
Secure Memory Erasure in the Presence of
Man-in-the-Middle Attackers

(A preprint)

Rolando Trujillo-Rasua
School of Information Technology, Deakin University

221 Burwood Hwy., Burwood VIC 3125, Australia

rolando.trujillo@deakin.edu.au

Abstract

Memory erasure protocols serve to clean up a device’s memory
before the installation of new software. Although this task can be ac-
complished by direct hardware manipulation, remote software-based
memory erasure protocols have emerged as a more efficient and cost-
effective alternative. Existing remote memory erasure protocols, how-
ever, still rely on non-standard adversarial models to operate correctly,
thereby requiring additional hardware to restrict the adversary’s capa-
bilities. In this work, we provide a formal definition of secure memory
erasure within a symbolic security model that utilizes the standard
Dolev-Yao adversary. Our main result consists of a restriction on the
Dolev-Yao adversary that we prove necessary and sufficient to solve
the problem of finding a protocol that satisfies secure memory era-
sure. We also provide a description of the resulting protocol using
standard cryptographic notation, which we use to analyze the secu-
rity and communication complexity trade-off commonly present in this
type of protocols.

1 Introduction

Malicious code is a well-known threat to computational devices that support
a programmable memory. The threat can be mitigated by pro-active mech-

1

ar
X

iv
:1

90
5.

13
47

4v
1

 [
cs

.C
R

]
 3

1
M

ay
 2

01
9

anisms that detect and prevent the installation of malware, viruses, or other
sort of malicious code. Independently of the success of such defenses, a num-
ber of devices cannot afford the implementation of anti-malware software
due to computational and operational constraints, e.g. Internet of Things
(IoT) devices. Hence, low-cost pervasive devices rarely come with build-in
pro-active defenses against malicious code.

Memory attestation is a digital forensics technique used to detect whether
a device has been compromised by verifying the integrity of its memory [30,
28]. Devices unable to successfully pass the memory attestation procedure are
regarded as corrupt, and are immediately isolated from other devices. A less
ambitious, yet often equally effective, technique is known as secure memory
erasure, which eliminates malicious code that resides in memory by fully
erasing the device’s memory. This is considered an important preliminary
step prior the download and installation of legitimate software.

Memory erasure in itself can be a functional requirement in IoT appli-
cations where the ownership of devices may change. Erasing the device’s
memory helps the previous owner to protect confidentiality of the informa-
tion stored in the device, while it gives the current owner a proof of absence of
malicious software. The latter feature is exploited by Perito and Tsudik [25],
who argue that memory erasure is a form of memory attestation; both can
guarantee the absence of malware.

The memory erasure problem can be easily accomplished by accessing the
hardware directly, but such access is cost ineffective and not scalable [18].
This has opened the door to a number of communication protocols aiming
at guaranteeing that a given device has actually erased its memory, without
resorting on hardware manipulation. Memory erasure protocols, also known
as Proofs of Secure Erasure (PoSE) protocols [25], allow a remote verifier to
be convinced that a prover has purged all of its memory. This is typically
achieved by first depleting the prover’s memory with random data, and after
asking the prover to compute a function on the received data as a proof of
erasure [18, 1].

We observe that both memory attestation and memory erasure protocols
have been historically designed to operate under non-standard adversarial
models, such as the model by Francillon et al. [13], where compromised de-
vices do not reveal their secrets, or the models used in [25, 12, 16], where
verifier and prover communicate in isolation. Implementing those adversarial
models is not cost-free, though, as they typically rely on especial hardware to
make cryptographic keys inaccessible to attackers [13] or jamming techniques

2

that selectively block malicious communication [25].
Recent work [1] starts to advocate for memory erasure protocols capable

of functioning in the presence of man-in-the-middle attackers, arguing that
selective jamming is ineffective [26]. We address such problem in this article,
and make the following contributions.

• We introduce the notion of distant attacker : a Dolev-Yao adversary [11]
restricted to a given distance threshold on their communication with
honest protocol participants.

• We restrict the security protocol semantics introduced by Basin et al. [5]
and provide a formal definition for secure memory erasure within a
symbolic security model. We prove that such restriction is necessary.

• We provide a high level specification of a memory erasure protocol and
prove it secure in the presence of distant attackers. To the best of our
knowledge, our protocol is the first memory erasure protocol that can
operate in an environment controlled by a Dolev-Yao attacker.

• Lastly, we perform a probabilistic analysis of the security and commu-
nication complexity trade-off of the proposed protocol via an instan-
tiation of the high level specification to a class of protocols known as
lookup-based distance-bounding protocols [22]. Protocols of this type
have been neglected in literature as they suffer from a security-memory
trade-off, i.e. security is proportional to memory demand. However,
we obtain the rather surprising result that such a drawback becomes a
positive feature in memory erasure protocols.

The remainder of this article is organized as follows. Section 2 briefly
covers the literature on memory erasure and memory attestation protocols.
Section 3 provides an informal introduction to the adversarial model and the
definition of secure memory erasure used throughout the paper. Section 4
and Section 5 formalize those intuitions within a symbolic security model.
Section 6 presents a high-level specification of a memory erasure protocol
that resists man-in-the-middle attacks. Finally, Section 7 is devoted to the
analysis of the security and communication complexity trade-off commonly
found in this type of protocols.

