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Abstract—The Internet of Things (IoT) is heavily affecting our
daily lives in many domains, ranging from tiny wearable devices
to large industrial systems. Consequently, a wide variety of IoT
applications have been developed and deployed using different
IoT frameworks. An IoT framework is a set of guiding rules,
protocols, and standards which simplify the implementation
of IoT applications. The success of these applications mainly
depends on the ecosystem characteristics of the IoT framework,
with the emphasis on the security mechanisms employed in it,
where issues related to security and privacy are pivotal. In this
paper, we survey the security of the main IoT frameworks, a total
of 8 frameworks are considered. For each framework, we clarify
the proposed architecture, the essentials of developing third-
party smart apps, the compatible hardware, and the security
features. Comparing security architectures shows that the same
standards used for securing communications, whereas different
methodologies followed for providing other security properties.

Index Terms—Internet of Things, IoT, framework, platform,
security.

I. INTRODUCTION

The Internet of Things (IoT) plays a remarkable role in all
aspects of our daily lives. It covers many fields including
healthcare, automobiles, entertainments, industrial appliances,
sports, homes, etc. The pervasiveness of IoT eases some
everyday activities, enriches the way people interact with
the environment and surroundings, and augments our social
interactions with other people and objects. This holistic vi-
sion, however, raises also some concerns, like which level of
security the IoT could provide? and how it offers and protects
the privacy of its users?

Developing applications for the IoT could be a challenging
task due to several reasons; (i) the high complexity of dis-
tributed computing, (ii) the lack of general guidelines or frame-
works that handle low level communication and simplify high
level implementation, (iii) multiple programming languages,
and (iv) various communication protocols. It involves devel-
opers to manage the infrastructure and handle both software
and hardware layers along with preserving all functional and
non-functional software requirements. This complexity has led
to a quick evolution in terms of introducing IoT programming
frameworks that handle the aforementioned challenges.

Very recently, several IoT frameworks have been launched
by the major shareholders in the IoT domain and by the
research community in order to support and make it easy to
develop, deploy and maintain IoT applications. Each player
built his approach depending on his vision towards the IoT
world [1]. In this survey, we compare the properties of a
subset of IoT frameworks, targeting in particular their security
features. The selected set of IoT platforms1 includes: AWS IoT
from Amazon, ARM Bed from ARM and other partners, Azure
IoT Suite from Microsoft, Brillo/Weave from Google, Calvin
from Ericsson, HomeKit from Apple, Kura from Eclipse, and
SmartThings from Samsung.

We selected the above frameworks based on the following
criteria: (i) the reputation of the vendors in the software and
electronics industries, (ii) the support of rapid application
development and the number of applications on the store, (iii)
the coverage and usage of the framework, and it’s popularity
in the IoT market.

The objectives of this survey are manifold:

• Giving a picture of the current state of the art IoT
platforms and identifying the trends of current designs
of such platforms.

• Providing a high level comparison between the different
architectures of the various frameworks.

• Focusing on the models designed and approaches devel-
oped for ensuring security and privacy in these frame-
works.

• Illustrating the pros and cons of each framework in terms
of fulfilling the security requirements and meeting the
standard guidelines.

• Exploring the design flaws and opening the door for more
in depth security analysis against potential threats.

The remainder of this paper is structured as follows: Section II
describes the general concept of the IoT framework. Related
works are presented in Section III. Section IV is the backbone
of this paper which provides a horizontal overview of the
various IoT frameworks and focuses on the related security
features. A discussion is provided in Section V. Finally,
Section VI concludes this study.

1In this paper, the terms Framework and Platform are used interchangeably.



2

II. BACKGROUND

The very rapid growth of Internet-connected devices, ranging
from very simple sensors to highly complex cloud servers,
shapes the Internet of Things, where Things, in this con-
text, refers to a wide variety of objects (e.g. smart bulbs,
smart locks, IP cameras, thermostats, electronic appliances,
alarm clocks, vending machines, and more). The resemblance
between all IoT objects is the ability to connect to the
Internet and exchange data. The network connectivity feature
allows controlling objects remotely across the existing network
infrastructure, resulting in more integration with the real world
and less human intervention. The IoT transforms these objects
from being classical to smart by exploiting its underlying
technologies such as pervasive computing, communication
capabilities, Internet protocols, and applications. Protocols are
required in order to identify the spoken language of the IoT
devices in terms of the format of exchanged messages, and
select the correct boundaries that comply with the various
functionality of each device. Applications determine levels of
granularity and specialty of the IoT device and how big are
the data generated for analytics purposes. They also indicate
the general scope of the IoT framework covering the context
of the applied domain.

The concept of IoT framework entails identifying a structure
which coordinates and controls processes being conducted by
the various IoT elements. This structure is a set of rules,
protocols and regulations that organize the way of processing
data and exchange messages between all involved parties (e.g.
embedded devices, cloud, end-users). Also, it should support
the high level implementation of IoT applications and hide
the complexity of infrastructure protocols. There are several
approaches that can be followed to build an IoT framework de-
pending on the requirements of the target business [2].

In this survey, we are targeting IoT frameworks based on
the public cloud approach, as they are the most commonly
used and widely available in the IoT market. The main
building blocks of any cloud-based IoT framework are the
physical objects and the protocols. Physical objects include:
(i) smart devices such as sensors, actuators, etc., (ii) servers
act as a cloud-backend or hubs/gateways for routing, storing,
and accessing various pieces of data, and (iii) end-users
represented by the applications they use to access data and
interact with IoT devices. Protocols run on different layers
and provide end-to-end communication. To the best of our
knowledge, there is no a standard IoT architecture yet. For
simplicity, we are considering the basic one which is a
3-layer architecture [3] composed of Application, Network,
and Perception layers. The Perception layer belongs to the
physical devices that identify and sense analog data and then
digitize it for transportation purposes. Infrastructure protocols
such as ZigBee [4], Z-Wave [5], Bluetooth Low Energy
(BLE) [6], WiFi, and LTE-A [7] run in the Network layer.
The Application layer is the interface for end-users to ac-
cess data and talk to their IoT devices. It supports standard
protocols such as Hyper Text Transfer Protocol (HTTP) [8],
Constrained Application Protocol (CoAP) [9], Message Queue
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Fig. 1: A high level system model of IoT

Telemetry Transport (MQTT) [10], Extensible Messaging and
Presence Protocol (XMPP) [11], Advanced Messaging Queu-
ing Protocol (AMQP) [12], and Data Distribution Service
(DDS) [13].

The system model, presented in Figure 1, helps to gain a
better insight into the real meaning of IoT, and understand
the importance of having a framework, in which, hiding the
complexity and bringing simplicity to application development
are axial. The IoT framework should handle the life cycle
of sensing, computing, delivering, and presenting data. De-
pending on their capabilities, some IoT devices can reach
the outside world (e.g. the cloud) directly and some others
must connect to a hub or a gateway in order to connect to
the external world. For the IoT frameworks considered in
this survey, the cloud is the backbone, which offers databases
for storing data, services for data analytics, security modules
for preserving confidentiality and supports privacy, and other
services. Customers use their smart phones, tablets, or laptops
to interact with other IoT devices indirectly through either a
cloud backend or a gateway.

In spite of targeting the same objective, different approaches
have been designed and followed by vendors in order to build
their IoT frameworks. In particular, the following questions
arise regarding the design details of such frameworks:

• How each IoT framework handles the communication
processes between IoT devices and cloud? Between cloud
and end-users? What are the protocols and techniques
used?

• What are the hardware and software dependencies in each
framework?

• To which extents these frameworks use the common
security standards?

• What are the security-related functionality offered by
each element/layer in each IoT framework?

• How each framework solves the challenge of preserving
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security and privacy among all involved parties? what
are the techniques used for providing authentication,
authorization, access control, cryptography, and other
security features?

Section IV answers the above questions for each framework
considered in this study.

III. RELATED WORK

Several survey papers have been published covering various
topics of the IoT domain. Al-Fuqaha et al. [14] surveyed
the IoT in general, mentioning various IoT architectures,
market opportunities, IoT elements, communication technolo-
gies, standard application protocols, main challenges and open
research problems in the IoT area. Derhamy et al. [2] presented
a number of commercial IoT frameworks and provided a
comparative analysis based on utilized approaches, supported
protocols, usage in industry, hardware requirements, and ap-
plications development. A brief overview of the current IETF
standards for the Internet of things is provided in [15].

Security and privacy issues in IoT had a lot of attention
by the research community and addressed at different levels.
In [16], the authors surveyed the security and privacy issues
in IoT from four different perspectives. First, they highlight
on the limitations of applying security in IoT devices (e.g.
battery lifetime, computing power) and the proposed solutions
for them (e.g. lightweight encryption scheme designed for
embedded systems). Second, they summarize the classifica-
tions of IoT attacks (e.g. physical, remote, local, etc.). Third,
they focus on the mechanisms and architectures designed and
implemented for authentication and authorization purposes.
Last, they analyse the security issues at different layers (e.g.
physical, network, etc.). Authors in [17], [18] addressed the
security and privacy issues in IoT at each layer identified
in the 3-layer architecture [3]. [20] surveyed most of the
security flaws existing in IoT, resulted from the various com-
munication technologies used in wireless sensor networks. An
authorization access model is proposed in [21] as a security
framework for the IoT in order to ensure controlling access
and authorizing legitimate users only. Authors in [22] reviewed
the challenges and approaches proposed to overcome the
security issues of the IoT middleware, where a large number
of existing systems inherit security properties from the mid-
dleware frameworks. Depending on the well-known security
and privacy threats, authors analyse and evaluate the available
middleware approaches and show how security is handled by
each approach. The work concludes with illustrating a set of
requirements to have a secure IoT middleware.

All of the aforementioned surveys review the IoT security
with regards to one element of the common IoT standards
(e.g. network protocols or middleware employed). To the best
of our knowledge, this survey is the first one of addressing
the IoT security at the programming level by evaluating the
security features of a subset of commercially available IoT
programming frameworks.

