
MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Freestyle, a randomized version of ChaCha for
resisting offline brute-force and dictionary attacks

P. Arun Babu and Jithin Jose Thomas

Abstract—This paper introduces Freestyle, a randomized and
variable round version of the ChaCha cipher. Freestyle uses
the concept of hash based halting condition where a decryption
attempt with an incorrect key is likely to take longer time to
halt. This makes Freestyle resistant to key-guessing attacks i.e.
brute-force and dictionary based attacks. Freestyle demonstrates
a novel approach for ciphertext randomization by using random
number of rounds for each block, where the exact number
of rounds are unknown to the receiver in advance. Freestyle
provides the possibility of generating 2128 different ciphertexts
for a given key, nonce, and message; thus resisting key and nonce
reuse attacks. Due to its inherent random behavior, Freestyle
makes cryptanalysis through known-plaintext, chosen-plaintext,
and chosen-ciphertext attacks difficult in practice. On the other
hand, Freestyle has costlier cipher initialization process, typically
generates 3.125% larger ciphertext, and was found to be 1.6
to 3.2 times slower than ChaCha20. Freestyle is suitable for
applications that favor ciphertext randomization and resistance
to key-guessing and key reuse attacks over performance and
ciphertext size. Freestyle is ideal for applications where ciphertext
can be assumed to be in full control of an adversary, and an
offline key-guessing attack can be carried out.

Index Terms—Brute-force resistant ciphers, dictionary based
attacks, key-guessing, probabilistic encryption, Freestyle,
ChaCha.

I. INTRODUCTION

ARandomized (aka probabilistic) encryption scheme in-
volves a cipher that uses randomness to generate different

ciphertexts for a given key, nonce (a.k.a. initial vector), and
message. The goal of randomization is to make cryptanalysis
difficult and a time consuming process. This paper presents the
design and analysis of Freestyle, a randomized and variable-
round version of ChaCha cipher [1]. ChaCha20 (i.e. ChaCha
with 20 rounds) is one of the modern, popular (for TLS [2]
and SSH [3], [4]), and faster symmetric stream cipher on
most machines [5], [6]. Even on lightweight ciphers, realistic
brute-force attacks with key sizes ≥ 128 bits is not feasible
with current computational power. However, algorithms and
applications that have lower key-space due to: (i) generation
of keys from a poor (pseudo-)random number generator [7]–
[12]; (ii) weak passwords being used to derive keys; and,
(iii) poor protocol or cryptographic implementations [13]–[15]
are prone to key-guessing attacks (brute-force and dictionary
based attacks). Also, steady advances are being made in the ar-
eas of GPUs [16]–[18], specialized hardware for cryptography
[19]–[24], and memories in terms of storage and in-memory
processing [25]–[27] to speedup key-guessing attacks.

P. Arun Babu (arun.babu@rbccps.org) is with the Robert Bosch Center for
Cyber-physical Systems, Indian Institute of Science, Bengaluru.

Jithin Jose Thomas (jithint@iisc.ac.in) was with the Department of Elec-
trical Communication Engineering, Indian Institute of Science, Bengaluru.

Techniques such as introducing a delay between incor-
rect key/password attempts, multi-factor authentication, and
CAPTCHAs (Completely Automated Public Turing test to tell
Computers and Humans Apart) are being used to resist brute-
force attacks over the network (i.e. on-line brute-force attack).
However, such techniques cannot be used if the ciphertext is
available with the adversary (i.e. offline brute-force attack);
for example: encrypted data gathered from a wireless channel,
or lost/stolen encrypted files/disks. To resist offline brute-
force attacks, key-stretching and slower algorithms [28] are
preferred. Although, such techniques are useful, they are much
slower on low-powered devices, and also slow down genuine
users.

This paper makes three main contributions: (i) We demon-
strate the use of bounded hash based halting condition, which
makes key-guessing attacks less effective by slowing down the
adversary, but remaining relatively computationally simpler
for genuine users. We introduce the key guessing penalty,
which is a measure for a cipher’s resistance to key-guessing
attacks. The physical significance of KGP is that the adversary
would require at least KGP times computational power than
a genuine user to launch an effective key-guessing attack; (ii)
We demonstrate a novel approach for ciphertext randomization
by using random number of rounds for each block of message;
where the exact number of rounds are unknown to the receiver
in advance; (iii) We introduce the concept of non-deterministic
CTR mode of operation and demonstrate the possibility of
using the random round numbers to generate 2128 different
ciphertexts - even though the key, nonce, and message are
the same. The randomization makes the cipher resistant to key
re-installation attacks such as KRACK [13] and cryptanalysis
by XOR of ciphertexts in the event of the key and nonce
being reused.

Freestyle attempts to address the following two issues:
(i) reuse of a key and nonce combination is not secure in
deterministic stream ciphers, as demonstrated attacks such
as Key installation attack (KRACK) [13]. And maintaining
a list of used keys and nonces is an overhead, especially
for constrained and low-powered devices, (ii) Existing ciphers
take nearly the same amount of time to decrypt a message
irrespective of whether the key used is correct or not. This
makes lightweight ciphers prone to key-guessing attacks. The
proposed decryption algorithm in Freestyle is designed to be
computationally simpler for a user with a correct key; but, for
an adversary with an incorrect key, the decryption algorithm
is likely to take longer time to halt. Thus, each brute-force
or dictionary attack attempt is likely to be computationally
expensive and time consuming.

The rest of the paper is structured as follows: Table I

ar
X

iv
:1

80
2.

03
20

1v
2

 [
cs

.C
R

]
 1

9
Fe

b
20

18

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

TABLE I
LIST OF SYMBOLS

Notation Description
Rmin The minimum number of rounds to be used

for encryption. Rmin ∈ [1, 216]
Rmax The maximum number of rounds to be used for

decryption. Rmax ∈ [1, 216] and Rmax ≥ Rmin.
R Number of rounds used to encrypt the current

block of message. R = random(Rmin, Rmax)

Ri Number of rounds used to encrypt ith block of
message. Ri = random(Rmin, Rmax) and i ≥ 0.

r The current round number. r ∈ [Rmin, R]
h() Freestyle hash function which generates a 16-bit hash.
HI Round intervals at which a 16-bit hash has to be

computed. HI ∈ [1, Rmin], Rmin|HI , Rmax|HI .
HC The complexity of Freestyle’s hash function

to be used. HC ∈ {1, 2, 3}
IC The log2(iterations) (or number of pepper bits)

to be used in during initialization. IC ∈ [8, 32]
pepper The pepper value indicating the number of iterations

required during initialization.
pepper = random(0, 2IC − 1).

CRi
The number of rounds computed using an expected
hash and pepper for ith block of message.

Epepper The expected value of pepper.
ERw The expected number of rounds executed by an

adversary during cipher initialization.
ER The expected number of rounds used by a genuine user

to encrypt/decrypt a block of message. If a uniform

distribution is used, then ER =
Rmin + Rmax

2
.

v (in red color) An input variable.
v (in green color) A variable derived from one or more input variables.
v (in blue color) An output variable.

v(r) The value of v after r rounds of Freestyle
If v(0) is not explicitly defined, then v(0) = 0.

v[n] nth element of v.
v1 || v2 Concatenation of v1 and v2.
v1 | v2 v2 is a factor of v1.

v1 ⊕ v2 Bit-wise XOR of v1 and v2.
v1 � v2 Addition of v1 and v2 modulo 232.
v1 � v2 Subtraction of v1 and v2 modulo 232.

mod The modulo operator.
v∗ Set of values guessed by an adversary for v.

cf (v1, v2) A set containing common factors of
integers v1 and v2.

|v| The length of v in bits.
Nb The number of blocks in a message.

Nb =

⌈ |message|
512

⌉
Prn(X = 1) The probability of collision of a 16-bit hash

at the nth trial when using an incorrect key.

Nc The total number of ciphertexts possible for a given:
key, nonce, and message.

Nr The number of ways a block of message can be
encrypted by using random number of rounds.

Nr =

(
Rmax − Rmin

HI

+ 1

)
T (o) The expected time taken to execute the operation o.
S The 512-bit cipher state for a given block of message.

counter The counter in CTR mode of operation.
null An empty string.

and Table II lists the notations and abbreviations used in
the paper; section II presents the background information
on ChaCha cipher and its variants; section III describes the
Freestyle cipher; section IV presents results and cryptanalysis
of Freestyle cipher; section V presents related work; and
section VI concludes the paper.

