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Security policies in organisations typically take the form of obligations for the employees.

However, it is often unclear what the purpose of such obligations is, and how these can be

integrated in the operational processes of the organisation. This can result in policies that

may be either too strong or too weak, leading to unnecessary productivity loss, or the

possibility of becoming victim to attacks that exploit the weaknesses, respectively. In this

paper, we propose a framework in which the security obligations of employees are linked

directly to prohibitions that prevent external agents (attackers) from reaching their goals.

We use logic-based and graph-based approaches to formalise and reason about such pol-

icies, and show how the framework can be used to verify correctness of the associated

refinements. Finally, we extend the graph-based model with quantitative policies and

associated quantitative analysis, based on the time an adversary needs for an attack. The

framework can assist organisations in aligning security policies with their threat model.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The primary goal of any security policy is to specify means for

facing a given environment of threats. When organisations

wish to protect their information assets against malicious

attacks, the first step is stating what should be protected

against what. For example, an organisation may wish to pre-

vent outsiders from gaining access to sales data. In order to

ensure that such constraints hold, organisations then take

concrete measures that actually reduce access possibilities,
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rved.
such as locks on doors, access control on IT systems, and rules

for employee behaviour. These security measures again

determine the possibility or impossibility of gaining access,

but at a more detailed level. The question then becomes how

the threat model and security measures can be aligned. In

particular, this holds for policies imposed on employees.

A first attempt to formalise the notion of security policy

alignment, using a formalisation in first order predicate logic,

is presented in Pieters et al. (2013a). The authors discuss

consistency and completeness of policies expressed at
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different levels in an organisation. For example, the organ-

isational policy that sales data should not leave the organi-

sation may be refined into policies on passwords, door locks,

and employee behaviour. In Pieters et al. (2013a), the authors

mainly focus on preventive controls (such as locks and pass-

words), but their framework does not include the possibility of

expressing obligation alongside permission and prohibition.

In order to deal with policies in the form of obligations for

employees, we need to adapt the approach.

In this paper, we propose a framework in which the secu-

rity obligations of employees are linked directly to pro-

hibitions that prevent external agents (attackers) from

reaching their goals. We show why obligations are an essen-

tial addition to the framework when trying to model complex

organisations. We formalise the problem of verifying

completeness, and show how this can be addressed in both

logic-based and graph-based analyses. This provides answers

to questions like “do these obligations address the threats”

and “what if I remove this obligation”, determining whether

policies are too strong or too weak.

As a running example, we discuss stealing a laptop from

an office (Dimkov et al., 2010). An attacker may try to obtain a

key to open the door, or enter the room when it is unlocked.

Stealing the laptop is not possible when the owner is in the

office, even when the door is unlocked. For simplicity, we

assume only one office and one key (to that office). There are

numerous possible extensions, e.g. several laptops, different

types of property that can be stolen, existence of security

cameras, etc., but it is not the purpose of this paper to solve

all such extensions; rather the scenario serves to illustrate

the approach, and therefore is only as simple as necessary

for this purpose. In the laptop theft example, technical

measures (locks) are only effective in combination with the

obligation to lock the room when leaving the office. Note

that, although this case addresses physical features of in-

formation security for illustration purposes, the framework

is applicable to digital controls and associated obligations as

well.

Compared to the paper presented at the SIN'13 conference

(Pieters et al., 2013b), we provide additional models and ana-

lyses for quantitative policies, in relation to tool support for

attack-defense trees in ADTool (Kordy et al., 2013). In partic-

ular, we show how policies can be annotated with time met-

rics, in order to overcome the limitations of binary (yes/no,

possible/impossible) policies. For this purpose, we have also

extended the related work section. This paper does not

address the question whether quantitative policies are in

general better or more effective than qualitative policies.

Rather, we extend the options for analysing the effectiveness

of policies from qualitative to quantitative ones.

In Section 2, we discuss related approaches, and the dif-

ferences with the present framework. In Section 3, we outline

the basic concepts for representation and analysis and the

formal framework based on those. In Section 4, we outline a

logic-based approach to policy analysis and evaluate the re-

sults of this approach. In Section 5, we outline a comple-

mentary graph-based approach. We extend this model for

quantitative policies in Section 6, and present the associated

analyses in Section 7. In Section 8, we discuss the possibilities

for further extension of the (quantitative) models, and in
Section 9, we investigate applications of the framework and

draw conclusions.
2. Related work

Our work builds on the notion of security policy alignment.

Such alignment of security policies can be discussed for

policies in different domains, or at different levels of

abstraction. In the first case, one may for example wish to

align policies for digital access and physical access (Nunes

Leal Franqueira and van Eck, 2006). In the second case, one

may wish to investigate whether the digital and physical

access policies match the policy that sales data should stay

within the organisation. The former can be called horizontal

alignment, and the latter vertical alignment (Dimkov, 2012).

In the case of vertical alignment, it may be the case that only

the policies at a higher level of abstraction are known, and

that the policies at a lower level need to be designed. This

constitutes the activity of refinement: defining lower-level

policies that should correctly implement a higher-level

policy.

