maintenance of the 

physical assets. Beyond this, we consider this architecture as roadmap for the 

characterization of CPS and the study of new aspects of them, in our case, incorporating 

scheduling into CPS. 

CPS with manufacturing-specific implementations have given raise to Cyber-

Physical Production Systems (CPPS). According to Monostori (2014) CPPS consist of 

autonomous and cooperating elements and subsystems interconnected in such way that, 

depending on the setting, cover all the stages of the production process, from the shop 

floor to the logistic networks. One of the main challenges posed by these systems is the 

need to develop robust approaches to scheduling, in order to face adequately to the 

different and unforeseen stresses on distributed production processes.  

2.2. Big Data in Smart Manufacturing and scheduling 

Big Data in manufacturing involves the analysis of large volumes of heterogeneous and 

multi-source data generated along the life cycle of industrial production (Li et al. 

[2015]; Hassani et al. [2018]). The ensuing databases are characterized by 5 V’s (Chen 

et al. 2014): volume (large amounts of data), variety (data comes in different formats 

and is generated by different sources), velocity (data is generated and renewed by fast 

processes), veracity (data is used to reduce error levels, inconsistencies, incompleteness, 
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ambiguities, noise and other kinds of inaccuracies) and value (the marginal worth 

conveyed by data). Smart Manufacturing environments are ready for the 

implementation of BDA, thanks to being fabrication systems in which sensors provide 

information of events and states, while managing levels provide market data (Babiceanu 

& Seker [2016]; Tao et al. [2018]). The systematic computational analysis of data 

outputs from these environments will help to make ―informed‖ decisions, improving the 

quality of the Smart Manufacturing processes. For these reasons, data-driven systems 

are necessary requirements for the implementation of Smart Manufacturing 

environments (Tao et al. 2018).  

Given the considerations advanced by Tao et al. (2018) it is relevant to revisit 

some contributions of BD scheduling. While there have been some BDA applications 

for the solution of scheduling problems in Smart Manufacturing environments, these 

developments are still in an initial phase. Zhong & Xu (2015) postulate a Physical 

Internet procedure for Job-shop scheduling, with data fed in real time by RFID devices. 

Metan et al. (2010) study a novel scheduling procedure of real-time selection of 

dispatch rules, combining simulation, data mining and statistical control process charts. 

Premalatha et al. (2012) analyze the results of running a (Bayesian) supervised learning 

algorithm on the data of production plus information on the attributes of the system. 

Wang & Jiang (2016) study the effects of real-time variations of work parameters and 

how to use the ensuing data to reschedule the production process. More recently, Ji & 

Wang (2017) consider a less error-prone scheduling procedure in which input data is 

contrasted to failure patterns detected by a BDA procedure in databases of previous runs 

of the system. Similarly, Vallhagen et al. (2017) propose to incorporate a BDA 

procedure on the data inputs to an already running scheduling process. 

While these contributions improve on the typical management of scheduling 

data, they do not incorporate information from other functions. Our goal is to fill out 

this gap, by outlining how to integrate all that information in a single CPPS and its 

dynamics.  

2.3. A data-driven framework 

Helu et al. (2016), present a seven steps framework, depicted in Figure 2, based 

on the ideas previously presented in Helu et al. (2015). This framework provides the 

blueprint for the design and implementation of a data-driven DSS. The first step 

involves defining the scope of the DSS, i.e. the problem domain to which the decision-
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making procedure will be applied. The second step involves identifying the 

requirements of the processes implementing the decisions made, including the resources 

involved and the data flows in them.   

The third step defines what data and from which source will be collected, 

defining the key parameters to be captured.  The fourth step involves the transmission 

of data to the analysis center.  The fifth step is the actual analysis of data, taking into 

account the following procedures: 

 Identification of analysis techniques appropriate to the problem. 

 Preparation of data for the analysis.  

 Visualization methods.  

 Validation and verification. 

 

Figure 2. Data-driven decision-making framework (Helu et al. 2016) 

The next step consists in sharing information, while the last one involves 

retrieving the information, delivering it to the right user in the corresponding format. 

Some activities at the last step are:  

 Ensuring the accessibility of data resources.  

 Presenting the data. 

 Searching and querying the data through formal methods 

 Managing the traceability of data. 