II. CHACHA CIPHER AND VARIANTS

ChaCha20 [1] is a variant of Salsa20 [29], [30], a stream
cipher. ChaCha20 uses 128-bit constant, 256-bit key, 64-

TABLE II
LIST OF ABBREVIATIONS

Abbreviation Expansion
ARX Add-Rotate-XOR

CAPTCHA Completely Automated Public Turing test
to tell Computers and Humans Apart

CCA Chosen Ciphertext Attack
CPA Chosen Plaintext Attack
CTR Counter mode of operation
DoS Denial of service

HKDF Halting Key-Derivation Function
KGP Key Guessing Penalty
KPA Known Plaintext Attack

KRACK Key Re-installation Attack
MAC Message Authentication Code
MITM Man In The Middle Attack

NONCE Number used once
QR Quarter Round
SSH Secure Shell
TLS Transport Layer Security

bit counter, and 64-bit nonce to form an initial cipher state
denoted by S(0), as:constant[0], constant[1], constant[2], constant[3]

key[0], key[1], key[2], key[3]
key[4], key[5], key[6], key[7]

counter[0], counter[1], nonce[0], nonce[1]

ChaCha20 uses 10 double-rounds (or 20 rounds) on

S(0); where each of the double-round consists of 8 quarter
rounds(QR) defined as:

QR (S[0], S[4], S[8], S[12])
QR (S[1], S[5], S[9], S[13])
QR (S[2], S[6], S[10], S[14])
QR (S[3], S[7], S[11], S[15])

(1)

QR (S[0], S[5], S[10], S[15])
QR (S[1], S[6], S[11], S[12])
QR (S[2], S[7], S[8], S[13])
QR (S[3], S[4], S[9], S[14])

(2)

The 16 elements of the cipher-state matrix are denoted
by using an index in range [0,15], and the quarter-round
QR(a, b, c, d) is defined as:

a← a� b; d← d⊕ a; d← d≪ 16;
c← c� d; b← b⊕ c; b← b≪ 12;
a← a� b; d← d⊕ a; d← d≪ 8;
c← c� d; b← b⊕ c; b← b≪ 7;

(3)

After 20 rounds, the initial state (S(0)) is added to the
current state (S(20)) to generate the final state. The final state
is serialized in the little-endian format to form the 512-bit
key-stream, which is then XOR-ed with a block (512 bits)
of plaintext/ciphertext to generate a block of ciphertext/plain-
text. The above operations are performed for each block of
message to be encrypted/decrypted.

ChaCha is a simple and efficient ARX (Add-Rotate-XOR)
cipher, and is not sensitive to timing attacks. ChaCha has
two main flavors with reduced number of rounds i.e. with
8 and 12 rounds. ChaCha8 is considered secure enough as
there are no known attacks against it yet. ChaCha20 has two
main variants: (i) IETF’s version of ChaCha20 [2], [31] which
uses a 32-bit counter (instead of 64-bit) and 96-bit nonce
(instead of 64-bit); and (ii) XChaCha20 [32], which uses 192-
bit nonce (instead of 64-bit), where a randomly generated

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

nonce is considered safe enough [33]. The large nonce in
XChaCha20 makes the probability of nonce reuse low.

III. THE Freestyle CIPHER

A. Hash based halting condition

Traditionally ciphers are designed to use fixed number of
rounds in the encryption and decryption process. This makes
the cipher to take nearly the same amount of time to execute
the decryption function irrespective of the key being correct or
incorrect. This is advantageous for an adversary if the cipher
is lightweight and parallelizable. To resist such attacks, we use
the concept of hash based halting condition.

The purpose of hash based halting condition is to make
decryption take longer time to halt if an incorrect key is used.
It works on the principle that the exact number of rounds to
decrypt a block of message is not shared with the receiver,
but can be computed by the receiver using the correct key
and one or more hashes. The hashes must be shared by the
sender in cleartext along with the ciphertext. The number of
rounds (R) to be used to encrypt a given block is generated
randomly by the sender from the range [Rmin, Rmax]; and
only an expected hash of the state of the cipher after running
R rounds are shared. The expected hash acts as a stop
condition for decrypting a block of message; and the receiver
has to execute the decryption algorithm till the computed hash
equals the expected hash. For an adversary using brute-force
or dictionary based attack, since the key is incorrect, during
the decryption process the hash is expected to take longer
time to match (with high probability). This property makes
offline brute-force and dictionary based attacks less efficient.
The hash based halting condition is only applicable to ciphers
having a symmetric structure (e.g. use of feistel network).
Remark 1 For better security, R must be generated using a
good uniform random number generator like hardware random
number generator or cryptographically secure pseudo-random
number generator (e.g. arc4random [34]).
Remark 2 The proposed approach makes the assumption that
the hash function is secure enough, that from the hash it is
computationally infeasible to compute the number of rounds,
key, or any other secret information.

B. Cipher parameter

The Freestyle cipher is formally defined as
Freestyle(Rmin, Rmax, HC , HI , IC); where Rmin, Rmax

indicate the minimum and maximum number of rounds to be
used for encryption/decryption respectively. HC ∈ {1, 2, 3},
indicates the level of complexity of hash function to be
used; where 1 indicates the lowest complexity, the highest
performance, and the lowest security; and 3 indicates the
highest complexity, the lowest performance, and the highest
security. HC is also used to determine the number of quarter
rounds (QRs) to be used to compute the hash. HI indicates
the round intervals at which a 16-bit hash of cipher-state
must be computed. And IC ∈ [8, 32] indicates the number
of bits used to generate a random number (pepper) which is
chosen between [0, 2IC). The pepper value is used as number
of iterations performed to initialize the cipher. The pepper

in general is a number which has the same function as salt,
but is usually of fewer bits, and is not stored along with
the hash or ciphertext (i.e. can be forgotten by the sender
after use) [35], [36]. At initialization, Freestyle concatenates
Rmin, Rmax, HC , and HI ; to generate a unique 64-bit
cipher parameter as shown in the figure 1.

Rmin Rmax HI HC IC
(16-bits) (16-bits) (16-bits) (8-bits) (8-bits)

Fig. 1. The 64-bit cipher parameter

The cipher parameter is to be XOR-ed with the
key (equation 6), which makes encryption with one
cipher parameter incompatible with other cipher parameters
by design; thus cryptanalysis data collected for a weaker
cipher parameter cannot be used directly for other parame-
ters. For a given cipher parameter, the total number of ways
a block of message can be encrypted using random number
of rounds (in the range [Rmin, Rmax]) which is denoted by
Nr, given as:

Nr =
Rmax −Rmin

HI
+ 1 (4)

Remark 3 While choosing a cipher parameter, it must be
noted that the performance of Freestyle is ∝ HI

HC×IC . The
value of Rmin must be chosen carefully based on the required
security level, and is recommended that Rmin be at least 8 as
there are no known attacks for ChaCha8. For security-critical
applications though, Rmin ≥ 12 is preferred. To have better
randomization, it is recommend that Nr ≥ 4; also, as there
are only 216 unique possible hashes represented by a 16-bit
unsigned integer; Rmin, Rmax, and HI must be chosen such
that the following relationship holds (from equation 4):

3 ≤ Rmax −Rmin

HI
≤ 65535 (5)

Also, for better security, the recommended values for HC is
3 or 2, and for HI it is 1 or 2. IC must be chosen based on
performance and the security level required, and IC ≥ 20 is
recommended for security-critical applications. �

C. The initial cipher state

The initial cipher state of Freestyle, denoted by S(0) (equa-
tion 6) is a 4×4 matrix of 32-bit words consisting of 128-
bit constant, 256-bit key, 32-bit counter, and 96-bit nonce.
Unlike ChaCha, the counter size has been reduced to 32-
bit as in practice most of the protocols such as the SSH
transport protocol [37] recommend re-keying after 1GB of data
sent/received.

The initial cipher state acts the input for generating a key-
stream for a block of message. The cipher state of Freestyle
is similar to the IETF’s version of ChaCha, except that the
constant, key, and counter is modified as shown in equation
6. The initial-state has been modified in such a way that: either
a publicly known value is XOR-ed with a secret element of
the matrix, or a secret value is XOR-ed with a publicly known
element of the matrix.

