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Universal Stego Post-processing for Enhancing
Image Steganography

Bolin Chen,

Abstract—It is well known that the designing or improving
embedding cost becomes a key issue for current steganographic
methods. Unlike existing works, we propose a novel framework
to enhance the steganography security via post-processing on
the embedding units (i.e., pixel values and DCT coefficients) of
stego directly. In this paper, we firstly analyze the characteristics
of STCs (Syndrome-Trellis Codes), and then design the rule
for post-processing to ensure the correct extraction of hidden
message. Since the steganography artifacts are typically reflected
on image residuals, we try to reduce the residual distance between
cover and the modified stego in order to enhance steganography
security. To this end, we model the post-processing as a non-linear
integer programming, and implement it via heuristic search. In
addition, we carefully determine several important issues in the
proposed post-processing, such as the candidate embedding units
to be modified, the direction and amplitude of post-modification,
the adaptive filters for getting residuals, and the distance measure
of residuals. Extensive experimental results evaluated on both
hand-crafted steganalytic features and deep learning based ones
demonstrate that the proposed method can effectively enhance
the security of most modern steganographic methods both in
spatial and JPEG domains.

Index Terms—Stego Post-processing, Syndrome-Trellis Codes,
Steganography, Steganalysis.

I. INTRODUCTION

MAGE steganography is a technique to hide secret message

into cover images via modifying some image components in
an imperceptible manner. On the contrary, image steganalysis
aims to detect the existence of secret message hidden by
image steganography. During the past decade, many effective
steganography methods have been proposed with the develop-
ment of the steganalytic techniques.

Image steganography can be divided into two categories,
that is, spatial steganography and JPEG steganography. In
modern research, both of them are usually designed under the
framework of distortion minimization [1l], in which the design
of embedding cost is the key issue. Typically, the embedding
cost tries to measure the statistical detectability of each em-
bedding unit (i.e. pixel or DCT coeflicient). The smaller the
embedding cost, the more likely the corresponding unit will be
modified during the subsequent operation of Syndrome-Trellis
Codes (STCs) [2]]. Up to now, there are many effective cost
have been proposed in spatial domain. Most of them such
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as HUGO [3]], WOW [4], S-UNIWARD [5], HILL [6]] and
MIPOD [7] adopt an additive cost, meaning that they assume
the embedding impact for each unit is independent. Some
methods such as CMD (Clustering Modification Directions)
[8], Synch [9] and DeJoin [10] improve the existing additive
cost via sequentially embedding message and updating the
cost to synchronize the modification direction. These methods
usually achieve better security performance since the mutual
impacts of adjacent embedding units are taken into considera-
tion. For JPEG steganography, the additive cost-based methods
include UED [11], J-UNIWARD [5], UERD [12], BET [13],
and the non-additive one includes BBC [14], which aims to
preserve the spatial continuity at block boundaries. To enhance
security, some other steganography methods aim to adjust
existing costs via highlighting the details in an image [15],
[L6] or reassigning lower costs to controversial units [[17]], [[L8].
Recently, some deep learning techniques such as Generative
Adversarial Network (GAN) [19] and adversarial example [20]]
have been applied in steganography. For instance, ASDL-GAN
[21] and UT-GAN [22], [23] can learn costs that are directly
related to the undetectability against the steganalyzer. ADV-
EMB [24] and method [25] adjust the costs according to
the gradients back-propagated from the target Convolutional
Neural Network (CNN)-based steganalyzer.

Note that above steganography methods mainly focus on
designing embedding costs, and usually employ the STCs to
minimize the total costs in subsequent data hiding. However,
most existing embedding costs seem empirical, which would
not be effective to measure the statistical detectability of
embedding units. In addition, minimizing the total costs using
STCs would not always produce high security stegos. Unlike
existing works, we propose a novel framework to enhance
the security of current steganography methods both in spatial
and JPEG domains via stego post-processing, which aims
to reduce the residual distance between cover and modified
stego. We firstly formulate the stego post-processing as a
non-linear integer programming problem, and solve it using
a heuristic search method - Hill Climbing. To achieve good
security performance, the adaptive filters for obtaining image
residuals and the distance measure are carefully designed. In
addition, four acceleration strategies according to the char-
acteristics of post-modification are considered to speed up
our algorithm. Experimental results show that the proposed
method can significantly enhance the security performance
of the existing steganography methods, especially when the
payloads and/or quality factors are large. Note that this paper
is an extension of our previous work [26]. Compared to our
preliminary work [26]], the main differences of this paper are
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as follows: 1) Instead of using a fixed filter in [26] to obtain
image residuals, in this paper, we carefully design multiple
adaptive filters which can better suppress image content while
preserve the artifacts left by data hiding; 2) The method in this
extended version significantly accelerates the post-processing
via restricting the position of modified units, the direction
and amplitude of modification, and adopting a fast method
for convolution; 3) More extensive experimental results and
analysis are given in this paper. For instance, both conventional
and deep learning steganalytic models are used for security
evaluation. In addition to BOSSBase [27], other two pub-
lic databases (i.e., BOWS2 [28] and ALASKA [29]) which
include 90,005 images are used for evaluation. We provide
more analysis on statistical characteristics of post-modification
and the processing time. In addition, both spatial and JPEG
steganographic methods are considered in this paper; 4) The
extensive experimental results show that the proposed method
can achieve higher security than the work [26].

Compared to those works (e.g. CMD [8]], BBC [14]], and
methods [[15)], [16], [17], [18]]) which also aim to enhance
existing steganography methods, the main differences of the
proposed method are as follows:

« First of all, almost all related works try to modify embed-
ding costs of existing steganography during data hiding,
while the proposed method tries to modify embedding
units (pixel values or DCT coeflicients) directly after
the data hiding with the existing steganopgraphy is com-
pleted. Note that the early steganography OutGuess [30]
divides the cover into two non-overlapping parts: one part
for data hiding, the other part for histogram correction.
From this point of view, OutGuess can be regarded as an
enhanced steganography based on post-processing. How-
ever, the embedding capacity of OutGuess is significantly
reduced since it has to reserve a relatively high proportion
of embedding units for histogram correction. What is
more, it can be easily detected by the modern steganalytic
methods based on higher order statistics.

o The principle of related works is quite different. For
instance, CMD aims at clustering modification directions
and BBC aims at preserving the block boundary conti-
nuity, OutGuess [30] aims at preserving the histogram,
while the proposed method aims at reducing the residual
distance between cover and the resulting stego. Since
the proposed method is performed on the stego, it is
not contradictory to those steganographic works based on
STC embedding. As shown in Section most modern
steganographic methods, such as MIPOD, CMD-HILL,
J-UNIWARD and BET-HILL, can be further improved
after using the proposed post-processing.

« Most existing works are usually designed under a special
domain. For instance, the spatial steganographic methods
such as MIPOD and CMD are difficult to be adopted in
JPEG with satisfactory results. Similarly, those effective
works for JPEG steganography may not effective in spatial
domain. Comparatively, the proposed method is effective
in both domains.

