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Abstract

Conforming to W3C specifications, mobile web browsers allow JavaScript
code in a web page to access motion and orientation sensor data without
the user’s permission. The associated risks to user security and privacy are
however not considered in W3C specifications. In this work, for the first
time, we show how user security can be compromised using these sensor data
via browser, despite that the data rate is 3 to 5 times slower than what is
available in app. We examine multiple popular browsers on Android and
iOS platforms and study their policies in granting permissions to JavaScript
code with respect to access to motion and orientation sensor data. Based on
our observations, we identify multiple vulnerabilities, and propose TouchSig-
natures which implements an attack where malicious JavaScript code on
an attack tab listens to such sensor data measurements. Based on these
streams, TouchSignatures is able to distinguish the user’s touch actions (i.e.,
tap, scroll, hold, and zoom) and her PINs, allowing a remote website to learn
the client-side user activities. We demonstrate the practicality of this attack
by collecting data from real users and reporting high success rates using our
proof-of-concept implementations. We also present a set of potential solu-
tions to address the vulnerabilities. The W3C community and major mobile
browser vendors including Mozilla, Google, Apple and Opera have acknowl-
edge our work and are implementing some of our proposed countermeasures.
Keywords: Mobile sensors, JavaScript attack, Mobile browsers, User
security, User privacy, Machine learning, Touch actions, PINs

1A preliminary version of the paper was presented at ASIACCS 2015 as a poster [14].
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Work Sensor Identification item Access
PIN Skimmer [22] Camera, Mic PINs in-app
PIN Skimming [23] Light PINs in-app
Keylogging by Mic [18] Mic Keyboard, PINs in-app
ACCessory [19] Acc Keyboard, Area taps in-app
Tapprints [16] Acc, Gyr Keyboard, Icon taps in-app
Acc side channel [5] Acc PINs, Patterns in-app
Motion side channel [9] Acc, Gyr Keyboard, PINs in-app
TapLogger [25] Acc, Ori PINs in-app
TouchLogger [8] Ori PINs in-app
TouchSignatures Motion, Ori Touch actions, PINs in-browser

Table 1: Brief description of TouchSignatures and in-app sensor-based Password/ PIN
identifiers. Acc = accelerometer, Gyr = gyroscope, and Ori = Orientation. Motion streams
are a set of measurements which are accessible within browsers and include accelerometer,
accelerometer-including-gravity, and rotation rate (see Section 3.2).

1. Introduction

1.1. Access to mobile sensors within app
Sensor-rich mobile devices are becoming ubiquitous. Smart phones and

tablets are increasingly equipped with a multitude of sensors such as GPS,
gyroscope, compass, and accelerometer. Data provided by such sensors, com-
bined with the growing computation capabilities of modern mobile devices
enable richer, more personalised, and more usable apps on such devices. On
the other hand, access to the sensor streams provides an app running in the
background a side channel. Listening to mobile sensor data via a background
process either for improving user security [13, 11, 6, 20, 12, 21, 7, 24] or at-
tacking it [8, 25, 16, 19, 16, 15] has been always interesting for researchers.

Listening to the sensor data through a malicious background process may
enable the app to compromise the user security. Here, we present Table 1 and
briefly describe the existing in-app sensor-based password/PIN identifiers.
Some of the existing works in Table 1 try to identify PINs and Passwords
by using sensors such as light, camera and microphone [23, 22, 18]. In this
paper, we are interested in the use of accelerometer and gyroscope sensors as
a side channel to learn about users PINs and Passwords [16, 19, 5, 8, 25].
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1.2. Access to mobile sensors within browser
All these attacks suggest to obtain sensor data through a background

process activated by a mobile app, which requires installation and user per-
mission. By contrast, TouchSignatures suggests to record the sensor mea-
surements via JavaScript code without any user permission. This is the first
report of such a JavaScript-based attack. This attack is potentially more
dangerous than previous app-based attacks as it does not need any user per-
mission for installation to run the attack code.

Mobile web applications are increasingly provided access to more mo-
bile resources, particularly sensor data. Client-side scripting languages such
as JavaScript are progressively providing richer APIs to access mobile sen-
sor data. Currently, mobile web applications have access to the following
sensor data: geolocation [1], multimedia (video cameras, microphones, web-
cams) [4], light [2], and device motion and orientation [3].

W3C specifications discuss security and privacy issues for some mobile
sensors such as GPS and light. For example, the working draft on am-
bient light events explicitly discuss security and privacy considerations as
follows [2]: “The event defined in this specification is only fired in the top-
level browsing context to avoid the privacy risk of sharing the information
defined in this specification with contexts unfamiliar to the user. For exam-
ple, a mobile device will only fire the event on the active tab, and not on
the background tabs or within iframes”. The geolocation API on the other
hand, requires explicit user permission to grant access to the web app due to
security and privacy considerations.

On the other hand, security and privacy issues regarding motion and ori-
entation sensor data have not been as readily evident to the W3C community
and browser vendors as those of the sensors discussed above. Interestingly,
in contrast to geolocation and ambient light sensors, there is no security and
privacy considerations section in the W3C working draft on motion and ori-
entation sensors [3]. JavaScript code in a web page is given full access to
motion and orientation sensor streams on mobile devices without needing to
ask for user permission. This opens the door for attackers to compromise
user security by listening to the motion and orientation sensor data as we
present in this paper.

1.3. Access to mobile sensors within app vs. browser
The in-browser sensor data access that the W3C specification allows is

heavily restricted in multiple ways. First, the access is restricted to only
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Device/mOS Accelerometer Gyroscope
Freq. (Hz) Freq. (Hz)

Nexus 5/Android 5.0.1 200 200
iPhone 5/iOS 8.2 100 100

Table 2: Maximum in-app sampling frequencies on different mobile OSs

two types of streams: the device orientation which supplies the physical
orientation of the device, and the device motion which represents the accel-
eration of the device. Motion data includes sequences from accelerometer,
accelerometer-including-gravity, and rotation rate [3]. The orientation sen-
sor, on the other hand, derives its data by processing the raw sensor data
from the accelerometer and the geomagnetic field sensor2.

More importantly, access is also restricted to low-rate streams which pro-
vide data with slower frequencies as compared to those provided in-app.
Here, we present two tables (Tables 2 and 3) on sampling frequencies on
different platforms and popular browsers. The in-app frequency rates in
Table 2 for Android are obtained from running an open source program
(MPLSensor.cpp file) available on Android Git repository3. And the in-app
frequency rates for iOS are from system.setAccelerometerInterval() and sys-
tem.setGyroscopeInterval() functions available on Coronalabs4. For obtain-
ing the in-browser accelerometer and gyroscope sampling rates presented in
Table 3, we implemented our own JavaScript code (see Appendix B). We
observed the amount of data recordable during a second in different mobile
operating systems (mobile OS) and browsers.