3

2 Background

There exists two categories of memory attestation and memory erasure tech-
niques [13]. The first one relies on special and trusted hardware installed
on a device. This technique has been regarded as expensive and unsuitable
for low-cost IoT devices [31]. The other one is software-based, where few
assumptions on the hardware capabilities of devices are made.

In a memory attestation procedure, a verifier is capable of reading part
or the entire prover’s memory. If the reading is correct, the verifier can
determine whether malicious code resides in the prover and take security
measures accordingly. Obtaining a proof of correct reading is challenging,
though. The device can be already infected, making it easy for malicious
code to delude simple reading requests.

Various memory attestation techniques have been introduced in recent
years. SWATT [30], for example, challenges the prover to traverse and com-
pute a checksum of its memory based on a random total order of memory
indexes. For that, the verifier uses a pseudo-random sequence with a secret
seed revealed to the prover prior commence of the attestation procedure.
SWATT assumes that, with high probability, a number of indexes will hit
memory occupied by the malicious code. This forces the malicious code to
make on-the-fly checksum computations, which is detected by measuring the
delay in the prover’s responses. A similar technique is used by Pioneer [29].

Shaneck et al. argue that tight timing-based techniques can hardly be
used for remote attestation [31]. The reason is that the network and com-
munication channel may introduce unforeseen delays, and that accurately
estimating computational time in software execution is a challenge in itself.
Hence, Shaneck et al. propose a scheme where the verifier sends an ob-
fuscated and self-modifying attestation code to the prover. The security of
their scheme is based on the observation that performing static analysis on
a freshly generated code is notoriously difficult for an attacker.

Secure memory erasure is less ambitious than memory attestation in terms
of reading capabilities. Yet it can be equally effective when it comes to en-
suring that a device contains no malicious code in memory. A common
assumption in the literature on memory erasure is that the prover does not
receive external help during the execution of the protocol. This is enforced
in [25] by selective jamming of all, but the prover, nearby devices during the
run of the protocol. Communication jamming has the side-effect of prevent-
ing man-in-the-middle attackers from interfering with the execution of the

4

protocol, hence making security analysis simpler.
Improvements upon the protocol in [25] have mainly focused on compu-

tational complexity, e.g. [12, 16], keeping selective jamming as a key security
measure. However, communication jamming has the drawback of not been
fully effective [26], i.e. it can be bypassed. Moreover, it may be illegal in some
standard wireless bands. It follows the question of whether secure memory
erasure protocols that resists man-in-the-middle attacks can be implemented.

To the best of our knowledge, SPEED [1] is the first memory erasure pro-
tocol that aims to resist man-in-the-middle attacks. It implements a mem-
ory isolation technique, as in [34], to store security-relevant functions and
cryptographic keys. In this trusted portion of the device’s memory, SPEED
implements a distance bounding protocol [8] with the goal of enforcing prox-
imity between prover and verifier. The authors argue that proximity makes
it difficult for an attacker to tamper with the protocol’s messages. However,
the security of their protocol still rely on assumptions that are not considered
in the distance bounding literature, such as the use of visual inspection to
prevent impersonation.

No memory erasure protocol in literature has been proven secure within
standard symbolic security models, such as the Dolev-Yao model [11]. In
contrast, security standards (e.g. ISO/IEC 9798 [6]) and major security
protocols (e.g. TLS 1.3 [10]) have been analyzed, fixed and improved, by ex-
pressing their goals within symbolic security models and verifying their cor-
rectness with automated proving tools, such as ProVerif [7] and Tamarin [23].
This work addresses such gap.

3 Secure memory erasure in the presence of

distant attackers

In this section, we introduce an informal security framework to analyze mem-
ory erasure protocols in the presence of man-in-the-middle attackers. A for-
malization within a symbolic security model of the concepts introduced in
this section will follow immediately after.

3.1 Secure memory erasure

Most proofs of secure erasure (PoSE) are based on the notion of memory fill-
ing, whereby a verifier requests a prover to full its memory with meaningless

5

data, such as a random sequence. In this setting, Karvelas and Kiayias [18]
consider a memory erasure protocol secure if the prover cannot maintain
a portion of its memory intact. Perito and Tsudik’s definition is more fine-
grained, stating that secure erasure is achieved when prover and verifier agree
on a memory variable [25]. We adopt in this article the latter.

Definition 1 (Secure memory erasure). Let V and P be a verifier and prover,
respectively. Let Vmem be a variable stored in V ’s memory, and Pmem a
variable stored in P ’s memory. A protocol satisfies secure memory erasure
if, for every successful execution of the protocol, there exists an execution step
where Vmem = Pmem and the size of Vmem is equal to P ’s writable memory.

In the absence of a man-in-the-middle attacker, most memory erasure
protocols satisfy Definition 1. As discussed by Perito and Tsudik’s [25], even
a simple protocol where the verifier sends a random nonce and expects to
receive the same nonce back as a proof of erasure satisfies Definition 1 for
a sufficiently large nonce. Therefore, it remains to introduce the adversarial
model against which the security of this type of protocols can be assessed.

3.2 The adversarial model

In security models, adversaries are characterized in terms of their ability to
compromise agents and manipulate network traffic. While various notions of
agent compromise exist [9, 4], the adversary’s capabilities to interact with
the network are, with few exceptions, still those introduced by Dolev and
Yao in 1982 [11]. That is, an adversary with the ability to block, modify,
and inject arbitrary messages in the network.