IV. IOT FRAMEWORKS

A. AWS IoT

AWS (Amazon Web Services) IoT [23] is a cloud platform for
the Internet of things released by Amazon. This framework
aims to let smart devices easily connect and securely interact
with the AWS cloud and other connected devices. With AWS
IoT, it is easy to use and utilize various AWS services
like Amazon DynamoDB [24], Amazon S3 [25], Amazon
Machine Learning [26], and others. Furthermore, AWS IoT
allows applications to talk with devices even when they are
offline.2

1) Architecture: As shown in Figure 2, the AWS IoT ar-
chitecture consists of four major components: the Device
Gateway, the Rules Engine, the Registry, and the Device
Shadows [27].

The Device Gateway acts as an intermediary between con-
nected devices and the cloud services, which allows these
devices to talk and interact over the MQTT protocol. In spite of
being an old protocol, in comparison with other IoT protocols,
Amazon uses MQTT [10] due to several features; (i) fault
tolerance property, (ii) excellent for intermittent connectivity,
(iii) small footprint in terms of the space needed in the device
memory, (iv) very efficient in terms of the network band-
width requirements, and (v) depends on the publish/subscribe
programming model to allow one-to-many communication
between various devices [28]. The latter feature means that
sensors and other embedded devices that are moving and
talking to the Device Gateway do not need to know who
is sending data to them. They just send the data route and
those who subscribe to the data will receive it. This enables
a scalable environment for low-latency, low-overhead, and
bi-directional communication. Under the hood, the Device
Gateway is built in a fully managed and highly available
environment controlled by the community of Amazon in
order to simplify the development of applications and provide
unified security measures to all users. Secure communication
between IoT devices and applications is guaranteed because
MQTT messages are carried out over TLS (Transport Layer
Security), the successor of SSL (Secure Socket Layer) [29].
Furthermore, the Device Gateway supports WebSockets and
HTTP 1.1 protocols [30].

On the other hand, the Device Gateway is teamed up with
another component called Rules Engine. The Rules Engine
processes incoming published messages and then transforms
and delivers them to other subscribed devices or AWS cloud
services, as well as to non-AWS services via AWS Lambda [31]
for further processing or analytics. This enables the possibility
to build IoT applications that orchestrate, collect, process,
analyze, and act on data generated and published by connected
devices globally without having to pay attention to the low
level network protocols or manage any infrastructure. In order
to maintain usability, developers can author rules and add them
to the Rules Engine by writing SQL-like statements or using

2Using Device Shadows as discussed later in the Architecture.



4

AWS IoT

Device 
Shadows

Rules 
Engine

Device 
Gateway

Registry
Smart 

DevicesSmart 
Apps.

Amazon 
Web 

Services

Fig. 2: AWS IoT Architecture

the AWS Management Console service [32]. Considering the
example shown in Listing 13, the rule consists of two main
segments: the SQL statement and the actions list. The SQL
statement identifies the publish/subscribe topics to apply the
rule on, and the conditions under which the rule should be
executed. The actions list specifies a set of actions that should
be performed when the SQL statement is executed. The rule
definitions use a JSON-based schema.

{
"sql": SELECT * FROM ’iot/tempSensors/#’ WHERE

temp >50,
"actions":[
{
"dynamoDB":{

"tableName":"HighTempTable",
"roleArn":"arn:aws:iam::

your-aws-id:role/dynamoPut",
"hashKeyField":"key",
...

}
}
]

}

Listing 1: Example of a defined rule in the Rules Engine

Rules behave differently depending on the content of each
incoming message. Apart from this, the Rules Engine offer
dozens of built-in helping functions and calculations to aggre-
gate, transform, concatenate, and process data and build very
sophisticated rules. Developers can create their own functions
and define others using AWS Lambda. the Rules Engine can
receive data from multiple sources, different devices, and even
from the AWS cloud. It integrates and routes this information
to other IoT devices and AWS cloud services such as Amazon
Kinesis [33], Amazon S3, Amazon DynamoDB, etc.

The Registry unit is responsible for assigning a unique Id to
each connected device regardless the device type, vendor, or
the way of connection. Also, it stores the metadata (e.g. device
name, Id, attributes, etc.) of connected devices in order to have
the capability of tracking them. If the device is not active
anymore and did not show up in the network for a period of
7 years, the metadata will be expired and removed from the
Registry. Either AWS IoT Management Console or the AWS

3This example has been taken from the online Amazon tutorials.

Command Line Interface [34] can be used to interact with the
Registry and configure it manually.

AWS IoT instantiates each connected device by creating a
virtual image called Device Shadow. This shadow is persistent
and stored in the cloud to be available and accessible all the
time. It represents the last state of the device when it was
online, and enforces the future state over the physical device
once it shows up again in the network. This means that cloud
services and other devices can integrate, communicate, and
read the current state of a certain device through its shadow
even if the device is offline. They can update the state of the
device as well. Updates are applied once the device gets online.
Reading the last reported state and setting the desired future
state is done by interacting with Device Shadows via REST
API or by using the Rules Engine. This functionality helps in
easily controlling devices and performing actions over them
without having to know about the low level of connectivity.
This means that the shadow accelerate applications develop-
ment by providing a uniform and available interface to devices,
even when they use different IoT communication and security
protocols, or even when they are constrained by intermittent
connectivity, limited bandwidth, limited computing ability, or
limited power. From a programming point of view, the Device
Shadow is a JSON document, which used to store and retrieve
the current state of a certain device.

Optionally, applications can communicate directly to the con-
nected physical devices using only the Device Gateway and
the Rules Engine. This means ignoring the Registry and Device
Shadow. Nevertheless, it is not recommended since the user
has to focus on maintaining the underlying communication
protocols and solving synchronization issues between the
connected devices and the cloud.

AWS IoT provides a Device SDK which makes it easy for the
device to synchronize its state with its shadow, and accept the
desired future states. In particular, The AWS IoT Device SDK
is a set of libraries to help connecting hardware devices, au-
thenticating with the cloud, installing mobile applications, and
exchanging messages easily. It supports different programming
languages including C and JavaScript.

2) Smart Applications Specifications: The AWS IoT has no
restrictions regarding either the programming languages of
developing smart applications or operating systems running
them. Users can use various platforms (e.g. mobiles, laptops,
etc.) to interact with their cloud-connected IoT devices via
REST APIs. In general, there are two types of smart applica-
tions in AWS IoT;companion and server apps. The latter are
designed and implemented to monitor, manage, and control
a large number of connected devices at the same time. An
example of a server application would be a fleet management
website that plots thousands of trucks on a map in real-
time. Companion apps are mobile or web-based applications
that allow end-users to interact with their cloud-connected
devices. As stated previously, companion and servers apps can
access and communicate with device shadows in the cloud via
uniform Restful APIs.
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3) Hardware Specifications: AWS IoT provides an open-
source client libraries and device SDKs that make the frame-
work available for several embedded operating systems and
microcontroller platforms. To the best of our knowledge, the
device SDKs supports C, Node.js, and the Arduino platform.
Any IoT device can connect to the AWS IoT cloud if it has
the ability to be configured using one of the aforementioned
programming languages. Even those devices that connect to
private IP networks or communicate using non-IP protocols,
e.g. ZigBee, can access the AWS IoT cloud as long as they are
connected to a physical hub, which serves as an intermediary
gateway for the external world (e.g. AWS cloud).

4) Security Features: Amazon leverages a multi-layer security
architecture for the AWS IoT, in which, the security is applied
at every level of the technology stack. The design of the
security architecture is based on teaming up the Message
Broker service with the Security and Identity service as shown
in Figure 3 4.

• Authentication: In order to connect a new IoT device
to the AWS IoT Cloud, the device has to be authenticated.
The AWS IoT supports mutual authentication at all points
of connection, so that the source of the transmitted data is
always known. In general, AWS IoT provides three ways
of verifying identity:

– X.509 certificates [35].
– AWS IAM users, groups, and roles [36].
– AWS Cognito identities [37].

The most commonly technique used for authentication,
in AWS IoT, is X.509 certificates [38]. They are digital
certificates, depend on the public key cryptography,
and should be issued by a trusted party called a
certification authority (CA). In our case, the security
and identity unit in the AWS IoT cloud acts as a CA.
These certificates are SSL/TLS-based to ensure secure
authentication. Utilizing the authentication mode in the
SSL/TLS protocol, AWS IoT verifies the certificate of
any object by asking the client for his ID (e.g. AWS
account) along with the corresponding X.509 certificate
to check validity against a registry of certificates. AWS
IoT then challenges the client to prove the ownership of
the private key that belongs to the public key provided
in the certificate. Optionally, the user can use his own
certificate issued by his preferred CA. However, he must
register this certificate in the registry.

HTTP and WebSockets requests sent to the AWS IoT
are authenticated using either AWS Identity and Access
Management (AWS IAM) [39] or AWS Cognito [40].
Both of which support the AWS method of authentication.
It’s called AWS Signature Version 4 (SigV4) [41]. For
HTTP protocol, it is optional to use one of these
methods for authentication, but using MQTT requires
authenticating using only X509 certificates. In contrast,
connection using WebSockets is limited only to the use

4The figure has been taken from Amazon documentation.
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Fig. 3: AWS IoT Security Mechanism

of SigV4 for authentication.

To sum up, each IoT device, connected to the AWS IoT,
is authenticated using one of the methods discussed,
chosen by the end-user. It is the responsibility of the
message broker to authenticate and authorize all actions
in the user’s account. In particular, it is responsible to
authenticate all attached devices, securely ingest device
data, and adhere to the access permissions applied by
the user on his devices using policies.

• Authorization and Access Control: The authorization
process in AWS IoT is policy-based. It can be applied
by either mapping authored rules and policies to each
certificate or applying IAM policies. This means that
only devices or applications specified in these rules
can have access to the corresponding device, that this
certificate belongs to. This can be ensured by the use of
the Rules Engine since the communication through AWS
IoT follows the principle of least privilege. The Rules
Engine has the responsibility to leverage the AWS access
management system to securely access and transfer
data to its final destination according to the predefined
rules/policies. So, the owner of a cloud-connected device
can write some rules in the Rules Engine to authorize
some devices or applications to access his device and
prevent others. The use of AWS policies or IAM policies
offers a complete control over own devices and regulates
other’s right to access their capabilities and perform
operations over them [42].