The rest of this paper is arranged as follows. Section
describes STCs and their robustness against post-modification.
Section describes the proposed framework. Section
presents experimental results and discussions. Finally, the
concluding remarks of this paper are given in Section [V]

II. RoBusTNESS ANALYSIS OF STCs

Most current steganographic methods are constructed under
the framework of distortion minimization. After the embedding
costs are carefully designed, some coding methods are then
used to embed secret message into cover image in order to
minimize the total cost. In practical applications, STCs is
widely used in modern steganography methods both in spatial
and JPEG domains. Since the extraction of hidden message
after using the proposed method is related to STCs, we will
give a brief overview of STCs and its robustness against post-
modification in the following.

A. Review of Syndrome-Trellis Codes

STC is one of the popular coding methods which is able
to embed secret message into the cover image efficiently
while approaching the optimal coding performance. It can be
used to solve binary or non-binary embedding problem under
the steganography framework of distortion minimization. For
binary problem, the message embedding and extraction for
spatial steganography [[] can be formulated as follows:

Emb(X, m) = arg P(yr)nig( )D(X, Y) (1
Ext(Y) = HP(Y) )

where Emb() is the function for data embedding. Exz() is
the function for message extraction. X is a cover image. Y is a
stego image. m is a secret message. P is a parity function such
as P(Y) =Y mod 2. H is a parity-check matrix of a binary
linear code C. C(m) = {z|Hz = m} is the coset corresponding
to syndrome m. STCs constructs the parity-check matrix H
by placing a small submatrix H along the main diagonal. The
height of the submatrix I is a parameter that can be used to
balance the algorithm performance and speed. Using parity-
check matrix H constructed in this way, equation (I)) can be
solved optimally by Viterbi algorithm with linear time and
space complexity w.r.t. n, which is the dimension of X.

For the g-ary (q > 2) embedding problem, STCs solves it
efficiently via multi-layered construction. It decomposes the
g-ary problem into a sequence of similar binary problem and
then applies the above solution for binary problem. The g-ary
problem can be solved optimally if each binary problem is
solve optimally. Refer to [2] for more details of STC.

B. Analysis of Robustness of STCs

From equation (2, the value of extracted message is deter-
mined by H and P(y). In a covert communication, since H
is fixed for a cover image, the message extraction completely
relies on P(y). Therefore, if there exists a modification matrix

ISimilar results can be obtained for JPEG steganography.
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Fig. 2: The framework of modern image steganalytic methods.

A such that P(Y + A) = P(Y), we can extract exactly the same
secret message from Y + A and Y, which shows the robustness
of STCs against the modification A in this case. Generally,
image steganography embeds message into lower bits of the
cover image for not introducing visually perceptible artifacts.
Therefore, the parity function P of g-ary STCs returns the
15 to k' LSBs of the input image, where k = [log, q].
Based on this characteristic, q-ary STCs’ robustness against
post-modification can be formulated as follows:

Ext(Y) = Ext(Y + A), Aij = 2K x njj, nij € Z 3

where Y and A are matrices of the same size ny X ny, A;j
denotes the ij* element of the modification matrix A

Taking a stego image Y obtained by ternary STCs (i.e. g =
3) for example, in this case, k = [log, g] = 2. A;; = 22 Xnij =
4n;j, n;; € Z. Therefore, we conclude that adding a multiple
of 4 to any elements of the stego image will not confuse the
message extraction at all.

III. PrRoPOSED FRAMEWORK AND METHOD

In this section, we first describe the framework of stego
post-processing, and then present some implementation details,
including the selection of some important parameters and four
strategies to speed up processing. Finally, we will give the full
description of the proposed algorithm under this framework.

A. Framework of Stego Post-processing

As shown in Fig. |1} the current steganography firstly designs
costs for all embedding units of a cover image, and then uses

STCs to embed secret message into cover to get the resulting
stego. Quite different from the existing works, the proposed
framework aims to enhance the steganography security via
reducing image residual distance between cover and stego
using stego post-processing. Since most current steganography
methods, such as HILL [6] and UERD [12], employ ternary
STCs for data embedding, the ternary case (i.e. k = 2) is
considered in our experiments. Please note that it is easy to
extend our method for different .

1) Main Idea of Stego Post-processing: 1t is well known
that the steganography will introduce detectable artifacts into
image residuals, and thus most effective steganalyzers based
on hand-crafted features (e.g. SRM [31], GFR [32]) and deep
learning (e.g. Xu-Net [33]], Ye-Net [34], and J-Xu-Net [35])) are
mainly based on analyzing image residuals in spatial domain.
As illustrated in Fig. [2] these steganalytic methods usually
contain 3 components, that is, high-pass filters to obtain image
residuals, feature extraction operator of image residuals and a
classifier based on the features. Since the steganography signal
is rather weak compared to image content, good high-pass
filters can effectively suppress image content and improve the
signal-to-noise ratio (note that for steganalysis, noise here is
image content), which is very helpful for steganalysis. From
this point of view, if the image residual distance between cover
and modified stego image is smaller, the security performance
is expected to be better. Therefore, the main idea of the
proposed framework is to reduce such distance via stego post-
processing. Combined with the robustness analysis on STCs
in section the proposed stego post-processing can be
formulated as the following optimization problem:

minizmize Dist(Res(Z), Res(X))

subjectto Z =Y + 22 % N, )
NeZ,
ZeV.

where Res(X) |?| denotes the image residual of image X
in spatial domain, Dist(Res(Z), Res(X)) denotes the distance
between two image residuals Res(Z) and Res(X); X is a
cover image, Y is a stego image obtained with an existing
steganography method, Z is a modified version of Y with
our post stego-processing; N is an integer matrix; YV denotes
the available range of embedding units of Z. Taking spatial
steganography for instance, every unit in V should be an
integer in the range of [0, 255].

Note that the proposed framework tries to modify a resulting
stego Y obtained with an existing steganography method under
the framework of distortion minimization, thus any modifica-
tion on Y will inevitably increase the total distortion. However,
we expect that the steganography security would become better
since the residual distance between cover X and the resulting
stego Z is reduced after stego post-processing.

2For spatial steganography, X,Y and Z denote pixel values of the corre-
sponding images. For JPEG steganography, they denote the DCT coeficients.
The image residual is obtained and analyzed in spatial domain both for spatial
and JPEG steganography.
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2) Implementation of the Framework: Since the modifica-
tions are limited on integers, and the distance function Dist() is
usually non-linear, the optimization problem described in the
previous section is a non-linear integer programming, which
is very hard to find the optimal solution. In our experiments,
we employ a greedy algorithm, i.e., Hill Climbing, to find
an approximate solution. Specifically, from an initial stego
Y, we sequentially process the embedding units one by one
to iteratively reduce its residual distance to cover X until all
embedding units are dealt with.

Fig. [3| illustrates how the proposed method updates a target
embedding unit within a stego image. Let X denote cover,
Z denote the candidate stego which is initialized as the
stego Y with an existing steganography method, 7 denote
the temporary variable for the modified version of Z after
changing a target unit Z;; according to the rule described in
section [ll| Ge. T = Z,T;; = T;j + 22 xnn e 2). By doing
so, we can assure that the secret messages extracted from Z
and Y are exactly the same after modification. To determine
whether the modified stego T is better than the candidate one
Z, we firstly apply Res() function on cover image X and two
stego images Z, T, and get the corresponding image residuals
Res(X), Res(Z) and Res(T) separately. And then we calculate
the distance between the residual of cover Res(X) and the two
image residuals Res(Z) and Res(T) separately according to
a certain Dist() function, denoted as Dzx and Drx. Finally,
we will update the candidate stego Z as the temporary T if
Dzx > Drx, otherwise we keep Z unchanged.