Security policy refinement was already identified in

Abrams and Bailey (1995), but not formalised. Consistency and

completeness of policies is discussed in Sloman and Lupu

(2002), including the notion of refinement. The question of

alignment was taken to the socio-technical domain by

Dimkov, 2012, who aimed at integrating policies on digital

assets, buildings, and employee behaviour. This approachwas

formalised in Pieters et al. (2013a). These approaches focused

on permission and prohibition in relation to automated

methods for attack path discovery (“attack navigators”), but

did not include the notion of obligation. Obligation and its

relation to responsibility is discussed in Cholvy et al. (1997),

Sloman (1994), Feltus et al. (2010).

The relation between security policies and attack scenarios

was discussed in Pieters et al. (2013a); Kammüller and Probst,

2013). In particular, these papers interpret attack scenarios as

those scenarios that violate policies, or, vice versa, policies as

constraints on acceptable behaviours. Attack trees (Mauw and

Oostdijk, 2006) are tree structures describing sets of attack

scenarios. Leaf nodes are atomic attack steps, and these can

be combined with AND- and OR-nodes to show their relation

to the attacker's goal in the root of the tree. In (Pieters et al.

2013a), it was observed that attack trees and security pol-

icies are equivalent in the sense that they represent sets of

behaviours (and implicitly their (in)acceptability). Attack trees

can be augmented with defenses, yielding attack-defense

trees (Kordy et al., 2012). Attack trees and attack-defense

trees can be annotated with quantitative properties, such as

probability of success and time required. For building trees

and running analyses tool support is available (Kordy et al.,

2013).

Quantitative security policies were first introduced in

Degano et al. (2011), focussing on probability of violation in a

stochastic process calculus. We apply the notion here for se-

curity policies in a socio-technical context, in which agents

may have obligations to enforce quantitative constraints on

other agents.

http://dx.doi.org/10.1016/j.jisa.2014.07.003
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3. Formal framework

3.1. Model structure

Wenow turn to the formalmodel of prohibition and obligation

policies. First of all, we make a distinction between the area

(“system”) that is under control of the organisation defining

the policies, and the area that is outside its control. A security

policy on such a system aims at defining what actions the

agents are permitted, obliged or forbidden to perform (Cholvy

and Cuppens, 1997). When defining and implementing pol-

icies, the focus is always on the area that is under one's con-

trol: the behaviour of attackers cannot be influenced, and they

will not comply with prohibitions or obligations. The only way

to limit the behaviour of attackers is by indirect means, i.e.

implementing policies in the form of access control mecha-

nisms, door locks, and rules on the behaviour of employees. In

this paper, the focus is on how obligations for employees can

enforce prohibitions for attackers.

Fig. 1 gives an overview of the relationships between the

different components in which we frame the security policy

situation. Solid arrows are translation steps, dotted arrows are

verification steps. We adopt the naming conventions of

deontic logic (Meyer et al., 1993), where O stands for Obliga-

tion, F for Prohibition (forbidden) and P for Permission.We use

X to refer to a member of the set of eXternal agents not under

control X , and E for an agent under control (Employees, in set

E ), with E ∩X ¼ ∅ and E ∪X ¼ A (where A is the set of all

agents). A prohibition on Xs (upper left) is translated into a

high level obligation on Es (upper right), which in turn is

refined into obligations for individual agents E (lower right).

Agents conforming with these policies enable or disable

certain behaviours for agents X (lower left), whichmay ormay

not completely realise the prohibition on X (upper left). Ulti-

mately, the goal of formalisation is to: (i) verify consistency

and completeness between layers, and (ii) assist in (auto-

matically) generating refinements of the prohibitions into

policies (obligations).

At the higher level (also: higher abstraction level), security

requirements impose limitations on an attacker X: it is

forbidden for X to f e where f(X) stands for some undesirable

state of affairs brought about by X. A policy holding for those

subject to it (i.e. the Es, not the Xs), dictates that the Es make

sure that f(X) does not happen: the Es should see to it that
Fig. 1 e Overview of the refinement of prohibitions into obligat

represent verification steps.
:fðXÞ. For now, we take the arrow on the top level to be a

generic, yet informal rule: from a security requirement

forbidding an attacker X to f, follows the policy that those

under control see to it that X does not f.

We postulate here that a prohibition Fxf(X) implies an

obligation and responsibility OESTITEð:fðXÞÞ (the obligation on

Es to maintain :fðXÞ). From the top level, we now need

refinement of the general obligation and responsibility of the

employees into policies for each agent. This may involve

refining f as a conjunction of multiple states that would

enable the outsider/attackerX to achieve f(X). In this paperwe

focus only on the policies on the lower level, so the semantics

of the formulas on the top level remains informal.
3.2. Analysis workflow

Given the obligation of the agents E to see to it that agentsX do

not achieve a certain state of affairs, this high-level obligation

needs to be refined into more detailed obligations, distributed

over all agents in E . Two types of analysis are possible in our

approach: a completeness analysis of the proposed detailed

obligations, and an analysis providing suggestions of which

actions should be prevented by the obligations. The analysis

requires the following input:

1. The state property of the world to be prevented, typically

an agent X having access to a certain asset;

2. A model of the world/system describing which actions by

the agents are possible;

3. The proposed obligations on the agents in E to prevent

agents X from achieving the property under 1.

The question in the running example is how to design

obligations for the employees that would be a suitable

refinement of the prohibition of attackers to take away the

laptop. Or, a more modest question, whether a particular set

of obligations would be a valid refinement of said prohibition.