In memory erasure protocols, the prover may have malicious code running
in memory. This allows a Dolev-Yao attacker, also known as man-in-the-
middle attacker, to easily impersonate the prover, making any intention of
interaction with the prover meaningless. That is the reason why memory
erasure protocols have been traditionally designed to operate within a clean
environment, where no attacker is able to manipulate the network. Such a
clean environment has been traditionally enforced by radio jamming [25]. As
illustrated in Figure 1, a man-in-the-middle attacker can be frustrated by
allowing the prover to complete the protocol while selectively jamming the
attacker’s signal. Even if the adversary is within the jamming radius, he can
neither interact with the prover nor with the verifier.

6

Verifier

Prover

Jamming Radius

Figure 1: Preventing man-in-the-middle attacks via jamming.

Verifier

Prover

Distance Threshold

Figure 2: Preventing attacks from distant attackers.

The idea of creating an area where a man-in-the-middle attacker looses
his capabilities was taken a step further by Ammar et al. [1]. They proposed
the use of a distance bounding protocol [8] to ensure proximity between
prover and verifier. Intuitively, if the interaction between prover and ver-
ifier is limited to a sufficiently small area, as in Figure 2, the attacker is
thwarted from participating in the protocol execution. In a sense, Ammar et
al. suggest that distance bounding protocols can be used as a primitive to
weaken man-in-the-middle adversaries and simplify the design and analysis
of security protocols. We make this notion more precise next.

Definition 2 (Distant attacker). Given a distance threshold δ, a distant
attacker is a Dolev-Yao attacker whose distance to the verifier is larger than
or equal to δ.

Clearly, the larger δ the weaker a distant attacker is with respect to the
standard Dolev-Yao adversary. Nonetheless, we point out that assuming a
distant attacker is reasonable in various applications where the protocol is

7

executed in a controlled environment, such as a private room. The challenge
is to design a memory erasure protocol that resists attacks from a distant
attacker with δ > 0.

Our goal next is to formalize the intuitions exhibited in this section and
prove the following two propositions. First, under standard assumptions
in symbolic security protocol verifications, no protocol can resist a distant
attacker with δ = 0. Second, for every δ > 0, there exists a security protocol
that can be proven secure in the presence of a distant attacker with distance
threshold δ.

4 The Security Model

To formalize the notion of distant attacker, we need a model that supports
reasoning about distance between protocol participants. A security model of
this type has been introduced by Basin et al. [5], provided with a trace-based
semantics for distributed systems describing all possible interleaved events
that protocol principles can execute.

4.1 Messages, events and inference rules

Messages. A security protocol defines the way various protocol participants,
called agents, exchange cryptographic messages. To model cryptographic
messages, we use a term algebra TΣ(V , C) where Σ is a signature, V a set
of variables, and C a set of constants. We consider agents’ names, denoted
Agent, and nonces, denoted Nonce, to be constants in our term algebra as
well, i.e. Agent,Nonce ⊆ C. The set of nonces is assumed to be partitioned
into {Noncea | a ∈ Agent}. This is to ensure that two different agents cannot
produce the same nonce. The set Agent itself is also partitioned into Honest
(honest agents) and Dishonest (dishonest agents). Finally, we assume that
the signature Σ contains the following function symbols:

• pair(m,m′) denoting the pairing of two terms m and m′. We will
usually use (m,m′) as shorthand notation.

• enc(m, k) denoting the encryption of m with the key k. We will usually
use {m}k as shorthand notation.

• k(a, b) denoting the long-term shared symmetric secret key of two
agents a, b ∈ Agent.

8

We use Msg to denote the set of all terms obtained from the above term
algebra.

It is worth remarking that we have intentionally omitted asymmetric
encryption in our term algebra. The reason is that the protocols we analyze
in this article make no use of public keys. That said, our results can be easily
extended to a model that supports public-key encryption.
Events and traces. Agents can execute three types of events: i) send a
message, ii) receive a message and iii) claim that a given security property
holds. Hence we define the set of all possible events Ev by the following
grammar.

e ::= senda(m) | recva(m) | claima(ψ,m),

where a is an agent’s name, m a message, and ψ a constant identifying a
security property. We consider the auxiliary function actor : Ev → Agent,
which provides the actor executing an event.

actor(e) = a ⇐⇒
e ≡ senda(m) ∨ e ≡ recva(m) ∨ e ≡ claima(ψ,m),

When constructing traces, each event is given a time-stamp t ∈ R, repre-
senting the time at which the event has been executed. Therefore, a trace is
a finite sequence of time-stamped events τ = (t1, e1) · · · (tn, en) ∈ (R× Ev)∗.
In this case, we say that τ has cardinality n, denoted |τ |, and we use τi to
denote the ith element of τ , i.e. τi = (ti, ei). The auxiliary function max(τ)
gives the largest time-stamp in τ , while the function actor is extended to
time-stamped events in the straightforward way.
Inference. We formalize the way agents obtain and create knowledge by an
inference relation ` ⊆ Agent× (R× Ev)∗ ×Msg. And, we use the shorthand
notation a `τ m to denote (a, τ,m) ∈`, indicating that agent a can infer
message m from trace τ . We define the relation ` to be the least set that is
closed under the inference rules in Figure 3. Each of these rules states that:

• Rule I1: except other agent’s nonces, an agent a can infer any constant,
including its own set of nonces Noncea.

• Rule I2: agents can infer their shared secret keys with other agents.