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

Here, we introduce the non-deterministic CTR mode of
operation where, the counter is XOR-ed with a random value
that is independent of the key or nonce (unlike randomized-
CTR mode where the random number is derived from key
and/or nonce). Hence, the property of CTR mode of operation:
that the difference between the counters of (n + 1)th block
and nth block is equal to 1 may no longer hold. The random
number to be XOR-ed with counter in Freestyle is denoted
by random word[3], and its value is initialized during cipher
initialization (section III-E and figure 4). The Freestyle cipher
starts with the plain CTR mode of operation and shifts to
non-deterministic CTR mode after 28 blocks (i.e. after random
number initialization), thus making cryptanalysis difficult.

In equation 6, the random words indicate the 128-bit ran-
dom number generated by the sender, which can be computed
by the receiver using the correct key. The random words
are initially set to 0 by both sender and receiver and must be
computed while initializing the cipher (section III-E). Using
the initial cipher state, Freestyle uses ChaCha’s approach to
generate the final state (equations 1, 2, 3); however unlike
ChaCha, Freestyle supports both even and odd number of
rounds.

D. Hash function

Freestyle’s hash function is used to generate the hash based
halting condition described in section III-A. The hash function
(figure 3) generates a 16-bit hash using: (i) the current round
number (r), (ii) the first 128× (HC +1) bits of current cipher
state (S(r)), (iii) the 128-bit random words, and (iv) the
previous hash (i.e. hash(r−HI)).

To resist timing-based or side-channel attacks, the hash
function uses Add-Rotate-XOR (ARX) operations, the same
set of operations used by Freestyle quarter-round (QR). Also,
unlike a typical cryptographic hash function, Freestyle does
not require high collision-resistant hash function. The proba-
bility of 1

216 for collision is enough for its purpose.

E. Random number initialization

As mentioned earlier in section III-A, Freestyle uses ran-
dom number of rounds to encrypt a message (equation 4).
To randomize ciphertext even further, Freestyle requires the
sender to generate a 128-bit random number denoted by
random words; that will act as one of the inputs for encryp-
tion and decryption. Freestyle enables a sender to securely
send random words to the receiver even though the key and
nonce may be reused.

After the cipher parameter is computed (section III-B),
the following temporary configuration is set irrespective of the
cipher parameter:

Rmin = 12, Rmax = 36, HC = 3, HI = 1 (7)

This is done to ensure there is enough entropy even if weaker
values of Rmin and Rmax are provided by the user; and also
in cases where the parameters can be downgraded in Man in
the middle (MITM) attacks such as Logjam [15].

The sender then sets random words to 0 and generates a
random pepper (p) in the range [0, 2IC), which is added to

the initial cipher-state. The sender then generates 28 random
numbers (R0 to R27) in the range [12, 36] using a uniform
distribution. Each of the 28 random numbers is then used
as number of rounds (equations 1,2, and 3) in Freestyle
cipher to generate 28 hashes after executing Ri rounds,
where i ∈ [0, 27] (figure 3). It must be noted that for each
of the 28 round numbers, no encryption is performed, only
expected hashes are generated. The sender also ensures that
hash collisions are handled correctly, which is a crucial step
for correct decryption by the receiver. The sender then sends
the 28 hashes to the receiver, and computes random words
from Ri values as shown in figure 4.

On the other hand, the receiver first sets the random words
to 0; and increments S(0)[3] (i.e. the constant[3]) and for each
increment, computes 28 hashes, until the computed hashes
equals with the received 28 hashes. Receiver then computes
the R0 to R27 from: key, nonce, and 28 hashes. Using which,
random words are computed as shown in figure 4.

Finally, both sender and receiver will: reset the counter
to 0, set Rmin, Rmax, HC , and HI to their original values,
and the new initial cipher state is computed using equation
6. From now on, the new initial cipher state will be used for
encryption/decryption (section III-F). The steps to initialize
the Freestyle cipher are described in Algorithm 1 and 2.
Remark 4 The rationale behind using 28 random number
of rounds to generate a 128-bit random words is: as the
total possible random numbers that a sender can choose
between [12, 36] using HI = 1 is 25 (equation 4). Thus, if
the sender has to generate n random numbers, and as the
random words is a 128-bit value, 25n ≥ 2128 to be a good
random number generator. Thus, n must be at least 28. The
random words provide the possibility of generating 2128

different ciphertexts for a given key, nonce, and message.

Remark 5 The proposed approach is different from generat-
ing a 128-bit random number (R) and sending it in encrypted
form. For example:

encrypt(R, key) || encrypt′(message, key,R) (8)

In the latter case, for stream-ciphers, if the key and nonce
are reused, there is a possibility of cryptanalysis by XOR-ing
ciphertexts.

F. Encryption and decryption

After the computation of random words and the new
initial cipher state (S(0)); to encrypt a block of message, the
sender generates a random number (R) in the range [Rmin,
Rmax], using which a key-stream and a hash are generated
after R rounds of Freestyle. The plaintext is XOR-ed with the
key-stream to generate the ciphertext. The ciphertext along
with the expected hash is sent to the receiver.

On the other hand, to decrypt a block of message, the
receiver computes the S(r) using n number of HI rounds of
Freestyle until Rmax rounds or until the computed hash at
the end of each HI rounds equals with the received hash.
After which, a key-stream is generated which is then XOR-ed
with the ciphertext to generate the plaintext. The steps to

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

S(0) =

 constant[0]
⊕

random word[0]

 ,

 constant[1]
⊕

random word[1]

 ,

 constant[2]
⊕

random word[2]

 , constant[3] key[0]
⊕

cipher parameter[0]

 ,

 key[1]
⊕

cipher parameter[1]

 , key[2], key[3]

key[4], key[5], key[6], key[7] counter
⊕

random word[3]

 , nonce[0], nonce[1], nonce[2]

(6)

encrypt

0⊕ random

ciphertext0

key, nonce

plaintext0

encrypt

1⊕ random

ciphertext1

key, nonce

plaintext1

· · · · · · encrypt

n⊕ random

ciphertextn

key, nonce

plaintextn

Fig. 2. Non-deterministic CTR mode of operation, where the counter is XOR-ed with a random number that is independent of the key and nonce

encrypt/decrypt a block (512 bits) of message is described
in Algorithm 3 and 4, and are to be performed for each block
of message to be exchanged.

Remark 6 If both sender and receiver have used the same
cipher parameter, random words, key, and nonce; then
the sender and receiver would have taken same number of
steps and operations (i.e. R rounds) to generate the key-stream
for a given block of message.
Remark 7 During initialization, Freestyle’s hash function
uses 512 bits of S(R) and 16 bit value of current round
number r as inputs to generate a 16-bit hash. Whereas during
encryption/decryption the hash function uses at least 256-bits
of S(R) and 128-bit random words. It is computationally
infeasible to compute the key or key-stream using brute-force
approach, as it would require at least 2320 operations (i.e.
256 bits of S(R) and at least 64 bits of Add-Rotate-XOR
result of r, hash(r−HI), and random words) to generate
all possible cipher states (or partial cipher-states in case of
encryption/decryption) that may collide with a given hash
(figure 3). Also, assuming the 16-bit hashes are equally spread
over 216 buckets, there are likely to be 2304 collisions.

IV. RESULTS AND DISCUSSIONS

A. Number of possible ciphertexts

For a given message of length |message| bits, the
message is divided into Nb =

⌈
|message|

512

⌉
blocks. Since,

each block can be encrypted with a random number (R) of
rounds in the range [Rmin, Rmax]. And since all the blocks

of the message use the 128-bit random words as input, the
total number of possible ciphertexts are:

Nc = 2128 × (Nr)
Nb (9)

From equation 9, as the number of blocks in a message
increases, the number of possible ciphertext increases expo-
nentially.

B. Resisting cryptanalysis

1) Known-plaintext attacks (KPA), Chosen-plaintext attacks
(CPA), and differential cryptanalysis: For a known or chosen
plaintext, due to the random behavior of Freestyle, even
if the nonce is controlled by the adversary, there are Nc

possible ciphertexts. Hence, the effort required in cryptanalysis
using known plaintext, chosen plaintext, differential analysis
increases Nc times.