As it can bee seen in Table 2, iOS and Android limit the mentioned
sensors’ maximum sampling rates to 100 Hz and 200 Hz, respectively. How-
ever, the hardware is capable to sample the sensor signals at much higher
frequencies (up to thousands of Hz) [15]. This reduction is to save power
consumption. Moreover according to the results of our tests in Table 3, we
found out that all currently available versions on different mobile browsers
reduce the sampling rate even further - 3 to 5 times lower, regardless of the

2http://developer.android.com/guide/topics/sensors/sensors position.html
#sensors-pos-orient

3https://android.googlesource.com/platform/hardware/invensense/+/
android-5.0.1 r4

4https://docs.coronalabs.com/api/library/system
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Device OS Browser Motion Orientation
Freq. (Hz) Freq. (Hz)

N
ex

us
5

A
nd

ro
id

5.
0.

1 Chrome 60 44
Opera 60 52
Firefox 50 50
Dolphin NA 151
UC Browser NA 15

iP
ho

ne
5

iO
S

8.
2 Safari 20 20

Chrome 20 20
Dolphin 20 20
UC Browser 20 20

Table 3: Maximum in-browser sampling frequencies on different mobile OSs and browsers

engine (Webkit, Blink, Gecko, etc.) that they use. Our observations on the
sampling rates of different mobile browsers are mostly consistent with the
results reported in [15].

The tight restrictions for in-browser access on sensor-related data streams
seem to be put in place as a measure to strike a balance between providing
too little data to be useful on one hand and too much data which can poten-
tially compromise user security on the other hand. Indeed, the low-rate and
processed device orientation and motion data streams provided in-browser
give the impression of being the minimum needed to make applications such
as game control possible in-browser, and might project a sense of security in
using such in-browser access to sensor-related data in practice. However, in
this work, for the first time, we show how user security can be compromised
using device motion and orientation data provided in-browser as a side chan-
nel. We demonstrate how an inactive or even a minimised web page, using
JavaScript, is able to listen to and silently report the device motion and ori-
entation data about a user who is working on a separate tab or a separate
app on the device. Moreover, we show that the reported data, although re-
stricted in multiple ways as discussed before, is sufficient to recognise the
user’s touch actions such as tapping, holding, scrolling (up, down, left, and
right), and zooming (in and out), and eventually the user’s PINs on the
separate tab/app.

Note that neither Android nor iOS explicitly requires user permission
to access such sensor data at the time when the browser is installed. Fur-
thermore, none of the browsers seek user permission or even notify the user
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when such sensor data is provided to a JavaScript-enabled web page. Conse-
quently, the user is completely oblivious to such an attack that compromises
her security. At the same time, users increasingly use web browsers on their
mobile devices to access services such as online banking and healthcare ser-
vices which involve personal and highly sensitive information. These facts
demonstrate the potential damage that may be caused by attacks such as ours
and stress the urgent need for major mobile operating systems and browser
developers and also W3C standards to address this problem.

1.4. Contributions
In this work, we initiate the first study on the possibility of attacks com-

promising user security via web content, and demonstrate weaknesses in W3C
standards, and also mobile OS and browser policies which leave the door open
for such exploits. In particular, the main contributions of this work are as
follows:

• We examine multiple popular browsers on both Android and iOS plat-
forms and study 1) their sampling frequencies, and 2) their policies
in granting permissions to JavaScript code with respect to access to
orientation and motion sensor data. Based on these examinations, we
identify multiple vulnerabilities which could be potentially exploited in
different attack scenarios.

• Based on our findings, we propose TouchSignatures which includes at-
tacks that compromise user security through malicious JavaScript code
by listening to orientation and motion sensor data streams. Our attack
is designed in two phases: 1) identifying user’s touch actions (e.g. tap,
scroll, hold, and zoom), and 2) identifying user’s PINs. We demonstrate
the practicality of the above two-phase attack by collecting data from
real users and reporting high success rates using our proof-of-concept
implementations.

2. Examining mobile browsers

In this Section, we report our findings on different mobile OSs and mo-
bile browsers policies with respect to providing access to device motion and
orientation sensor data to active web content. We developed JavaScript code
(see Appendix B) that listens to and records the above sensor data streams
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Device/mOS/Browser Active Background Locked
same iframe other same other same other

N
ex

us
5/

A
nd

ro
id

5.
0.

1

Chrome yes yes — — — — —
Opera † yes yes — — — — —
Firefox yes yes — — — — —
Dolphin yes yes — — — — —
UC Browser † yes yes yes — — — —
Baidu yes yes yes yes yes yes yes
CM Browser yes yes yes yes yes yes yes
Photon yes yes yes yes — yes yes
Maxthon yes yes yes yes yes yes yes
Boat yes yes yes yes yes yes yes
Next yes yes yes yes yes yes yes
Yandex yes yes — yes — yes —

iP
ho

ne
5/

iO
S

8.
2

Safari yes yes — — — yes —
Chrome yes yes yes — — — —
Dolphin yes yes yes — — — —
UC Browser yes yes — yes — yes —
Baidu Browser yes yes yes yes yes yes yes
Maxthon yes yes yes — — — —
Yandex yes yes yes — — — —
Mercury yes yes yes — — — —

Table 4: Mobile browser access to the orientation and motion sensor data on Android
and iOS under different conditions. A † indicates a family of browsers (e.g., Opera and
Opera Mini are considered to be in the same Opera family). A yes (in italics) indicates
a possible security leakage vector. A yes (in italics and underlined) indicates a possible
security leakage vector only in the case when the browser was active before the screen is
locked.

and carried out tests on different combinations of mobile OSs and browsers.
We considered both Android and iOS, and on each mobile OS we tested the
major browsers plus those that are highly popular (see Appendix A). The
details of our tests and our findings are summarised in Table 4.

Table 4 shows the results of our tests as to whether each browser provides
access to device motion and orientation sensor data in different conditions.
The culumn(s) list the device, mobile OS (mOS), and browser combination
under which the test has been carried out. In case of multiple versions of the
same browser, as for Opera and Opera Mini, we list all of them as a family
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in one bundle since we found that they behave similarly in terms of granting
access to the sensor data with which we are concerned. The “yes” indications
under “active/same” show that all browsers provide access to the mentioned
sensor data if the browser is active and the user is working on the same
tab as the tab in which the code listening to the sensor data resides. This
represents the situation in which there is perhaps a common understanding
that the code should have access to the sensor data. In all other cases, as we
discuss bellow, access to the sensor data provides a possible security leakage
vector through which attacks can be mounted against user security. In the
following we give more details on these results.