Once established a data-driven procedure along these lines, it is possible to 

identify the tools and technologies that can contribute to its implementation. 
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3. Scheduling planning and levels of ISA-95 

The choice of a schedule of operations is part of a production planning process. More 

precisely, it is the last stage of planning before the actual execution of the plan (Pinedo 

2012). Scheduling involves the allocation of the available production resources in a 

work flow generated in a previous planning stage. The choice of a schedule demands a 

detailed description of the production process and amounts to handle a large volume of 

information (Framinan et al. [2014]; Rossit et al. [2018b]). As it is intuitively evident, 

these decision problems have a strong combinatorial nature and consequently a high 

complexity. 

Formally, a scheduling problem is the allocation of a family N of jobs, N = {1, 

2,…, n} on a set M of machines, M = {1, 2, …, m}. Each job j consists of a class Oj of 

operations, where operation Oij of job j must be carried out on machine i. Each 

operation Oij has an associated processing time pij   ℕ on machine i. Each job j will 

have associated an ordering Rj of the operations of Oj, reflecting the precedence 

ordering among operations. The whole point of scheduling is to find a schedule π of 

jobs over machines yielding an optimal value F(π), where F denotes some objective 

function. 

Scheduling problems are highly dependent on the actual details of the 

production setting (Job Shop, Flow Shop, etc.). This implies that different parameters 

(delivery dates, preparation times, waiting times, etc.) and different objective functions 

(makespan, total tardiness, maximal tardiness, etc.) require alternative statements of the 

general problem. 

3.1. Scheduling data 

A scheduling procedure requires a large amount of data to yield a reliable schedule of 

operations. Framinan et al. (2014) present a classification distinguishing between a class 

of model-based data and another of instance-based data. Pinedo (2012), instead, 

classifies scheduling data in static or dynamic, being the former independent of the 

actual schedule, while the latter depend on it.  

Static data include data about the jobs and machines that are only inputs for the 

scheduling procedure. These data are relatively stable, involving the amounts to be 

produced, the processing times, the due dates, the release dates and the precedence 

constraints. The priority ordering of jobs yield also static data since it does not depend 
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on the schedule nor it is defined either by the scheduler or by means of a formula based 

on information about the clients. The same is true for the contention factor, indicating 

the number of alternative machines able to run operation O. 

With respect to production resources, the static data include the velocities of 

machines and the programmed maintenance times, as well as more involved pieces of 

information, like the size of the buffers between machines or the machine homogeneity 

η, which is the ratio between the standard deviation of the number of operations that can 

be processed in each machine and the average number of operations that can be run on 

each machine (Park et al. 1997).  

On the other hand, the dynamic data, depending on the schedule, involve the 

starting and finishing times on machines, the inactivity times, the transition between 

jobs times, the sequence of jobs over machines, the number of delayed jobs, etc. Other 

pieces of information are also dynamic, even if they do not seem directly related to the 

schedule. Examples of this are, for instance, the rate of use of the system at a given 

point of time (the time average of the number of machines in use over the total number 

of machines); or the relative machine workload (the rate between the maximum 

workload in a machine of the system over the average workload); or the flow allowance, 

representing the lead time to the due date (Pinedo 2012). 

3.2. Scheduling System 

All these data are fed into the scheduling procedure, which uses libraries of 

algorithms to generate schedules and modify them when needed. To illustrate how this 

works, consider the representation of a scheduling system, drawn from Pinedo (2012) 

and depicted in Figure 3. We can see that this system uses information from the work 

order and data collected in the shop floor. This is processed by a Database Management 

facility, a module with a series of basic functions, including multiple routines of edition, 

classification and search.  The outputs of this process are submitted to the Schedule 

Generator, which uses algorithmic tools to solve the scheduling problem. Once obtained 

a schedule it can be modified through a Schedule Editor. The performance of either the 

schedule coming out from the Generator or from the Editor is evaluated. A graphic 

output presents all this information to the user.  
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Figure 3. Scheduling System. Pinedo (2012) 

The aforementioned scheduling process is part of a wider Production Planning 

and Control system. Again, drawing from Pinedo (2012), we show this system in Figure 

4. We can see that this larger process starts by receiving orders from the clients and 

forecasts of demand. These are translated into material and resource use requirements. 