2) Chosen-ciphertext attacks (CCA): In chosen-ciphertext
attacks we consider two cases based on the adversary’s ability
to control the nonce.

a) If nonce cannot be controlled by the adversary:
To generate a ciphertext, an adversary while initializing the
cipher (section III-E) has to provide 28 valid hashes, and at
least one valid hash for sending block(s) of ciphertext. As
a random round is chosen between [12,36] to initialize the
random words (equation 4), there are only 25 valid values
for hash. While performing decryption, the total possible
hashes that can be accepted by the receiver for a block of
ciphertext is Nr =

(
Rmax−Rmin

HI
+ 1
)

. And as there are
216 possible values for hash, to send a valid ciphertext, the

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

Algorithm 1 Freestyle initialization for the sender
1: procedure FREESTYLE INIT SENDER

Inputs: S(0), Rmin, Rmax, HI , HC

2: Save the values of Rmin, Rmax, HC , and HI

3: Set Rmin ← 12, Rmax ← 36, HC ← 3, HI ← 1
4: Set random word[i]← 0, ∀i ∈ [0, 3]
5: pepper ← random(0, 2IC − 1)
6: S(0)[3]← S(0)[3]� pepper

. Generate 28 hashes using 28 random number of rounds
7: for i← 0 to 27 do
8: {Ri, hash[i]} ← freestyle encrypt block (

S(0),
null,
random word,
Rmin,
Rmax,
HI ,
HC ,
i . the counter

)
9: end for

. Check if the receiver will find a hash collision between
0 and (pepper − 1). If yes, update Ri,∀i ∈ [0, 27]

10: S(0)[3]← S(0)[3]� pepper . Restore constant
11: for p← 0 to (pepper − 1) do
12: for i← 0 to 27 do
13: CRi

← freestyle decrypt block (
S(0),
null,
hash[i], . expected hash
random word,
Rmin,
Rmax,
HI ,
HC ,
i . the counter

)
14: if CRi

= 0 then
15: goto step 20 . Increment pepper and retry
16: end if
17: end for

18: Ri ← CRi
, ∀i ∈ [0, 27] . Found a collision

19: break

20: S(0)[3]← S(0)[3]� 1 . Retry
21: end for

22: Compute random words (as given in figure 4)
23: Restore the original values of Rmin, Rmax, HC , HI

24: S(0)[12]← 0 . Reset counter

25: return hash[i], ∀i ∈ [0, 27]
26: end procedure

r hash(r−HI)

� ⊕random word [0]

�16

�⊕

�12

�random word [2]
32 ⊕

�8

� random word [3]
32⊕

�7

random word [1]

�S(r)[0]

32

32

32 32

⊕

32

≪16

� S(r)[1]
32⊕

≪12

S(r)[2] �
32 ⊕

≪8

� S(r)[3]
32⊕

≪7

...
...

� S(r)[4HC + 3]
32⊕

≪7

32

⊕

16 bits 16 bits

hash(r)

16

Fig. 3. The Freestyle hash function - h(), for the round r (the size of variables
are in bits). Note that the value of hash(Rmin−HI) is always 0.

adversary has to send (28 + Nb) valid hashes. By brute-force
approach, the probability of such an event occurring is:

(
25

216

)28

×
(
Nr

216

)Nb

(10)

<
1

2317
(11)

Assuming a constant time cryptographic implementation to
check the validity of (28 + Nb) hashes, it is infeasible to
generate a ciphertext that can be accepted by a receiver. This

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

R7i

≪16

� R7i+1
32⊕

32

≪12

R7i+2 �
32 ⊕

≪8

� R7i+3
32⊕

≪7

� ⊕R7i+4

≪16

⊕

≪12

�R7i+6
32

� R7i+5
32

⊕

≪8

� R7i
32⊕

≪7

random word [i]

32

Fig. 4. Generation of random word[i], where i ∈ [0, 3] (the size of
variables are in bits)

makes chosen-ciphertext attacks difficult in practice if nonce
cannot be controlled by the adversary.

b) If nonce can be controlled by the adversary: In this
case, the adversary can launch CPA which can reveal (28 +
Nb) valid hashes. Thus, the adversary can replay them to
make the receiver accept arbitrary ciphertext of Nb blocks.

In either of the two cases, after successfully sending a
valid ciphertext, the adversary still has to guess the 128-
bit random words. It is computationally infeasible to know
which combination of key and random words the 28 hashes
map to.
Remark 8 It must be noted that Freestyle’s hash function
does not use message as an input. Hence, cannot prevent
ciphertext tampering. In practice, Freestyle like ChaCha must
be used with a message authentication code (MAC) such as
Poly1305 [38].

3) XOR of ciphertexts when key and nonce are reused: Let
us consider two messages M1 and M2 which when encrypted,
produce ciphertexts C1 and C2. In the event of key and nonce
being reused, in a deterministic stream cipher, C1⊕C2 = M1⊕
M2. Whereas in Freestyle, for |M1| and |M2| ≥ log2(Nc):

Pr(C1 ⊕ C2 = M1 ⊕M2) =
1

Nc
(12)

Algorithm 2 Freestyle initialization for the receiver
1: procedure FREESTYLE INIT RECEIVER

Inputs: S(0), cipher parameter, hash

2: Save the values of Rmin, Rmax, HC , and HI

3: Set Rmin ← 12, Rmax ← 36, HC ← 3, HI ← 1
4: Set random word[i]← 0, ∀i ∈ [0, 3]

5: for pepper ← 0 to (2IC − 1) do
6: for i← 0 to 27 do
7: CRi ← freestyle decrypt block (

S(0),
null,
hash[i], . expected hash
random word,
Rmin,
Rmax,
HI ,
HC ,
i . the counter

)
8: if CRi = 0 then
9: goto step 13 . Increment pepper and retry

10: end if
11: end for

12: break . Found all 28 valid round numbers (Ri)

13: S(0)[3]← S(0)[3]� 1 . Retry
14: end for

15: Compute random words (as given in figure 4)

16: Restore the original values of Rmin, Rmax, HC , HI

17: S(0)[12]← 0 . Reset counter

18: end procedure

The equation 12 indicates that Freestyle is resistant to key
re-installation attacks like KRACK [13]. Also, in existing
approaches of ciphertext randomization, in case of key and
nonce being reused, the random bytes to be shared with
receiver are prone to XOR attacks. However, this is not
possible with Freestyle, as only hashes are sent to the receiver.
And the random bytes are never sent to the receiver neither in
plain or encrypted form.

C. Resisting brute-force and dictionary attacks

Freestyle cipher can resist brute-force and dictionary attacks
in three ways: (i) By keeping the cipher parameter secret,
(ii) Restricting pre-computation of stream, (iii) Wasting adver-
sary’s time and computational power.

1) By keeping cipher parameter a secret: In Freestyle
cipher, the secrecy of the plaintext depends only on the secrecy
of the key; and the cipher parameter in general need not be
kept secret. The main purpose of cipher parameter (figure

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

Algorithm 3 Encryption of a block of message
1: procedure FREESTYLE ENCRYPT BLOCK

Inputs: S(0), plaintext, random word,
Rmin, Rmax, HI , HC , counter

2: hash← 0

3: collided[h]← false, ∀h ∈ [0, 216)

4: S(0)[12]← counter ⊕ random word[3]

5: R← random(Rmin, Rmax)

6: for r ← 1 to R do

7: Compute S(r) using Freestyle (Equations 1, 2)

8: if r ≥ Rmin and r|HI then
9: hash← h(S(r), r, random words, hash)

10: while collided[hash] = true do
11: hash← (hash+ 1)mod (216)
12: end while
13: collided[hash] = true
14: end if

15: end for

16: if plaintext = null then . While initialization
17: return {R, hash}
18: else
19: keystream← little endian(S(R) � S(0))
20: ciphertext← plaintext⊕ keystream

21: return {R, hash, ciphertext}
22: end if
23: end procedure

1) is to discourage reuse of cryptanalysis data collected from
weaker cipher parameters. However, if kept secret, it can
resist brute-force attacks. Assuming the adversary guesses that
Rmin and Rmax values are in the range [a, b], where a and b
are divisible by HI and a ≤ b. Then, the total possible values
of (Rmin, Rmax) adversary has to try is:

(
b− a

HI
+ 1

)
+

(
b− a

HI

)
+

(
b− a

HI
− 1

)
++ 1 (13)

or

(
b− a

HI
+ 1

)(
b− a

HI
+ 2

)
2

(14)

As HC ∈ {1, 2, 3} the number of possible values of
(Rmin, Rmax, HC) the adversary has to try is:

3

2
×
(
b− a

HI
+ 1

)(
b− a

HI
+ 2

)
(15)

Algorithm 4 Decryption of a block of message
1: procedure FREESTYLE DECRYPT BLOCK

Inputs: S(0), plaintext, expected hash, random word,
Rmin, Rmax, HI , HC , counter

2: R← 0
3: hash← 0

4: collided[h]← false, ∀h ∈ [0, 216)

5: S(0)[12]← counter ⊕ random word[3]

6: for r ← 1 to Rmax do

7: Compute S(r) using Freestyle (Equations 1, 2)

8: if r ≥ Rmin and r|HI then
9: hash← h(S(r), r, random words, hash)

10: while collided[hash] = true do
11: hash← (hash+ 1)mod (216)
12: end while

13: if hash = expected hash then
14: R← r
15: break
16: end if

17: collided[hash] = true
18: end if

19: end for

20: if plaintext = null then . While initialization
21: return R
22: else
23: keystream← little endian(S(R) � S(0))
24: plaintext← ciphertext⊕ keystream

25: return {R, plaintext}
26: end if
27: end procedure

If the adversary’s guesses for Rmin, Rmax is represented as
R∗min and R∗max, then:

R∗min = {a, a+ 1, .., b} (16)
R∗max ={a, a+ 1, ..., b} (17)

Such that the guessed Rmin ≤ Rmax, and the value of HI ∈
cf (Rmin, Rmax), where cf (Rmin, Rmax) is a set containing
common factors of Rmin and Rmax. Also, as IC ∈ [12, 36]
there are 25 possible values of IC . Then, the total possible
values of (Rmin, Rmax, HC , HI , IC) or cipher parameters
are:

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

∑
n∈R∗min

∑
m∈R∗max

m≥n

∑
h∈cf (m,n)

75

2

(
m− n

h
+ 1

)(
m− n

h
+ 2

)
(18)

For example, if an adversary guesses a = 8 and b = 32,
then using the equation 18, the effort required for the brute-
force attack increases by 42525 (≈ 215) times. Thus, for an
effective attack, the adversary has to depend on other sources
of information to guess the cipher parameter.

2) Restricting pre-computation of key-stream: In ChaCha,
the key-stream can be pre-computed for various keys if nonce
is known. Pre-computation of stream is advantageous for a
genuine receiver, as there is no need to wait for the data.
However, for an adversary, pre-computation of streams with
various keys is ideal to perform brute-force and dictionary
attacks.

In Freestyle, since the key-stream depends on the
random words and hash, the exact key-stream cannot be
pre-computed unless the sender sends expected hashes. This
however, also restricts pre-computation of key-stream for a
genuine receiver.

3) Wasting adversary’s time and computational resources:
Here we introduce the Key-guessing penalty (KGP) metric
which indicates the penalty an adversary has to pay in terms
of computational power if an incorrect key is used.

Definition : Key-guessing penalty (KGP) - The ratio of
expected time taken for attempting to decrypt a message using
an incorrect key and the expected time taken to decrypt a
message using a correct key (equation 19).

T (attempt to decrypt a message using a incorrect key)
T (decrypt a message using the correct key)

(19)

KGP is the measure of a cipher’s resistance to brute-force and
dictionary attacks. Based on KGP, a cipher can be classified
in to two categories (i) Ciphers with KGP ≤ 1, which are
not resistant to brute-force and dictionary attacks; and (ii)
KGP > 1, ciphers that are brute-force and dictionary attack
resistant. Ciphers with KGP > 1 are useful in scenarios where
an adversary has higher computational power (e.g. a high
end laptop) than the attacked system (e.g. a low powered IoT
device). Such ciphers forces the adversary to use a machine
that is at least KGP times faster than the attacked system, to
launch an effective attack.

Remark 9 While computing KGP, the probability that an
adversary can detect if the guessed key is incorrect must
be taken into account. For ciphers with KGP > 1, for a
given length of message, the amount of time required by
an adversary to detect if the attempted key is incorrect must
be greater than the time taken to attempt decryption using the
incorrect key.
Remark 10 KGP > 1 may also be achieved by using delays
and CAPTCHAs for each incorrect key attempt. However, this
this not due to the property of the cipher itself. Also, such

techniques are not useful in resisting offline brute-force and
dictionary attacks. �

If the sender uses uniform distribution to select the pepper
value, the Epepper will be 2(IC−1); however, for an adversary,
since the hashes are unlikely to match, would require 2IC

attempts. Hence, the maximum KGP one can expect using
uniform distribution is ≈ 2. To improve KGP, the sender must
use a right-skewed distribution which is kept secret and is
not needed to be shared with the receiver. A right-skewed
distribution is the one which tends to use smaller values for
pepper.
Remark 11 Irrespective of the distribution used to generate
pepper and the number of rounds for encryption/decryption,
to generate random words a good (pseudo-)random number
generator with uniform distribution must be used. �

As mentioned earlier in section III-E, during initialization
a temporary configuration of Rmin = 12, Rmax = 36, HI =
1, HC = 3 is set. When an adversary uses an incorrect key,
the probability of having a collision for a 16-bit hash changes
in each trial, and not all hashes have equal probability of
occurring. Also, it must be noted that hashes are picked
without replacement i.e. if a collision occurs, the hash is
incremented until there is no collision. Then, in the worst-case
scenario, the maximum difference between the probability of
getting two hashes which may occur at the 24th trial is:(

25

216 − 24

)
−
(

1

216 − 24

)
= 0.0003 (20)

which is negligible value for all practical purposes. Hence,
for simplicity, we present approximate results assuming that
all the hashes at a given trial are equally likely. Then, the
probability of colliding a 16-bit hash at the nth trial when an
incorrect key or pepper is used (denoted by Prn(X = 1)) is
given as:

1

216
, if n = 1

(
1

216 − n+ 1

)
×

n−1∏
i=0

(
216 − i− 1

216 − i

)
, Otherwise

(21)

Then, the expected number of rounds a user with an
incorrect key or pepper will execute is denoted by ERw can
be computed as given in equation 22, i.e. ERw ≈ 36.0095.

During the cipher initialization, for a correct key and
pepper, the expected number of rounds a user will execute
is 24 (i.e. average of 12 and 36). After initialization, Rmin,
Rmax, and HC are set to their original values, and while
decryption, if the expected number of rounds a genuine user
executes is denoted by ER. To compute KGP using equation
19, the adversary has to execute 2IC × ERw

rounds during
initialization, and ER rounds to decrypt a single block of
message. Where as a genuine user has to run Epepper×ERw

rounds during initialization, and 28 × 24 rounds when using
the correct pepper, and Nb×ER rounds to decrypt a message
of Nb blocks. Hence KGP is computed as:

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

ERw ≈
28∑
h=1

(
Nr∑
n=1

Prn(X = 1)

)h−1 [(Nr∑
n=1

(Rmin + nHI)Prn(X = 1)

)
+Rmax

(
1−

Nr∑
n=1

Prn(X = 1)

)]
≈ 36.0095

(22)

KGP =

2IC × ERw
+ ER ×

(
Nr∑
n=1

Prn(X = 1)

)28

Epepper × ERw + 28× 24 +Nb × ER
(23)

The probability of getting all the 28 hashes correct and
attempting to decrypt the first block of message using an
incorrect key is:(

Nr∑
n=1

Prn(X = 1)

)28

≈ 10−96 (24)

which is negligible for all practical purposes. Hence:

KGP ≈ 2IC × ERw

Epepper × ERw + 28× 24 +Nb × ER
(25)

i.e. for KGP > 1:

Epepper < 2IC −
(
672 +Nb × ER

36.0095

)
(26)

The value of Epepper, ER, and IC can be chosen con-
sidering the performance, security level, and the required
KGP. The figure 5 shows the result of KGP vs. Epepper

for Rmin = 8, Rmax = 32, HC = 3, HI = 1, ER = 20,
IC ∈ {20, 24, 28, 32}, and various message sizes 64 bytes to
4GB.