In the running example, we assume the following initial ob-

ligations for employees:

� The employee is obliged to lock the door whenever leaving

the room;

� The employee is obliged not to let anyone she does not

know take something from the room while present.
ions. Solid arrows represent design steps, dotted arrows

http://dx.doi.org/10.1016/j.jisa.2014.07.003
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In general, obligations may take the form of limitations on

actions of the agents E, either being obliged to abstain from

the action (don't leave the room), being obliged to verify

certain conditions before taking the action (leave the room

only when there are no valuables), or doing the action only in

combination with another action (lock the room when

leaving).

For the completeness analysis, it needs to be clear which

actions are prevented by the defined obligations. For the

analysis providing suggestions for obligations, this link also

needs to be available in the other direction: given a certain

action, can it be prevented by a certain obligation? Actions can

only be prevented by obligations if an agent E is involved.

Actions taken by an agentX on its own can never be prevented

by obligations on agents in E . The analysis aims at proposing

a minimal set of obligations that would be complete with

respect to the high-level obligation to prevent the attacker's
goal.1 This amounts to blocking all attack paths by obligations

on the agents in E (which could be both technical and human

agents).
4. The example in InstAL

4.1. The InstAL language

As the formal framework is based on obligations and pro-

hibitions, logic-based reasoning seems a natural choice for

supporting the analysis. Logic-based approaches can serve the

purpose of assisting in the completeness analysis, using an

exhaustive analysis of the reachable states, given an initial

state and an ontology of actions available to the actors. InstAL

is an action language, following in the tradition of A (Gelfond

and Lifschitz, 1998) and the Event Calculus (Kowalski and

Sergot, 1986). InstAL is implemented in Answer Set Program-

ming (Baral, 2003) and was originally developed to support

institutional modelling (Cliffe et al., 2006). Informally, InstAL

is a simple set-theoretic model for event-based systems, such

that an event brings about a change in a state that models the

situation of interest. This suggests the idea of capturing the

movements of entities subject to policy as events that modify

a representation of the states arising from the possible en-

actments of policies. Answer set semantics conceptually

grounds the input program over all the values that the vari-

ables can take, effectively constructing a proof tree, in which

the paths from root to leaf constitute the answer sets for the

model under consideration. Consequently, it is possible to

explore all possible sequences of events entailed by some

starting state, reflecting the intuition expressed in Section 3.1.

Of course, as described, this leads to exponential blow-up2;

however, many event orderings are either meaningless or just

not of interest, so constraints expressing properties over paths
1 In this paper, we present an approach to the construction of
this set of obligations, but proof of minimality is outside the
scope of the paper.

2 Since the purpose of Answer Set Solvers is to enable the
exhaustive exploration of state spaces, complexity immediately
falls into the NP-complete class, as with any other model-
checking-like process.
that are not wanted can be used to prune the proof tree,

reducing the number of answer sets significantly. In this

exploration of the approach, these constraints are defined by

hand (as we explain later, see Section 4.2); there is no se-

mantic information associated with the events as far as an

Answer Set Solver is concerned: the only association with the

scenario is in the naming chosen by the modeller. Further-

more, since such constraints are always going to reflect

properties of the domain being modelled, fully automatic

derivation would imply a substantial reasoning process.

However, the task could be semi-automated through the use

of the institutional query language (InstQL) (Hopton et al.,

2009).

4.2. Modelling the example

The way we have used InstAL for our running example is as a

means to specify how significant events change the state of

the model vis-�a-vis the security of certain entities. Hence, by

specifying a range of initial conditions, it is possible to derive

traces that capture the effects of all the event orderings

considered interesting and thus whether undesired states are

reachable or not. The basic concepts are expressed as predi-

cates that can be derived from properties of the state. In

particular, we regard the protection mechanisms to have

failed when the attacker gains possession of the laptop:

failed is an institutional fact, whose presence in the insti-

tutional state indicates that the resource e in this case the

laptop e is now held by a non employee. Throughout the

program fragments, we use A to denote an Agent (either an

employee or an attacker), O an Object (either a key or a laptop)

and L a Location (either an office or a hallway). For simplicity,

we assume only one office and one key (to that office). What

matters is how holds(A,O) is achieved: what was the

sequence of events that brought about the state containing

failed? The fact that an attacker holds the resource is

brought about by the attacker takeing the resource when it is

in a vulnerable situation:

This rule applies to any resource, not just a laptop and hence

also covers the case of the key to the office being vulnerable. A

resource is vulnerable when an attacker can take it. This is

reflected by defining vulnerable as the disjunction of several

situations (we use the term situation to refer to a description of

a state (or states) of the institution that satisfies (satisfy) some

condition):

http://dx.doi.org/10.1016/j.jisa.2014.07.003
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Fig. 3 e Examples of some “common-sense” constraints.
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Situation 1 arises when an employee leaves a resource

unattended in an unlocked office. Hence, the attacker can

enter the office and take the resource.

Situation 2 allows an attacker to be alone in a locked office

with the resource, so the attacker can take the resource.

In situation 3, the laptop has been left in the hallway. This

makes it vulnerable because anyone may take it.

In situation 4, the key has been left in the hallway. If the

attacker can take the key, then they can enter the (locked)

office and take the laptop.