This is fed into the Scheduling module. Its output, in turn, is transmitted to the shop 

floor, which feedbacks information about the actual production process.   
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Figure 4. Production Planning and Control scheme. Pinedo (2012) 

3.3. Standard ANSI/ISA 95 

In order to show how we think all the aforementioned functionalities should be 

integrated into the scheduling system we have to briefly present the ANSI/ISA 95 

standard. This standard provides a widely accepted representation of the architecture of 

a firm and its different levels of decision-making.  

The ANSI/ISA 95 is a standard that can provide a framework for an automated interface 

between production facilities and control systems. It can yield a common ground for the 

communication of all the participants in a production process and gives a representation 

of how information can be modelled and used. It organizes the different levels of 

decision-making hierarchically. It is based on the ―Purdue Enterprise Reference 
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Architecture‖ (PERA) which distinguishes five levels, as shown in Figure 5. Level 0 is 

associated to the physical process of manufacturing. Level 1 involves the intelligent 

devices that measure and manipulate the physical process are located. Typical 

instruments at this level are sensors, analyzers, effectors and related instruments. Level 

2 represents the control and supervision of the underlying activities. Systems acting on 

ISA-95 Level 2 are Supervisory Control and Data Acquisition (SCADA), 

Programmable Logic Controllers (PLC), Distributed Control Systems (DCS) and Batch 

Automation Systems. Level 3 involves the management of the operations and the 

production work flow in the production of the desired products. Some of the systems 

comprised at this level are Batch Management, manufacturing execution/operations 

management systems (MES/MOMS), the laboratory, maintenance and plant 

performance management systems, data historians and related middleware. This level 

has special importance for our work, since it is here where the scheduling process takes 

place. Finally, level 4 is associated to the business activities of the entire firm. This 

architecture represents, in a synthetic way, the different activities and functions of a 

production system. Besides, it establishes the way in which the different levels 

communicate; in traditional productions settings, in particular, each level interacts only 

with its adjacent levels (Rossit & Tohmé 2018).  

 

Figure 5. Control structure ANSI/ISA 95 (Rossit & Tohmé 2018) 

3.4. Decision making in CPPS  

CPPS change the way in which decisions are made in the realm of industrial planning 

and control. To introduce our view on this topic, we show in Figure 6 the levels of ISA 

95 that should be incorporated into CPPS. This integration ensues from the capacities of 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

CPPS, which can enact physical processes (level 0), measure and handle the instruments 

reading the physical processes (level 1) and implement control actions over its 

operations (level 2). Furthermore, given the computing power of CPPS, they will also 

be able to plan, evaluate and manage the entire production process (level 3). 

 

Figure 6. Control structure of a CPPS. 

This integration of functionalities will yield direct benefits, as for instance 

increasing the flexibility of the production system in response to unexpected events; or 

the higher integration and transmission of information, given that a CPPS by itself can 

translate the data obtained at level 1 into the higher-level language used at level 3, 

bypassing the adjacency constraints inherent in PERA. 

On the other hand, decision-making, focused on production planning, will be 

also impacted by the development of Industry 4.0. This will give rise to a new structure, 

which, while keeping PERA’s levels, will be managed by two large systems: ERP 

(Enterprise Resource Planning) and the CPPS. Figure 7 shows this. 
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Figure 7. Distribution of ISA 95 levels between ERP and CPPS. The representation of time is 

drawn from the model of the Manufacturing Enterprise Solutions Association (MESA) 

International. 

Figure 7 shows that the decisions about both the aggregate level and the goals to 

be pursued will be handled by the Enterprise Resource Planning (ERP) systems (tuned 

to smart manufacturing environments). All other decisions will be automatically and 

systematically run by CPPS, including the execution of the production plan in real time. 

In this structure, the CPPS can be seen as a set of autonomous elements collaborating to 

reach the goals set by the ERP system.  This means, in particular, that current 

Manufacturing Execution Systems (MES), which take care of dispatching work orders 

and their scheduling in the shop floor, will be absorbed by CPPS. This will yield 

information of better quality, useful for both making the decisions at this level and 

minimizing response times, increasing the flexibility of the entire system. 