9

m ∈ (Const \ Nonce) ∪ Noncea

a `τ m
I1

a `τ (k(a, b), k(b, a))
I2

a `τ m1, . . . , a `τ mn, f ∈ Σ \ {k}

a `τ f(m1, . . . ,mn)
I3

(t, recva(m)) ∈ τ

a `τ m
I4

a `τ (x, y)

a `τ x, a `τ y
I5

a `τ {x}y , a `τ y

a `τ x
I6

Figure 3: Inference rules

• Rule I3: all function symbols in Σ, but k, can be used to infer arbitrary
terms constructed over already inferable terms. The function symbol
k is reserved to be used only in rule I2.

• Rule I4: a receive event recva(m) allows agent a to infer m.

• Rule I5: agents have the ability to unpair messages.

• Rule I6: an encrypted message {x}y can be decrypted with the de-
cryption key y.

4.2 A security protocol semantics

Protocol specification. The following protocol specification assumes that
agents remain in a static location during the protocol execution. This is
a standard assumption in security models dealing with physical properties,
such as [5, 27, 22]. An uninterpreted distance function d(.) is used to denote
the distance between agents a and b.

10

A protocol P is defined by a set of derivation rules, similar to the infer-
ence rules used above, specifying how execution traces make progress. Its
semantics, denoted [[P]], is the least set closed under those rules. We now
describe the type of rules we use to inductively define the set of traces of a
protocol. The base case is modeled by the start rule (Start), which indicates
that the empty trace ε is in [[P]] for every protocol P .

ε ∈ [[P]]
Start,

The other two rules, Net and Adv, are used to model the network behavior
and corruption capability of the adversary. The Net rule states that a message
m previously sent by a can be received by any agent b whose distance to a is
consistent with the physical relation between constant speed, distance, and
time. That is to say, given the propagation speed c of the communication
channel, it must hold that a message sent by a at time t and received by b
at time t′ satisfies d(a, b) ≤ c

2
(t′ − t).

τ ∈ [[P]], (t, senda(m)) ∈ τ
t′ ≥ max(τ), d(a, b) ≤ c

2
(t′ − t),

τ · (t′, recvb(m)) ∈ [[P]]
Net,

Lastly, the Adv rule allows the adversary to impersonate dishonest agents
and send events on their behalf. Note that, unless otherwise specified, vari-
ables in derivation rules are universally quantified.

τ ∈ [[P]], a ∈ Dishonest,
t ≥ max(τ), a `τ m

τ · (t, senda(m)) ∈ [[P]]
Adv,

The rules Start, Net and Adv, are part of every protocol specification,
which are used to model trace initialization, network operation, and the be-
havior of dishonest agents. It remains to define the behavior of honest agents.
Such behavior is defined by protocol-dependent rules with the following con-
straints.

11

τ ∈ [[P]], t ≥ max(τ),
NV ∈ NonceV

τ · (t, sendV (NV)) ∈ [[P]] V1

τ ∈ [[P]], t ≥ max(τ),
(t′, recvP (NV)) ∈ τ

τ · (t, sendP (NV)) ∈ [[P]] P1

τ ∈ [[P]], t ≥ max(τ),
(t′, sendV (NV)) ∈ τ, (t′′, recvV (NV)) ∈ τ
τ · (t, claimV (erasure, P,NV)) ∈ [[P]] V2

Figure 4: Specification of Perito and Tsudik’s protocol.

• References to dishonest agents in either the premises or the conclusion
of a protocol rule are not allowed. The reason is that the behavior of
dishonest agents is fully specified by the Adv rule.

• All events in a rule ought to be executed by the same agent. That is,
the logic of an agent’s behavior is independent from the specification of
other agents. Hence agents interact exclusively through the Net rule.

• Terms used in the conclusion of a protocol rule ought to be derivable
from the premises by using the inference rules in Figure 3.

Example 1. We use a simplified version of the memory erasure protocol
introduced by Perito and Tsudik [25]. In the protocol, the verifier sends a
challenge n and the prover reflects it back to the verifier1. Its specification
is given in Figure 4, where rule V1 states that V can choose any of its own
nonces and send it through. For the sake of simplicity, we are assuming
in protocol rules that nonces are fresh. Hence, when we use the premise
NV ∈ NonceV we are also requiring that NV has not been used in the trace
τ . Rule P1 indicates that, upon reception of a nonce NV , P sends NV back.
Finally, V2 is used by V to claim that a given erasure property should hold
after reception of the nonce NV . Further below we explain claim events in
more detail.

Execution traces and security properties. An execution trace of a protocol P
is any trace inductively defined by the set of rules {Start,Net,Adv} ∪P . For

1This is a simplification of the original protocol [25] used for illustration purposes only.

12

example, the protocol specification in Figure 4 gives the following trace via
application of the Start, V1, Net, P1, Net and V2 rules, where a, b ∈ Agent
and n ∈ Nonce.

ε · (0, senda(n)) · (1, recvb(n)) · (2, sendb(n))·
(3, recva(n)) · (4, claima(erasure, b, n)),

Finally, a security property is a first-order logic statement on execution
traces, which is said to be satisfied by a protocol P if the property holds
for all traces in [[P]]. To account for the fact that a security property needs
not be satisfied over the entire execution of a protocol, we are using claim
events as placeholders to indicate those execution steps where a security
property needs to be verified. This is, for example, the role of the claim
event claimV (erasure, P,NV) in the protocol specification in Figure 4. In
this case, the verifier V expects that, upon reception of the nonce NV , the
prover P has received the nonce NV .