Algorithm 1 Pseudo-code for the stego post-processing.
X,Y,Z denote the values are of size n; X np. The for loop
in Line 6 traverses all embedding units row by row.

1: Input: cover image X; stego image Y
2: Output: modified stego image Z

3: Initialize Z =Y

4: Rx = Res(X)

5: Rz = Res(Z)

6: for ie{l,...,n1}, je{l,...,no} do
7 for s e {+4,-4} do

8 while Z;; +s€V do

9

: T=Z
10: Tl = Zij + S
11: Ry = Res(T)
12: Drx = DiSl(RT, Rx)
13: Dzx = DiSt(Rz, Rx)
14: if Drx < Dzx then
15: Update Zij = Tl/
16: Update Rz = Rr
17: else
18: break
19: end if
20: end while
21: end for
22: end for

23: return Z

We repeat the above operations for all embedding units, and
the whole pseudo-code of the proposed framework is illus-
trated in Algothrim [T} The inputs of the algorithm are cover X
and the corresponding stego Y using an existing steganography
method. The algorithm first initializes the candidate stego Z as
Y, and then updates Z using three loops. In the first loop (i.e.
line 6 - 22), it traverses all the embedding units row by row. In
the second loop (i.e. line 7 - 21), it considers the direction of
post-modification to an embedding unit (positive + or negative
—). In the third loop (i.e. line 8 - 20), it considers different
amplitudes of post-modification to an embedding units (e.g.
4,8,12, - - ). After the three loops, the algorithm finally outputs
a modified stego Z, which usually has smaller residual distance
compared with the input stego Y.

3) Hyper-Parameters: The residual function Res() in Al-
gorithm [I] is the key issue that would significantly affect
the security performance of the proposed framework. In the
following, we will discuss the design of adaptive filter.

As described in section most modern steganalytic
features are mainly derived from image residuals. Thus, the
selection of high-pass filters is very important for steganalysis.
Until now, there are many available filters in existing works,
such as various filters in SRM [31] and GFR [32]. Note
that these filters are fixed for all images. Inspired from [36],
we employ an adaptive way to learn high-pass filters for
each image. Specifically, we first compute the convolution
of the image with a prediction filter whose center element
is 0, which amounts to predicting target pixels via their
surrounding pixels; and then we determine the elements in the
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prediction filter by minimizing the mean square error between
the predicted pixels and actual ones via lease squares; finally,
we set the center of prediction filter as -1 to obtain the final
filter, which calculate the residual between the predicted and
actual values. Different from work [36] which learns a filter
of size w X w (w > 2) with symmetry constraint, we first
learn a base filter of size 1 X w without symmetry constraint
for any given image and its transposed version. Thus, the
resulting basic filter (denoted as B) is a predictor of horizontal
direction while its transposed version BT is a predictor of
vertical direction. And then we get the outer product of B and
BT, denoted as B® BT, which can calculate the residual based
on the prediction of both horizontal and vertical directions.
In our method, we can obtain different residual functions via
the combination of the elements in set {B, BT, B® BT} with
different size w. Based on our experiments, we finally select
the filters {B, BT, B® BT} of size 7 for spatial steganography
while filters {B, BT } of size 3 for JPEG steganography. Please
note that we take into account several residuals by summing
them up. More experimental results on the hyper-parameter
selection are shown in section

In Algorithm 1 (line 12-13), the distance function Dist() is
used to measure the residual distance between cover and stego.
Different distances will lead to different post-modification,
and thus affect security performance. We have tested several
typical distance measures, including Manhattan, Euclidean,
Chebychev and Hamming, and found that the Manhattan dis-
tance usually performs well on various steganography methods
in both spatial and JPEG domains. Thus, we employ the
Manhattan distance as follows in our experiments.

d(p.q)=lp—qlli = ) Ipi - gl (5)

i=1

where p = (p1, p2, .. Pn)s 4 = (41, Q25 --s Gn)-

B. Acceleration Strategies

Several issues would significantly affect the processing time
of the proposed Algorithm|[I] First of all, there are three nested
loops. The first loop will traverse all embedding units of the
input stego Y. Taking an image of size 512 x 512 for example,
there are totally 262144 (= 512 x 512) units to be dealt with.
For each unit, two directions (i.e. positive or negative in the
second loop) and different modification amplitudes (i.e. 4, 8,
..., in the third loop) need to be considered. If we can reduce
the iteration number of these loops, the algorithm speed will
be improved. Furthermore, the filtering operation to get image
residuals in the innermost loop is time-consuming. As a result,
a fast method for filtering is needed. In the following sections,
we will describe four acceleration strategies separately.

1) Restriction on Position of Post-Modification: To reduce
the number of embedding units to be dealt with in the first
loop, we conduct experiment to report the post-modification
rate in the set of units modified with steganography. Table
[l and Table [l show the average results on 10,000 images
from BOSSBase [27] for steganography methods in spatial and
JPEG domains. From Tables [[|and [II} we observe that for those
embedding units modified by the stego post-processing, more

TABLE I: The post-modification rate in the set of units
modified with steganography (%) evaluated on different spatial
steganography methods (0.4 bpp).

S-UNI
65.18

MIPOD HILL CMD-HILL [ Average
66.31 65.93 65.56 [ 65.75

TABLE II: The post-modification rate in the set of units
modified with steganography (%) evaluated on different JPEG
steganography methods (0.4 bpnz).

QF ][ J-UNI UERD BET-HILL [ Average
75 ][ 68.18  52.26 50.22 56.89
95 || 6530  54.67 53.70 57.89

TABLE III: The ratio of the post-modifications whose direc-
tion is opposite to that of steganography modifications (%)
evaluated on different spatial steganography methods (payload
0.4 bpp).

S-UNI
99.59

MIPOD HILL CMD-HILL [ Average
98.91 99.01 96.28 [ 98.45

of them are located at the small set of the units modified with
steganography. Taking S-UNIWARD for instance, over 65%
of post-modification are located at the set of units modified
with steganography, which occupies only 7.39% of all units.
Since the steganography modification rate is relatively lower
in the experiment (less than 11% for spatial steganography for
payload 0.4 bpp, and less than 4% for JPEG steganography for
payload 0.4 bpnz), we consider dealing with those embedding
units that have been previously modified with the steganogra-
phy while skipping most unchanged units.

2) Restriction on Direction of Post-Modification: In the
previous section, we limited the post-modification to be per-
formed on those embedding units which have been modi-
fied with steganography. To speed up the second loop, we
will analyze the relationship between the directions of post-
modification and steganography modification. We consider the
post-modification that locate in the units that has modified by
steganography and report the ratio of the post-modifications
whose direction is opposite to that of steganography mod-
ifications in Table [l and Table [Vl The two tables show
the average results on 10,000 images from BOSSBase [27]]
in different cases. From the two tables, we observe that the
direction of post-modification is usually contrary to that of
steganography modification. On average, such ratio is over
98% and over 86% for spatial and JPEG steganography sepa-
rately. In our method, therefore, we will limit the direction
of post-modification. This property is reasonable since the
detectable artifacts left by steganography usually become more
obvious when the direction of post-modification is the same
as that of steganography modification.