The above characterise several situations of concern. What

matters from a security analysis point of view is how any one

of these situations may be arrived at from an initially secure

situation; that is to say, what is the trace of events that takes

the system situation from secure to insecure? Consequently,

by analysing those traces, the policy can be refined to oblige

employees to take or not to take certain actions in order to

avoid bringing about a failed state. We start from the initial

facts:

In this situation, the laptop is in the office, with an employee

who also has the key to the office, while the attacker is in the

corridor. By running the answer set solver with the rules

shown in Fig. 2 and the above initial conditions, we can

discover all the traces that have failed in the final state.

Without any constraints the number of answer sets increases

by 24 (for this problem, because the maximum number of

variables in any right hand side of a rule is happens to be 4)

with each increment in the trace length, so a trace of length n

has 24(n�1) answer sets. However, as noted earlier, not all se-

quences of events make sense and so we define several con-

straints to discard the corresponding answer sets (or rather, to
ensure they are not constructed in the first place), as we now

explain.

The events that trigger the initiation or termination of

institutional facts in the model have no semantic import for

the answer set solver: they are just names of terms and it

constructs answers sets based on all the possible orderings of

those names. However, it makes no sense, for example, to

enter a location if already there (see Fig. 3, line 2). Similar

common sense constraints apply to the action of exiting a

location and taking (see Fig. 3, lines 4 and 6) and leaving

objects.

Here we consider traces of length 6, since this happens to

be the number of events required to illustrate the scenario of

the attacker taking the key that the employee leaves in the

hallway and entering the office containing the laptop (see

Fig. 4). Shorter and longer scenarios are equally possible: it is a

matter of both the total number of different kinds of events

that are specified and lengths of the sequences of interest to

the designer. Traces of length 6 give rise to 220 answer sets, but

the common-sense filters reduce this to 30.
4.3. Analysis results

The representations of policies and actions provide the pos-

sibility to find problematic sequences of actions. In InstAL,

http://dx.doi.org/10.1016/j.jisa.2014.07.003
http://dx.doi.org/10.1016/j.jisa.2014.07.003


g. 4 e Trace shows employee leaving key in hallway, attacker taking key, entering office and taking laptop. Bold identifie a fluent that is initiated in a given instant,

hile strikethrough denotes termination.
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this result is represented in the form of traces (Fig. 4). Exam-

ination of the traces that lead to a failed state reveals three

policy oversights:

� attacker enters office, employee leaves and locks door;

attacker takes laptop (assuming he can unlock from the

inside);

� employee leaves laptop in hallway; attacker takes laptop;

� employee leaves key in hallway; attacker takes key, enters

room while employee is away, and takes laptop.

The first one may be the most surprising: the attacker en-

ters the roomwhile the employee is still there with the laptop,

and the employee leaves without the laptop and locks the

door. Assuming the attacker can unlock the door from the

inside without the key, he can now steal the laptop.

Thus, in order tomake the STIT predicate true, and enforce

the prohibition on the attackers, three additional obligations

need to be assigned to the employee:

� Don't leave the room when someone else is there. In

InstAL, this can be expressed by adding a condition to the

exit rule:

Taking the same initial conditions as before and the same

common-sense filter rules, the number of traces with failed

in the final state now reduces to 3.

� Don't leave the key in the hallway. In InstAL, this can be

expressed by adding a condition to the leave rule:

Adding this rule results in no answer sets with failed in

the final state (in traces of length 6).

� Don't leave the laptop in the hallway. This is covered by the

above rules because they apply to any object.

The analysis so far is useful and also illustrates the benefit

of expressing goals as states to be achieved or avoided so that

the corresponding model can help uncover additional obliga-

tions or refine existing ones. It does however lack a quanti-

tative dimension: actions appear to be instantaneous and can

follow one another immediately without taking account of the

duration that an action physically requires. Thus while the

qualitative approach enables high level exploration of se-

quences of states, it currently lacks the necessary degree of

fidelity if obligations are to have temporal attributes, such as

“employees should see to it that an attacker cannot obtain

possession of a laptop in less than 3 min”.
Given the exhaustive model generation approach provided

by the Answer Set solver, it is important to avoid the use of

unbounded integer computations. Thus, it might be indicated

that holds(A,O) is true after 3 time steps:

but combining temporal annotations, as in:

is unsafe. A further, although not insurmountable complica-

tion, is the desire to annotate the activities with real numbers

to denote, say, minutes and fractions of a minute, but such

numerical values are not directly supported in ASP. Hence, we

defer the integration of quantitative obligation attributes into

the logicmodel for furtherwork and (in the next section) focus

on the specification of the scenario as an attack tree and show

how the quantitative annotations should be interpreted.
5. The example in ANKH

5.1. The ANKH model

As an alternative for quantitative policies, we consider the

graph-based ANKH system model (Pieters, 2011). We choose

this particular framework, because (a) ANKH can generate

attack trees from system models, and (b) the quantitative

analysis of attack trees is a well-established field, including

tool support.

For qualitative policies, modelling the example in ANKH is

similar to the InstAL analysis, but using graphs rather than

logic. The ANKH system model represents security in socio-

technical systems by means of hypergraphs, where nodes

are entities and hyperedges represent access relations. When

somebody is in a room, shewill be amember of the hyperedge

representing the room. Entities that are members of more

than one hyperedge, called guardians, will have policies

stating on which conditions they allow entities to move be-

tween hyperedges. For example, the door is a member of the

hallway and the room, and will have policies stating how

somebody can enter (or exit), e.g. by possessing the right key.