• Secure Communication: All traffic to and from
AWS IoT is encrypted over SSL/TLS protocol. TLS
is used to ensure the confidentiality of the appli-
cation protocols (MQTT, HTTP) supported by AWS
IoT. For both protocols, TLS encrypts the connection
between the device and the Message Broker. Many
TLS cipher suites are supported in AWS IoT includ-
ing: ECDHE-ECDSA-AES128-GCM-SHA256, AES128-
GCM-SHA256, AES256-GCM-SHA384, etc. Further-
more, AWS IoT supports Forward Secrecy, a property of
secure communication protocols, in which compromising
long-term keys does not compromise temporary session
keys. This means that a malicious user who learns the
private key of an IoT device should not be able to
decrypt any communication protected under this key
unless learning the temporary key of each session.
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AWS IoT cloud assigns a private home directory for each
legitimate user. All private data are stored encrypted using
symmetric key cryptography (e.g. AES128).

B. ARM mbed IoT

ARM mbed IoT is a platform to develop applications for
the IoT based on ARM microcontrollers [43]. It provides
all requirements through it’s ecosystem to build either an
IoT standalone applications or networked ones [44]. ARM
mbed IoT platform aims to provide scalable, connected, and
secure environment for IoT devices by integrating mbed tools
and services, ARM microcontrollers, mbed OS, mbed Device
Connector, and mbed Cloud.

ARM mbed IoT framework has the advantage over the vast
majority of frameworks by providing a common OS foun-
dation for developing IoT. It supports the most important
communication protocols for connecting devices with each
others and with the cloud. Furthermore, it supports automatic
power management in order to solve the power consumption
problem.

1) Architecture: The key building blocks of the ARM mbed
IoT platform are mbed OS, mbed client library, mbed cloud,
mbed device connector, and hardware devices based on ARM
microcontrollers. The mbed OS represents the backbone of
this platform. Therefore, discussing it’s architecture helps in
simplifying the architecture of the ARM mbed IoT platform
and clarifying it.

ARM mbed OS [45] is an open source and full stack operating
system designed for embedded devices, specifically, ARM
Cortext-M microcontrollers, used to power smart homes and
smart cities. It is built in a modular fashion, so that developers

Applications

mbed Cloud

mbed Device Connector

mbed client library

mbed OS

Hardware (ARM MCUs)

Fig. 5: ARM mbed IoT Architecture

can use it as a complete operating system or just pick what
meets their needs from its modules. The mbed OS represents
the device-side component and stands on the top of a device
security module, called mbed uVisor.

Figure 4 presents the various modules of the architecture
of the mbed OS. It is an event-driven architecture and does
not support multi-threaded environment. mbed OS provides a
core operating system, drivers that simplify the connectivity
with the hardware layer, security and device management
functionality, a suite of standard communication protocols, and
multiple APIs for integration and interaction purposes.

The mbed device interface layer supports a wide variety
of communication protocols including Bluetooth low energy
(BLE), WiFi, Ethernet, ZigBee IP, 6LoWPAN, and many
others. In particular, the TLS/DTLS sub-layer represents mbed
TLS security module and ensures the end-to-end security
across the communication channels. Also, multiple application
protocols are supported in the architecture such as CoAP,
HTTP, and MQTT.

mbed OS is designed to work in concert with mbed Device
Connector, mbed Device Server, and mbed Client. Together,
they form the platform that delivers comprehensive IoT solu-
tions.

A high level view of the mbed IoT architecture is provided
in Figure 5. The hardware layer, at the base, represents mbed
IoT-enabled devices. One level up, the mbed OS takes a place
with all it’s components.

The mbed client Library is the key to communicate with the
upper layer in the architecture. In particular, it encapsulates
a subset of the mbed OS functionality in order to be able
to connect physical devices to the mbed Device Connector
Service. Practically, the mbed Client Library is a C++ API
which implements a communication stack with low power
consumption based on CoAP, and supports security measures
(e.g. mbed TLS) that comply with constrained networks and
devices. Furthermore, it is portable to various operating sys-
tems (e.g. RTOS and Linux) and supports OMA Lightweight
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Machine to Machine (LWM2M) compliance [46].

The mbed Device Connector is a web service that helps devel-
opers to connect IoT devices to the cloud without taking care
of the infrastructure [47]. It is full compatible with the mbed
OS and can be accessed via the mbed Client Library. Also, it
works with REST APIs, making it easy to integrate and transit
to the various commercial service providers. Moreover, the
mbed Device Connector provides end-to-end trust and security
using TLS/DTLS, and supports a wide range of standard
protocols including CoAP/HTTP, TLS/TCP, DTLS/UDP and
OMA Lightweight M2M.

Recently, ARM community announced about mbed
Cloud [48], and integrated it into the IoT ecosystem. It
is a Software as a Service (SaaS) solution for managing IoT
devices. The mbed Cloud allows users to securely update,
provision, and connect devices. It aims to provide all security
guarantees in terms of cryptography modules, trusted zones,
keys management, etc. Because of being a SaaS, the mbed
Cloud can be shipped out and configured by end users
depending on their business needs. In practice, the mbed
Device Connector is a hosted instance of the mbed Cloud
services.

The top layer of the mbed IoT architecture is the third-party
applications. Developers can implement various web and smart
applications to manage cloud-connected IoT devices via REST
API.

2) Smart Applications Specifications: Using the mbed IoT
platform involves implementing embedded applications for
IoT devices as well as smart apps for end-users. Develop-
ers have to use C++ programming language at the device
side. At the user side, there is no prior requirements, any
programming language supports REST API can be used (e.g.
Java) [49].

3) Hardware Specifications: ARM mbed IoT platform is
mainly dedicated to ARM Cortex-M based 32-bits5 microcon-
trollers supporting advanced RISC architecture. Other micro-
controllers are not supported.

4) Security Features: The security architecture of mbed IoT
platform is applied at three different levels:

• The device itself (as a hardware & mbed OS).
• The communication channels.
• The lifecycle of developing embedded and smart applica-

tions in terms of device management, firmware updates,
etc.

Figure 6 provides an overview of the security architecture [50].
The core components are:

• The mbed uVisor [51]: the device-side security solution,
which has the ability to isolate various pieces of software
from each others and from the operating system.

58-bits and 16-bits architectures can be used without selecting security
modules in mbed OS.
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Fig. 6: ARM mbed IoT Security Architecture

• The mbed TLS [52]: for securing communication, confi-
dentiality, and authentication purposes.

The following security properties are provided by the afore-
mentioned security components.

• Authentication: There is no specific way of
authentication. ARM mbed IoT provides a wide
variety of cryptography standards, key exchange
mechanisms, certificate-based signatures, and symmetric
and public/private key encryptions through the mbed
TLS software block [52]. Developers can pick from
this basket what is suitable for them to perform the
authentication process efficiently e.g. X.509 certificates.

• Authorization and Access Control: Arm mbed IoT
devices support multiprogramming, so memory is not
a single unprotected space, but it’s organized into
compartmentalized blocks, resulting in good security
levels. Therefore, in order to control access to resources
and preserve levels of authorization, the mbed IoT
platforms depends on the ARMv7-M architecture in
terms of having MPU and uVisor components.

The Memory Protection Unit (MPU) is a hardware
module, which enforces memory isolation. The uVisor
is a self-contained software hypervisor, which represents
the basis of the kernel of mbed OS security architecture.
It acts as a sandbox and uses the MPU to enforce
isolated security domains within the microcontroller
itself (Cortext-M3, M4, or M7 ). Forming isolated
domains protect sensitive parts of the system, as each
part is located in a different portion of the memory. In
other words, the application will be composed of some
non-intersected sections. Attacking any section does not
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violate others. Moreover, having any bug or security
flaw in some sections of the system does not threaten
others.

In summary, the uVisor secures software running on
Cortex-M3, Cortex-M4, and Cortex-M7 processors by
segmenting memory into insecure (public) and secure
(private) memory spaces based on the MPU.

• Secure Communication: End-to-end security is ensured
between all involved parties in the communication chan-
nel by implementing the TLS/DTLS protocol. It is the
cornerstone of securing all communications.
In mbed OS, the mbed TLS provides security mechanism
in order to secure and protect communication, by support-
ing Transport Layer Security (TLS) and the related Data-
gram TLS (DTLS) protocol. Both protocols are the state
of the art standards for securing communication over the
World Wide Web. This means preventing eavesdropping,
tampering and message forgery and ensuring integrity.
The mbed TLS also includes reference quality software
implementations of a wide range of popular cryptographic
primitives, secure key management, certificate handling,
and other cryptographic functionality. In addition, ARM
benefits from the hardware cryptography block in some
microcontrollers to encrypt sensitives parts of data.

C. Azure IoT Suite

Microsoft has released Azure IoT Suite [53], a platform com-
poses of a set of services that enable end-users to interact
with their IoT devices, receive data from them, perform var-
ious operations over data (e.g. aggregation, multidimensional
analysis, transformation, etc.), and visualize it in a suitable
way for business. Azure IoT Suite addresses the challenge of
having a full-featured IoT framework as a combinations of
three different sub-problems: scaling, telemetry patterns, and
big data. Azure IoT supports a wide range of hardware devices,
operating systems, and programming languages.

1) Architecture: A high level overview of Azure IoT’s ar-
chitecture is provided in Figure 7 [54]. IoT devices interact
with Azure cloud through a predefined cloud gateway. The
incoming data from these devices is either stored in the cloud
for further processing and analytics by Azure cloud services
(e.g. Azure Machine Learning and Azure Stream Analytics) or
offered immediately to some services for real-time analytics.
The output of both tracks is presented and visualized in a
customized way that fits the desires of customers and suites
their business.

Azure IoT Hub [55] is a web service that enables bi-directional
communication between devices and the cloud backend ser-
vices taking into account all security requirements. The cloud
sends messages to devices in terms of either commands or no-
tifications. Commands are orders to devices to perform actions,
whereas notifications are information needed in some cases
during the lifecycle of the execution of some commands. For

IP-capable devices
IP

Azure IoT Hub

Field Gateway

IoT solution backend

Presentation and Business Connectivity

IP
PAN devices

PAN PAN

Azure IoT protocol 
gateway

Fig. 7: Azure IoT Architecture

each command being sent, the cloud backend should receive
a feedback from the device as a confirmation message of
successful delivery, or a delivery fault message to warn about
the delivery failure status. Similarly, devices send messages to
the cloud backend in two formats: telemetry data or commands
outcome. Azure IoT hub has an identity registry for holding the
identity and authentication related information of each device.
Also, it has device identity management unit to manage all
connected and authenticated devices.