3) Restriction on Amplitude of Post-Modification: In
section [[I-B] we showed that adding a multiple of 4 to
any embedding unit of the stego image would not confuse
the message extraction. However, most existing literatures
have shown that the security performance of steganography
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TABLE IV: The ratio of the post-modifications whose direc-
tion is opposite to that of steganography modifications (%)
evaluated on different JPEG steganography methods (payload
0.4 bpnz).

QF [ J-UNI UERD BET-HILL | Average
75 [[ 9576 9242 89.53 92.57
95 || 9070  85.11 83.54 86.45

usually becomes poorer when the steganography modification
becomes relatively larger. To enhance steganography security,
we expect that most amplitudes of the post-modification are
the smallest ones, i.e. 4, for the ternary STCs. According
to our experiments on 10,000 images from BOSSBase [27],
we observe that the amplitude of 100% and over 98% post-
modification is equal to 4 for spatial (i.e. S-UNIWARD,
MIPOD, HILL, CMD-HILL) and JPEG (i.e. J-UNIWARD,
UERD, BET-HILL) steganography methods separately, which
fits our expectations very well. Therefore, we limit the ampli-
tude for the post-modification to 4 in our method.

4) Efficient Convolution: In the three previous subsections,
we try to reduce the loop count of the three loops in Algorithm
[I] separately. In this section, we will speed up the key operation
- i.e. the Res() function to obtain image residual in the
innermost loop (i.e. line 11) in Algorithm E}

In section we determine to employ several adaptive
convolution filters with a smaller size (i.e. w = 3 or w = 7,
which is significantly smaller than the image size n; and nj,
i.e. ny = np = 512 or 256 in our experiments) to update image
residual of temporary stego 7. Please note that the convolution
is linear and it just affects a small region of embedding units
that around the filter center. Thus, there is no need to perform
the convolution on the whole temporary stego T to obtain
its residual, since just an element within 7 is different from
the candidate stego Z (refer line 9-10 in Algorithm 1). An
equivalent and efficient method is employed in our method.
When the image residual of Z is available (i.e. Rz), the image
residual of T can be calculated based on the following formula:

Rr = conv(T, F) = conv(Z + 6§;; x4, F)
= conv(Z, F) + conv(d;j, F) x 4 (6)
= Rz + conv(d;;, F) x 4

where 9;; is a matrix of the same size n; Xn», and its elements
are all O except that the element at position (i, j) is 1.

Due to the characteristic of matrix ¢;;, it is very fast to
get the Ry via modifying a small region corresponding to the
position (i, j) within Rz, that is, a region of size w X w for
spatial steganography or a region of size (w + 7) X (w + 7)
[f| for JPEG steganography. By doing so, we can obtain over
500 times acceleration both in spatial and JPEG steganography
based on our experiments.

3Note that here: 1). The Inverse Discrete CosineTransform (IDCT) in JPEG
decompression is linear. 2) Modifying a DCT coefficient in JPEG will affect
an 8 x 8 image block in spatial domain.

Algorithm 2 Pseudo-code for the stego post-processing. Im-
ages X, Y, Z are of size n; Xny. F is the adaptive filter generated
based on predictor learned from X. The for loop in Line 6
traverses all embedding units row by row.

1: Input: cover image X; stego image Y
2: Output: enhanced stego images Z

3: Initialize Z =Y

4. Rx = conv(X, F)

5. Rz = conv(Z,F)

6: for ie{l,...,n}, je{l,...,n} do
7: S=(Xij—Yij)X4

8: T=2Z

9: Tl = Zij +

10: if s==0orT7;¢YV then

11: continue

12: end if

13: Ry = Update a small region of Rz
14: Dzx =} |Rz - Rx|

15:  Drx = X |Rr — Rx|

16: if Drx < Dzx then

17: Update Zij = Tl'j

18: Update Rz = Rr

19: end if
20: end for

21: return Z

C. The Proposed Method

The pseudo-code for the proposed stego post-processing is
illustrated in Algorithm [2] Note that the source code of the
Algorithm [2] can be available at GitHub. [{] According to the
first three acceleration strategies, we observe that only one loop
(i.e. line 6-20 in Algorithm [J) is remaining here compared to
Algorithm |1} and most embedding units in this loops will be
skipped (i.e. line 10-12 in Algorithm [2). According to the
analysis in Section - 4), the execution time is unbearable
without using the fast method for obtaining temporary image
residual . Thus the fast method is employed in both Algorithm
and Algorithm 2] For a fair comparison, both algorithms
are implemented with Matlab and on the same server with
CPU Intel Xeon Gold 6130. The processing time and the
security performance of two algorithms would be evaluated
in the following.

1) Comparison on Processing Time: In this experiment,
we will compare the processing time of the algorithm before
and after using the first three acceleration strategies. Four
spatial steganography methods and three JPEG steganograpy
methods are considered [¥} The comparative results are shown
in Table [V] and Table [VIl From the two tables, we observe that
the processing time of the proposed method (i.e. Algorithm 2)
is significantly shorter than the original one (i.e. Algorithm 1).
On average, we gain over 12 and 9 times speed improvement
for the spatial and JPEG steganography separately.

4Source codes are available at: https://github.com/bolin-chen/universal-spp
SPlease refer to Sectionfor more details about the experimental settings.
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TABLE V: Processing time (s) for Algorithm 1 and Algorithm TABLE IX: Detection accuracies (%) for different filter sets
2 in spatial domain (0.4 bpp). in spatial steganography (0.4 bpp). In all following tables, the
underlined value denotes the pooper result compared to the
baseline steganography.

[ SSUNI  MIPOD HILL CMD-HILL | Average

Algorithm 1 375 372 375 372 374
Algorithm 2 || 0.27 029 029 0.33 0.30 Filler Set [ S-UNI _ MIPOD HILL CMD-HILL | Average
Baseline 79.68 75.66 75.72 70.06 75.28
TABLE VI: Processing time (s) for Algorithm 1 and Algorithm (Bo BT} 78.82F 74.58 73.87 70.37 7441
2 in JPEG domain (0.4 bpnz). {B,BT} 79.42 75.69 75.13 70.02 75.07
(B,BT,B®BT} || 7916  74.37%  73.75% 69.95% 74.31%

QF || Strategy [[ J-UNI UERD BET-HILL | Average

75 || Algorithm 1 4.65 4.66 4.64 4.65 TABLE X: Detection accuracies (%) for different filter sets in
Algorithm 2 0.50 0.49 0.49 0.49 JPEG st hy (0.4 b )
o5 || Aleorithm T [ 483 435 481 483 steganography (U.% bpnz).
Algorithm 2 || 0.54  0.53 053 053 QF [[  Filter Set ]| J-UNI UERD BET-HILL | Average
. . _ Baseline 89.66  89.59 87.13 88.79
TABLE VII: Detection accuracies (%) for Algorithm 1 and 75 BeBT) 9497  95.43 92.99 04.46
Algorithm 2 in spatial domain (0.4 bpp). The steganalytic {B,BT} 88.54%  87.48* 84.59 86.87*
feature set is SRM. In all following tables, the value with {(B.B",B®B"} | 8856 87.67 84.54* 86.92
an asterisk (*) denotes the best result. Baselmf’ 72,79 76.00 69.22 72.67
95 {B®B"} 80.56 85.42 75.81 80.60
[ SSUNI MIPOD HILL CMD-HILL | Average {B,B"} 7L75% - 73.46% 66.88 70.70*
T T ,=
Bascline || 7968 7566 7572 70.06 7528 {B.B.B®B } || 7209 7380  66.67 70.85
Algorithm 1 78.34 72.83* 72.96 69.35 73.37
Algorithm 2 || 78.31%  73.19  72.42% 68.93* 73.21% TABLE XI: Detection accuracies (%) for different sizes of

basic filter B for spatial steganography (0.4 bpp). The filter
TABLE VIII: Detection accuracies (%) for Algorithm 1 and  set is {B, BT, B® BT }. The steganalytic feature set is SRM.
Algorithm 2 in JPEG domain (0.4 bpnz). The steganalytic
feature set is GFR.