5 An underapproximation of secure memory

erasure

We consider traces where a verifier interacts with a prover to obtain a proof
of secure erasure, with the restriction that any external help the prover can
receive comes from attackers that are located at a distance from the verifier no
lower than a given threshold δ. The following predicate is used to determine
whether a trace τ satisfies such condition, with respect to a verifier a and a
prover b.

adv sepδ(τ, a, b) ⇐⇒ ∀c∈actors(τ) c 6= b =⇒
d(a, c) ≥ δ ∨ c ∈ Honest,

where actors(τ) = ∪(t,e)∈τ{actor((t, e))}.
Secure memory erasure is defined below as a statement on traces satisfying

the attacker separation property, rather than on the full protocol semantics.
Intuitively, if at some step of an execution trace τ an agent a believes that
another agent b has erased its memory by storing a (sufficiently large) message
m, then it must be the case that b previously received or sent a message m.

13

Definition 3 (Secure memory erasure). Let P be a protocol. The claim event
claimV (erasure, P,M) is said to be correct in P with respect to a distant
attacker with distance threshold δ if,

∀τ∈[[P]] (t, claima(erasure, b,m)) ∈ τ ∧ a ∈ Honest∧
adv sepδ(τ, a, b) =⇒ ∃t′<t (t′, recvb(m)) ∈ τ∨

(t′, sendb(m)) ∈ τ ,

Observe that the action of receiving or sending a message m is considered
a guarantee that an agent has or had m in memory. This indeed resembles
the standard notion of agreement [20] in security protocols. Moreover, the
prover is allowed to be dishonest. This is less common in security properties
expressed within a symbolic model, but a key assumption in the memory
erasure scenario.

It is worth remarking that Definition 3 underapproximates the intuition
given in Definition 1, as it neglects the size of the term m. We make the
assumption that the size of the term prover and verifier agree upon is known
by the analyst, e.g. m is a 1024-bit nonce, and that such size is large enough
to deplete the prover’s memory. This means that optimizations on the size of
the memory required to store m ought to be analyzed out of the introduced
model, as we do further below in Section 7.

5.1 Analyzing a variant of SPEED

To illustrate how the proposed definition can be used, we analyze a variant
of SPEED [1]. This choice is based on the fact that SPEED is, to the best of
our knowledge, the first memory erasure protocol that measures the distance
between prover and verifier, which is a property that can be exploited to
prevent man-in-the-middle attacks. We remark, nonetheless, that SPEED
was thought to resist a definition of security weaker than that in Definition 3.
Our analysis below serves for illustration purposes only and does not diminish
the merits of the protocol.

The SPEED protocol, depicted in Figure 5, starts when the verifier V
sends the hash of a random bit-sequence m1 · · ·mn to the prover P . Upon
reception of the hash value, P executes n rounds of rapid bit exchanges,
known as the fast phase [8], where the prover measures the round-trip-time
of several bit exchange rounds with the verifier. At the ith round of the fast
phase, P chooses a random bit ai and sends it to V . Then V immediately

14

Verifier V Prover P
Key k Key k

m ∈R {0, 1}n a ∈R {0, 1}n
h(m)←−−−−−−

Fast Phase
for i = 0 to n− 1

ai−−−−→ Start Clock
ri = ai ⊕mi

ri←−−−− Stop Clock
store ∆ti

Final phase
X = a1r1 · · · anrn X = a1r1 · · · anrn

MACk(MACk(X),MeM)←−−−−−−−−−−−−−−−−−−− erase memory
If MAC is correct, then

claimV (erasure, P,MeM))

Figure 5: The SPEED protocol with shared keys.

responds with ri = ai ⊕ mi. The round-trip-time ∆ti of the bit exchange
is calculated by P upon receiving ri, allowing P to verify that ∆ti is below
a given threshold. P also computes the bit-sequence m′1 · · ·m′n where m′i =
ri⊕ai ∀i ∈ {1, . . . , n}, and checks that h(m′1 · · ·m′n) = h(m1 · · ·mn). If both
verification steps are passed successfully, P erases its memory with a default
value MeM and sends a MAC computation on the protocol transcript and
the internal memory of the prover.

We note that, because the original design of SPEED does not use cryp-
tographic keys, it ought to rely on offline methods, such as visual inspection,
to fight against impersonation attacks. Given that neither visual inspection
nor any other type of offline method is considered by the security model in-
troduced herein, we strength the protocol by assuming a MAC function that
uses a shared secret key between prover and verifier.

The security analysis of SPEED given in [1] is based on the following four
main assumptions. First, the prover does not execute sessions in parallel with
verifiers. Second, the adversary cannot tamper with the security-relevant
functions of the prover. Third, the cryptographic primitives and sources of
randomness used in the protocol are secure. And fourth, the round-trip-
time calculations can be used by the prover to enforce proximity with the
verifier [8]. We, nevertheless, can construct an attack trace that satisfies
those assumptions and invalidates Definition 3.