A good deal of the decisions made by ERP systems (as inventory control, 

management of databases, handling information about suppliers, etc.) will be managed 

by CPPS. But we leave them separated as to indicate at what point the system becomes 

autonomous and up to which human interventions may be needed, particularly in the 

area of production planning. The linkage with human decision-makers will be at the 

aggregate or strategic level. They will define the goals and guidelines for the firm and 

the system. An ERP system will get them and will translate these guidelines for the rest 

of the system, in particular to the CPPS that handle the production system. The latter are 
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thus not completely autonomous since they keep an open loop with the ERP system, at 

least on production planning (see section 2.4.1.1 in Framinan et al. 2014). Basically, this 

procedure plans and controls the fabrication tasks in a given manufacturing 

infrastructure, but not planning the infrastructure itself. In this line, Almada-Lobo 

(2016) postulates the absorption of Manufacturing Execution Systems in Industry 4.0 

systems. On the contrary, higher levels of management, defining more general aspects 

of the fabrication, should not be included.  

Despite this, since CPPS integrate horizontally the 3 level of ISA-95, they will 

gain access to quality control systems, inventory management, maintenance planning 

and the historical records of these systems. This endows CPPS with the ability to handle 

data that can influence both the schedule as the inventory issues that may generate 

delays or scarcity of resources, affecting its performance (Kuo & Kusiak 2018). The 

same is true for real time monitoring systems linked to maintenance, in which the stress 

on machines may force an earlier maintenance stop, affecting their availability (Lee et 

al. 2017).  Even if the impact of these aspects on the schedule may be indirect, it is clear 

that having access to data on them helps to find better schedules. Our design is based on 

the incorporation of these new functionalities into CPPS and on their redirection 

towards obtaining improved scheduling processes.  

Besides these new capabilities, CPPS handle the classical data required to solve 

the scheduling problems defined in Figures 2 and 3, but with serious advantages over 

traditional approaches. Since CPPS control physical processes and collect data on them, 

their computing power allows also to process this information. This yields an integrated 

view in which data is collected by the same entity that will execute the actions that 

ensue from processing them. Furthermore, the decision-making process can be also 

carried out by CPPS. Thus, these systems will at the same time collect the data, process 

them, make decisions and execute them.  This vertical integration improves the quality 

of the results and the entire performance of the production system. Our DSS based on 

these potentialities of CPPS is intended as a step towards implementing the 

aforementioned vertical integration in Smart Manufacturing environments. 

4. Data-driven scheduling DSS for CPPS 

Given the production structure defined by the CPPS (Figure 7), we can present our own 

data-driven decision support system. We use the architecture defined by Lee et al. 
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(2015), associating to each layer of the architecture the DSS functions running on the 

data-driven logic. After that we will discuss the ensuing architecture along the lines of 

Helu et al. (2016), evaluating which large bodies of data should be processed. Finally, 

we present examples, exhibiting the running behavior of this architecture.  

We are now ready to present a data-driven Scheduling DSS in the aforementioned seven 

steps framework of Helu et al. (2016). We will discuss each step in the light of 

traditional scheduling methods, evaluating possible roadblocks for their 

implementation. We also relate the data-driven Scheduling DSS with the CPS 

architecture in Lee et al. (2015). Then, we analyze the CPS and Smart Manufacturing 

technologies that may address those limitations. We also analyze the 5V of Big Data 

affecting our design, postulating solutions for them. Finally, we present and overarching 

architecture for our design.  

4.1. Data-driven Scheduling DSS  

Consider the seven steps in Helu et al. (2016) applied to the development of a data 

driven Scheduling DSS: 

Scope. The scope of a Scheduling DSS is the design of production schedules, 

assigning jobs to the different shop floor resources as to satisfy the goals of the 

organization. The very nature of scheduling procedures is data-intensive and thus, even 

if conceiving it as a DSS may present some complications, incorporating explicitly data 

sources seems a reasonable development. 

Identification. The identification of the manufacturing processes, with their 

associated resources and flows of data are fundamental for a sound scheduling 

procedure. In order to yield a schedule, it has to be closely linked to the shop floor, 

receiving timely information about its state and evolution. This amounts to use as data 

and interaction sources the systems at level 3 of ISA-95 (e.g. the laboratory information 

management system, the warehouse management system and the maintenance 

management system). Possible limitations to fully implement this step arise in the area 

of asset management, since the coordination of all the components of the system can be 

highly complex, given the large amount of information required to ensure the soundness 

of solutions. Furthermore, since this coordination must be stable in time, the complexity 

is even higher. A comprehensive study on the integration of industrial information from 
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different sources, providing inputs to the decision-making process can be found in Chen 

(2016). 