Size || SSUNI MIPOD HILL CMD-HILL | Average

Baseline 79.68 75.66 75.72 70.06 75.28
QF ][ Strategy [[ J-UNI UERD BET-HILL | Average 3 7916 7437 7375 69.95 74.31
75 |[ Algorithm 1 || 88.81 _ 88.15 84.76 87.24 7 7831 73.19%  72.42% 68.93* 73.21%
Algorithm 2 88.54%  87.48% 84.59% 86.87% 9 78.37 73.29 73.15 69.22 73.51
Baseline 72.79 76.00 69.22 72.67
95 || Algorithm 1 || 7226  73.72 66.31% 70.76 TABLE XII: Detection accuracies (%) for different sizes of
Algorithm 2 || 71.75* 73.46* 66.88 70.70* basic filter B for JPEG steganography (0.4 bpnz). The filter
set is {B, BT }. The steganalytic feature set is GFR.
2) Comparison on Security Performance: In this experi- QF [[ Size [[ JJUNI UERD BET-HILL [ Average
ment, we will compare the security performances of Algorithm Bascline | 89.66  89.59 87.13 88.79
1 and Algorithm 2. The experimental results are shown in 3 88.54%  87.48% 84.59% 86.87%
g p 75 5 88.87 87.82 84.95 87.21
Table [VII| and Table [VIII} From the two tables, we observe that 7 8881  87.99 85.35 87.38
both algorithms can enhance the steganography security in all 9 88.89  88.06 85.33 87.43
cases. Although we have significantly simplified the Algorithm Baseline || 72.79  76.00 69.22 72.67
1 for acceleration, the performance of Algorithm 2 would not 3 7175%  73.46% 66.88 70.70%
drop. On the contrary, it is able to outperform Algorithm 1 93 > 7209 7392 66.81% 70.94
o ’ 7 72.04 73.99 66.90 70.98
slightly on average. 9 7234 7417 66.90 71.14

IV. EXPERIMENTAL RESULTS AND DiscussIONS
conventional ones (i.e. GFR [32], SCA-GFR [38]] ) and a CNN-

based one (i.e. J-Xu-Net [35]]). The ensemble classifier [39]] is
used for conventional steganalytic features.

In our experiments, we collect 10,000 gray-scale images
of size 512 x 512 from BOSSBase [27]], and randomly divide
them into two non-overlapping and equal parts, one for training
and the other for testing. Like most existing literatures, we
use the optimal simulator for data embedding. Four typical A, Hyper-Parameter Selection
spatial steganography methods (i.e. S-UNIWARD [5]], MIPOD . . . . .

[7], HILL [6] and CMD-HILL [8]) and three typical JPEG The residual function Res() is the key issue in the proposed
steganography methods (i.c. J-UNIWARD [5], UERD [12] algorithm that will significantly affect the security perfor-
and BET-HILL [13]]) are considered. The spatial steganalytic mance. We employ several adaptive filters to get image resid-

detectors include two conventional feature sets (i.e. SRM [31]], ugls. IIL th1z Se?tlorgl we tr.y tlods.electhpro([;er hyp E;'p arameteé
maxSRM [37]) and a CNN-based one (i.e. Xu-Net [33]). about the adaptive filters, including the adaptive filter set an

Similarly, the JPEG steganalytic detectors also include two the size of basic filter B.
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TABLE XIII: Detection accuracies (%) for different steganography methods in spatial domain. In all following tables, we name
the enhanced version of some steganography such as “A” with the proposed Stego Post-Processing as “A-SPP” for short.

Steganography SRM maxSRMd2 Xu-Net
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
S-UNI 60.09 6829 7474 79.68 83.61 63.72 70.71 76.58 80.69 84.36 || 55.72 64.86 73.62 78.60 82.72
S-UNI-SPP 59.76* 67.55*% 73.27%* 78.31% 82.22% || 63.31* 70.09* 75.16% 79.17*% 82.75% || 55.24* 63.71% 70.66* 75.37% 79.73*
MIPOD 5825 65.68 71.44 7566 80.20 || 60.77 6737 7292 7741 8134 || 58.06 6552 71.11 75.66 80.43
MIPOD-SPP 58.37 63.83* 69.11*% 73.19% 77.52% || 59.36% 65.21* 70.15% 73.79* 78.33* || 56.98* 62.38* 66.80* 71.36* 75.23*
HILL 56.65 64.14 7044 7572 79.67 6243 6932 7372 7830 81.92 || 58.04 6550 7140 7726 80.23
HILL-SPP 56.09*% 62.60* 67.68* 72.42*% 76.47* || 60.82*% 66.82* 71.48% 75.72% 79.23*% || 56.29*% 62.08* 66.92* 71.36% 75.50*
CMD-HILL 55.09 60.53 65.86 70.06 74.41 59.79 6554 69.74 7335 7646 || 54.81 60.19 64.66 69.64 73.39
CMD-HILL-SPP || 54.55% 60.13* 64.95% 68.93*% 72.73* || 59.40* 64.42* 68.81* 71.83* 75.50*% || 54.39% 59.07* 62.65* 67.44* 70.25%
TABLE XIV: Detection accuracies (%) for different steganography methods in JPEG domain.
QF || Steganography GFR SCA-GFR J-Xu-Net
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
J-UNI 59.03 71.00 81.82 89.66 94.50 || 6433 7691 8594 91.75 9547 6528 77.66 86.13 91.72 95.01
J-UNI-SPP 59.06 70.92*% 81.23* 88.54* 93.46* || 63.72% 76.36* 85.07* 90.87* 94.65* || 65.23 77.53* 85.97* 91.46* 94.57*
75 UERD 60.42 7246 8227 89.59 94.14 || 7036 82.17 8891 93.17 95.88 7744 88.04 93.01 96.13 97.46
UERD-SPP 59.60* 71.52* 81.11* 87.48* 92.54* || 70.07* 81.08* 88.04* 92.10* 94.83* || 77.06* 88.18 92.58* 95.95* 97.58
BET-HILL 5826 69.12 7896 87.13 92.10 || 65.19 7698 86.11 92.01 95.58 65.63 7770 84.88 9043  95.20
BET-HILL-SPP || 57.82* 67.58*% 77.04* 84.59% 90.42* || 64.08*% 75.22*% 83.85% 89.73* 93.59* || 64.28% 76.62* 83.27* 89.57* 93.73*
J-UNI 5241 5792 65.15 7279 80.63 53.59 5994 6721 7390 80.00 || 50.26 57.88 66.43 73.38 79.03
J-UNI-SPP 52.31% 57.66* 64.55% 71.75% 78.98%* || 53.52*% 59.47* 65.98% 72.65*% 78.27* || 50.08*% 57.72% 65.34*% 72.42*% 79.18
95 UERD 54.18 60.62 6849 76.00 82.77 59.33  67.89 7457 80.53 8544 || 50.12 7337 8239 8897 92.79
UERD-SPP 54.11*% 60.01* 66.66% 73.46*% 79.68* || 59.06% 66.81* 72.85% 77.93*% 82.65% || 50.04* 72.74* 82.30* 88.17% 92.12*
BET-HILL 5224 5675 6230 69.22 7559 || 54.14 5947 6536 71.73 7781 5047 5849 6536 73.01 80.00
BET-HILL-SPP || 52.06*% 56.21* 61.22* 66.88* 72.86* || 53.42* 58.19% 63.39* 69.18* 75.04* || 49.90% 56.58*% 64.09% 72.60*% 78.07*