The present case uses the extensions to the original ANKH

model as described in Pieters et al. (2013b). Here, we represent

access policies as tuples (g,e,C,S,T), meaning that guardian g

will give entity e access to target T if e has access to all ele-

ments in C (credentials), and the elements in S (surveillers)

have no access to e. Additionally, there are meta-policies for

changing the policies. The door has two policies for granting

access to the room (locked and unlocked), and someone with

the key canmake the door switch policies. Thus, we represent

such a meta-policy as (P,C), with P a set of policies and C a set

of sets of credentials, where each set of credentials in C is

sufficient to make the door switch to a different active policy.

In the starting state, the room contains the door, the

laptop, and the employee, the employee's possessions include
the key, and the hallway contains the door and the attacker

http://dx.doi.org/10.1016/j.jisa.2014.07.003
http://dx.doi.org/10.1016/j.jisa.2014.07.003


Fig. 5 e The initial state of the example as an ANKH hypergraph.
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(Fig. 5). The door is open at this stage, and having access to the

hall is sufficient to gain access to the room (no key is required).

The active policy of the door can be changed by (un)locking.

We assume that the door never requires a key to exit, or rather

that anyonewho has access to the room can change the policy

of the door (lock or unlock from the inside), without needing

the key. Formally, C ¼ {{key},{room}}.

5.2. Attack trees, goals, states, and actions

Based on the analysis of the policies, we can identify all

possible sequences of actions, and associated states of the

system. We can then provide an undesirable property of a

state as the target of an attack analysis, in this case the

attacker having access to the laptop (Pieters, 2011). Tracing

back from the target to possible preconditions, the analysis

then builds an attack tree (Mauw and Oostdijk, 2006). The

worst-case complexity of this analysis is O(N6) with standard

model checking tools, and O(N4) with dedicated tools. In

practice, experiments with a similar modelling framework

give a measured complexity between O(N1.7) and O(N3.3),

depending on the properties of themodel (Pieters et al., 2013a).

In our attack tree, the children of a node represent the

preconditions (subgoals) needed to enable a certain action, as

well as the action itself. Thus, the parent node describes the

postcondition of an action for which the children are the pre-

conditions and the action. These can be connected as an AND-

relation. In addition, when multiple precondition-action

combinations can lead to the same postconditions, this can

be represented as an OR-node. The attack tree for the

example, represented in ADTool (Kordy et al., 2013), is shown

in Fig. 6.

Note that this type of analysis forces one to consider

different types of nodes in attack trees, namely conditions and

actions. By contrast, traditional attack trees typically consider

actions only, at different levels of abstraction. When gener-

ating an attack tree from ANKH, leaf nodes are still actions,

but parent nodes would rather represent states, state
attributes or goals. The actions are then ways to satisfy these

attributes, rather than beingmore abstract actions, composed

of the actions represented by the children. However, as only

leaf nodes are in the end part of the semantics of attack trees,

this is not somuch of a problem. Originally, attack treeswould

just represent sequences or multisets of actions (Mauw and

Oostdijk, 2006), which only include the labels of the leaf

nodes. In this sense, it is perfectly consistent to label inter-

mediate nodes with goals or attributes rather than actions.
5.3. Adding obligations

Based on the attack tree, we can identify the same issues as

with InstAL in Section 4.3. These correspond to the attack

paths represented by the attack tree, according to the se-

mantics ofMauw andOostdijk (2006): {{employee takes laptop,

employee locks door, employee moves to hallway, employee

leaves laptop, take laptop}, {enter room, employee locks door,

employee moves to hallway, take laptop}, {employee locks

door, employee moves to hallway, employee leaves key, take

key, unlock door, enter room, take laptop}}.

In the ANKH analysis, the additional obligations associated

with these failure cases can also be added to the policies of the

hypergraph entities, in order to evaluate them. This prevents

the corresponding actions (graph transformations) from

occurring, and thus removes the corresponding branches

from the attack tree (Fig. 6). For the first additional obligation,

the node “employee leaves room” gets an additional child

“attacker not in room”. This adds a sequence constraint,

requiring the employee to leave before the attacker enters.

The latter is only possible if the attacker acquires the key, as

the employee is obliged to lock the door. Adding the second

additional obligation would remove nodes “employee leaves

laptop” and “employee leaves key”, removing the possibility

that either the key or the laptop is left outside. Similarly to the

InstAL analysis, adding both obligations thereby blocks all

paths.

http://dx.doi.org/10.1016/j.jisa.2014.07.003
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Fig. 6 e The attack tree of the example in ADTool format. Nodes with an arc underneath are AND-nodes, all other nodes are

OR-nodes. Next to the preconditions (capitalised), explicit actions (without capitals) are present as children of a

postcondition. Preconditions that were already true in the initial state are omitted, as these are not part of the attack. Nodes

in brackets serve as intermediary nodes between AND- and OR-gates, which cannot be directly connected in ADTool.
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Later in this paper, we will also consider the possibility of

adding these additional policies explicitly to the tree.
3 http://tinyurl.com/oxjyad9, consulted January 27, 2013.
6. Quantitative models

6.1. Time annotations

Instead of requiring that certain actions are impossible for an

attacker, which is a binary property, we can consider the

question what the analysis would look like if we require that

certain actions have at least a certain level of difficulty for an

attacker. We could then provide a quantitative analysis of the

relation between obligations and prohibitions.