The attack trace (depicted in Figure 6) consists of an adversary imperson-
ating a prover, with the peculiarity that the prover is willingly contributing

15

Verifier V δ Adversary A Prover P

Key k Key k Key k

m ∈R {0, 1}n
h(m)−−−−−→

Fast Phase
for i = 0 to n− 1

0←−− Start Clock
ri = mi

ri−−−→ Stop Clock
store ∆ti

Final phase
X = 0||r1 · · · 0||rn

MAC(MAC(X),MeM)←−−−−−−−−−−−−−−−−
MAC is valid

claim is invalid

Figure 6: Attack on SPEED with shared keys.

to the attack by revealing its cryptographic keys, i.e. the prover is dishon-
est. It starts when the verifier V aims at erasing the memory of a prover
P , for which a random sequence m ∈R {0, 1}n of size n is generated. V
sends the hash of m to P , which should be used later by P to check prox-
imity with V . At this point, an adversary A takes over the communication
with V and replies to h(m) by executing n rounds of the fast phase, as
established by the protocol. We assume the adversary-verifier communica-
tion occurs at an arbitrary distance δ, and that P is voluntarily not taking
part in the protocol execution. The adversary chooses to challenge the ver-
ifier with a sequence of zeros. At the end of the fast phase, A replies with
MACk(MACk(0||m1 · · · 0||mn),MeM) where MeM is the default value the
prover is expected to use to erase its memory. Such MAC value is correct,
making V incorrectly believe that P has erased its memory by storing the
value MeM .

The presented attack is based on the simple observation that a dishonest
prover can provide the adversary (i.e. another dishonest device) with the
cryptographic material necessary to pass the memory erasure protocol. This
means that a single rogue device can be used to bypass the memory erasure
procedure of many compromised devices, that is, the attack scales easily.
Moreover, this type of external help is not ruled out by the security model,
because the adversary complies with the restriction of being far enough from
the verifier.

16

5.2 Impossibility result towards secure memory era-
sure

Before presenting an alternative to SPEED, we deem important providing an
impossibility result on the problem of finding a protocol that satisfies secure
memory erasure when δ = 0, as this proves the necessity of the restriction
on the distance between the adversary and the verifier.

Theorem 1. Let δ = 0. Then for every protocol P and trace τ ∈ [[P]],

(t, claima(erasure, b,m)) ∈ τ =⇒
∃τ ′∈[[P]](t, claima(erasure, b,m)) ∈ τ ′ ∧ adv sepδ(τ ′, a, b)∧

(∀t′<t(t′, recvb(m
′)) 6∈ τ ′ ∧ (t′, sendb(m

′)) 6∈ τ ′) ,

Proof. Consider a trace τ ∈ [[P]] such that it contains a claim event (t, claima(erasure, b,m)).
We observe that τ can be constructed based on a partition of the set Agent =
Honest ∪ Dishonest with b ∈ Dishonest. Hence we consider another dishonest
agent c ∈ Dishonest such that d(b, c) = 0 and c 6∈ actors(τ). That is, both
b and c are in the same location and c has not been active in τ . Then we
construct the trace τ ′ as follows, for every i ∈ {1, . . . , |τ |} and every l ∈ Msg,

τ ′i =

(t′, sendc(l)), if τi = (t′, sendb(l))
(t′, recvc(l)), if τi = (t′, recvb(l))
τi, otherwise.

Now, let t0 be the minimum time-stamp of an event in τ . We create the
following trace,

τ ′′ = (t0, sendb((k(a, b), k(b, a)))))·
(t0, recvc((k(a, b), k(b, a))))) · τ ′

The trace τ ′′ consists of b revealing its secret key with a, followed by c
learning the keys k(a, b) and k(b, a). The remaining events in τ ′′ are those
in τ ′ respecting the original order. We will prove that τ ′′ ∈ [[P]]. For that,
we use τ [i] to denote the sub-trace τ1 · · · · · τi with i ∈ {1, . . . , |τ |} and τ [0]
to denote the empty trace ε. Then we prove via induction that for every
i ∈ {0, . . . , |τ |} and every l ∈ Msg,

17

b `τ [i] l ∧ l 6∈ Nonceb =⇒ c `τ ′′[i+2] l (1)

τ [i] ∈ [[P]] =⇒ τ ′′[i+ 2] ∈ [[P]], (2)

Base case [i = 0]. Notice that if b `τ [0] l ∧ l 6∈ Nonceb, then either l is a
constant or l = (k(a, b), k(b, a)), according to the derivation rules in Figure 3.
The second event in τ ′′ allows c to infer (k(a, b), k(b, a)) (Rule I4). And, if l is
a constant and not a nonce, then all agents can infer l (Rule I1). Therefore,
b `τ [0] l ∧ l 6∈ Nonceb =⇒ c `τ ′′[2] l. Now, given that d(b, c) = 0, it follows
that (t0, sendb((k(a, b), k(b, a))))) · (t0, recvc((k(a, b), k(b, a))))) is in [[P]].
Inductive step. We now assume that (1) and (2) hold for every i ∈ {0, . . . , k}
with k < |τ |. We analyze two cases.
Case 1: τk+1 = (t′, recvb(l

′)) for some time-stamp t′ and term l′. In this
case, τ ′′k+3 = (t′, recvc(l

′)) by construction of the trace τ ′′. As a result, it
holds that b `τ [k+1] l ∧ c 6`τ ′′[k+3] l =⇒ b `τ [k] l ∧ c 6`τ ′′[k+2] l, which proves
(1) for i = k+ 1 by contrapositive. To prove that (2) holds for i = k+ 1, we
just need to notice that τk+1 is appended to τ [k] via application of the rule
Net. Because all events, but those of b, in τ are preserved in τ ′′, and b’s events
are now mimic by c, rule Net can also be applied to append (t′, recvc(l

′)) to
τ ′′[k + 2], which gives τ ′′[k + 3] ∈ [[P]].
Case 2: τk+1 6= (t′, recvb(l

′)) for every time-stamp t′ and term l′. In this
case, it follows that b `τ [k] l ⇐⇒ b `τ [k+1] l. By hypothesis of induction we
thus obtain that b `τ [k+1] l ∧ l 6∈ Nonceb =⇒ c `τ ′′[k+2] l =⇒ c `τ ′′[k+3] l,
which proves the induction step for (1). It remains to prove that (2) holds
for i = k + 1, for which we analyze two more cases.