1) Adaptive Filter Set: As described in section |[II-A3] we
first learn a basic filter B for each image, and then produce two
filters via transpose and outer product, and then we obtain three
adaptive filters, that is, B, BT and B ® BT . For simplification,
three combinations of above filters are evaluated, that is, {B®
BT}, {B,B"} and {B, B", B®B” }. In addition, the filter size of
B is fixed as 3 in this experiment, and the steganalytic features
SRM and GFR are used for security evaluation for the spatial
(0.4 bpp) and JPEG steganography (0.4 bpnz) separately. The
detection accuracies evaluated on test set are shown in Table
and Table From Table [IX| we observe that the three
filter sets can improve the security performance of the four
spatial steganography methods except using the filter {B® BT }
on CMD-HILL. On average, the set {B, BT B® BT} achieves
the best performance, and it gains an average improvement of
0.97% compared to the baseline steganpgraphy. From Table
we observe {B, BT} and {B, B", B® B} can improve the
security performance while {B® BT } will significantly drop the
performance. On average, the filter set {B, B! } performs the
best and it achieves an improvement of around 1.90% for both
quality factors. The above results show that different adaptive
filter sets have a great influence on security performance. The
filter sets {B,B’,B ® B"} and {B, B"} usually perform the
best in spatial and JPEG domain separately.

2) Size of Basic Filter B: In previous section, we fixed
the size of basic filter B as 3, and selected the proper filter
set for spatial and JPEG steganography separately. In this
section, we first fixed the selected filter set, and evaluate
their performances with different sizes of the basic filter B,
including w = 3,5,7,9. The detection accuracies are shown in

Table and Table From the two tables, we observe that
the four filter sizes can improve the performance of various
steganography methods in both spatial and JPEG domains.
In spatial domain, the average performance becomes the best
when the size of B is 7 instead of 3, which will further gain
an improvement of 1.10%. In JPEG domain, the proper size
of B is still 3 based on our experiments.

We should note that the hyper-parameter determined previ-
ously is just a suboptimal solution. Due to time constraint,
we probably find a better solution via brute force method
according to several important issues, such as the combi-
nations of adaptive filters with different sizes, the specific
steganography with a given payload, and the steganalytic
models under investigation and so on. For simplicity, we just
apply the filter set {B, BT, B® BT} with filter size w = 7 for
spatial steganography, and the filter set {B, BT } with filter size
w = 3 for JPEG steganography for all embedding payloads and
steganalytic models in the following section.

B. Steganography Security Evaluation

In this section, we will evaluate the security performance on
different steganography methods for different payloads ranging
from 0.1 bpp/bpnz to 0.5 bpp/bpnz. Three different stegana-
lyzers in spatial domain, including SRM [31]], maxSRM [37]],
and Xu-Net [33], and three steganalyzers in JPEG domain,
including GFR [32], SCA-GFR [38]], and J-Xu-Net [35], are
used for security evaluation. The average detection accuracies
on test set are shown in Table and Table From the
two tables, we obtain the three following observations:

« Almost in all cases, the proposed method can effectively

improve the steganography security both in spatial and
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TABLE XV: Post-Modification Rate (%c0) for steganography
methods in spatial domain.

Steganography [[ 0.1 0.2 0.3 0.4 0.5

S-UNI 381 1121 21.30 3392 48.89
MIPOD 326 12.87 27.14 4517 6634
HILL 6.64 1753 3130 47.54 66.09
CMD-HILL 267 744 13.81 2191 31.78

TABLE XVI: Post-Modification Rate (%oco) for steganography
methods in JPEG domain.

QF [[ Steganography [[ 0.1 0.2 0.3 0.4 0.5

J-UNI 037 142  3.07 5.21 7.87

75 UERD 039 152 328 5.59 8.41
BET-HILL 0.66 2.11 4.19 6.64 9.59
J-UNI 1.33 573 1313  23.00 3474

95 UERD 1.84 7.16 1548 26.09 3848
BET-HILL 221 7.87 1624 2653 3823

JPEG domains. The improvement usually increases with
increasing embedding payload.

In spatial domain, we can achieve greater improvements
on MIPOD and HILL compared to S-UNIWARD and
CMD-HILL. Taking the payload of 0.5 bpp for instance,
we obtain about 3% improvement on both MIPOD and
HILL, while less than 2% for two other steganogra-
phy methods under two hand-crafted steganalytic feature
sets, i.e. SRM and maxSRM. Furthermore, the proposed
method seems more effective to the CNN-based stegan-
alyzer (i.e. Xu-Net). For instance, we can obtain about
5% improvement for MIPOD and HILL for the payload
of 0.5 bpp, which is a significant improvement on current
steganography methods.

In JPEG domain, the proposed method can gain more
improvement on UERD and BET-HILL compared to J-
UNIWARD. Taking the payload 0.5 bpnz and QF = 95
for instance, it obtain an improvement of about 3% for
both UERD and BET-HILL under the steganalytic feature
GFR, while only 1.65% for J-UNIWARD. In addition,
the proposed method seems less effective to CNN-based
steganalyzer (i.e. J-Xu-Net) compared to the hand-crafted
feature sets. In some cases, the security will drop slightly
(less than 0.15%) after using the proposed method.

C. Analysis on Post-Modification

In this section, we will analyze some statistical characteris-
tics on the post-modification with our method, including the
modification rate and its relation to the density of steganogra-
phy modification.

1) Post-Modification Rate: We define the post-
modification rate as follows:
Z+Y Z+Y
Ry = 22V _1Z#Y] -

Y] | X]

where X,Y,Z denote the set of embedding units in cover,
stego, and the modified version with the proposed method
separately. Note that |X| = |Y| = |Z]| since the number of
embedding units is the same for the three images. Table

and Table show the average results evaluated on 10,000
images from BossBase. From the two tables, we observe that
Rpys will increase with increasing embedding payloads, and
Rpps is usually less than 67%occ and 39%oce for spatial and
JPEG steganography separately even the embedding payload
is as high as 0.5bpp / 0.50bpnz.

Fig. |4 shows the violin plots of Rpj, for HILL and BET-
HILL in different cases. From the two figures, we observe that
the median number of Rpj)s usually increases with increasing
payload. Even when the payload is as high as 0.5 bpp / 0.5
bpnz, the median number of Rpy, is less than 80%oo0 / 40%c0,
which means that we can achieve great improvement (refer to
Table and Table via just modifying a tiny fraction
of embedding units for any given stego images Y.