D. Better security for 128-bit keys

Though, not recommended, ChaCha supports 128-bit keys
by concatenating the key with itself to form a 256-bit key. In
Freestyle, cipher parameter and random words are used
to modify the initial state of cipher to provide an additional
128-bit random secret (in the form of random words). The
random words are statistically independent of the key and
nonce (equation 6); hence, for applications where 128-bit keys
have to be used, Freestyle offers better security than ChaCha.

E. Overheads

1) Computational overhead: Freestyle has two main over-
heads when compared to ChaCha: (i) Overhead in generating a
random number for each block of message; (ii) Computation
of a hash after every HI rounds, which uses HC + 2 quarter
rounds of Freestyle. Hence, the computational overhead for
encryption is:

= T (generate Nb random numbers)

+

Nb∑
i=1

(
Ri −Rmin

HI
+ 1

)
(HC + 2)× T (1 QR of Freestyle)

(27)

The worst case performance overhead is when Ri =
Rmax,∀i. The figure 6 shows the comparison of performance
between optimized versions of and ChaCha201 and Freestyle2

with various configurations without accounting for the time
taken for initialization. The results were obtained on Intel
Core i5-6300HQ processor with arc4random [34] as the
random number generator on OpenBSD. For the performance
tests, Rmin = 8, Rmax = 32 has been used to make the
cipher performance comparable to ChaCha20, as an uniformly
distributed random number generator is used. The results
indicate that Freestyle could be 1.6 to 3.2 times slower than
ChaCha20 (figure 6).

2) Bandwidth overhead: Freestyle algorithm requires a
sender to send the final round 16-bit hash; i.e. requiring to
send send extra 8 bits for each block of message to be sent.
Also, for initialization of random word, it requires extra
28 × 16 bits. Hence, the total bandwidth overhead in bits is
16Nb + 28× 16, i.e.

Bandwidth overhead (in %) =
16Nb + 512

|message| × 100 (28)

For a message of length in multiples of 512 bits, the band-
width overhead is ≈ 3.125%.

F. Side-channel attacks

Freestyle uses Add-Rotate-XOR instructions to resist timing
and side channel attacks. However, if a device leaks informa-
tion related to randomness, Freestyle is at least as secure as
ChaCha with Rmin rounds. This is because, from hash at least
2256 operations are required to generate possible cipher states
(S(R)), and since hash is a 16 bit value, there are likely to be
2248 cipher states that collide a given hash. For devices that
have weak or insecure (pseudo-)random number generator, we
recommend a conservative configuration of HC = 3; in which
case at least 2512 operations are required to generate the cipher
states colliding a given hash.

Another potential attack in Freestyle could be to gather
intermediate hashes. While performing encryption, Freestyle
requires maintaining the hash collision information for various
hashes. One of the simplest implementation is to use a look-up
table implementations which are prone to timing attacks. Al-
though, by leaking intermediate hashes it is computationally
infeasible to compute the key or key-stream. However, with
the leaked hash, the adversary can detect if the attempted key
is correct or not after Rmin rounds; making KGP < 1. Also,
some cryptanalysis advantage may be gained by observing
consecutive hashes. Although, this would also require knowl-
edge of cipher parameter and 128-bit random words.

1http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/chacha.c?rev=1.
1

2https://github.com/arun-babu/freestyle

http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/chacha.c?rev=1.1
http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/chacha.c?rev=1.1
https://github.com/arun-babu/freestyle

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

10
6

K
G

P

Epepper

IC = 20

Message size in bytes
2

6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

2
29

2
30

2
31

2
32

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

10
7

K
G

P

Epepper

IC = 24

Message size in bytes
2

6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

2
29

2
30

2
31

2
32

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

K
G

P

Epepper

IC = 28

Message size in bytes
2

6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

2
29

2
30

2
31

2
32

10
0

10
2

10
4

10
6

10
8

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

K
G

P

Epepper

IC = 32

Message size in bytes
2

6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

2
29

2
30

2
31

2
32

Fig. 5. KGP vs Epepper for Rmin = 8, Rmax = 32, HC = 3, HI = 1, ER = 20, IC ∈ {20, 24, 28, 32}, and various message sizes (64 bytes to 4GB)

 100

 150

 200

 250

 300

 350

 400

 450

10
4

10
5

10
6

M
e
d
ia

n
 o

f
e
n
c
ry

p
ti
o
n
 t
h
ro

u
g
h
p
u
t
(o

f
1
0
0
 s

a
m

p
le

s
)

in
 M

B
p
s

Bytes

ChaCha20

Freestyle HI = 8, HC = 1

Freestyle HI = 8, HC = 2

Freestyle HI = 8, HC = 3

Freestyle HI = 4, HC = 1

Freestyle HI = 4, HC = 2

Freestyle HI = 4, HC = 3

Freestyle HI = 2, HC = 1

Freestyle HI = 2, HC = 2

Freestyle HI = 2, HC = 3

Freestyle HI = 1, HC = 1

Freestyle HI = 1, HC = 2

Freestyle HI = 1, HC = 3

 100

 150

 200

 250

 300

 350

 400

 450

10
4

10
5

10
6

M
e
d
ia

n
 o

f
d
e
c
ry

p
ti
o
n
 t
h
ro

u
g
h
p
u
t
(o

f
1
0
0
 s

a
m

p
le

s
)

in
 M

B
p
s

Bytes

ChaCha20

Freestyle HI = 8, HC = 1

Freestyle HI = 8, HC = 2

Freestyle HI = 8, HC = 3

Freestyle HI = 4, HC = 1

Freestyle HI = 4, HC = 2

Freestyle HI = 4, HC = 3

Freestyle HI = 2, HC = 1

Freestyle HI = 2, HC = 2

Freestyle HI = 2, HC = 3

Freestyle HI = 1, HC = 1

Freestyle HI = 1, HC = 2

Freestyle HI = 1, HC = 3

Fig. 6. Performance comparison of Freestyle with Rmin = 8, Rmax = 32
vs ChaCha20 on Intel Core i5-6300HQ processor without accounting for the
time taken for cipher initialization

Such attacks can be resisted by obscuring look-up table
indices by XOR-ing it with a 16-bit random mask. The random
mask is to be generated for each block of message to be en-
crypted/decrypted and provides 216 different timing variations.
Though, such techniques may resist timing attacks; but do not
guarantee protection against such attacks. Also, computation
and memory overheads must be taken into account before
considering such implementations.

Observing the time taken for encryption/decryption may be
used by an adversary to predict the pepper and thus reducing

KGP. To prevent such attacks, the pepper value can be shared
with the receiver through a secure channel. However, this
approach is equivalent to increasing the key size by IC bits.

V. RELATED WORK

A. Randomized encryption schemes

Use of randomized encryption schemes have been in prac-
tice for many years, and a taxonomy of randomized ciphers
is presented in [39]. Also, some approaches to randomized
encryption for public-key cryptography was proposed in [40]–
[42]. Approaches based on chaotic systems for probabilistic
encryption were also proposed [43]. However, the main con-
cern with some of the existing approaches are high bandwidth
expansion factor and computational overhead [39], [44].

The key difference between existing approaches and the
current work is: the random bytes are never sent to the receiver
in plain nor in the encrypted form. The random bytes are
to be computed by the receiver from the initial 28 hashes.
The initial 28 hashes also serve the purpose of preventing
an adversary from sending arbitrary ciphertext, thus resisting
CCA if the nonce cannot be controlled by the adversary. Also,
Freestyle offers the possibility of generating 2128 different
ciphertexts even if key, nonce, and other cipher parameters are
reused. Also unlike some of the existing randomized ciphers,
Freestyle has a low bandwidth overhead of ≈ 3.125%.

B. Approaches based on difficulty and proof of work

Several algorithms have been proposed in literature to
increase the difficulty in key and password guessing using an

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

CPU intensive key-streaching [45] or key-setup phase [46] us-
ing a cost-factor. Also approaches that consume large amount
of memory have also been proposed [36], [47]. Another related
area is use of client puzzles [48] and proof-of-work (e.g.
Bitcoin [49]) to delay cryptographic operations.

The hash based halting condition described in section III-A,
on a high-level uses similar principle as the Halting key
derivation function (HKDF) proposed in [48]. In HKDF, a
sender using a password and a random bytes uses the key
derivation function till n iterations (or based on certain amount
of time) to generate a key and a publicly verifiable hash.
On the other hand, the receiver uses the random bytes and
password to generate the key till the verifiable hash matches.