There are two classes of IoT devices: IP-capable and PAN. IP-
capable devices have the ability to communicate with Azure
IoT Hub directly by implementing one of the supported com-
munication protocols [56]. Azure IoT Hub natively supports
communication over AMQPs, MQTT or HTTP protocols. Sup-
port for additional protocols is possible via Azure IoT protocol
gateway [57]. The gateway allows for protocol adaptation.
Some devices and field gateways might not able to use one of
the supported protocols by Azure IoT Hub. In this case, they
can communicate with Azure IoT Hub via Azure IoT protocol
gateway which acts as a bidirectional bridge. It reduces the
gap between the different communication protocols, and tries
to find a common language between all involved parties. From
one side, the protocol gateway uses MQTT/AMQP protocol to
communicate with Azure IoT Hub directly. From the other side,
it is adaptable to support a variety of communication protocols
depending on the connected device standards.

The Field Gateway is simply an aggregation point for PAN
(personal area network) devices. Since these constrained de-
vices do not have enough capacity to run secured HTTP
sessions, they send their data to the field gateway to aggregate,
store, and forward it securely to Azure IoT Hub.

The IoT solution backend layer represents a wide range of
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Azure cloud services [58] (e.g. Azure Machine Learning,
Azure Stream Analytics, etc.).

The top layer of Azure IoT architecture is the presentation
layer. Users are free to visualize their data as they want.
Microsoft provides the Business Intelligence (BI) service to
present data in an effective and attractive way [59].

2) Smart Application Specifications: Microsoft provides vari-
ous SDKs to support different IoT devices and platforms. IoT
device SDKs along with IoT service SDKs are provided in
order to make developers able to connect to Azure IoT Hub and
let users manage their devices. The IoT device SDKs enable
developers to implement client applications for a wide variety
of devices ranging from simple network-connected sensors
to a powerful standalone computing devices. Up to now, C,
Node.js, Java, Python, and .NET programming languages are
supported in such SDKs [60].

3) Hardware Specifications: Azure IoT supports a wide range
of operating systems and hardware devices. The following
conditions must be satisfied in each device in order to have
the ability interact with Azure IoT cloud [60]:

• TLS support: for secure communication.
• SHA-256 support: for authentication purposes.
• Memory footprint: the memory footprint mainly de-

pends on the SDK and the protocol used, in addition to
the platform targeted (e.g. the minimum requirement of
RAM used by C SDK is 64KB).

• Real Time Clock: having a real time clock or being able
to connect to an NTP server is important for establish-
ing TLS connections and generating secure tokens for
authentication.

Only IP-capable devices can communicate directly with Azure
IoT Hub (see Figure 7). Other low-power constrained devices
are able to connect via a field gateway if they satisfy the
aforementioned conditions.

Compatible operating systems and platforms include Win-
dows, Android, Debian, mbed OS, Windows IoT Core, Ar-
duino, TI-RTOS, and many others. A complete list of the
compatible operating systems, platforms and hardware devices
exists in the Azure Certified for IoT device catalog6.

4) Security Features: Azure IoT takes the advantage of the
security and privacy built into the Azure platform, along with
Security Development Lifecycle (SDL)7 [61] and Operational
Security Assurance (OSA)8 [62] processes for secure develop-
ment and operation of all Microsoft softwares. In the architec-
ture of Azure IoT, security is embedded into every layer and
enforced in each component of the ecosystem. Figure 8 gives
an overview of Azure IoT security architecture9 [63].

6https://catalog.azureiotsuite.com/
7SDL is a software security assurance process that helps developers to

address security requirements and build more secure software along with
reducing development cost.

8OSA is a framework incorporates a variety of security capabilities includ-
ing SDL.

9The Figure has been taken from Microsoft Azure documentation.

Fig. 8: Azure IoT Security Architecture

• Authentication: In order to establish a connection
between IoT devices and Azure IoT Hub, mutual au-
thentication is required. Transport Layer Security (TLS)
protocol is used to encrypt the handshaking process. The
cloud service is authenticated by sending an identity proof
in terms of X.509 certificate to the targeted IoT device.
Azure IoT issues a unique device identity key for each
device at deployment time. The device then authenticates
itself to Azure IoT Hub by sending a token contains an
HMAC-SHA256 signature string which is a combination
of the generated key along with a user-selected device Id.

• Authorization and Access Control: Azure IoT takes
benefits of Azure Active Directory (AAD) [64] to provide
a policy-based authorization model for data stored in the
cloud, enabling easy access, management, and auditing.
This model also enables near-instant revocation of access
to data stored in the cloud, and of connected IoT devices.
Azure IoT Hub identifies a set of access control rules to
grant or deny permissions to either IoT devices or smart
apps. System-level authorization makes access creden-
tials and permissions near-instantly revocable. Therefore,
The access control policies include activation and dis-
activation of the identity of any IoT device.

• Secure Communication: SSL/TLS protocol is used
to encrypt communication and ensure the integrity and
confidentiality of data. The identity registry in Azure IoT
Hub provides a secure storage of the identities of devices
and security keys. Furthermore, data is stored in either
DocumentDB [65] or in SQL databases, ensuring a high
level of privacy.

D. Brillo/Weave

Google released Brillo/Weave platform for the rapid imple-
mentation of IoT applications. The platform consists of two
main backbones: Brillo [66] and Weave [67]. Brillo 10 is an
android-based operating system for the development of embed-
ded low power devices, whereas Weave acts as a communica-
tion shell for interactions and message-passing purposes. The
main role of Weave is to register a device over the cloud and
send/receive remote commands. Both components complement
each other and together form the IoT framework. Brillo/Weave

10Recently, Google released a rebranded version, called AndroidThings but
it still does not support Weave to create a fully featured IoT framework.
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is mainly targeting smart homes and expanding to support
general IoT devices.

1) Architecture: Figure 9 provides an overview of the ar-
chitecture of Brillo/Weave framework, which includes two
sub-architectures belonging to Brillo and Weave respec-
tively.

Brillo is a light-weight embedded operating system based on
Android stack and fully implemented in C/C++ programing
languages. It does not support any Java framework or run-
time.

The bottom layer represents the platform of IoT devices. The
Kernel layer is located at the top of the Hardware layer. It
is Linux based and it has the responsibility to provide basic
architectural model for managing system resources, process
scheduling, communication with external devices when needed
and so on. Also, It provides drivers and libraries to control
displays, cameras, power, WiFi, keypads, and many other
resources over the physical device. However, no graphics or
GNU libraries are supported. The android HAL (Hardware
Abstraction layer) is a middleware, which bridges the gap
between the hardware and the software. It allows android
applications to communicate with hardware specific device
drivers by handling system calls between the kernel and the
top android-based layers. Not shown in the architecture, Brillo
uses Binder IPC mechanism [68] to interact with the android
system services from the application framework.

Moving upwards, the OTA Updates component [69] is a
wireless service aims to install batches and update versions of
software over the air. The underlying devices perform regular
checks with OTA servers for updates. Also, OTA servers
notify all connected devices once there are some new updates
available. Metrics component collects usage data from devices
in order to analyze and view it to understand the behavioral
patters of users. Also, crash reports can be submitted to debug
remote devices.

While Brillo represents the low level segment (OS) of this
architecture, Weave11 is the high level one. It is a commu-
nication suite of protocols and APIs that lets smart phones,
IoT devices, and the cloud to communicate with each others.
In addition, it provides services for authentication, discovery,
provisioning, and interaction. Practically, Weave is following
a JSON format. As mentioned before, Weave module is baked
into the Brillo OS as a significant part of the top layer in
Brillo’s architecture. Weave adds a key feature to the user
experience through the capability to connect to devices directly
or via the cloud. This is achieved by exposing a common
language between all Brillo-powered devices, which is Weave.
Furthermore, Weave exists as a mobile SDK for smart phones
and a cloud-based web services for the cloud. Mobile SDK
runs on either Android or iOS phones in order to connect
mobile apps to the Brillo-powered IoT devices. Once the
connectivity gets established, mobile apps can use either the
local APIs, if they are located in the same network, or the

11Google Weave is totally different from NEST WEAVE protocol.
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Fig. 9: Brillo/Weave Architecture

cloud APIs to control and manage the connected IoT devices.
As shown in Figure 9, Weave supports multiple communication
and application protocols.

To sum up, the underlying architecture illustrates the key
building blocks of Brillo/Weave IoT framework. The last three
layers represent the operating system, whereas the top layer
includes the core services which composes of OTA Updates,
Weave, and Metrics and Analysis services. Figuratively, the
Brillo developer kit (BDK) is a necessary building block of
the IoT platform [70] which is based on Android.mk build
architecture. Using DBK, developers can perform local unit
tests, integration tests, and build entire packages.

2) Smart Applications Specifications: Weave comes with a
mobile SDK for both iOS and Android to build apps to control
and enhance the connected device experience for mobile users.
Any Android- or iOS-based mobile phone can run smart
apps able to talk to Brillo-powered embedded devices. The
smart app should include the Weave SDK as a communication
module. In general, third party developers can implement
applications in any platform using any programming language
supports Weave. On the other side, IoT devices should run
Brillo in order to interact with smart apps with no further
requirements. Currently, only Google Cloud supports Weave
and no other professional cloud (e.g. Amazon, Microsoft, etc.)
does that.

3) Hardware Specifications: Brillo operating system is com-
patible only with Microprocessor (MPU)12 devices that have
a minimum memory footprint of at least 35 MB of RAM.
ARM, Intel (X86), and MIPS are the only supported architec-

12For the difference between MPU and MCU devices, please refer to
reference [71]
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tures [70].

In particular, the minimum hardware requirements [72] [70]
of the smart device to host Brillo are:

• 32MB RAM.
• 128MB ROM.
• support one of the following architectures: ARM, X86,

or MIPS.
• WiFi 802.11n.
• Bluetooth 4.0+.

Commercially, the Intel Edison kit [73] with the Arduino
expansion board is the first Brillo starter board.