Browser-active iframe access. HTML frames are commonly used to divide a
browser window into multiple segments, each of which can independently load
a separate web document possibly from a different web origin. We embedded
our JavaScript listener into an HTML frame, namely iframe, which resided
within a web page at a different web address. The test was to find out whether
or not the listener in a separate segment of the browser window was able to
access the sensor data streams if the user was interacting (via touch actions)
with the content within the same tab but on a different segment of the
browser window. Figure 1 (left) gives an example on how an iframe works
inside a page. The iframe content is loaded from a different source and is
able to collect sensor data using JavaScript. Through experiments, we found
that all the browsers under test provided access to the sensor data streams
in this case. The findings are listed in the column under “active/iframe” in
Table 4 indicating such an access.

Browser-active different-tab access. In this test, we had the browser active
and our JavaScript listener opened in a tab while the user was interacting
with the content on a separate tab. Figure 1 (right) gives an example of
this condition. Interestingly, we found that in addition to most of the other
browsers on Android and iOS, some major browsers such as Google Chrome
on iOS provided different-tab access to the sensor data streams in this case.
The findings are listed in the column under “active/other” in Table 4 indi-
cating browser-active different-tab access.

Browser-in-background access. In this test, we first opened a web page con-
taining our JavaScript listener and then minimised the browser. While the
browser was still running in the background, the user would interact with
another app (via touch actions), or try to unlock the screen by providing
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Figure 1: Left: An example of a page that includes an iframe (at the bottom of the page).
Right: An example of a pre-opened attack page while the user is working on a different
tab. These two examples demonstrate why iframe and other tab accesses can be threats
to user security.

a PIN or pattern input. We ran the test in two cases: 1) the browser had
only the tab containing our JavaScript listener open, or 2) the browser had
multiple tabs open including one containing our JavaScript listener. Surpris-
ingly, we found that a few browsers on both the Android and iOS provided
access to the sensor data streams when the user was interacting with another
app. The findings are listed in the column under “background” in Table 4
indicating browser-in-background access.

Screen-locked access. In this test, we first opened a web page containing
our JavaScript listener and then locked the screen. We found that a few
browsers on both Android and iOS, including Safari, provided access to the
sensor data streams even when the screen was locked. The findings are listed
in the column under “locked” in Table 4 indicating screen-locked access.

We emphasise that none of the tested browsers (on Android or iOS) asked
for any user permissions to access the sensor data when we installed them or
while performing the experiments.

The above findings suggest possible attack vectors through which mali-
cious web content may gather information about user activities and hence
breach user security. In particular, browser-active iframe access enables ac-
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Figure 2: TouchSignatures overview

tive web content embedded in HTML frames, e.g. posing as an advertisement
banner, to discretely record the sensor data and determine how the user is in-
teracting with other segments of the host page. Browser-active different-tab
access enables active web content that was opened previously and remains in
an inactive tab, to eavesdrop the sensor data on how the user is interacting
with the web content on other tabs. Browser-in-background and screen-locked
access enable active web content that remains open in a minimised browser
to eavesdrop the sensor data on how the user is interacting with other apps
and on user’s actions while carrying the device.

To show the feasibility of our security attack, in the following sections,
we will demonstrate that, with advanced machine learning techniques, we
are able to distinguish the user’s touch actions and PINs with high accuracy
when the user is working with a mobile phone.

3. TouchSignatures

3.1. Overview
Each user touch action, such as clicking, scrolling, and holding, and even

tapping characters on the mobile soft keyboard, induces device orientation
and motion traces that are potentially distinguishable from those of other
touch actions. Identification of such touch actions may reveal a range of ac-
tivities about user’s interaction with other webpages or apps, and ultimately
their PINs. A user’s touch actions may reveal what type of web service the
user is using as the patterns of user interaction are different for different web
services: e.g., users tend to mostly scroll on a news web site, while they
tend to mostly type on an email client. On known web pages, a user’s touch
actions might reveal which part of the page the user is more interested in.
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Combined with identifying the position of the click on a page, which is pos-
sible through different signatures produced by clicking different parts of the
screen, the user’s input characters could become identifiable. This in turn
reveals what the user is typing on a page by leveraging the redundancy in
human languages, or it may dramatically decrease the size of the search space
to identify user passwords.

We introduce TouchSignatures in order to distinguish user touch actions
and PINs in two phases. Figure 2 shows a top level view of the two phases
of TouchSignatures. The input of TouchSignatures system is a feature vector
which we will explain later and the output is the type of the touch action
(click, hold, scroll, and zoom) in phase one and the PIN digits (0 to 9) in
phase two. This is the first attack in the literature that compromises user
security through JavaScript access to sensor data.

As this paper is only the first investigation on JavaScript access to sensor
data on mobile devices, we limit the scope of the paper as follows. First, we
only identify digital PINs rather than alphanumeric passwords. We expect
it to be possible to extend our work to recognize the full alphanumeric soft
keyboard, but the classification techniques will be quite different. Second, in
the proof-of-concept implementation of the attack, we focus on working with
active web pages, which allows us to easily identify the start and end of a
touch action through the JavaScript access to the onkeydown, and onkeyup
events. A similar approach is adopted in other works (e.g., TouchLogger [8]
and TapLogger [25]). In a general attack scenario, a more complex segmen-
tation process is needed to identify the start and end of a touch action. This
may be achieved by measuring the peak amplitudes of a signal, as done in
[18]. However, the segmentation process will be more complex, and we leave
that to future work.

3.2. In-browser sensor data detail
The attack model we consider is malicious web content spying on a user

via JavaScript. The web content is opened as a web page or embedded as
an HTML frame in a segment of a web page. The user may be interacting
with the browser or any other app given that the browser is still running
in the background. We assume that the user has access to the Internet as
reasonably implied by the user launching the browser app. TouchSignatures’s
client-side malicious web content collects and reports sensor data to a server
which stores and processes the data to identify the user’s touch actions.
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The sensor data streams available as per the W3C specifications [3], i.e.,
device motion and orientation, as follows:

• device orientation which provides the physical orientation of the device,
expressed as three rotation angles: alpha, beta, and gamma, in the
device’s local coordinate frame,

• device acceleration which provides the physical acceleration of the de-
vice, expressed in Cartesian coordinates: x, y, and z, in the device’s
local coordinate frame,

• device acceleration-including-gravity which is similar to acceleration ex-
cept that it includes gravity as well,

• device rotation rate which provides the rotation rate of the device about
the local coordinate frame, expressed as three rotation angles: alpha,
beta, and gamma, and

• interval which provides the constant rate with which motion-related
sensor readings are provided, expressed in milliseconds.

The device’s local coordinate frame is defined with reference to the screen
in its portrait orientation: x is horizontal in the plane of the screen from left
of the screen towards right; y is vertical in the plane of the screen from the
bottom of the screen towards up; and z is perpendicular to the plane of
the screen from inside the screen towards outside. Alpha indicates device
rotation around the z axis, beta around the x axis, and gamma around the
y axis, all in degrees.