Difficulty for the attacker can be expressed, for example, as

the time, effort, or money required to perform an attack, or an

attack step. In this paper we choose time, as time is more

amenable to measurement than for example money. In a

different line of research, we consider multi-parameter situ-

ations, including constraints on attacker capacity (Pieters

et al., 2014). Assume that entering a room costs 10 s when

the door is open, 20 s when the door is locked but the person

has the key, and 3minwhen the door is locked and the person

does not have the key (but presumably some burglary tools).

Attack trees can be annotated with such values, representing

the time required for the atomic actions. From those, times

required for composite attacks can be calculated.

Such calculations are based on an attacker point of view.

When time annotations are present as annotations in an
attack tree, optimal solutions can be calculated from the point

of view of the attacker. For example, if the attacker can choose

between two paths (OR-node), he will choose the path with

the minimal time, and thus this minimal time is associated

with the goal represented by the OR-node. When the attacker

has to perform multiple actions to reach a goal (AND-node),

the sum of the times will be associated with the goal of the

AND-node. A special infinity value (∞) may be used to indicate

that an action is not possible at all.

In this way, we can add all times associated with actions in

a path that leads to violation of the prohibition on the

attacker.
6.2. Quantitative policies

The next step is relating such quantitative information to

security policies. It is one thing to associate a required time

with a certain behaviour or a certain goal, but how to express

prohibitions and obligations? In principle, there is not much

difference in associating a timewith such policies, except that

the time is now interpreted as a minimum time. That is, if a

policy specifies that a certain goal has a certain time, this

means that it should take an external agent at least this

amount of time to reach that goal. For example, it should take

an attacker at least 3 min to steal a laptop. Such time-based

policies are already in use in burglary prevention.3
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Again, this prohibition on external agents can be translated

into an obligation for employees. Thus, the obligations on the

employees would define a minimum level of resistance they

should provide when an attacker attempts to perform a

certain attack step. On a high level, one could state that the

employees should see to it that stealing a laptop costs an

attacker at least 3 min. On a lower level, one could state that

the employees should see to it that obtaining the key would

cost the attacker at least 2 min. The latter policy would then

contribute to the realisation of the former. Again, the value ∞
can be used to state that a particular attacker action should

not be possible at all.

We formalise this by adding attribute-value pairs to pol-

icies. We assume that values in each attribute domain are

partially ordered. With a representing a set of attribute-value

pairs, policies would now look as follows:

� Fxf(X,a), a prohibition on the attacker to achieve fwith any

of the attributes in a having a value� the value specified in

a (e.g. in less than 3 min);

� OESTITEð:fðX;aÞÞ an obligation and responsibility on the

employees to see to it that an attacker cannot achievewhat

has been prohibited with any of the attributes in a having a

value � the value specified in a (e.g. in less than 3 min).

� obligations on agents to see to it that certain actions have

attribute values such that specifiedminimum levels for the

attributes are � these values.

Note that the above reasoning with required time carries

implicit assumptions on the skill of the attacker. Here, we

assume that those specifying the policies do have reasonable

assumptions on this for a particular type of attacker. It would

be possible to specify explicit attacker profiles for this pur-

pose, performing analyses for attackers with different skill

levels (Arnold et al., 2013), but we do not discuss this issue

here.
7. Quantitative analysis

Based on quantitative annotations of actions and quantitative

policies, we can analyse again in ANKH whether a certain

security policy is satisfied, i.e. whether the obligation to pre-

vent the attacker from reaching his goal is implied by the

obligations with respect to atomic actions. To this end, we

extend policies in the ANKHmodel with attribute-value pairs,

which are then transferred to the generated attack trees. As

this only requires annotations on the possible attack steps, it

does not affect the theoretical worst-case complexity. How-

ever, actions thatmay have been considered impossible in the

original model may now be considered very costly instead.

This means that these actions have to be included in the

analysis, yielding a higher expected running time.

7.1. Quantitative policies

Remember that in ANKH, we represent access policies as

tuples (g,e,C,S,T), and meta-policies as (P,C). For the access

policies, we can include the quantitative values in which we

are interested in the policy. Formally, a quantitative policy is
represented as a tuple (p,a), with p an access policy, and a a set

of attribute-value pairs.

For the meta-policy, we have to take into account the

possibility that the quantitative values differ based upon the

credential used. For example, it may take more time to unlock

a door with a key from the outside than it takes to unlock the

same door with a knob from the inside. Thus, a quantitative

meta-policy is a tuple (P,V), with P a set of policies, and V a set

of tuples (C,a), with C a set of credentials and a a set of

attribute-value pairs. This allows us to express quantitative

annotations for both complying with the active policy, and for

changing the active policy by complying with themeta-policy.

7.2. Attack tree generation and analysis

Again, we can generate an attack tree for the example. The

tree is structurally equivalent to the original tree. The differ-

ence is that the attribute-value pairs from the policies are

transferred into the tree. For example, in node “enter room”,

the attacker acquires access to the room with the key. As the

associated policy (the one stating that the key gives access to

the room) now has a set of attribute-value pairs attached,

these will also be attached to this node in the attack tree. For

example, this node may now state that the time required is

30 s. Formally, the set of attribute-value pairs {(time,0.5)} is

attached (with time in minutes).