4) Security Features: A high priority has been given for veri-
fying security through out the design of both Brillo and Weave.
Secure boot, signed over-the-air updates, timely patches at the
OS level, and the use of SSL/TLS are all building blocks of
the security architecture of Brillo/Weave framework.

• Authentication: Weave main functions is the Discov-
ery, provisioning, and authenticating devices and users.
OAuth 2.0 protocol along with digital certificates are
used for authentication. Regardless the Weave-enabled
cloud server chosen by the user, Google provides the
authentication server.

• Authorization and Access Control: The right of access
control is ensured by the Linux kernel. SELinux (Security
Enhanced Linux) module is responsible for ensuring
access control security policies, in which the owner of
an IoT device can apply multiple levels of access control
as needed. Enforcing access control is done by assigning
the actual rights (read, execute, write) for each user or
group of users.
Again, as this IoT framework is Linux-based, sandboxing
technique is applied with regards to UID (User Id) and
GID (Group Id). It provides an enhanced mechanism to
enforce the separation of information based on confiden-
tiality and integrity requirements for each profile.

• Secure Communication: Secure communication are
guaranteed via Weave by providing link-level security
through the SSL/TLS protocol. Furthermore, the Linux
kernel supports full disk encryption of saved data. Also,
Brillo depends on a Trusted Execution Environment
(TEE) and secure boot to protect code and data
loaded inside the IoT and preserve confidentiality. The
availability of TEE provides the connected devices
Hardware-backed keystore/ketmaster [74].

E. Calvin

Calvin is an open source IoT platform released by Erics-
son [75]. It is designed for building and managing distributed
applications that enable devices talk to each others. Calvin

is a framework that applies Flow based Computing (FBP)13

paradigm [76] methodologies over the well-defined actor
model14 [77].

1) Architecture: Figure 10 shows the high level architecture
of Calvin. The two bottom layers compose a foundation for
the runtime environment15. The base layer represents the
hardware or the physical device, whereas the second one
encapsulates the operating system that the hardware exposes.
At the top, the platform dependent runtime layer of Calvin
takes a place. In this layer, all kinds of communications
between different runtime environments (e.g. IoT devices)
are handled. Also, this layer provides an abstraction of the
hardware functionality (e.g. I/O operations). In other words,
this layer supports several transport layer protocols (WiFi, BT,
i2c) and presents the platform specific features like sensors and
actuators in a uniform manner to the platform independent
runtime layer where it resides above the platform dependent
runtime layer. The platform independent runtime layer acts as
an interface to the actors. The runtime can be configured to
grant access to different resources depending if an actor is a
part of the application or not. Actors execute asynchronously
and autonomously per definition. They can also encapsulate
protocols, such as REST or SQL queries, as well as device
specific I/O functionality. Connections between actors are
not specified in the architecture since they are logical and
dynamically handled by the different runtimes.

Proxy Actors [78] is one of the important features that
Calvin brings to the users. Using this attribute, Calvin-based
applications can scale and function with non-Calvin ones.
Proxy Actors help in integrating different systems as one
system by handling communication and doing the task of
converting data to messages or tokens that both systems can
understand.

2) Smart Applications Specifications: Calvin framework di-
vides the development process of an application into four
pipelined isolated steps, each step has its own functionality
as explained in the following [79]:

Describe: the functional part of any application which consists
of reusable components or blocks called Actors. An actor is
a component representing any object doing a computation
e.g. smart phone, cloud, client, server, and etc. The way
of communication between actors is by passing tokens over
predefined ports. This is the only way to affect the behavior
of an actor and change its state. Data is processed on the
input ports of actors and then passed to the output ports
in order to fire some actions depending on the contents of
messages/tokens. Thus, writing an actor means identifying

13The FBP development approach views an application as a network of
asynchronous processes communicating by passing messages as streams of
structured data chunks, called information packets. This component-oriented
model does not support single sequential processes which start at a particular
point of time, do operations, and then finish to let others start their actions.

14The actor model is a mathematical theory that treats Actors as the
universal primitives of concurrent digital computation. The model has been
used as a framework for a theoretical understanding of concurrency.

15Runtime environment means the IoT device with the executable software
loaded into it.
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a new component that can be used in several locations by
multiple applications. An actor can be created by (i) describing
its actions, (ii) defining its input/output ports, (iii) identifying
conditions for each particular action to be triggered, and (iv)
adjusting the priority orders between actions.

Connect: in this interaction step, information about how actors
are connected is supplied in a simple way using CalvinScript,
a declarative language used to describe applications and how
actors connected inside them. At the end of this phase, the
application is completely identified and ready for deploy-
ment.

Deploy: after completing the two former steps, the deployment
phase takes a place in order to run the application in reality.
The core of this step is the lightweight distributed runtime
that provides a number of accessible nodes for deployment
and actors executions. Once the runtime environment is ready
for execution after passing the application script to it, the
distributed execution environment can move actors to any
accessible runtime based on several factors such as resource,
locality, connectivity, or performance requirement.

Manage: it monitors the life cycle of the application. Further-
more, it is involved in keeping track of the resource usage,
firmware updates, error recovery, and scalability.

In order to support multiple programming languages and
platforms, the design of Calvin does not require a specific way
of processing data inside different actors. Only the format of
data passed between ports is standardized. An API, written in
python, is provided to device manufacturers and third party
developers to port to Calvin runtime from various platforms
and languages.

3) Hardware Specifications: Calvin framework supports dif-
ferent platforms, ranging from small sensor devices to data
centers. Also, it is designed to run in distributed heterogeneous
cloud environment. The only requirement needed in the hard-
ware is the support of one of the compatible communication
protocols.

Network cloud

M2M

Fig. 11: Calvin Communication System

4) Security Features: Calvin platform applies security mea-
sures at different levels using various techniques [80].

• Authentication: Authenticating users can be done in
three different ways. The first is via local authentication,
in which the hash value of usernames and passwords
are stored in a JSON file in a well-known directory
in the same machine. Authentication can be verified
by comparing the hash value of the entered and stored
records. Second, using an external machine, which acts as
an authentication server and performs the authentication
on behalf of the corresponding runtime. Third, by using a
RADIUS server. The radius server verifies the username
and password and replies with subject attributes.

• Authorization and Access Control: Authorization is
only supported via local or external procedure. In the
local authorization, policies are stored in JSON files in
a directory on the same machine, whereas the external
authorization involves using another runtime to act as an
authorization server. When external authorization is used,
digital certificates in the form of X.509 standards are
needed to verify signed JSON web tokens that contain the
authorization request/response. The authorization process
must be done after a successful authentication since it
uses as an input the returned subject attributes. The access
control is activated for a certain actor or entity via an
attribute-based configuration file. Adding a feature with
its value as an attribute means activating this feature in
Calvin framework.
To the best of our knowledge, neither sandboxing nor
virtualization technique are provided in Calvin framework
because Ericsson does not maintain their own cloud
infrastructure.

• Secure Communication: Figure 11 shows an overview
of the employed communication mechanism inside
Calvin system. IoT devices can interact with each other
or with smart applications. They are connected over
short-range radio protocols to M2M gateways. Devices
and gateways are integrated with the mobile network in
order to access the cloud. End-users communicate with
the cloud and explore the various information of the
different IoT devices, that they authorized to access. IoT
devices can not connect to the cloud via M2M gateways
without conducting the authentication and authorization
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processes. Since M2M gateways have no user interface
for entering usernames and passwords, Calvin depends
on the mobile networks and utilizes their capabilities.
All M2M gateways are injected with SIM cards, and use
their SIM-based identity to authenticate themselves to the
cloud services using 3GPP standardized Generic Boot-
strapping Architecture (GBA). The transmitted/received
data may be secured using TLS/DTLS protocol. Elliptic
Curve Cryptographic (ECC) algorithm is implemented
as a part of the TLS suite and used for encrypting
communications and providing digital signatures, as it
incurs limited overhead, compared with other protocols
(e.g. RSA). Calvin framework can be integrated with any
public cloud system since it does not involve Ericsson
cloud as a main component of the ecosystem. Therefore,
Calvin does not provide details of the object level-security
in the cloud.

F. HomeKit

HomeKit is an IoT framework released by Apple [81]. It is
a platform dedicated only to home-connected IoT devices. It
facilitates the process of managing and controlling connected
accessories and appliances in a user’s home by enabling
interaction via smart apps. Through their own iOS devices,
using the HomeKit app, called Home, users can discover,
configure, control, and manage all HomeKit connected devices
in a secure way. Furthermore, users can create actions and
trigger their IoT devices using Siri service [82]. Until the
moment of writing, iOS, watchOS, and tvOS are the only
operating systems supporting the HomeKit capabilities.

1) Architecture: The core components of HomeKit archi-
tecture are: the HomeKit configuration database, HomeKit
Accessory Protocol (HAP), HomeKit API, and the HomeKit-
enabled devices.

Figure 12 simplifies the HomeKit architecture. The IoT devices
(accessories) are located in the base layer. However, not all
home-connected IoT devices can integrate with the Home-
Kit platform directly. They should meet some conditions as
explained later in the hardware specifications section. Acces-
sories that do not satisfy HomeKit requirements are still able to
connect to the HomeKit platform using intermediate devices
called Bridges. HomeKit Bridges are gateways that act as a
proxy between iOS applications and home automations that
do not support the HomeKit protocol. At the device side, the
bridge supports only ZigBee and Z-Wave protocols. Therefore,
the connected accessories are limited to support one of these
protocols. For accessories that implements HAP, the bridge is
not required and either IP (LAN, WiFi) or BLE is used as a
transport protocol.

Since HomeKit speaks HAP, the backbone of the architec-
ture is the HAP layer. HAP is proprietary protocol mapped
over HTTPs with discovery leveraging the Bonjour architec-
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Fig. 12: HomeKit Architecture

ture16 [83]. JSON format is used in HAP for exchanging
messages between iOS apps and HomeKit compliant de-
vices.

The HomeKit API layer is responsible for providing interfaces
to third party developers to simplify the development of
smart applications and hide the complexity of the underlying
layers.

The application layer resides at the top of the architecture. It
is responsible for providing a consistent user interface to all
Apple devices sharing the same account, by synchronizing the
stored data in the shared database using iCloud [84].