• τk+1 = (t′, sendb(l
′)) for some time-stamp t′ and term l′. The rule Adv

is used to append τk+1 to τ [k], meaning that b `τ [k] l
′. By (1) we obtain

that c `τ ′′[k+2] l. Hence via application of the rule Adv we obtain that
τ ′′[k + 3] ∈ [[P]].

• The last case is τk+1 = τ ′′k+3, which occurs when actor(τk+1) 6= b. Be-
cause all events in τ [k], except those from b, are preserved in τ ′′[k+ 2],
then τ [k] · τk+1 ∈ [[P]] =⇒ τ ′′[k + 2] · τ ′′k+3 ∈ [[P]].

We conclude that τ ′′ ∈ [[P]]. Now, by construction, τ ′′ also satisfies that
(t, claima(erasure, b,m)) ∈ τ ′′ and that no t′ and l exist such that (t′, recvb(l)) ∈
τ ′′ or (t′, sendb(l)) ∈ τ ′′. Given that δ = 0, adv sepδ(τ

′′, a, b) also holds. This
yields the expected result.

18

The main corollary of the theorem above is that no protocol can satisfy
secure memory erasure with δ = 0. This corresponds to the case where no
restriction to a distant attacker is imposed. We thus conclude that restricting
traces to a given separation between honest and dishonest agents is necessary
towards the goal of finding a secure memory erasure protocol. We prove in
the next section that such restriction is also sufficient.

6 A secure memory erasure protocol

In this section we introduce a memory erasure protocol that can be proven
secure within the security model introduced in earlier sections. This is, to
the best of our knowledge, the first memory erasure protocol that resists
man-in-the-middle attacks.

6.1 The protocol

We propose a protocol that aims at mutual authentication between prover
and verifier. The need of authenticating the verifier is to prevent illegitimate
erasure requests, while prover authentication is a necessary step towards
obtaining a proof of erasure. In addition, the verifier measures the round-
trip-time of a message exchange to obtain a bound on its distance to the
prover. This is a distance bounding technique [8] that will prove useful to
counteract distant attackers.

The protocol, depicted in Figure 7, starts when the prover P sends a
nonce NP . A verifier V replies with a Message Authentication Code (MAC)
on the nonce NP and a freshly generated nonce NV , which is used by P to
authenticate V . As usual, the MAC function is computed using P and V ’s
shared key k. Right after, a time-measurement phase commences, where V
starts a clock and sends a challenge C to P . Immediately after receiving the
challenge, P replies with r = h(k,NP , NV , C), where h is a hash function.
Upon reception of the prover’s response, V stops the clock and calculates
the round-trip-time ∆t. Then V checks that r is correct and that ∆t ≤ ∆,
where ∆ is a protocol parameter denoting a maximum time-delay tolerance.
If both verification steps succeed, V claims that P has erased its memory.

The reader may have noticed that the introduced memory erasure proto-
col does not use standard notation from the literature in distance bounding,
where the time-measurement phase is composed of various rounds of single-

19

V

k

P

k

nonce NP

NP

nonce NV

MACk(NP , NV), NV

claimP (auth, V)nonce C
C

max ∆ r = h(k,NP , NV , C)

claimV (erasure, P, r)

Figure 7: A secure memory erasure protocol.

bit exchanges [8, 2]. For the moment we require this high level of abstraction
to come up with formal security proofs. Nonetheless, in Section 7 below we
unfold the proposed protocol and describe it using standard cryptographic
notation for distance bounding protocols.

6.2 Security analysis

Figure 8 provides a formal specification of the protocol in the modeling lan-
guage introduced earlier. That specification is used to enunciate the various
results that come next. In the remainder of this section, we use P to refer
to the protocol defined by the protocol rules in Figure 8.

Lemma 2. Let π : (R×Ev)∗ → Ev∗ be a projection function on time-stamped
traces defined by π((t1, e1) · · · (tn, en)) = e1 · · · en, for every (t1, e1) · · · (tn, en) ∈
(R× Ev)∗. Let π([[P]]) = {π(τ)|τ ∈ [[P]]}. P satisfies that

20

τ ∈ [[P]], tmax ≥ max(τ),
NP ∈ NonceP

τ · (tmax, sendP (NP)) ∈ [[P]]
P1

τ ∈ [[P]], tmax ≥ max(τ),
(t1, recvV (NP)) ∈ τ,NV ∈ NonceV

τ · (tmax, sendV (MACk(V,P)(NP , NV), NV)) ∈ [[P]]
V1

τ ∈ [[P]], tmax ≥ max(τ), (t1, sendP (NP)) ∈ τ,
(t2, recvP (MACk(V,P)(NP , NV), NV))

τ · (tmax, claimP (auth, V)) ∈ [[P]]
P2

τ ∈ [[P]], tmax ≥ max(τ), (t1, recvV (NP)) ∈ τ,
(t2, sendV (MACk(V,P)(NP , NV), NV)) ∈ τ,