Collection. Data is fed into a scheduling procedure through three channels. One 

comes down from the higher levels of planning, a second one comes from the shop floor 

where the actual production process is carried out and the third channel stems from 

other business functions at level 3. The data flow may face obstacles because of the 

traditional design of machines and other production assets, more ready to receive orders 

than to provide information. The same is true for control units that, in general, keep the 

information confined to the controlled devices. Another source of possible 

complications to the reception of useful information is that the connection between 

machines and applications requires the compatibility between different data formats. 

The limitations of connections at level 3 can be due to differences in information 

formats. In Yan et al (2017) a controller system based on IoT accomplishes this 

function, overcoming some of these complications. 

Transmission. This step involves the physical transmission of data. In a 

scheduling process data have to be transmitted with high reliability, ensuring a 

necessary level of security. This, in turn, requires the traceability of the data. But this 

may be hampered by the presence of different permission levels, incompatibilities 

among transmission devices and, particularly, by possible asymmetries induced by 

wireless broadcasts. Worse yet, the latter type of transmission can suffer interferences 

from other, non-transmission-related, devices generating electromagnetic waves in the 

shop floor (Wang & Wang 2018a). Cheng et al. (2018) present a 5G-based IoT 

architecture industrial information transmission through mobile networks. 

Analysis. This step refers to the core of any data-driven system, in which the 

goals of the DSS get entangled with the data received. Important aspects that arise in a 

scheduling context are the costs of the different assignments, the delays in deliverance, 

product quality, etc. If data are lacking about some of these features or the applications 

are not programmed to take all of them into account, the analysis will be hampered. 

Other limitations may arise if some analyses do not run in real time. Furthermore, since 

some of the analytical tools may be heuristic or trained by machine learning procedures, 

they may fail in the presence of unconventional scenarios. In Cheng et al (2017) several 

Big Data tools and manufacturing implementations are discussed, including even some 

scheduling applications. 
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Sharing. In a scheduling procedure, this step involves generating and submitting 

real-time reports of the state of the shop floor associated to the orders received. This 

report should only reach the decision-makers with the adequate authorizations. This, in 

turn, requires increasing the security of this information sharing procedure and ensuring 

the interpretability of the report (Wang & Wang 2018c). 

Retrieving. This final step amounts to the generation of a database of the 

analyses performed and of the patterns of behavior detected and addressed by the DSS. 

A difficulty here is that those pieces of information may also be accompanied by data 

about the context, increasing the volume of data to be stored. The data recorded has to 

be also traceable as to ensure the detection of the source of errors and their future 

correction (Lu 2017). 

4.2. Architecture of the data-driven Scheduling DSS based on CPPS 

The requirements and limitations to a data-driven Scheduling DSS have been 

established. Now we can see how to implement it in CPPS. We will see how the CPPS 

technologies address the seven steps in our schema and allow solving the 

aforementioned problems that may hamper the efficiency of scheduling processes. 

The implementation of a Scheduling DSS in CPPS does not present 

complications with the definition of the scope, which is standard in manufacturing 

settings. But the identification step requires addressing the potential coordination 

problems among different and inhomogeneous components. But CPPS consist of 

autonomous systems strongly interconnected and collaborating to achieve common 

objectives (Monostori 2014). Their sensors and control units provide real-time access to 

the processes being executed and ensure the connection to different levels of decision-

making.  

The data collection step is also facilitated by the capabilities of CPPS, which 

integrate the different levels in the control structure and provide full connection among 

machines and applications. This ensures the compatibility among all the data formats in 

the system and their use in real time by any decision-making facility. The data 

transmission step, in turn, is supported by the design of CPPS, with intrinsic 

permissions and authorizations. The possible inconveniences with wireless 

transmissions are also diminished by the design of the entire CPPS, which makes all its 

components compatible. 
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The data analysis step can be improved by means of the use of CPPS, thanks of 

their connection to high performance computing centres through cloud computing. This 

allows accessing more powerful analytical tools, overcoming the limitations of using 

only local computing resources. With respect to sharing information, the use of CPPS 

facilitates the compatibility among levels of decision as well as the regulation of the 

interactions, enabling two-way exchanges between users and the DSS.  