To design TouchSignatures, we employ the supervised learning approach,
i.e., train a machine learning system based on labelled data collected from
the field. Consistent with the attack model discussed above, we developed
a suite of applications including a client-side JavaScript program in a web
page that records the sensor data and a server-side database management
system (DBMS) that captures and stores user sensor data in real-time. Sub-
sequently, we recruited different groups of users5 and collected sensor data
samples for different touch actions and PINs, using our client-side web page

5All experiments in this paper were ethically approved by the Ethical Review Commit-
tee at Newcastle University, UK.
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Figure 3: The client side GUIs presented to the user during data collections (left for Touch
actions, and centre for PINs), and the data received at the server side (right).

that we developed for data collection purposes, while in real-time the cap-
tured sensor data was reported to and stored at our server-side database.
Eventually, we extracted a set of descriptive features from the sensor data
and trained a machine learning system for TouchSignatures which includes
multiple classifiers. In the following, we give the details of our application
implementation, experiments, feature extraction, and training algorithms.

3.3. Application Implementation
Client side. On the client side, we developed a listener, which records sensor
data streams, and a web page interface, which is used to collect labelled data
from the subjects in our experiment. The implementation is in JavaScript.
The listener mainly includes the following components: an event listener
which is fired on page load and establishes a socket connection between
the client and server using Socket.IO6, an open source JavaScript library
supporting real-time bidirectional communication which runs in browser on
the client side; and two event listeners on the window object, fired on de-
vice motion and device orientation Document Object Model (DOM) events
(called devicemotion and deviceorientation), which send the raw sensor
data streams to the server through the established socket. The sensor data
streams are sent continuously until the socket is disconnected, e.g. when the

6www.socket.io
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tab that loads the listener is closed. The code is presented in Appendix B.
The (user) interface sits on top of the listener and is used for data collec-

tion. We developed an HTML 5 compliant page including JavaScript using
bootstrap7 (a popular framework for web app creation). Data collection
occurs in two rounds (for touch actions and PINs) and multiple steps. In
each step the user is instructed to perform a single touch action or enter a
4-digit PIN. Sensor data from the touch actions and PINs are collected from
the user successively. The label describing the type of the task or the digits
in the PIN and timing information for the tasks is reported to the server.
The GUI includes a concise instruction to the user as to what the user needs
to do at each step. Snapshots of the GUIs presented to the users in the two
different phases are illustrated in Figure 3 (left, and centre). More details
can be found in Sections 4.2 and 5.2.

Server side. On the server side, we developed a server to host the data and
handle communications, and a database to handle the storage of the cap-
tured sensor data continuously. The server is implemented using Node.js8,
which is capable of supporting data intensive applications in real-time. The
Socket.IO JavaScript library sits on Node.js and handles the communica-
tions with the client; see Figure 3 (right). For the DBMS we have opted
to implement a NoSQL database on MongoLab9. NoSQL databases are
document-oriented, rather than relational. They are known for being ca-
pable to handle high-speed streams of data in real-time. MongoLab is a
cloud-based database-as-a-service NoSQL DBMS.

3.4. Feature extraction
In this section, we discuss the features we extract to construct the feature

vector which subsequently will be used as the input to the classifier. We con-
sider both time domain and frequency domain features. The captured data
include 12 sequences: acceleration, acceleration-including-gravity, orienta-
tion, and rotation rate, with three sequences for each sensor measurement.
Before extracting features, to cancel out the effect of the initial position and
orientation of the device, we subtract the initial value in each sequence from
subsequent values in the sequence.

7www.getbootstrap.com
8www.nodejs.org
9www.mongolab.com
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Time domain features. In the time domain, we consider both the raw cap-
tured sequences and the (first order) derivative of each sequence. The ratio-
nale is that each sequence and its derivative include complementary infor-
mation on the touch action. To calculate the derivative, since we have low
frequency sequences, we employ the basic method of subtracting each value
from the value appearing immediately afterwards in the sequence. That is, if
the sequence values are represented by vi, the derivative sequence is defined
as di = vi − vi−1.

For the device acceleration sequences, we furthermore consider the Eu-
clidean distance between consecutive readings as a representation of the
change in device acceleration. This is simply calculated as the following
sequence:

ci =
√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

This gives us a sequence which we call the device acceleration change se-
quence, or DAC sequence for short.

First we consider basic statistical features for all sequences, their deriva-
tive, and the DAC sequence. These features include maximum, minimum,
and mean (average) of each sequence and its derivative, plus those of the
DAC sequence. We also consider the total energy of each sequence and its
derivative, plus that of the DAC sequence, calculated as the sum of the
squared sequence values, i.e., E = ∑

v2
i . Here, in total we get 102 features

for each sensor reading in the time domain. Later we will add a few more
features to the input of the first phase (touch actions) in Section 4.3.

Frequency domain features. To distinguish between sequences with different
frequency contents, we applied the Fast Fourier transform (FFT) of the se-
quences. We calculated the maximum, minimum, mean, and energy of the
FFT of each sequence and consider them as our frequency domain features,
i.e., a total of 48 frequency domain features.

3.5. Classification method
To decide which classification method to apply to our data, we imple-

mented various classification algorithms to assess their efficiency. Our test
classifiers included discriminant analysis, naive Bayes, classification tree, k-
NN, and ANN. Different classifiers work better in the different phases of
TouchSignatures (touch actions and PINs). The chosen classifiers in each
phase are presented in Sections 4.3 and 5.3. In both phases, we consider a
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generic approach and train our algorithms with the data collected from all
users. Hence, our results are user-independent.

4. Phase 1: Identifying user touch actions

In this section we present the first phase of TouchSignatures that is able
to distinguish user touch actions given access to the device orientation and
motions sensor data provided by a mobile browser.

4.1. Touch actions set
We consider a set of 8 most common touch actions through which users

interact with mobile devices. These actions include: click, scroll (up, down,
right, left), zoom (in, out), and hold. They are presented in Table 5 along
with their corresponding descriptions. Our experiments show that by ap-
plying machine learning techniques these actions are recognisable from their
associated sensor measurements.

Touch Action Description
Click Touching an item momentarily with one finger
Scroll Touching continuously and simultaneously sliding
– up, down, right, left in the corresponding direction
Zoom Placing 2 fingers on the screen and sliding them
– in, out apart or toward each other, respectively
Hold Touching continuously for a while with one finger

Table 5: The description of different touch actions users perform on the touch screen of a
mobile device.

4.2. Experiments
We collected touch action samples from 11 users (university staff and

students) using Google Chrome on an iPhone 5. We presented each user
with a brief description of the project as well as the instruction to perform
each of the 8 touch actions. The users were provided with the opportunity
of trials before the experiment to get comfortable using the web browser on
the mobile phone. They also could ask any question before and during the
experiments. We asked the user to remain sitting on a chair in an office
environment while performing the tasks. The provided GUI instructed the
user to perform a single touch action in each step, collecting 5 samples for
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each touch action in successive steps with a three-second wait between steps.
During the experiment, the user was notified of her progress in completing
the expected tasks by the count of touch actions in an overall progress bar,
as shown in Figure 3 (left).