With tvOS 10 [85], Apple extended the capabilities on the
Apple TV and HomeKit by bringing the HomeKit framework
to the tvOS. Interestingly, Apple TV is able to run all home
automations that users have set up inside their homes. There-
fore, wherever users are, if they have an Internet connection,
they can access their home accessories remotely. In other
words, Apple TV acts as a hub or a gateway for home
automations.

Apple TV also supports features for providing additional con-
trols to shared users. This enables the possibility of any user to
share the control of accessories with others, by inviting them
using their Apple Id. It is also possible to grant administrative
access to shared users. Shared users with an administrative
access can change the configurations in the home. They can
add or remove accessories as necessary. Also, they, in turn,
can invite additional users to the home and let them control
home accessories. Another possibility is controlling remote
access per user. Using this functionality, the admin user can

16Bonjour is Apple framework for networking purposes. It implements a
number of functionalities including: service discovery, address assignment,
and hostname resolution.
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grant or deny remote access capabilities to the other shared
users.

2) Smart Application Specifications: An important part of
the HomeKit ecosystem is the Home application. It is an
Apple-designed app for HomeKit platform. It sets up home
accessories as well as controls their common functions.

The Home app provides a very simple interface for users to
set up, control, and configure accessories inside the home. The
Home app is supported in all iOS devices and in the Apple
watch. Using its user interface, the user can add a number of
homes and define number of rooms in each home. Then, he
start setting up and detecting accessories in each room.

Due to the integration with Apple system, HomeKit allows
users to access their accessories when they are not at home.
This remote access enabled through iOS device connectivity, in
which the Apple TV acts as a gateway and intermediate layer
between home-connected accessories and Internet-connected
Home app or even third party apps.

Additionally, developers can implement iOS-based mobile
applications and bring their apps to the foreground by uti-
lizing the HomeKit API provided by Apple [86]. Using this
API, developers can implement their applications by creating
instances of a limited number of classes, delegating them
to their apps and then customizing them according to the
requirements. The architecture of HomeKit API is hierarchical.
The entry point is the Home Manager class which provides
pointers to a common database shared among all user’s homes
and maintains their data. Being shared, such database ensures
consistency between all authorized applications in various
devices. The Home Manager acts as a container of multiple
homes and lets the user to label the primary one. Also, it lets
the user to add or remove homes as necessary. Each home
has to be uniquely identified and each one should points to
its own data. Everything in a home must have a unique name
as well. Narrowing the scope, the instance of the Room class
lets users to add the number of rooms they have inside their
homes. From a programming point of view, each room is an
array of accessories. Each input of this array belongs to an
instance of the Accessory class.

An accessory corresponds to the physical IoT device. Ac-
cessories are assigned and distributed between rooms. The
instance of the accessory object allows users to access the
device state. Also, accessories have to be uniquely named
within a home. Names of accessories can be recognized by
Siri service too. An accessory is the whole object that the a
user is referring to. So, an accessory has a pointer back to the
room where it is located, and it has a pointer to the array of
services that represents its functionality. An accessory at any
point of time may be reachable or not depending on the state of
connectivity. This should be reflected in the smart application
by maintaining the callback handler available to developers in
the API [86].

Services represent the functionality of accessories. A service is
described as a collection of characteristics. Characteristics are
specific parameters that the user could interact with. Not all of

services have names. The anonymous services are operational
ones and not designed for user interaction (e.g. a firmware
update service). Named services should be unique and exposed
within the user interface. An example of such services are the
light bulb and door bell. HomeKit does not only recognize
names of services, but also takes into account Apple-defined
service types. Therefore, users can refer to the service by
its name or type when using Siri to detect it. The Service
class contains the name of the service, an array of charac-
teristics, service type, and a pointer back to the accessory.
Characteristics provide some information and metadata about
the state of the physical device. The characteristics can be
of a few varieties: Read-only, Read-write, or Write-only. A
good example is the thermostat device, where users want to
read its temperature degree without writing privileges. This
implies that the characteristics of this service should be Read-
only [86].

HomeKit objects are stored in a database residing in the
user’s iOS device, which is synchronized over the iCloud to
other involved iOS devices. This common database contains
all information about homes and accessories that have been
configured by users. It is available to all user’s applications in
a consistent way [86].

3) Hardware Specifications: HomeKit framework is com-
patible only with HomeKit-enabled devices. Thus, HomeKit
supports all third-party hardware accessories that use Apple’s
MFi licensed technology [90] to connect electronically to the
iPhone, iPad, iPod or Apple Watch. By using Apple’s MFi
license, Apple ensures that the produced hardware meets all
key requirements and technical specifications of the HomeKit
framework in terms of the supported communication protocols,
physical security, etc.

As stated earlier, in order to connect an accessory, that is
not MFi-certified, to the HomeKit framework, A HomeKit
bridge must be used to find a common language between
the heterogeneous transport protocols. The bridge supports
only ZigBee and Z-Wave protocols from the input side of the
accessory.

From a low level point of view, HomeKit supports a wide
range of embedded microcontrollers including low-power,
low-cost 32 bit MCUs. Both ARM and MIPS architectures
are supported. Generally, the memory is the most critical
resource in microcontrollers. However, for HomeKit, there is
no minimum requirements for the size of memory since it
mainly depends on the specific goal of the MCU and the size
of the code loaded.

For users, HomeKit-enabled accessories can be controlled and
managed only by Apple smart devices such as iPhones and
iPads. There is no support for devices powered by other
operating systems such as Android.

4) Security Features: HomeKit leverages many features from
the security architecture of iOS [92] as it composes of soft-
ware, hardware, and services designed to work together in a
secure way, in which, end-to-end security must be guaranteed.
This means that the entire ecosystem is covered by the security
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polices and mechanisms enforced by the tight integration of
hardware and software in iOS devices.

• Authentication: Authentication is required between
HomeKit-connected accessories and iOS devices based
on Ed2551917 public-private key signature [93]. For
each user and accessory in the HomeKit framework,
an ed25519 key pair is generated for authentication
purposes. Keys are stored in shielded keychain and
synchronized between devices using iCloud Keychain.
In the authentication process, keys are exchanged using
Secure Remote Password protocol, in which a 8-digit
code, provided by the accessory’s manufacturer, must be
entered by the user via the UI of the iOS device.
Keys are encrypted using ChaCha20-Poly1305 AEAD
with HKDF-SHA-512-derived keys [92]. The accessory’s
MFi certification is also verified during setup. The afore-
mentioned keys are long-term keys. In order to protect
each communication session, a temporary session key is
generated using the Station-to-Station protocol and en-
crypted with HKDF-SHA-512 derived keys based on per-
session Curve25519 keys [94]. The process of configuring
Apple TV in order to perform remote access and the
process of adding new shared users are also subjects to
the same authentication and encryption mechanisms.

• Authorization and Access Control: Applications have
to explicitly ask user’s permissions to get access to
their home data. Moreover, all applications are subject
to security measures designed to prevent collisions and
compromising each other. Sandboxing is enforced among
apps. An application can access its own data only, which
stored in a unique home directory. This directory is
assigned randomly during the installation process of
the application. On the other hand, iOS system data
is isolated from third-party apps and users have no
privilege to modify it in any case. Also, Address Space
Layout Randomization (ASLR) technique [95] is applied
to prevent buffer overflow memory-based attacks.

• Secure Communication: The integration of the core
components of the iOS security architecture (e.g. secure
boot, etc.) ensures that only trusted code can run in
Apple devices. AES 256 encryption protocol is applied
through an engine built into the DMA path between
the flash storage and the main system memory in each
device, making data encryption is highly efficient. Each
Apple device has a unique device Id which is AES 256-
bit key injected into the processor during manufacturing
and this allows data to be cryptographically tied to one
particular device only. This feature provides a robust
secure hardware in case the memory chip is moved
from a device to another one, the data is inaccessible
and can not be read or decrypted. Apart from this, all
cryptographic keys are created by the system’s random
number generator (RNG) using an algorithm based on
CTR DRBG [96].
Communication using HTTP protocol are secured using

17https://ed25519.cr.yp.to/

TLS/DTLS with AES-128-GCM and SHA-256.
In HomeKit, the long-term keys, used to secure commu-
nications, reside only in the user’s devices. So even if the
communication flows through an intermediate devices or
services, the keys can not be decrypted even by Apple.
Moreover, HomeKit provides Perfect Forward Secrecy,
a property that ensures in every communication session
between an Apple users’s devices and their HomeKit
enabled accessories, a new session key is generated for
secrecy and confidentiality purposes. After the comple-
tion of the underlying session, this key is discarded. This
feature strengthens the communication process in case, in
the future, the device is compromised and the long-term
key is publicly known, the adversary can not decrypt the
communication process using only this long-term key.

G. Kura

Kura is an Eclipse IoT project which aims to provide a
Java/OSGi-based18 framework for IoT gateways that run M2M
applications [98]. Kura offers a platform for managing the
interaction between the local network of physical IoT devices
and the public Internet or the cellular networks. Similarly to
other frameworks, Kura abstracts and isolates the developer
from the complexity of the hardware, networking sub-systems,
and re-defining the development of existing software compo-
nents, by offering an APIs that allow accessing and managing
the underlying hardware smoothly [99].

1) Architecture: Figure 13 shows an overview about Kura’s
architecture. Kura can only be installed on Linux-based de-
vices and provides a remotely manageable system, complete
with all the core services and a device abstraction layer for
accessing the gateway’s own hardware [100].

To interact with network-connected devices, smart applications
can use Java’s own networking capabilities to plug into the
existing device infrastructure. The device abstraction layer
allows developers to access many devices by abstracting the
hardware using OSGi services for Serial, USB and Bluetooth
communications. A communication API for devices attached
via GPIO, I2C, or PWM will allow a system integrator
to incorporate a custom hardware as a part of their gate-
way [101].

The Gateway Basic Services layer provides a configurable
OSGi services available to applications to interact with the
basic gateway functionality. Such services include watchdog,
clock, GPS position, embedded database, process, and device
profile service.

Also, the network management layer offers a configurable
OSGi services to access the current network configuration and
administer it (e.g. DHCP, NAT, DNS, etc.). It interacts with the

18The OSGi specification Open Services Gateway initiative describes a
modular system and a service platform that implements a dynamic component
system for Java to simplify the process of developing reusable software
building blocks. For more information, refer to [97].
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Linux system to configure network interfaces including WiFi
access points and PPP connections.