Finally, the retrieval step will be greatly benefitted from the use of Knowledge 

Engineering methods that can be incorporated to the toolbox of CPPS, allowing in many 

cases to dispense of contexts, which can be inferred. AI techniques can be applied to 

improve searches in databases as well as to use those results to correct errors detected in 

the analysis of patterns of behaviour of the system.  

Figure 8 shows how the different levels in CPS can be associated to the data-

driven scheme described above. It can be seen that this association makes the CPS a 

―data-driven engine‖ of the Scheduling DSS, facilitating the interaction with the upper 

echelons in the architecture of the entire system.  

 

Figure 8.  The data-driven engine in a CPS. 

The data-driven engine of Figure 8 covers only some levels of the CPPS, 

corresponding to its underlying CPS, but the other modules of a scheduling procedure 

can also be assigned in the architecture. As shown in Figure 2, a scheduling procedure 

has to be able to generate schedules and the ensuing work orders. 
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Given the architecture of CPS (Figure 4), the Cognition level is where, 

according to Lee et al. (2015), the decision-making procedures become associated, in 

particular the high level processes that solve the scheduling problem. In our proposal 

this level is right above the data-driven engine. One of the outputs of the data-driven 

system is the information about both strategic and operational aspects of scheduling. 

This is fed into the Cognition level, where the choice of an optimal schedule is made.  

In turn, the output of the Cognition level becomes an input for the Configuration 

level, where the final decision is made. 

 

Figure 9.  Full data-driven Scheduling DSS System. 

4.3. Big Data 5Vs approach 

The integration of business functions into the scheduling process amounts to a 

large flow of data. The characterization of this flow can be done in terms of the 5V 

approach to Big Data.  

The first V corresponds to volume, which is indeed one of the main features in 

our system. Scheduling processes are already data-intensive (Pinedo 2012), because of 

the requirement of information on the operations and their parameters and their 

conditions (waiting times, their dependence on the sequence, etc.), as well as on 

parameters on resources, due times, timing of the arrival of orders, the way in which 

materials are handled and many others (Toncovich et al. 2019). Classical data for Flow 

Shop systems is usually well handled by means of the existing technologies and the 

design strategies for scheduling systems (Framinan & Ruiz 2010). But the incorporation 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of new functionalities complicates the whole picture. To address the increased volume 

of data the idea is to notice that, since the new functions are handled by CPPS the data 

are already in digital form, allowing via IoT to connect to Cloud Computing services, 

which can take on the burden of processing. This will in turn yield fast high quality 

results.  

The second aspect is the variety of data. This aspect of classical scheduling 

systems is already well handled by existing approaches (Framinan & Ruiz 2010). But 

the vertical integration in CPPS yields extra layers of data in different format. In our 

approach the shop floor data used by classical scheduling systems (Figure 2), will be 

obtained in a direct real time way. While the classical systems interact with level 2 of 

ISA-95 (usually a SCADA-like system) in our case these levels are integrated, gaining 

access to data from sensors or measuring systems with different formats.  The 

horizontal integration of business functions in our system also increases the diversity of 

sources (as for instance, inventory and storing facility management or quality control, 

just to mention just a few). Therefore, addressing this variety is a central issue for our 

design, in order to facilitate the flow of data in the DSS. This calls for a unification of 

communication protocols, on one hand the protocol based on the ISA-95 architecture 

and on the other protocols for the operational and tactical aspects of production. The 

latter should run under an open loop control procedure to allow humans in the company 

to understand it. B2MML (Business to Manufacturing Markup Language) seems to be a 

good choice for achieving this goal. It is a XML (Extensible Markup Language) 

allowing both the communication between digital systems as well as human interaction. 

The classical structure for scheduling (Harjunkoski & Bauer 2014) can be easily 

extended to our more integral design.  