Data were collected from each user in two settings: one-hand mode and
two-hand mode. In the one-hand mode, we asked the users to hold the phone
in one hand, and use the same hand’s thumb for touching the screen. In
the two-hand mode, we asked them to use both hands to perform the touch
actions. With these two settings, we made sure that our collected data set
is a combination of different modes of phone usage. Note that zoom in/out
actions can only be performed in the two-hand mode. Still, we distinguish
two postures: 1) when a user holds the phone using one hand and performs
zoom in/out actions by using the thumb of that hand and any finger of
the other hand, and 2) when a user holds the phone using both hands and
performs zoom in/out by using the thumbs of both hands. We collected data
for both postures.

We had 10 samples of each of the following actions: click, hold, scroll
down, scroll up, scroll right and scroll down. Five samples were collected in
the one-hand mode and 5 in the two-hand mode. In addition, we collected
10 samples for each of the following two actions: zoom in and zoom out. All
10 samples were collected in the two-hand mode, with half for each of the
two postures. Each user’s output was a set of 80 samples. With 11 users,
we ended up with 880 samples for our set of touch actions. The experiment
took each user on average about 45 minutes to complete. Each user received
a $10 Amazon voucher for their contribution to the work.

4.3. Classification algorithm
Before discussing the algorithms used in this phase, we add another 14 fea-

tures to the TouchSignatures’ time domain features. To differentiate between
touch actions with a longer “footprint” and those with a shorter footprint,
we consider a feature which represents the length (i.e., number of readings)
of each dimension of the acceleration and acceleration-including-gravity se-
quences that contain 70% of the total energy of the sequence. To calculate
this length, we first find the “centre of energy” of the sequence as follows:
CoE = ∑ (i v2

i )/E, where E is the total energy as calculated before. We then
consider intervals centred at CoE and find the shortest interval containing
70% of the total energy of the sequence. Therefore, considering both time
domain and frequency domain features from Section 3.4 in addition to the
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Touch Click Hold Scroll Zoom Zoom
action in out
Click 78.18% 5.45% 2.73% 0% 0%
Hold 10.90% 88.18% 0.68% 1.81% 1.82%
Scroll 7.27% 2.72% 95.91% 0.90% 0.90%
Zoom in 0% 1.82% 0.23% 71.82% 20.90%
Zoom out 3.64% 1.82% 0.45% 25.45% 76.36%
Total 100% 100% 100% 100% 100%

Table 6: Confusion matrix for the first classifier for different touch actions

new ones, TouchSignatures’ final vector for phase one has 164 features in
total.

Our evaluations show that the k-nearest neighbour (k-NN) algorithm [10]
gives the best overall identification rate for our data. k-NN is a type of lazy
learning in which each object is assigned to the class to which the majority of
its k nearest neighbours are assigned, i.e., each feature vector is assigned to
the label of the majority of the k nearest training feature vectors. A distance
function is used to decide the nearest neighbours. The most common distance
function is the Euclidean distance, but there are other distance functions
such as the city block distance (a.k.a. Manhattan or taxicab distance). For
two given feature vectors (f1, f2, . . . , fn) and (f ′1, f ′2, . . . , f ′n), the Euclidean
distance is defined as

√∑ (fi − f ′i)2 and the city block distance as ∑ |fi − f ′i |.
Based on the results of our evaluations, we decide to use two classifiers

in two stages. In the first stage, the data is fed to the first classifier which is
a 1-NN classifier using Euclidean distance. This classifier is responsible for
classification of the input data into 5 categories: click, hold, zoom in, zoom
out, and scroll. In the second stage, if the output of the first stage is scroll,
then the data is fed into the second classifier which is a 1-NN classifier using
city block distance. This classifier is responsible for classification of a scroll
into one of the 4 categories: scroll up, scroll down, scroll right, and scroll
left. We used a 10-fold cross validation approach for all the experiments.

4.4. Results
In this section we show the results obtained from the cross validation of

the collected user data by presenting the identification rates and confusion
matrices for both classifiers. Considering all scrolls (up, down, right, and
left) in one category, the overall identification rate is 87.39%.
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Touch Scroll Scroll Scroll Scroll
action down up right left
Scroll down 57.27% 19.09% 12.73% 4.55%
Scroll up 26.36% 69.09% 16.36% 6.36%
Scroll right 9.09% 4.55% 48.18% 17.27%
Scroll left 7.27% 7.27% 22.73% 71.82%
Total 100% 100% 100% 100%

Table 7: Confusion matrix for the second classifier for different scroll types

Table 6 shows the confusion matrix for our first classifier. In each cell,
the matrix lists the probability that the classifier correctly labels or mislabels
a sample in a category. The actual and classified categories are listed in the
columns and rows of the table, respectively. As shown in Table 6, the worst
results are for the pairs of Click and Hold (10.9% and 5.45%), and also pairs
of Zoom in and Zoom out (25.45% and 20.9%). This is expected since click
and hold are very similar actions: and hold is basically equivalent to a long
click. Zoom in and zoom out also require the user to perform similar gestures.
Another significant value is the classifier’s confusion between click and scroll
(7.27%, 2.73%), which again is not surprising since scroll involves a gesture
similar to a click. Apart from the mentioned cases, the rest of the confusion
probabilities are nearly negligible.

Table 7 shows the identification rates and confusion matrix for our sec-
ond classifier, respectively. Overall, our second classifier is able to correctly
identify the scroll type with a success rate of 61.59%. The classifier mostly
mislabels the pairs (down, up), and (right, left), which is somehow expected
since they involve similar gestures.

The obtained results show that attacks on user privacy and security by
eavesdropping sensor data through web content are feasible and are able to
achieve accurate results. Further security risks could be imposed to the users
if the attack tries to identify what character has been pressed on the touch
screen. In phase 2 of TouchSignatures, we show that it is indeed possible to
succeed such an attack by identifying the digits entered for the user’s PINs.

5. Phase 2: Identifying user PINs

In this section, we present the second phase of TochSignatures which
is able to identify user PINs based on the motion and orientation sensor
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Attribute iPhone 5 Nexus 5
navigator.platform iPhone Linux armv7l
screen.width 320 pixs 360 pixs
screen.height 568 pixs 640 pixs

Table 8: The device information accessible via JavaScript.

data provided by JavaScript code. As mentioned in Section 1, classifying
soft keyboard characters on touch screen has already been explored by other
researchers based on the sensor data accessible through native apps. In this
work, for the first time, we show that it is also possible to do that by using
the sensor data obtained via JavaScript despite the fact that the available
frequency is much lower.