Analysis of quantitative annotations of attack trees is a

well-established area (Buldas et al., 2006; Kordy et al., 2012;

Mauw and Oostdijk, 2006). In addition, there is tool support

available for this purpose (Kordy et al., 2013). Therefore, it

would be beneficial if we could leverage this existing work for

the analysis of the attack trees generated by the analysis. In

particular, for time annotations, a parent node will acquire as

a time value (a) the sum of the time values of its children, if it is

an AND-node (assuming sequential execution of the children);

and (b) theminimum of the time values of its children, if it is an

OR-node (assuming that the attacker prefers the fastest op-

tion). Based on this rule, one can calculate the time value of

the root node.

To show the practical applicability, we demonstrate the

use of the quantitative graph-based analysis of policies by

means of ADTool (Kordy et al., 2013). ADTool enables devel-

opment and analysis of quantitative attack trees and attack-

defense trees. The annotated attack tree in ADTool is shown

in Fig. 7, the annotations representing required time in

minutes.

Assumewe have a quantitative policy stating that it should

not be possible for an attacker to obtain a laptop in less than

3 min. As shown in the calculations in the tree, the required

time is now only 1.5 min (annotation of the root node). The

root node is an OR-node, with the children having 2.5 and

1.5min as annotations, respectively. Thismeans that, in order

to get the overall required time up to 3min, both branches will

have to change. Relating to the solutions in the qualitative

case, we can again propose additional obligations:

� see to it that it takes an attacker at least a certain amount of

time to find a laptop in the hallway;

� see to it that it takes an attacker at least a certain amount of

time to find a key in the hallway;

http://dx.doi.org/10.1016/j.jisa.2014.07.003
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Fig. 7 e The attack tree of the example in ADTool with time annotations in minutes. The leaf nodes contain values that have

been supplied by the user; the values in the non-leaf nodes have been calculated by the tool. It is assumed that the actions

have to take place sequentially; therefore, AND-nodes will be annotated with the sum of the annotations of their children.
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� see to it that employees do not lock and leave the room

while somebody else is there.

In the ANKH model, these obligations will increase the

time associated with policies in the model. When an addi-

tional policy makes an action impossible (as in the third case),

the time will increase to ∞. These values will then be propa-

gated to the nodes in the tree. The last obligation addresses a

dependency between different parts of the tree: the attacker

entering the room and the employee leaving. Standard attack

trees are not particularly suitable to express this, and for this

particular obligation, more advanced methods such as

Bayesian networks (Poolsappasit et al., 2012) might be more

appropriate, in order to take the dependencies into account.

We are currently investigating this option.
7.3. Effectiveness of policies

If we choose required time as annotation for attack scenarios,

we can say that the marginal effectiveness of an additional

policy (could be a defense node) is the increase in required

time for the associated attacker goal. As can easily be seen

from attack tree analysis (in which the time of an OR-node is
the minimum of the time of the children) additional policies

will only be effective if they change the value of actions along

the path with the lowest value. For different annotations (e.g.

probability of success), the definition of marginal effective-

ness/adequacy is analogous. In the boolean case (qualitative

analysis), one could state that an additional policy (or set of

additional policies) is only effective if it blocks all possible

attack paths, i.e. changes the possibility of reaching the goal

from true to false.

In addition, we can express the degree of compliance to a

policy as the ratio between the actual time an attacker needs

and the required time. In the example, this degree would be

1.5/3 ¼ 1/2.
8. Further extensions

8.1. Attack steps and attack events

Note that there is an additional complication here, which has

to do with the distinction between actions that are controlled

by the attacker and actions that are not controlled by the

attacker. For example, opening the doorwith a key is an action

http://dx.doi.org/10.1016/j.jisa.2014.07.003
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Fig. 8 e An obligation for employees to increase the

required time for the attacker as a defense node.
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that is controlled by the attacker, but the employee leaving the

laptop in the hallway is not controlled by the attacker. We call

the former attack steps and the latter attack events. If we

annotate both types of actions with times, these annotations

have slightly different meanings. The time required to open a

door specifies the time spent by the attacker, whereas the time

until the employee leaves the laptop in the hallway specifies

the real time elapsed until an event (i.e., mean time to failure).

This distinction could be explored further in future work.

Additional properties that may be considered in future

work are the probability of detection (opening a door by force

causes noise, which is a risk for the attacker), and probability

of success. The probability of detectionmay in turn depend on

the time invested by the attacker, such that the annotation

would be a functional relation between properties rather than

just a set of independent values.

8.2. Explicit defense nodes

Explicit defense nodes allow for inclusion of defenses as

separate entities in attack trees, rather than by their influence

on values of attack nodes. For example, providing a training

for employees could increase the expected time required for

an attacker to find the laptop in the hallway, but one could

also model this with a defense node attached to the attack

node.