The other Vs correspond to the velocity, veracity and value of the data in our 

system. The speed of data generation is tightly linked to the dynamics of the production 

system. With a variety of products and short production cycles, the velocity of 

generation of data will be fast, while if the products are few or modular it might be 

slower. In both cases the data are all under the control of the CPPS which should be 

adequate for the traffic of data that can be generated. With respect to the veracity of 

data, in our case it should not be an issue, being all generated internally by the same 

system and its sensors. Finally, the marginal value of data (which indicate what data can 

be safely discarded) required for the direct solution of the scheduling problem (Figures 

2 and 3) is high, while the rest of the data that arise in the vertical and horizontal 
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integration of the system has a high aggregate value, due to their influence in increasing 

the flexibility and efficiency of the system.  So, for instance, the real time information 

on the evolution of the system (vertical integration) or on the quality of the production 

(horizontal integration) is highly valuable for the improvement of the system.  

5. Comparing the data-driven scheduling DSS system to an event-driven 

scheduling system: an example 

To show the differences between our proposal and event-driven systems we present the 

following case. Consider a production system with parallel machines with several stages 

and assume that it runs at a stationary state. Assume that at a certain point of time a 

machine starts to increase its vibration. This anomalous behavior can lead to the 

breakdown of the machine (or require shutting it down for maintenance) or at least to 

generate defective products. Let us see the different responses to this situation by event-

driven and our own data-driven systems.  

The event driven system has a hierarchical centralized structure, in which the 

information relevant to the scheduling process is handled by one component, the 

information about maintenance by another and finally that about the quality of 

production by another one. Thus, the sensors detecting the vibrations do not transmit 

this information to the scheduling system but to the maintenance one. The latter will 

compare these signals with the established limits, sending a maintenance alert when the 

permitted threshold becomes surpassed. This alarm will come with a proposal of 

maintenance tasks that can, potentially, solve the problem. The maintenance supervisor 

will verify that analysis and define the concrete tasks to be implemented. Only once 

these activities are started will the scheduling system be notified to proceed to 

reschedule as response to this event. The quality assessment system may, in parallel 

detect the anomaly in the measurement of the outcomes, and this just if they indicate a 

persistent bias. Then, this system may also release an alert signal that can reach the 

scheduling system, mediated by the event of starting corrective actions. The anomalous 

vibrations may also trigger reprocessing operations on the defective products.  

Our architecture, on the contrary, allows the sensor data become available to all 

level 3 systems in the ISA-95 structure. Then, they will not only sent to the maintenance 

system but will make it available also for the scheduling one, which will become aware 

before it would in an event-driven architecture. The same would happen with the control 
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graphs of the quality management system, which through the horizontal integration and 

flexibility provided by Industry 4.0 designs, can also reach in real time the scheduling 

system. This allows the latter to make decisions before it would its event-driven 

counterpart.  

In the case of maintenance, the data-driven design can anticipate the shutdown 

of the defective machine, by modifying the schedule, assigning a lower load of work to 

that the machine and deriving the more demanding operations to other parallel 

machines.  In the same way, the scheduling system may also reassign tasks in such way 

that if there exists some planned idle time it can be concentrated on the defective 

machine. With the data from the quality control graphs the scheduling system can 

anticipate the bias towards increasing vibrations can assign the machine to other tasks 

and assess the persistence or not of the bias. The integration of systems allows the 

information of the anomaly to reach the scheduling system from two sources, 

maintenance and quality control. The scheduling system can thus assess the 

simultaneous reception of data, improving the efficiency of its response.  

It is clear that a data-driven architecture will improve over an event-driven one 

by accelerating the flow of information and facilitating the anticipation of problematic 

situations. Furthermore, the integration of systems allows to benefit more from data, 

since they all can access the same sources and make use of the information.. 

6. Conclusions 

We have presented the architecture of a scheduling system based on data-driven 

procedures in Smart Manufacturing environments. The implementation of this 

architecture profits from technologies implemented in CPPS, which allow overcoming 

some of the roadblocks to the implementation in more traditional settings. The 

advantages of this design can be found in its vertical and horizontal integration. The 

former allows to establish direct contact between the physical and decision-making 

levels, while the horizontal integration will incorporate into the CPPS business 

functions that traditionally are carried out independently of the scheduling activities. 

The resulting embedded DSS runs on a data-driven engine, which among other 

methodologies, applies Big Data techniques to extract vital information for a smooth 

functioning of Smart Manufacturing organizations.  
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