In this phase, we present the results of our suggested attack on both
Android (Nexus 5) and iOS (iPhone 5) devices and we train two different
classifiers (neural networks) for them. Note that JavaScript is able to ob-
tain specific information about a mobile device – for example the browser
platform and the screen size are accessible via Navigator DOM10 and Screen
DOM11 objects, respectively. The obtained values for the tested devices are
summarized in Table 8. Hence, though the experiments are performed using
specific mobile devices, the results have general implications on all devices.

5.1. Digits set
In this work, we consider a numerical keypad and leave the attack on

the full keyboard as future work. A numerical keyboard includes a set of
10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and a few more characters such
as -, ., and #, depending on the mobile OS. For example Figure 3 (centre)
shows a numerical keypad on an Android device. The idea is to identify
the pressed digits in a PIN. Hence from a top view, once the first phase
of TouchSignatures distinguishes that the user is “clicking” digits on a soft
keyboard, the second phase is started in order to obtain the entered digits.

5.2. Experiments
Similar to the first experiment, we asked a group of users (university

student and staff) including 12 users to participate in our experiment in two

10www.w3schools.com/js/js window navigator.asp
11w3schools.com/js/js window screen.asp
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parts. The first part was on an iPhone 5 and the second part was on a Nexus
5, both using Chrome. After giving a brief description about the study to
the users, they were presented with a simple GUI (Figure 3, centre) asking
them to enter 25 random 4-digit PINs on both devices. The 4-digit PINs
were designed in a way that each number was exactly repeated 10 times in
total. After entering each 4-digit PIN, the user could press a next button
to go to the next PIN. They also could keep track of their progress as the
number of PINs they have entered so far was shown on the page.

In this experiment, we asked the users to remain sitting on a chair and
hold the phone in the way that they felt comfortable. The collected data
contained a mixture of one-hand mode and two-hand mode records. In the
one-hand mode, the user pressed the digits with one of the fingers of the
same hand with which they were holding the phone. In the two-hand mode,
they pressed the digits with either the free hand, or both hands. We had
10 samples of each digit for each user. Since we had 10 digits, each user’s
output was a set of 100 samples for each device. With 12 users, the input of
our classifiers was 1200 records for iPhone 5 and 1200 records for Nexus 5. It
took each user 2 minutes on average to complete each part of the experiment
with preparation and explanations. It took each user less than 10 minutes
to finish the whole experiment.

5.3. Classification algorithm
Among different classification methods, we observed that ANN (Artifi-

cial Neural Network) works significantly better than other classifiers on our
dataset. A neural network system for recognition is defined by a set of input
neurons (nodes) which can be activated by the information of the intended
object to be classified. The input can be either raw data, or pre-processed
data from the samples. In our case, we have preprocessed our samples by
building a feature vector as described in Section 3.4. Therefore, as input,
TouchSignatures’ ANN system receives a set of 150 features for each sample.

A neural network can have multiple layers and a number of nodes in each
layer. Once the first layer of the nodes receives the input, ANN weights and
transfers the data to the next layer until it reaches the output layer which
is the set of the labels in a classification problem. For better performance
and to stop training before over-fitting, a common practice is to divide the
samples into three sets: training, validation, and test sets.

We trained a neural network with 70% of our data, validated it with
15% of the records and tested it with the remaining 15% of our data set.
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1 (54%) 2 (64%) 3 (63%) -
4 (81%) 5 (67%) 6 (73%) .
7 (57%) 8 (74%) 9 (79%) X

∗# 0 (73%) English >

1 (70%) 2 (50%) 3 (59%)

4 (70%) 5 (46%) 6 (56%)

7 (53%) 8 (48%) 9 (67%)

+ ∗# 0 (41%) >

Nexus 5 (Ave. iden. rate: 70%) iPhone 5 (Ave. iden. rate: 56%)

Table 9: Identification rates of digits in Nexus 5 and iPhone 5.

We trained our data by using pattern recognition/classifying network with
one hidden layer and 10,000 nodes. Pattern recognition/classifying networks
normally use a scaled conjugate gradient (SCG) back-propagation algorithm
for updating weight and bias values in training. SCG [17] is a fast supervised
learning algorithm based on conjugate directions. The results of the second
phase of TouchSignatures are obtained according to these settings.

5.4. Results
Here, we present the output of the suggested ANN for Nexus 5 and

iPhone 5, separately. Table 9 shows the accuracy of the ANN in classifying
the digits presented in two parts for the two devices. The average identi-
fication rates for Nexus 5 and iPhone 5 are 70% and 56%, respectively. In
general, the resolution of the data sequences on Android was higher than iOS.
We recorded about 37 motion and 20 orientation measurements for a typical
digit on Android, while there were only 15 for each sequence on iOS. This can
explain the better performance of TouchSignatures on Android than on iOS.
It is worth mentioning that attacks on iPhone 5 actually are the ones with
the lowest sampling rates that we observed in Table 3 (20Hz for both motion
and orientation). Interestingly, even with readings on the lowest available
sampling rate, the attack is still possible.

In Tables 10 and 11, we show the identification results of each digit (bold
in each cell), as well as confusion matrices on both devices. The general forms
of the tables are according to Android and iOS numpads. As demonstrated,
each digit is presented with all possible misclassifiable digits. As it can be
observed, most misclassified cases are either in the same row or column, or
in the neighbourhood of each expected digit.

Note that the probability of success in finding the actual digit will signifi-
cantly improve with more tries at guessing the digit. In fact, while the chance
of the attack succeeding is relatively good on the first guess, it increases on
further guesses as shown in Tables 12 and 13. Figure 4 shows the average
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Table 10: Confusion matrices in Nexus 5.
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Table 11: Confusion matrices in iPhone 5.
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Digits 0 1 2 3 4 5 6 7 8 9
Attempt No.

First 73% 54% 64% 63% 81% 67% 73% 57% 74% 79%
Second 80% 69% 76% 74% 88% 93% 87% 71% 84% 86%
Third 87% 85% 88% 79% 94% 100% 93% 86% 89% 93%
Forth 93% 92% 96% 84% 100% 100% 100% 93% 98% 97%
Fifth 100% 100% 100% 89% 100% 100% 100% 100% 100% 100%
Sixth 100% 100% 100% 95% 100% 100% 100% 100% 100% 100%
Seventh 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 12: Identification rate based on the number of guesses that the attacker makes on
Nexus 5 for each digit separately.

Digits 0 1 2 3 4 5 6 7 8 9
Attempt No.