Furthermore, the connectivity & delivery layer simplifies the
development of telemetry M2M applications interacting with
a remote cloud server [102].

The functionality of Remote Management layer include re-
mote configuration, remote software update, remote system
command, remote log retrieval, device diagnostic service, and
remote VPN access. Finally, The administration GUI provides
interfaces for accessing such services.

2) Smart Applications Specifications: Java is the main pro-
gramming language of Kura framework. An application is
delivered as an OSGi module and run according to the
standard specifications inside the container along with other
components. The deployment of an application can be done
remotely in the form of OSGi bundles. Kura package provides
also a web front interface that allows developers to remotely
login and manage their applications.

3) Hardware Specifications: Kura has two hard requirements
in order to run on the IoT device. First, it must run at the top
of Linux operating system. This means that the IoT device
should be Linux-based. Second, Oracle Java VM 7 or later
is required for Kura [103]. Memory size requirement depends
on how large is the installed application and number of ex-
changed messages with other connected devices. An example
of compatible devices, that meet the mentioned requirements,
includes Raspberry Pi [104] and BeagleBone [105].

4) Security Features: The naive Kura framework provides
a robust and simple security architecture for protecting and
securing communications with IoT devices and gateways.
However, there is a limited support for securely updating and
configuring devices from cloud applications. To handle this
issue, Eurotech [106] released an open-sourced ESF, a tool can

be used along with Kura [107]. ESF adds support for advanced
security, remote access via virtual private network (VPN),
diagnostics and bundles for specific vertical applications. ESF
maximizes the productivity by utilizing the basic Kura security
API to make it easier to write Java applications that can ensure
the integrity and security of new software bundles.

Eclipse foundation has injected also a number of security
components into the Kura framework such as a security
service, a certificate service, a secure sockets layer (SSL)
manager, and a cryptography service.

• Authentication:
Kura uses secure sockets provided by the Java Runtime
environment. The Eclipse Paho client19 [108] handles
the majority of data communication via MQTT proto-
col [102]. This includes using public key cryptography
to authenticate communication with remote devices and
gateways.

• Authorization and Access Control: The security ser-
vice component in Kura offers API to manage security
policies and start script consistency, whereas the certifi-
cate service API is used to retrieve, store and verify cer-
tificates for SSL, device management and bundle signing.
Ensuring the non-corruption or non-tampering with a
file by a malicious user is done by doing a regular
check of environmental integrity by the security manager
component. ESF also enforces runtime policies to deny
execution of particular services or the import/export of
specific packages. This makes it harder for hackers to
access the service for retrieving the master password from
the device.

• Secure Communication: The SSL manager manages
SSL certificates, trust stores and private and public keys.
All communications are secured using SSL/TLS protocol.
The cryptography APIs are used to encrypt and decrypt
secrets and to retrieve the master password.

H. SmartThings

SmartThings is a platform released by Samsung for de-
veloping IoT applications. It is mainly dedicated to smart
homes, where developers can implement applications that let
users manage and control their home appliances via smart
phones [109].

1) Architecture: According to Figure 14, the SmartThings
ecosystem comprises of the following components: the Smart-
Things cloud backend, the SmartThings hub/home controller,
the SmartThings mobile client app (the buddy app), and the
IoT device (SmartDevice).

The hub (home controller) acts as a gateway between the IoT
devices (SmartDevices) and the cloud services. It connects
directly to the Internet and supports multiple communication
protocols including ZigBee, Z-Wave, WiFi, and BLE. The

19The Paho Java Client is an MQTT client library written in Java for
developing applications that run on the JVM or other Java compatible
platforms such as Android.



17

SmartThings hub has the ability to execute some functionality
locally without the need to connect to the cloud backend.
Events are still required to be sent to the cloud once the
hub gets online in order to reflect the current state of the
home and execute other cloud-based services. Communication
between all connected parties are encrypted using SSL/TLS
protocol.

The buddy app, released by SmartThings, lets users access
the home controller, manage their IoT devices smoothly, and,
if required, install third party applications (SmartApps). The
buddy app is supported by multiple mobile operating systems
including Android and iOS. While the buddy app provides
a basic and unified interface to all connected devices, Smar-
tApps are customized applications, developed by third party
developers, add more options and functionality to the end-user.
Three classes of SmartApps are specified: (i) Event-handlers,
(ii) Solution Modules, and (iii) Service Managers. Event-
handler SmartApps allow end-users to subscribe to events
and call handler methods upon their firings. Solution Module
SmartApps act as a container for the two other categories of
SmartApps and simplify the management of a certain physical
area inside the home (e.g. bedroom). They are predefined by
SmartThings developers and thus they can be installed via
the SmartThings application interface (the buddy app). Lastly,
Service Manager SmartApps are applications that integrate
with SmartDevices and should be installed by end users in
case of the presence of the device on the network. SmartApps
may run on the hub as well as in the cloud depending on the
physical characteristics of the SmartDevice.

SmartDevices may have the ability to connect via WiFi/IP
protocol. This feature lets these devices to bypass the gate-
way and connect directly to the SmartThings cloud. Each
SmartDevice belongs to one or more of the following cate-
gories: (i) Hub-connected, (ii) LAN-connected, and (iii) Cloud-
connected [110]. Hub-connected devices include all devices
that have the capability to interact with the SmartThings hub
using ZigBee or Z-Wave home automation protocols, whereas
LAN-connected devices have an extra feature which lets them
to communicate with the hub over the LAN, e.g. Sonos system.
Cloud-connected devices, e.g. Ecobee thermostaat, connect to
the cloud directly using HTTP and authenticate themselves
using OAuth protocol. Both LAN and Cloud-connected devices

SmartThings Cloud Backend
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SmartThings Hub
Z-Wave ZigBee

WiFi BLE

Fig. 14: SmartThings Architecture
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are able to communicate and integrate via web services like
REST or SOAP [109].

There are two ways of communication between SmartApps
and SmartDevices; (i) Method calls, in which, SmartApps can
execute and perform operations over SmartDevices, and (ii)
Event-Subscription, where SmartApps can subscribe to events
generated by other SmartApps or SmartDevices.

Figure 15 gives an overview of the key building blocks of
the SmartThings cloud [111]. The Connectivity Management
layer is responsible for maintaining persistent and secure
connection between the connected device (e.g. the hub) and
cloud services. The Device Type Handlers layer simplifies
the scalability by maintaining an instance or a virtual image
for each type of SmartDevices. End-users interact with the
physical SmartDevices indirectly via instances, hosted in the
cloud. The Subscription Processing layer acts as an event
manager for routing events from hubs/devices to SmartApps
that are subscribed to a specific SmartDevice/event. The
SmartApp Management & Execution layer provides access
rights to the stored data, and is responsible for the execution
of the SmartApp when triggered via either subscriptions or
external calls. The top layer of the stack is the Web UI layer
which provides web services and APIs in order to support the
integration with third party applications.

The SmartThings cloud backend has two important function-
ality. First, it hosts and run SmartApps in a closed source
environment. Second, it runs the virtual software image of
the physical SmartDevice. In other words, it provides the
abstraction and intelligence layers as well as web services that
support the application layer.

2) Smart Applications Specifications: SmartApps should be
implemented using a web-based IDE, offered by SmartThings,
and in Groovy programming language [112]. Following a
particular structure, a SmartApp is composed of five sections:
definition, preferences, predefined callbacks, event handlers,
and mappings. The latter is optional and only required for
cloud-connected SmartApps. The definition section holds the
metadata of the application (e.g. application name, author,
etc.). The preferences section is responsible for defining the
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TABLE I: Examples of Capabilities in SmartThings

Resource Name Capability Command Attributes
Switch capability.switch on(), off() switch(status: string)
Energy Meter capability.energyMeter - energy(status: Integer)
Thermostat capability.thermostat off(), heat(), cool(), fanOn(), ... temperature, thermostaatMode(status: string)
Smoke Detector capability.smokeDetector - smoke(status: string) //possible values:detected, clear, or tested
Notification capability.notification deviceNotification(status: string) -

target group of devices, specifying their capabilities and then
reflecting the information to the user interface for interaction
purposes. The pre-defined callbacks are methods already de-
fined and automatically called upon meeting some conditions
during the life cycle of the SmartApp. Finally, the event
handlers section contains the handler methods of the various
events.

3) Hardware Specification: SmartThings platform supports a
wide variety of IoT devices that may either integrate with the
SmartThings hub or connect directly to the cloud backend.
These devices are manufactured by several vendors like Sam-
sung, Google, Amazon, Philips Hue and many others. The only
required specification is the ability to communicate using one
of the compatible protocols.

4) Security Features: SmartThings has a security architecture
that specifies what SmartDevices a SmartApp may access
and what services can a SmartApp utilize in the authorized
SmartDevice. In the following, we are discussing the security
attributes verified by this architecture.

• Authentication: Integrating new SmartDevice in Smart-
Things environment involves the use of OAuth/OAuth2
protocol for authenticating this SmartDevice and autho-
rizing SmartThings platform to access its capabilities.
Cloud- and LAN-connected devices follow a bit different
procedure for authentication due to the use of other com-
munication protocols to bypass the gateway and connect
directly to the cloud. Both of them require identifying a
custom service manager SmartApp along with a device
handler for establishing connections, handling authen-
tication, granting authorization, and maintaining com-
munication. The main functions of the service manager
are handling authentication with 3rd party cloud service,
device discovery, initiating connection using OAuth pro-
tocol, and controlling SmartDevice actions. The device
handler is responsible for parsing messages being sent
or received by the corresponding SmartDevice. On the
other hand, identifying the SmartDevice through out the
authentication process is based on many factors due
to the wide range of the supported SmartDevices from
various vendors. Examples of such factors include unique
identifier e.g. serial number, media access control (MAC)
address, unique IP address, and so on.