In particular, going all the way back to the link between

prohibitions and obligations introduced in the beginning of

this paper, we could reason as follows:

1. There is a prohibition on external agents to obtain

possession of a laptop within a certain amount of time (say

3 min);

2. There is a general obligation on all employees to see to it

that an external agent cannot obtain possession of a laptop

in less than 3 min;

3. This general obligation can be translated into specific ob-

ligations, ensuring that specific steps contributing to the

goal of obtaining possession of the laptop take at least a

certain amount of time;

4. If the analysis yields attack paths that take less than 3min,

additional defenses (policies) are needed that increase the

time for some of the steps along these paths;

5. Such defenses/policies could be represented as defense

nodes, provided that these would add a certain amount of

time to the time originally required for the step.

For example, if finding a laptop in the hallway would

originally require 2min, and this would yield an attack path of

2.5 min, an awareness campaign would be sufficient if it

would increase the time required for finding a laptop by 30 s to

2.5 min. Or if an attacker can obtain a laptop by entering an

open room, with entering the room taking 30 s and the overall

attack 2 min, then a policy requiring the door to be locked

would be effective under certain conditions. In this case,

opening the door with a key would take 30 s (30 extra seconds

compared to an open door), and opening by force would take

3 min. Therefore, the policy would be effective if finding the

key would take an attacker at least 30 s, such that the overall

increase would be 30þ 30 s, bringing the overall time to 3min.
For these examples, time annotation ∞ may indicate that

employees are obliged not to leave laptops or keys in the

hallway at all, basically supporting qualitative policies in the

quantitative model.

The additional time imposed by the additional policies

could thus be represented as a defense node. However, in

ADTool, such a defense node would block the attack

completely, unless there is a counterattack on the defense

node. For example, an awareness training node would block

finding the laptop in the hallway, unless the attacker would

counterattack this defense with another attack. Therefore, we

would need to model the additional time required on the part

of the attacker as a counterattack on the defense node, where this

counterattack would be annotated with the additional time

required (Fig. 8). In thisway,we can use the existing semantics

of defense nodes in order to represent countermeasures as

additive for the time required, and they could thus be used to

represent specific (additional) obligations for employees.

Ensuring that these obligations are met can be achieved by

specific defenses such as awareness campaigns.
9. Conclusions

In this paper, we have outlined a framework for systematic

description and analysis of obligation policies on employees

that result from the desire to prohibit actions of agents that

are outside of the control of the organisation. This prohibition

is translated into obligations on the agents that are indeed

under control, and we can verify the completeness of such a

refinement with tool support. We have shown that both logic-

based and graph-based approaches can be used to execute the

analysis, with the graph-based approach having the advan-

tage that it supports quantitative policies and quantitative

analysis, for example in relation to the time required for the

http://dx.doi.org/10.1016/j.jisa.2014.07.003
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attack. As outlined above, the framework can be employed to

check the completeness of obligation policies put on em-

ployees, with respect to the goal of preventing undesired

states, or, in a quantitative setting, making sure that the

attribute-value pairs meet the required constraints. We will

investigate the possibility to extend the logic-based model to

support such attributes as well.

Based on this verification approach, a method could be

developed that would assist policy developers in step-wise

design of complete policies. As we have shown above, the

gap analysis provided by the framework can be used to adjust

or add policies, and then the analysis can be re-run to check

whether the problems have been solved, or whether new

problems might appear. In this way, policy designers can use

the framework to develop better policies. Also, if there is

discussion on certain policy, for example when employees

complain about the burden it brings, or when it is systemati-

cally ignored, the framework can be used to show what could

go wrong if the policy would not be there. Assuming that

certain employees (in agent set E ) would not comply with

their obligations, one could analyse the possible traces to

undesirable states that would be enabled. This would for

example be relevant in the analysis of insider threat. The

analysis could be part of a general pro-active approach to

identify what could happen if any of the employees would not

comply, or it could be part of an investigation when a concrete

suspicion about insider threat would exist.

Compared to existing work, we provide two main contri-

butions. Firstly, we explicitly introduce obligations into secu-

rity models, thereby extending the possibilities for modelling

socio-technical aspects. Existing models such as Portunes

(Dimkov, 2012), ExASyM (Probst and Hansen, 2008), ANKH

(Pieters, 2011), CySeMoL (Holm et al., 2013) and CORAS (den

Braber et al., 2007) do not explicitly address obligations.

Furthermore, although analysis frameworks do support

quantitative analysis (Buldas et al., 2006; Kordy et al., 2012;

Poolsappasit et al., 2012), this analysis is not linked to quan-

titative policies. Quantitative policies have so far only been

addressed in a technical setting (Degano et al., 2011).

Reasoning with quantitative policies in socio-technical secu-

rity settings is therefore our second main innovation.

One disadvantage of quantitative policies would be the

increased complexity of policy management. In particular, it

will be more difficult to judge without tool support whether

policies are consistent, which may inhibit incentives for

adoption. Also, the policies will be harder to understand,

leading to potential usability concerns. However, as quanti-

tative policies are already successfully used in physical secu-

rity, we think that with adequate further research and tool

support they have significant potential for cyber security as

well.

In future work, we will focus on including support for step-

wise refinement of the prohibitions for attackers into obliga-

tions for employees. In addition, we will investigate the

incorporation of quantitative attributes for obligations in the

logic-based model. We also aim at including explicit attacker

profiles in the quantitative graph-based analysis, to account

for the fact that the required time depends on both attacker

and defender properties. Based on this approach, other attri-

butes may be added as well.
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