First 41% 70% 50% 59% 70% 46% 56% 53% 48% 67%
Second 56% 87% 67% 71% 80% 62% 75% 67% 71% 76%
Third 69% 91% 78% 76% 85% 69% 81% 80% 81% 86%
Forth 81% 96% 89% 82% 90% 78% 88% 93% 90% 90%
Fifth 94% 100% 94% 88% 95% 85% 94% 100% 95% 95%
Sixth 100% 100% 100% 94% 100% 92% 100% 100% 100% 100%
Seventh 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 13: Identification rate based on the number of guesses that the attacker makes on
iPhone 5 for each digit separately.

identification rates based on the number of guesses in Nexus 5 and iPhone 5
compared to random guessing. As shown on the figure, TouchSignatures can
predict the correct touched digits on average in almost 90% of the cases on
Nexus 5 and 80% of the cases on iPhone 5 in the third guess.

The high identification rates prove the feasibility of the suggested attack
by TouchSignatures and show that it is practical for a remote attacker to
significantly reduce the search space for the user’s PIN using JavaScript code.

5.5. Comparison with related works
In this section we compare the second phase of TouchSignatures, the iden-

tification of PIN digits, with previous in-app sensor-based PIN identifiers.
Among the works described in Table 1, we choose to compare TouchSig-
natures with TouchLogger [8], and TapLogger [25], since they use similar
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Figure 4: Average identification rate based on the number of attempts on Android and
iOS vs. random guess.

Work Sensor(s) Iden. rate Access
TapLogger [25] Acc, Orientation 36.4% in-app
TouchLogger [8] Orientation 71.5% in-app
TouchSignatures Motion, Orientation 77.0% in-browser

Table 14: Identification rate of phase two of TouchSignatures (PIN) under the similar test
condition as in-app attacks.

sensors for identifying digits on soft numerical keyboards.
Taplogger performs its experiments on Android devices and identifies

36.4% of the digit positions in the first attempt by using accelerometer and
orientation sensors. On the other hand, TouchLogger is able to identify the
digits with 71.5% accuracy on an Android device by using device orientation.

TouchLogger collects around 30 samples per digit from one user, while
Taplogger has the input of one user for 20 random 16-digit sequences in 60
rounds. However, we noticed that in these works the data has been collected
from only one user. In general, data obtained form a single user are more
consistent than those collected from a diversified group of users. To verify
this, we performed another experiment by simulating the same test condition
as described above with the Android device (Nexus 5) and asked only one
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user to repeat the experiment 3 times. We collected 30 samples for each
digit. The results are presented in Table 14. As expected, the identification
rate of TouchSignatures increased to 77% in this situation, which is better
than the results reported in TapLogger and TouchLogger.

Our results demonstrate the practicality of distinguishing the user’s PIN
by listening to sensor data via JavaScript code. Consequently, TouchSigna-
tures highlights the limitations of the security policies in mobile operating
systems and web browsers. As a result, urgent modifications are needed
in updating the security policies for granting permissions to mobile web
browsers to access sensor data.

6. Possible solutions

To be able to suggest appropriate countermeasures, we need to first iden-
tify the exact entity responsible for the access control policy in each situation.
Mobile OS access control policy decides whether the browser gets access to
the device motion and orientation sensor data in the first place, no matter
if the browser is active or not. If access is provided, then mobile browser
access control policy decides whether a web app gets access to the sensor
data, no matter if the web app is open in the same tab and in the same
segment, in the same tab but in a different segment, or in a different tab.
Hence any effective countermeasure must address changes in both mobile OS
and browser policies with respect to access to such sensor data.

One approach to protect user security would be to require the mobile
OS to deny access to the browser altogether when the browser is not active,
and require the browser to deny access to web content altogether when it
is running in an inactive tab or in a segment of the page with the different
web origin. However, this approach may be considered too restrictive as it
will disallow many potential web applications such as activity monitoring for
health and gaming.

A more flexible approach would be to notify the user when a web page
is requesting access to such sensor data, and provide control mechanisms
through which the user is able to set their preferences with respect to such
requests. This is the approach currently taken by both the mobile operating
systems and browsers with respect to providing access to the device location
(i.e., GPS sensor data [1]) when a web page requests such access. We believe
similar measures for device motion and orientation would be necessary in
order to achieve a suitable balance between usability and security. Possible
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Figure 5: Left: The existing interfaces to allow the web page to access Geolocation in
browser (top) and in mobile OS (down). Right: Our suggested mock-up interfaces to
allow web page (top) and OS setting (down) to access Motion and Orientation data in
browser.

(mock-up) interfaces for this countermeasure, based on existing solutions for
GPS sensor data, are presented in Figure 5. In particular, we think the user
should have three options: either allow access to the browser (in the mobile
OS setting) or web pages (in the browser setting) indefinitely, or allow access
only when the user is working on the browser (in the mobile OS settings)
or interacting with the web page (in the browser settings), or deny access
indefinitely. These three options provided to the user seem to be neither too
few to render the access control ineffective, nor too many to exhaust the user
attention span.

Furthermore, we believe raising this issue in the W3C specification would
help the browsers to consider it in a more systematic and consistent way. Our
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suggestion for the new version of the specification is to include a section for
security and privacy considerations and discuss these issues in that section
properly.

7. Industry feedback

We reported the results of this research to the W3C community and
mobile browser vendors including Mozilla, Opera, Chromium and Apple.
We discussed the identified issues with them and received positive feedback
as summarized below.

Mozilla. After we reported to Mozilla about Firefox allowing JavaScript
access to sensor data within an iframe on Bugzilla, a senior platform engineer
from Mozilla stated that: “Indeed, and it should be fixed consistently across
all the browsers and also the spec [W3C specification] needs to be fixed”.
Subsequently, a patch has been proposed and implemented by Mozilla and
is currently under test12.

Chrome & Opera. Opera uses the Chromium engine’s implementation
for device orientation. Therefore, fixing the problem on Opera is dependent
on the fix on Chromium. We reported to both Chrome and Opera about their
browsers allowing JavaScript access to sensor data within an iframe and in
the other-tab. After discussing this issue on the Chromium forum, a security
team member of Chrome stated that: “It [i.e. this research] sounds like a
good reason to restrict it [i.e. sensor reading] from iframes”. At the time of
writing this paper, the status of our reported bug in Chromium is “assigned”;
a fix is expected to be rolled out soon. Commenting on the JavaScript
access to sensor data through other-tab, a member of the Opera security
team forwarded their response to us via email stating that: “Opera on iOS
giving background tabs access to the events does seem like an unwanted bug”.

Safari. We reported to Apple about Safari allowing JavaScript access to
sensor data within an iframe and also when the phone is locked. The Apple
security team acknowledged the problem via email stating that: “We have
reviewed your paper and are working on the mitigations listed in the paper”.

W3C. After we disclosed the identified problems to the W3C community,
the community acknowledged the attack vectors introduced in this paper and
stated that: “This would be an issue to address for any future iterations on

12bugzilla.mozilla.org/show bug.cgi?id=1197901 (login required)
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this document [i.e. W3C specification on mobile orientation and motion[3]]”.
A security issue has been recorded to be taken into account by W3C in this
regard13. The community discussed this issue in their latest meeting and
suggested to add a security section to the specification in response to the
findings of our work14.