2) Post-Modification Rate vs. Density of Steganography
Modification: From Fig. 4, we also observe that for a given
payload, the values of Rpy; will change a lot for different
images. Taking HILL for 0.1 bpp for instance, the minimum
of Rpps is close to 0, while the maximum become close
to 30, meaning the range of Rpjys is over 20 in this case.
Furthermore, the range will increase with increasing payload
or quality factor. In this section, we will analyze the factor
which affects the values of Rpyy.

Fig. [5] shows the steganography modifications and the post-
modifications of two typical images using HILL for payload
0.1 bpp. From Fig. [5] we observe that for the first image,
the steganography modifications seem uniformly dispersed
throughout the whole image, while it is highly concentrated
on a small part for the second one. After performing our
method, the numbers of the post-modification are 1 and 523
separately. Thus we expect that there should be a positive
correlation between the relative post-modification rate Rpys
and the density of steganography modification. To verify this,
we define the density of steganography modification in the
following way. We first compare the difference between cover
X and stego Y, and divide the difference (i.e. ¥ # X) into
5x%5 overlapping small blocks. And then we just consider those
blocks which contain steganography modification, denoted as
as B;,i = 1,2...N. For each block B;, we calculate the
proportion of steganography modification |B;|/25, where |B;|
denotes the number of steganography modification in block
B;, 0 < |B;|/25 < 1. Finally, we define the density of
steganography modification for the stego image Y as follows.

N
1 < 1Bil
Dy=— ) —= 8
v N;% ®)

Based on this definition, the densities of two images in Fig[3]
are 0.05 and 0.27 respectively. We further calculate Rpp; and
the density for 10,000 images in BOSSBase, and show the
scatter plot for HILL (0.1 bpp) and BET-HILL (0.1 bpnz,
QF=75) in Fig [6] For display purpose, we remove outlying
data (less than 0.15% with larger values) in this figure. From
Fig.[f] it is obvious that Rpy, increases with increasing density.
In this case, the corresponding Pearson correlation coefficients
are 0.95 and 0.70 respectively, meaning the linear relationships
between the Rpys and the density are relatively strong, which
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Fig. 4: The violin plots of the Post-Modification Rates for HILL and BET-HILL

(c) Post-Modification

(d) No.1265 (e) Steganography Modification (f) Post-Modification

(a) No.7353 (b) Steganography Modification

Fig. 5: Steganography modification using HILL (0.1 bpp) and the proposed post-modification for two typical image examples.
The densities of steganography modification for the two images are 0.05 and 0.27 respectively, and the corresponding numbers
of post-modification are 1 and 523 respectively.
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Fig. 6: The scatter plot of Rpys vs. the density of steganography modification, the corresponding Pearson correlation coeflicients

for the two cases are 0.95 and 0.70 respectively.

TABLE XVII: Processing time (s) comparison with different
methods in spatial domain.

[o1 02 03 04 05

S-UNI 030 028 029 028 029
S-UNI-SPP 0.17 020 023 027 031
MIPOD 1.68 178 1.84 190 190
MIPOD-SPP 0.17 020 025 029 034
HILL 0.19 0.19 0.19 0.19 0.19
HILL-SPP 0.18 021 025 029 034
CMD-HILL Embed || 0.32 033 032 032 0.32
CMD-HILL SPP 0.19 023 028 033 038

TABLE XVIII: Processing time (s) comparison with different
methods in JPEG domain.

QF || Steganography [ 0.1 02 03 04 05

J-UNI 3.07 3.07 3.07 3.07 3.06
J-UNI-SPP 047 048 049 050 050

75 UERD 0.08 0.08 0.07 0.07 0.07
UERD-SPP 047 048 049 049 0.0
BET-HILL 068 0.69 0.69 0.69 0.69
BET-HILL-SPP || 047 048 048 049 0.50

J-UNI Embed 3.06 3.06 3.08 3.04 3.05

J-UNI SPP 048 050 052 054 0.6

95 UERD 0.08 0.07 0.07 0.07 0.07
UERD SPP 048 050 051 053 055
BET-HILL 069 074 071 071 0.71
BET-HILL SPP || 048 050 0.51 053 0.56

fits our expectation well. Similar results can be found for other
steganographic methods and payloads.

D. Evaluation on Processing Time

In this section, we will evaluate the processing time of the
proposed method. To achieve convincing results, we report
the average results on 100 images randomly selected from
BOSSBase. For comparison, we also provide the processing
time of the corresponding steganography method. The average

results are shown in Table [XVII and Table [XVIIl From the
two tables, we have two following observations:

« For a given steganography method, the processing time
usually increases with increasing payload since more
steganography modification should be dealt with. Taking
HILL for instance, the time processing is 0.18s for 0.1
bpp, while it becomes 0.34s for 0.5 bpp.

o For the same reason, for a given JPEG steganography
method and a payload, the processing time usually in-
creases with increasing quality factor. Taking BET-HILL
for 0.5 bpnz for instance, the processing time is 0.50s for
QF=75, while it increases to 0.56s for QF=95.

Overall, the processing time of the proposed method is
very short (less than 0.60s per image in all cases), which is
comparable to or even much shorter than that of the current
steganography method.

E. Security Evaluation on Other Image Databases

In this section, we will evaluate the security performance on
two other databases including 10,000 gray-scale images of size
512 %512 from BOWS2 and 80,005 gray-scale images of
size 256><256E|from ALASKA [29]. For BOWS2, the partition
of image dataset and hyper-parameters are the same as previ-
ous ones used for the BOSSBase. For ALASKA, we randomly
select 60,005 images for training while the other 20,000 for
testing. In addition, the current best CNN-based steganalysis,
i.e., SRNet [40], is used for security evaluation on ALASKAE[
For comparison, the detection accuracy improvements on the
three image databases (i.e. BOSSBase, BOWS2 and ALASKA)
are shown in Table and Table [XX] From the two tables,
we obtain two following observations:

SThe images are resampled using "imresize()" in Matlab with default
settings from images of size 512 x 512.

7Since SRNet is originally designed for images of size 256 x 256, and it
needs sufficient training data to get good results, we do not use SRNet to
evaluate the security on BOSSBase and BOWS2.
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TABLE XIX: Detection accuracies improvements

BOWS?2 and ALASKA).

(%) for spatial steganography on three image databases (i.e. BOSSBase,

SRM

maxSRMd2

Xu-Net

SRNet

Steganography || Database | —g4——43—4=——07 03 05 [ 01 03 05 || 01 03 05 | Averase
BOSSBase || 033 147 139 || 041 142 161 || 048 296 299 || - ; : 145
S-UNI BOWS2 || 023 233 197 || 1.66 273 211 || 1.00 466 298 || - ; ; 2.19
ALASKA || 021 065 1.08 || 038 1.18 098 || -0.14 248 348 || 072 060 057 1.02
BOSSBase || -0.12 233 268 || 141 277 301 || 1.08 431 520 | - 5 5 252
MIPOD BOWS2 || 057 332 494 || 147 492 403 || 192 523 521 | - ; ; 3.51
ALASKA || 025 134 186 || 064 18 217 || 132 447 46l || 055 081 116 175
BOSSBase || 0.56 276 320 || 1.61 224 260 || 175 448 473 || - 5 5 267
HILL BOWS2 152 475 504 || 276 454 422 || 266 592 567 | - ; ; 412
ALASKA || 003 105 1251 092 18 179 || 093 411 611 || 088 041 062 1.67
BOSSBase || 054 091 168 || 039 093 096 || 042 201 314 || - 5 5 122
CMD-HILL BOWS2 || 065 271 412 || 094 3.00 367 || 196 322 464 - ; - 277
ALASKA | 046 046 1.1 030 1.18 158 || -0.09 169 201 || 006 020 021 0.76