• Authorization and Access Control: Accessing Smart-
Devices using SmartApps follows the policies governed
by the SmartThings Capability model. Capabilities is an
important concept in the underlying architecture which
belongs to a logical layer that provides an abstraction of
the capabilities of SmartDevices. The SmartApp should

ask for a permission to use a capability offered by a
SmartDevice. The capability, as identified by its name,
is composed of a set of commands and their associated
attributes. Commands are methods or functions to per-
form some actions on the SmartDevice, whereas attributes
are input parameters representing the state of the device.
Table I provides some examples of some capabilities in
the SmartThings platform. As a consequence of applying
this model, installing a battery-monitoring SmartApp
will be authorized to use the capability of battery and
prevented from accessing other resources or capabilities
supported by the SmartDevice.
All SmartApps are executed by the SmartThings ecosys-
tem. This means that these apps run either in the
closed-source cloud or on the SmartThings hub. The
SmartThings infrastructure environment applies Kohsuke
sandboxing technique [113] and isolates both SmartApps
and SmartDevices (Device Handler instances) from each
other [87]. In the sense of providing a highly controlled
environment by Groovy, Kohsuke sandbox is an efficient
implementation that isolates untrusted running pieces of
code and allows only method calls that are predefined
in a white list, stored in the restricted operating system.
Developers can not create their own classes or load
external libraries in such environment and once they
publish a SmartApp or a SmartDevice, a private isolated
data store is assigned.

• Secure Communication: The SmartThings Hub is
a security-enabled Z-Wave product. When a security-
enabled Z-Wave device is added to the Hub’s network,
communication will be encrypted using 128-bit AES. As
the hub also supports the ZigBee protocol, it provides the
same security guarantees for ZigBee-enabled products. In
general, communications between all building blocks of
the SmartThings ecosystem is performed over a SSL/TLS
protocol.

V. DISCUSSION

The IoT is where the Internet meets the physical world, in
which, a completely new dimensions to security should be
investigated as the attack threat moves from manipulating
information to controlling actuations. The frameworks, in-
cluded in this survey, approach IoT from the perspectives and
priorities of their vendors. At the hardware level, there is a
gap between these frameworks in terms of compatibility. This
issue is due to the requirements and dependencies of the other
components of the ecosystem of each framework (e.g. OS,
security requirements). For example, IETF Class-1 IoT devices
can be integrated with AWS IoT framework, and they are not
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supported in Brillo/Weave because they do not have sufficient
memory to allocate the operating system. HomeKit connects
only to IoT devices that meet the minimum level of security by
supporting Apple’s MFi licensed technology. At the software
level, some frameworks support any programming language
for apps development (e.g. AWS IoT), whereas some others are
limited to specific programming languages (e.g. SmartThings
supports only Groovy). At the security level, each framework
encapsulates its own security logic and applies the model that
implements this logic. However, they follow the same trend
and enforce the same security standards in some aspects. For
example, for securing communications between IoT elements,
they all use SSL/TLS protocol. For access control, they behave
a little bit differently; some of them implements sandboxing
techniques and some others propose their own models (e.g.
capability model in SmartThings, configuration files in Calvin,
etc.). Various cryptography primitives and cipher suites are
supported by each framework depending on the availability
of either supported software libraries or hardware modules.
Techniques used to perform the mutual authentication between
the involved parties in each framework are limited to the
coverage domain and the capabilities of communication pro-
tocols. Theoretically, the presented security architectures seem
to be robust and immune against potential threats. However,
design flaws still exposes users to significant security risks
if good practices in both design and implementation are not
followed. Fernandes et al. [87] constructed four proof-of-
concept attacks by exploiting two design flaws in SmartThings
framework. On the other hand, some security challenges are
still not handled by the majority of IoT frameworks. The vast
majority of IoT devices depend on the commercial of the
shelf (COTS) microcontrollers, and these devices are deployed
without hardware security support. However, the design of the
security models of the current frameworks does not consider
these devices. Encryption techniques need higher computing
power than what the simplest type of IoT devices can provide.
Some frameworks (e.g. HomeKit) create and inject the secret
key of the IoT device prior deployment to be used for the
whole lifetime of the device. This key can’t be changed after
deployment. This increases the overall on-boarding time and
threatens the privacy as, generally, IoT entities may not be
owned by a single user (e.g. selling or exchanging this device
between multiple users). Moreover, the embedded device may
outlive the encryption algorithm lifetime, causing a cavity in
the security architecture. For example, smart meters could last
beyond 40 years, whereas crypto algorithms have a limited
lifetime before they are broken. Therefore, they need to be
updated frequently. Physical protection is still another security
challenge couldn’t be handled easily in IoT frameworks.
Deployed IoT devices can be stolen or moved from their
locations. This requires a physical protection of the IoT device
to secure sensitive information in its memory. Addressing the
privacy of the outlined frameworks was challenging due to
the lack of information in some of them. Privacy should be
ensured in all levels of the architectures. SDKs offered to
third party developers to implement their IoT apps should
preserve privacy in terms of preventing generating traceable
signatures of the location and behavior of the individuals by

applications. Finally, the flexibility of the security framework
is a requirement. For example, If a cloud server is undergoing
a Denial of Service (DoS) attack, the secure availability of
data for end-users should be verified by outsourcing it from a
secondary server. For a critical industrial processes that rely
on time, the availability of data is of paramount importance.
This feature is not ensured by frameworks such as Kura as it
is M2M framework and does not offer its own cloud system.
The user of Kura has to handle it himself by choosing a cloud
server that meet this property.

Table II presents a comparison of the characteristics of each
IoT framework.

VI. CONCLUSION

The IoT market is growing rapidly and as a consequence the
attention has shifted from proposing single IoT elements and
protocols towards application platforms in order to identify
frameworks supporting the standard IoT suites of regulations
and protocols. This study has covered a subset of com-
mercially available frameworks and platforms for developing
industrial and consumer based IoT applications. The selected
frameworks have the same design philosophy in terms of
identifying cloud-based applications by centralizing distributed
data sources. However, they followed various approaches in
order to apply this philosophy. A comparative analysis of
the frameworks was conducted based on the architecture,
hardware compatibility, software requirements, and security.
We highlighted on the security measures of each framework
as verifying the various security features and immunity against
attacks is one of the most important contemporary issues
facing the Internet of Things.
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TABLE II: A brief summary of the characteristics of IoT frameworks

IoT Framework SmartThings AWS IoT Calvin Brillo/Weave Kura ARM Mbed HomeKit Azure IoT

Company Samsung Amazon Ericsson Google Eclipse ARM Apple Microsoft

Architecture Components

+ Cloud Backend
+ Smart Devices
+ SmartThings Hub
+ SmartThings Home App.

+ Cloud services
+ Smart devices
+ Device Gateway
+ Rules Engine
+ Registry Unit
+ Device Shadow

+ Actors: smart embedded devices,
smart phones, cloud, servers.
+ Flow based computing

+ physical devices with
Brillo/Android as OS
+ OTA servers
+ Cloud Services

Java/OSGi based.

+ Mbed OS
+ Mbed device Connector
+ mbed Cloud
+ mbed Client
+ ARM Cortex-M MCU

+ Home Conf. D.B.
+ HAP
+ HomeKit API
+ HomeKit-enabled devices

+ Cloud backend
+ Cloud Services
+ Cloud Gateway
+ Smart Devices

Programming Language Groovy
Any language can use
Restful API

+ CalvinScript
+ Python
+ others

Any programming language can talk
through Weave SDK Java

+ C++ for device side
+ multiple for user side

+ Swift
+ Objective-C

+ C
+ Node.js
+ Java
+ Python
+ .Net

Hardware Dependencies + SmartThings Hub + (optionally) AWS hub NONE NONE NONE + ARM MCU
+ (optionally) Apple TV
+ (optionally) HomeKit bridge + Azure IoT Hub

Software Dependencies The Home app. NONE NONE
+ Brillo OS
+ Weave SDK + JVM 7.0 or later

+ mbed OS
+ mbed Client

+ iOS
+ watchOS
+ tvOS
+ HomeKit app.

NONE

Compatible Hardware
All MCUs that support
compatible communication
protocols.

Any MCU can be
configured using C, arduino
platforms, or Node.js

Any MCU with
communication capabilities

Any MCU with
memory ¿= 35 MB

Linux based devices that
support JVM 7.0+

+ 32 bits ARM Cortex-M MCUs

+ All devices that support
Apple’s MFi licensed technology
+ All devices can connect to
HomeKit bridge

All devices that have 64KB RAM
and RTC and support SHA-256

Supported Application
Protocols + HTTP

+ HTTP
+ WebSockets
+ MQTT

+ HTTP
+ HTTP
+ XMPP

+ MQTT
+ CoAP

+ CoAP
+ HTTP
+ MQTT
+ others

+ HTTP
+ HTTP
+ MQTT
+ AMQP

Supported Communication
Protocols

+ ZigBee
+ Z-wave
+ WiFi
+ BLE

All

+ WiFi
+ i2c
+ BT
+ others

+ WiFi
+ BLE
+ Ethernet

+ WiFi
+ BLE All

+ WiFi
+ BLE
+ ZigBee
+ Z-wave

+ WiFi
+ ZigBee
+ Z-wave
+ others

Authentication + OAuth/ OAuth2 protocol.
+ X.509 Certificates
+ AWS IAM
+ AWS Cognito

+ X.509 Certificates
+ Sim-based Identity

+ OAuth 2.0
+ TEE + secure sockets

+ X.509 Certificates
+ other standards (mbed TLS)

+ Ed25519 public/private key signature
+ Curve25519 keys

+ X.509 certificates
+ HMAC-SHA256 signature

Access Control
+ Capability mode/ Rules
for granting permissions
+ Sandboxing Technique

+ IAM Roles
+ Rules Engine
+ Sandboxing

+ Configuration files
+ SELinux
+ ACL
+ Sandboxing: UID&GID

+ Security Manager
+ Runtime Policies

+ uVisor
+ MPU

+ Sandboxing
+ iOS security architecture
+ ASLR Technique

+ Azure Active
Directory Policies
+ Access control rules
of Azure IoT hub

Communication + SSL/TLS + SSL/ TLS + SSL/ TLS + SSL/TLS + SSL/TLS +mbed TLS
+ TLS/DTLS
+ Perfect Forward Secrecy + TLS/DTLS

S
ec

u
ri

ty

Cryptography + 128-bits AES protocol.
+ 128-bits AES
+ other primitives + ECC protocol

Full disk encryption
supported by Linux kernel

Multiple cryptography
primitives

+ mbed TLS
+ Hardware Crypto.

+ 256-bits AES
+ many others

Multiple cryptography
primitives
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