The industry feedback confirms that the currently unrestricted JavaScript
access to certain sensor data within a web browser does present a serious secu-
rity threat to the users. We appreciate the quick and constructive responses
received from W3C and browser vendors, and hope the identified problems
will be fixed in the near future.

8. Conclusion

In this paper we introduced the first practical attack that was able to dis-
tinguish user touch actions as well as learning her PIN through JavaScript
code embedded in a web page. We designed and implemented TouchSig-
natures: a simple and effective JavaScript-based attack which when loaded
within the browser was able to listen to the device orientation and motion
sensor data streams and send the data back to a remote server for analysis.
We demonstrated that TouchSignatures was able to distinguish different user
touch actions through a k-NN classifier, and PINs through ANN system, re-
spectively. The results show that TouchSignatures can classify user touch
actions and identify her PIN digits with high success rates.

Our results highlight major shortcomings in W3C standards, mobile op-
erating systems, and browsers access control policy with respect to user se-
curity. As a countermeasure which strikes a balance between security and
usability, we suggest that device orientation and motion data be treated sim-
ilarly to GPS sensor data. Effective user notification and control mechanisms
for access to such sensor data should be implemented both in mobile operat-
ing systems and in mobile browsers. The positive industry feedback confirms
that serious damage could be caused exploiting the introduced attack vectors.
As a matter of fact, some of the browser vendors such as Mozilla and Apple
have already started working on the mitigations suggested in this paper.

As future work, we would like to extend TouchSignatures for other secu-
rity purposes such as continues (implicit) authentication [11, 6, 20, 7, 24].

13github.com/w3c/deviceorientation/issues/13
14w3.org/2015/10/26-geolocation-minutes.html#item03
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Name Version #Downloads
Chrome 40.0.2214.89 500,000,000+
Opera Mini Fast Browser 7.6.40234 100,000,000+
Opera browser for Android 20.0.1656.87080 50,000,000+
Firefox 34.0.1 50,000,000+
Dolphin 11.3.4 50,000,000+
UC Browser for Android 10.1.0.527 50,000,000+
UC Browser Mini for Android 9.7.0.520 10,000,000+
UC Browser HD 3.4.3.532 10,000,000+
Baidu Browser (fast and secure) 4.6.0.6 10,000,000+
CM Browser Fast & Secure 5.1.44 10,000,000+
Mobile Classic (Opera-based) N/A 10,000,000+
Photon Flash Player & Browser 4.8 10,000,000+
Maxthon Browser Fast 4.3.7.2000 5,000,000+
Boat Browser for Android 8.2.1 5,000,000+
Next Browser for Android 1.17 5,000,000+
Yandex.Browser 14.12 5,000,000+

Table A.15: Popular Android web browsers with full capabilities. Browsers with lim-
ited capabilities that do not support multi-tab browsing are excluded. The numbers of
downloads were obtained from the Google Play Store, Jan 2015.

Appendix A. Popular Browsers

We tested several browsers including three major browsers on Android:
Chrome, Firefox, and Opera, and three major browsers on iOS: Safari, Chrome,
and Opera. Other Android browsers were also included in the study due to
their high download counts on the Google Play Store. The full list of tested
Android browsers and their download counts can be seen in Table A.15.
There are a number of browsers with high numbers of downloads but limited
capabilities, e.g., specialised search engine browsers or email-based browsers.
Since these browsers do not support features such as multi-tab browsing,
they are excluded from our study. The iOS App Store does not report the
number of downloads, hence we used a combination of user ratings, iTunes
Charts, and checking the availability of the listed Android browsers on iOS
to discover and select a list of popular browsers on iOS. On both platforms,
we only considered browsers that are available free of charge from the official
app stores.
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Appendix B. JavaScript code to access motion and orientation data

Our JavaScript code, used in different parts of the paper, sends the orien-
tation and motion sensor data of the mobile device, if accessible through the
testing browser, to our NoSQL database on mongolab.com. When the event
listener fires, it establishes a socket (by using Socket.IO) between the client
and the server and continuously transmits the sensor data to the database.

1 f u n c t i o n s o c k e t I n i t ( ){
// i n i t i a l s e t t i n g s

3 s o c k e t= i o . connect ( ) ;
s o c k e t . on ( ’ connected ’ , f u n c t i o n ( ){

5 i f ( window . D e v i c e O r i e n t a t i o n E v e n t ){
window . a d d E v e n t L i s t e n e r ( ’ d e v i c e o r i e n t a t i o n ’ , f u n c t i o n ( even t ){

7 va r gamma= even t . gamma ;
va r beta= event . beta ;

9 va r a lpha= even t . a l pha ;
s o c k e t . emit ( ’OX ’ , gamma ) ;

11 s o c k e t . emit ( ’OY ’ , beta ) ;
s o c k e t . emit ( ’OZ ’ , a l pha ) ; } ) ; }

13 i f ( window . Dev iceMot ionEvent ){
window . a d d E v e n t L i s t e n e r ( ’ d ev i c emot i on ’ , f u n c t i o n ( even t ){

15 va r a c c e l e r a t i o n= even t . a c c e l e r a t i o n ;
va r gacc= even t . a c c e l e r a t i o n I n c l u d i n g G r a v i t y ;

17 va r r o t a t i o n R a t e= even t . r o t a t i o n R a t e ;
va r i n t e r v a l= even t . i n t e r v a l ;

19 va r ax= a c c e l e r a t i o n . x ;
va r ay= a c c e l e r a t i o n . y ;

21 va r az= a c c e l e r a t i o n . z ;
va r r a l p h a= r o t a t i o n R a t e . a l pha ;

23 va r r b e t a= r o t a t i o n R a t e . beta ;
va r rgama= r o t a t i o n R a t e . gamma ;

25 va r gx= gacc . x ; va r gy= gacc . y ; va r gz= gacc . z ;
s o c k e t . emit ( ’MX’ , ax ) ;

27 s o c k e t . emit ( ’MY’ , ay ) ;
s o c k e t . emit ( ’MZ’ , az ) ;

29 s o c k e t . emit ( ’ rA lpha ’ , r a l p h a ) ;
s o c k e t . emit ( ’ rBeta ’ , r b e t a ) ;

31 s o c k e t . emit ( ’ rGama ’ , rgama ) ;
s o c k e t . emit ( ’MGX’ , gx ) ;

33 s o c k e t . emit ( ’MGY’ , gy ) ;
s o c k e t . emit ( ’MGZ’ , gz ) ;

35 s o c k e t . emit ( ’ i n t e r v a l ’ , i n t e r v a l ) ; } ) ; }
s o c k e t . on ( ’ d i s c o n n e c t ’ , f u n c t i o n ( ){

37 a l e r t ( ” D i s connec t ed ! ” ) ; } ) ; }
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