TABLE XX: Detection accuracies improvements (%) for JPEG steganography on three image databases (i.e. BOSSBase, BOWS2

and ALASKA).
GFR SCA-GFR J-Xu-Net SRNet

QF || Steganography || Database | —54——G——G=—1—07 03 05 [ 01 03 05 [ 00 03 05 | ‘verase
BOSSBase || 0.03 050 104 || 061 087 082 | 005 016 044 | - - - 051
J-UNI BOWS2 | 0.16 101 106 || 003 069 118 | 040 008 128 || - - - 0.62
ALASKA || 006 038 144 | 028 118 120 || 006 092 158 || -024 052 098 | 070
BOSSBase || 082 116 160 [ 020 087 1.05 || 038 043 -0.12 - - 072
75 UERD BOWS2 | -0.11 107 143 || 063 096 108 || 125 235 052 || - - - 1.02
ALASKA || 047 108 165 | 014 121 177 || 022 082 180 | 013 101 027 | o088
BOSSBase || 044 192 1.68 || 111 226 199 [ 135 161 147 | - - - 154
BET-HILL BOWS2 || 047 180 215 | 133 236 168 | 097 238 145 || - - - 1.62
ALASKA w 1.07 1.85 0.16 1.26 2.01 0.32 1.85 3.58 0.84 2.37 2.57 1.49
BOSSBase || 010 060 165 || 007 125 173 [[ 018 109 0.5 [ - - - 072
J-UNI BOWS2 || 003 095 266 | 008 127 260 | -004 141 134 || - ] ] 114
ALASKA 0.06 0.36 1.47 0.04 0.23 1.52 0.03 0.47 1.76 0.00 0.36 1.23 0.63
BOSSBase || 007 1.83 300 [ 027 172 279 [[ 008 009 067 [ - - - 118
95 UERD BOWS2 || -0.11 150 385 || 027 220 296 || 001 193 -017 | - - - 138
ALASKA | 014 096 226 || 002 158 258 || -0.15 173 296 || 0.64 145 173 || 1.33
BOSSBase || 018 1.08 273 [ 02 197 277 [[ 057 127 193 [ - - - 147
BET-HILL BOWS2 | -0.04 108 413 || 023 209 305 | 020 232 164 || - ; ] 1.63
ALASKA | 019 089 181 || 024 103 217 || 003 042 191 || 002 168 321 || 113

« Almost in all cases, the proposed method can effectively
enhance the steganography security. In many cases, we
can achieve over 3% and 2% for spatial and JPEG
domains separately, which is a significant improvement
on modern steganography. In a few cases, the security
performance will drop slightly (less than 0.24%). On av-
erage, our method can enhance the steganography security
for all cases (refer to the final column in two tables) .
The improvement is different for the three image datasets.
Compared to the results on BOSSBase and ALASKA, we
can achieve greater improvements on BOWS2 in many
cases, especially for steganography methods in spatial
domain. In addition, the improvement would changes for
different steganalytic methods. The improvement evalu-
ated on the current best CNN-based steganalytic detector
(i.e., SRNet) is relatively smaller than that on the there
other detectors.

F. Comparison with Our Previous Method

In this section, we will compare the steganography security
and the processing time with our previous work [26].

TABLE XXI: Detection accuracies improvements (%) of our
previous method [26] and the proposed method for different
steganography methods in spatial domain (0.4 bpp).

Steganography [ SSUNI  MIPOD HILL CMD-HILL | Average

Method [26] 0.96
Proposed 1.37*

0.85 1.69 0.10 0.90
2.47* 3.30* 1.13* 2.07*

TABLE XXII: Detection accuracies improvements (%) of our
previous method [26] and the proposed method for different
steganography methods in JPEG domain (0.4 bpnz QF=95) .

Steganography “ J-UNI
Method [26] -0.19
Proposed 1.04*

UERD BET-HILL | Average

-0.11 0.06 -0.08
2.54% 2.34% 1.97*

1) Comparison on Security Performance: For simplifi-
cation, we evaluate spatial steganography methods for pay-
load 0.4 bpp using SRM, and evaluate JPEG steganography
methods for payload 0.4 bpnz with QF 95 using GFR both
on BOSSBase. The experimental results are shown in Table
and Table [XXII| separately. From the two tables, we
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TABLE XXIII: Processing time (s) for our previous method
[26] and the proposed method for spatial steganography (0.4

bpp).

Steganography [ SSUNI  MIPOD HILL CMD-HILL | Average

Method [26] 2.03
Proposed 0.27

2.03 2.03 2.03 2.03
0.29 0.29 0.33 0.30

TABLE XXIV: Processing time (s) for our previous method

[26] and the proposed method for JPEG steganography (0.4

bpnz QF=95)
Steganography “ J-UNI

Method [26] 2.79
Proposed 0.54

UERD  BET-HILL [ Average

2.78 2.78 2.78
0.53 0.53 0.53

observe that in spatial domain, both methods can enhance
steganography security. On average, the previous method and
the proposed method achieve an improvement of about 1%
and 2% separately. In JPEG domain, our previous method
[26] does not work effectively, while the proposed method
still achieves an average improvement of about 2%.

2) Comparison on Processing Time: The average pro-
cessing time evaluated on 100 randomly selected images
from BOSSBase are shown in Table [XXIII| and Table XXIV]
separately. From the two tables, we observe that the proposed
method is significantly faster than the previous method. On
average, the proposed method are able to achieve about 7 times
acceleration in spatial domain, and about 5 times acceleration
in JPEG domain.

The above results show that the proposed method is much
more effective and faster than the previous one [26] [ﬂ

V. CONCLUSION

In this paper, we propose a novel method to enhance the
steganography security via stego post-processing. The main
contributions of this paper are as follows.

o Unlike existing works which focus on embedding costs
design (e.g., HILL and UNIWARD) or enhancement (e.g.,
CMD and BBC) according to some predetermined rules
(such as complexity-first, spreading, clustering [41], and
preserving the continuity of block boundary) during data
embedding, the proposed method tries to directly modify
embedding units of stego to reduce the residual distance
when the embedding processing is completed with an
existing steganography.

o The proposed method is universal, because it can be
effectively applied in those steganographic methods using
STCs for data hiding, including most modern image
steganography methods both in spatial and JPEG do-
mains. In addition, the number of modified embedding
units is tiny with the proposed method.

e« On average, the proposed method can enhance the

steganography security in all cases. In many cases, we

8Note that the fast method for updating image residual in section [[II-B4|is
also employed in our previous work for comparison.

can even achieve over 3% and 2% for the modern stegano-
graphic methods in spatial and JPEG domain separately.
Note that such an improvement is significant, especially
for enhancing the advanced steganography, such as CMD-
HILL and BET-HILL.

In our experiments, we try to reduce the Manhattan dis-
tance between cover residual and stego resudial via post-
modification. Other steganalytic measures, such as the co-
occurrence matrices of image residual in SRM and some deep
learning based features will be considered in our future work.
In addition, we will combine the technique of adversarial
example to further improve the steganography security.
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