Our approach however differs from [48] in the following
ways: (i) The minimum and maximum number of iterations
is explicitly defined and is expected to be public. This step is
crucial as it ensures a minimum level of security for genuine
user during encryption/decryption. It also ensures that an
adversary executes at least the minimum number of iterations.
The maximum iterations ensures that a genuine user cannot run
more than specified iterations; thus preventing the possibility
of DoS attacks or getting stuck in an infinite loop due to human
errors; (ii) Freestyle does not require a complex collision
resistant hash function, as hash collisions are handled simply
incrementing the hash if a collision occurs. Also, the hash
function uses ARX instructions to resist any side-channel
cryptanalysis; (iii) In Freestyle, the security of the cipher is
not dependent on amount of time taken or number of iterations
for cipher initialization, but on the length of pepper bits; (iv)
Freestyle uses a 28 number of 16-bit hashes for initialization
and a 16-bit hash for every block of message being sent, thus
the total size of hash is not fixed and is ∝ |message|; (v)
Freestyle does not require hash computation at every iteration,
instead a hash interval (HI) parameter is used to determine
round intervals at which hash must be computed, thus offer-
ing flexibility to adjust performance and security. Similarly,
Freestyle offers flexibility in choosing the complexity of hash
function using a hash complexity (HC) parameter; and (vi)
Freestyle forces the cipher initialization with Rmin = 12
and Rmax = 36, thus ensures enough randomness even in
cases where user provides insecure parameters for cipher
initialization; and (vi) Freestyle offers the possibility of much
higher KGP by allowing the sender to choose a right-skewed
distribution to generate pepper and Ri.

C. Freestyle vs ChaCha
When compared to ChaCha, Freestyle offers better security

for 128-bit keys (section IV-D). It also provides the possibility
of generating 2128 ciphertexts for a given message even if
nonce and key is reused (section IV-A). This makes Freestyle
resistant to XOR of ciphertext attacks if key and nonce is
reused. Randomization also makes Freestyle resistant to KPA,
CPA, and CCA (section IV-B1). Freestyle offers the possibility
of KGP > 1, which makes it resistant to brute-force and
dictionary based attacks (section IV-C).

On the other hand, Freestyle is 1.6 to 3.2 times slower than
ChaCha (section IV-E), and also has a higher cost of initializa-
tion (section III-E). In terms of bandwidth overhead, Freestyle

generates ≈ 3.125% larger ciphertext. And, in implementation
overhead, Freestyle’s encryption and decryption logic differ
slightly. ChaCha is a simple constant time algorithm, where
as Freestyle is a randomized algorithm, and assumes that the
sender has a good source of random numbers.

VI. CONCLUSION

In this paper we have introduced Freestyle, a novel random-
ized cipher capable of generating 2128 different ciphertexts for
a given key, nonce, and message; making known-plaintext
(KPA), chosen-plaintext(CPA) and chosen-ciphertext(CCA) at-
tacks difficult in practice. We have introduced the concepts
of bounded hash based halting condition and key-guessing
penalty (KGP), which are helpful in development and analysis
of ciphers resistant to key-guessing attacks. Freestyle has
demonstrated KGP > 1 which makes it run faster on a low-
powered machine having the correct key, and is KGP times
slower (with high probability) on an adversary’s machine.
Freestyle is ideal for applications where the ciphertext is
assumed to be in full control of the adversary i.e. where
an offline brute-force or dictionary attack can be carried
out. Example use-cases include disk encryption, encrypted
databases, password managers, sensitive data in public facing
IoT devices, etc. The paper has introduced a new class of
ciphers having KGP > 1. There is further scope for research
on other possible and simpler ways to achieve KGP > 1, and
study the properties of such ciphers. The possibility of forcing
an adversary to solve a NP-hard problem for every decryption
attempt with an incorrect key could be an attractive topic of
research. The key challenge however is to make the time taken
for decryption attempt with an incorrect key, greater than the
time taken to detect if the problem is NP-hard.

ACKNOWLEDGMENTS

This work was supported in part by the Bosch Research and
Technology Centre - India under the project titled ”E-sense
- Sensing and Analytics for Energy Aware Smart Campus”,
and in part by the Robert Bosch Centre for Cyber-Physical
Systems, Indian Institute of Science, Bengaluru. The authors
thank Sagar Gubbi, Rajesh Sundaresan, Navin Kashyap, and
Sanjit Chatterjee for helpful discussions.

REFERENCES

[1] D. J. Bernstein, “ChaCha, a variant of Salsa20,” in Workshop Record of
SASC, vol. 8, pp. 3–5, 2008.

[2] A. Langley, W. Chang, N. Mavrogiannopoulos, J. Strombergson, and
S. Josefsson, “Chacha20-poly1305 cipher suites for transport layer
security (tls),” tech. rep., 2016.

[3] D. Miller and S. Josefsson, “The chacha20-poly1305@openssh.com
authenticated encryption cipher draft-josefsson-ssh-chacha20-poly1305-
openssh-00.” Network Working Group Internet-Draft, https://tools.ietf.
org/html/draft-josefsson-ssh-chacha20-poly1305-openssh-00, Last ac-
cessed 1.12.2018.

[4] D. Miller, “chacha20poly1305 protocol.” https://cvsweb.openbsd.
org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.chacha20poly1305?
annotate=HEAD, Last accessed 1.12.2018.

[5] “eBACS: ECRYPT Benchmarking of Cryptographic Systems.” https:
//bench.cr.yp.to/results-stream.html.

[6] E. Bursztein, “Speeding up and strengthening HTTPS connections for
Chrome on Android,” Apr. 2014. Google security blog, https://security.
googleblog.com/2014/04/speeding-up-and-strengthening-https.html.

https://tools.ietf.org/html/draft-josefsson-ssh-chacha20-poly1305-openssh-00
https://tools.ietf.org/html/draft-josefsson-ssh-chacha20-poly1305-openssh-00
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.chacha20poly1305?annotate=HEAD
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.chacha20poly1305?annotate=HEAD
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.chacha20poly1305?annotate=HEAD
https://bench.cr.yp.to/results-stream.html
https://bench.cr.yp.to/results-stream.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

[7] “Vulnerability Note VU#307015, Infineon RSA library does not properly
generate RSA key pairs,” Oct 2017. CVE-2017-15361, https://www.kb.
cert.org/vuls/id/307015.

[8] S. H. Kim, D. Han, and D. H. Lee, “Predictability of android openssl’s
pseudo random number generator,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pp. 659–
668, ACM, 2013.

[9] L. Bello, M. Bertacchini, and B. Hat, “Predictable prng in the vulnerable
debian openssl package: the what and the how,” in the 2nd DEF CON
Hacking Conference, 2008.

[10] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage, “When
private keys are public: Results from the 2008 debian openssl vulnerabil-
ity,” in Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference, pp. 15–27, ACM, 2009.

[11] A. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and
C. Wachter, “Ron was wrong, whit is right,” tech. rep., IACR, 2012.

[12] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining
your ps and qs: Detection of widespread weak keys in network devices.,”
in USENIX Security Symposium, vol. 8, 2012.

[13] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce
reuse in wpa2,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), ACM, 2017.

[14] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of tls,” in
Security and Privacy (SP), 2015 IEEE Symposium on, pp. 535–552,
IEEE, 2015.

[15] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, et al.,
“Imperfect forward secrecy: How diffie-hellman fails in practice,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 5–17, ACM, 2015.

[16] W. Gu, Y. Huang, R. Qian, Z. Liu, and R. Gu, “Attacking crypto-1 cipher
based on parallel computing using gpu,” in International Conference
on Applications and Techniques in Cyber Security and Intelligence,
pp. 293–303, Springer, 2017.

[17] G. Agosta, A. Barenghi, and G. Pelosi, “High speed cipher cracking:
the case of keeloq on cuda,” 2013.

[18] V. Chiriaco, A. Franzen, R. Thayil, and X. Zhang, “Finding partial hash
collisions by brute force parallel programming,” in Systems, Applications
and Technology Conference (LISAT), 2017 IEEE Long Island, pp. 1–6,
IEEE, 2017.

[19] F. Wiemer and R. Zimmermann, “High-speed implementation of bcrypt
password search using special-purpose hardware,” in ReConFigurable
Computing and FPGAs (ReConFig), 2014 International Conference on,
pp. 1–6, IEEE, 2014.

[20] K. Malvoni, D. Solar, and J. Knezović, “Are your passwords safe:
Energy-efficient bcrypt cracking with low-cost parallel hardware,” in
WOOT’14 8th Usenix Workshop on Offensive Technologies Proceedings
23rd USENIX Security Symposium, 2014.

[21] Z. Liu, J. Großschädl, Z. Hu, K. Järvinen, H. Wang, and I. Verbauwhede,
“Elliptic curve cryptography with efficiently computable endomorphisms
and its hardware implementations for the internet of things,” IEEE
Transactions on Computers, vol. 66, no. 5, pp. 773–785, 2017.

[22] K. Javeed, X. Wang, and M. Scott, “High performance hardware support
for elliptic curve cryptography over general prime field,” Microproces-
sors and Microsystems, 2016.

[23] A. Khalid, G. Paul, and A. Chattopadhyay, “Rc4-accsuite: A hardware
acceleration suite for rc4-like stream ciphers,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 1072–
1084, 2017.

[24] F. K. Gürkaynak, R. Schilling, M. Muehlberghuber, F. Conti, S. Man-
gard, and L. Benini, “Multi-core data analytics soc with a flexible 1.76
gbit/s aes-xts cryptographic accelerator in 65 nm cmos,” in Proceedings
of the Fourth Workshop on Cryptography and Security in Computing
Systems, pp. 19–24, ACM, 2017.

[25] W. Kim, A. Chattopadhyay, A. Siemon, E. Linn, R. Waser, and V. Rana,
“Multistate memristive tantalum oxide devices for ternary arithmetic,”
Scientific reports, vol. 6, 2016.

[26] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in
memory with spin-transfer torque magnetic ram,” arXiv preprint
arXiv:1703.02118, 2017.

[27] A. Sebastian, T. Tuma, N. Papandreou, M. L. Gallo, L. Kull, T. Parnell,
and E. Eleftheriou, “Temporal correlation detection using computational
phase-change memory,” Nature Communications, 2017.

[28] W. Buchanan, “When Slow Is Good - The Great Slow-
coach: Bcrypt,” July 2015. https://www.linkedin.com/pulse/
when-slow-good-great-slowcoach-bcrypt-william-buchanan.

[29] D. J. Bernstein, “Salsa20 specification,” eSTREAM Project algorithm
description, http://www. ecrypt. eu. org/stream/salsa20pf. html, 2005.

[30] D. J. Bernstein, “The salsa20 family of stream ciphers,” Lecture Notes
in Computer Science, vol. 4986, pp. 84–97, 2008.

[31] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF Protocols,”
tech. rep., 2015.

[32] F. Denis, “The xchacha20-poly1305 construction.” https://download.
libsodium.org/doc/secret-key cryptography/xchacha20-poly1305
construction.html.

[33] “Libsodium v1.0.12 and v1.0.13 security assessment,” tech. rep.,
2017. https://www.privateinternetaccess.com/blog/wp-content/uploads/
2017/08/libsodium.pdf.

[34] T. De Raadt, “arc4random - randomization for all occasions,” 2014.
[35] G. Kedem and Y. Ishihara, “Brute force attack on UNIX passwords with

SIMD computer,” 1999.
[36] C. Forler, S. Lucks, and J. Wenzel, “Catena: A memory-consuming

password-scrambling framework,” tech. rep., Citeseer, 2013.
[37] T. Ylonen and C. Lonvick, “The secure shell (ssh) transport layer

protocol, rfc 4253,” 2006.
[38] D. J. Bernstein, “The poly1305-aes message-authentication code.,” in

FSE, vol. 3557, pp. 32–49, Springer, 2005.
[39] R. L. Rivest and A. T. Sherman, “Randomized encryption techniques,”

in Advances in Cryptology, pp. 145–163, Springer, 1983.
[40] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of

computer and system sciences, vol. 28, no. 2, pp. 270–299, 1984.
[41] T. ElGamal, “A public key cryptosystem and a signature scheme

based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

[42] R. Cramer and V. Shoup, “A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack,” in Annual Interna-
tional Cryptology Conference, pp. 13–25, Springer, 1998.

[43] S. Papadimitriou, T. Bountis, S. Mavroudi, and A. Bezerianos, “A proba-
bilistic symmetric encryption scheme for very fast secure communication
based on chaotic systems of difference equations,” International Journal
of Bifurcation and Chaos, vol. 11, no. 12, pp. 3107–3115, 2001.

[44] S. Li, X. Mou, B. L. Yang, Z. Ji, and J. Zhang, “Problems with a
probabilistic encryption scheme based on chaotic systems,” International
Journal of Bifurcation and Chaos, vol. 13, no. 10, pp. 3063–3077, 2003.

[45] J. Kelsey, B. Schneier, C. Hall, and D. Wagner, “Secure applications of
low-entropy keys,” in International Workshop on Information Security,
pp. 121–134, Springer, 1997.

[46] N. Provos and D. Mazieres, “Bcrypt algorithm,” USENIX, 1999.
[47] C. Percival and S. Josefsson, “The scrypt password-based key derivation

function,” tech. rep., 2016.
[48] X. Boyen, “Halting password puzzles,” in Proc. Usenix Security, 2007.
[49] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

P. Arun Babu is currently a Member of Technical Staff at Robert Bosch
Center for Cyber-physical Systems at the Indian Institute of Science, Ben-
galuru, India. Arun holds a Ph.D in Engineering Sciences from Indira Gandhi
Centre for Atomic Research, Kalpakkam, India. His areas of research include
cyber-security and software engineering.

Jithin Jose Thomas is currently a Senior systems software engineer at
the Trakray Innovations, Bengaluru, India. Jithin holds a B.Tech degree
in Electronics and Communications Engineering from National Institute of
Technology, Calicut, India. He was with the Department of Electrical Com-
munication Engineering, Indian Institute of Science, Bengaluru at the time of
this work. His areas of research include cryptography, wireless networks, and
data analytics.

https://www.kb.cert.org/vuls/id/307015
https://www.kb.cert.org/vuls/id/307015
http://arxiv.org/abs/1703.02118
https://www.linkedin.com/pulse/when-slow-good-great-slowcoach-bcrypt-william-buchanan
https://www.linkedin.com/pulse/when-slow-good-great-slowcoach-bcrypt-william-buchanan
http://www
https://download.libsodium.org/doc/secret-key_cryptography/xchacha20-poly1305_construction.html
https://download.libsodium.org/doc/secret-key_cryptography/xchacha20-poly1305_construction.html
https://download.libsodium.org/doc/secret-key_cryptography/xchacha20-poly1305_construction.html
https://www.privateinternetaccess.com/blog/wp-content/uploads/2017/08/libsodium.pdf
https://www.privateinternetaccess.com/blog/wp-content/uploads/2017/08/libsodium.pdf

	I Introduction
	II ChaCha cipher and variants
	III The Freestyle cipher
	III-A Hash based halting condition
	III-B Cipher parameter
	III-C The initial cipher state
	III-D Hash function
	III-E Random number initialization
	III-F Encryption and decryption

	IV Results and discussions
	IV-A Number of possible ciphertexts
	IV-B Resisting cryptanalysis
	IV-B1 Known-plaintext attacks (KPA), Chosen-plaintext attacks (CPA), and differential cryptanalysis
	IV-B2 Chosen-ciphertext attacks (CCA)
	IV-B3 XOR of ciphertexts when key and nonce are reused

	IV-C Resisting brute-force and dictionary attacks
	IV-C1 By keeping cipher_parameter a secret
	IV-C2 Restricting pre-computation of key-stream
	IV-C3 Wasting adversary's time and computational resources

	IV-D Better security for 128-bit keys
	IV-E Overheads
	IV-E1 Computational overhead
	IV-E2 Bandwidth overhead

	IV-F Side-channel attacks

	V Related work
	V-A Randomized encryption schemes
	V-B Approaches based on difficulty and proof of work
	V-C Freestyle vs ChaCha

	VI Conclusion
	References
	Biographies
	P. Arun Babu
	Jithin Jose Thomas