C ∈ NonceV

τ · (tmax, sendV (C)) ∈ [[P]]
V2

τ ∈ [[P]], tmax ≥ max(τ), (t1, sendP (NP)) ∈ τ,
(t2, recvP (MACk(V,P)(NP , NV))) ∈ τ,

(t3, recvP (C)) ∈ τ
τ · (tmax, sendP (h(k(P, V), NP , NV , C)) ∈ [[P]]

P3

τ ∈ [[P]], tmax ≥ max(τ), (t1, recvV (NP)) ∈ τ,
(t2, sendV (MACk(V,P)(NP , NV))) ∈ τ,

(t3, sendV (C)) ∈ τ, (t4, recvV (h(k(P, V), NP , NV , C)) ∈ τ, (t4 − t3) < ∆

τ · (tmax, claimV (erasure, P, h(k(P, V), NP , NV , C))) ∈ [[P]]
V3

Figure 8: Specification of the introduced memory erasure protocol.

21

∀τ̄ ∈ π([[P]]), a, b ∈ Agent, n,m, c ∈ Msg : (3)

r = h(k(a, b), n,m, c) ∧ claima(erasure, b, r) ∈ τ̄∧
a ∈ Honest =⇒ ∃i,j,k∈{1,...,|τ̄ |},b′∈Agent i < k < j∧
τ̄i = senda(c) ∧ τ̄k = sendb′(r) ∧ τ̄j = recva(r)∧
(b = b′ ∨ {b, b′} ⊆ Dishonest) ,

Proof. We use the security protocol verification tool Tamarin [23] to prove
this lemma. The Tamarin specification of the protocol and lemma can
be found at https://github.com/memory-erasure-tamarin/code. There-
fore, the correctness of this proof relies on the claim that the provided
Tamarin implementation faithfully corresponds to the formalization pro-
vided herein.

Lemma 2 states that either the prover (if the prover is honest) or a dis-
honest agent on behalf of the prover (if the prover is dishonest) will respond
to the challenge sent by the verifier to calculate the round-trip-time.

Our main observation at this point is that the condition satisfied by the
memory erasure claim event in Lemma 2 is stronger than the condition re-
quired to satisfy causality-based secure distance bounding, as introduced
in [21]. This allows us to prove the main theorem of this section.

Theorem 3. Let ∆ be the time upper bound used in P, δ a distance threshold
of a distant attacker, and c the transmission speed of the communication
channel. If δ ≥ c

2
∆, then P satisfies secure memory erasure.

Proof. According to Definition 3, it is sufficient to prove that

∀τ∈[[P]] (t, claima(erasure, b, r)) ∈ τ ∧ a ∈ Honest∧
adv sepδ(τ, a, b) =⇒ ∃t′<t (t′, sendb(r)) ∈ τ ,

Consider two agents, a and b with a ∈ Honest, and a trace τ ∈ [[P]]
such that adv sepδ(τ, a, b). Consider now the projection τ̄ = π(τ) of the
trace τ . It follows that τ̄ satisfies that claima(erasure, b, r) ∈ τ̄ with r =
h(k(a, b), n,m, c). This allows us to use Lemma 2 and conclude that there
must exist i, j, k ∈ {1, . . . , |τ̄ |} such that i < k < j, τ̄i = senda(c), τ̄j =
recva(r) and τ̄k = sendb′(r) for some agent b′, which is either b itself or
dishonest. Mapping back those events onto the trace τ ′, we obtain that there

22

https://github.com/memory-erasure-tamarin/code

exists timestamps ti < tk < tj such that (ti, senda(c)) ∈ τ , (tk, sendb′(r)) ∈ τ
and (tj, recva(r)) ∈ τ .

By looking at the protocol rules (concretely V3) and the fact that a is
honest, it follows that ti < t and that tj− ti < ∆. This means that d(a, b′) ≤
c
2
(tj − ti) < c

2
∆ ≤ δ, i.e. d(a, b′) < δ. On the one hand, because τ satisfies

adv sepδ(τ, a, b), we obtain that either b = b′ or b′ is honest. On the other
hand, Lemma 2 gives that either b = b′ or b′ is dishonest. Given that b′

cannot be honest and dishonest at the same time, we conclude that b = b′.
As a result, (tk, sendb(r)) ∈ τ , which concludes the proof.

Theorem 3 proves that the proposed memory erasure protocol (depicted
in Figure 8) resists man-in-the-middle attacks from a distant attacker with
distance threshold δ ≥ c

2
∆. That is, the protocol does not contain logical

flaws with respect to the mathematical model and properties introduced in
this article.

The next and last section of this article is dedicated to analysing attacks
that are not regarded as man-in-the-middling in the traditional sense; hence
not captured by the security model. We refer to probabilistic attacks that aim
to bypass the protocol without fully storing the term r in memory. Of course,
this requires switching from symbolic analysis to probabilistic analysis.

7 A protocol based on cyclic tree automata

The goal of this section is to instantiate the high level specification of the
introduced protocol into a concrete class of protocols that can be used to ana-
lyze the security and communication complexity trade-off commonly present
in memory attestation and memory erasure protocols [31, 18, 25, 12, 16].

7.1 Lookup-based memory erasure protocols

The instantiation we propose is largely inspired by the design of lookup-
based distance bounding protocols [15, 3, 14, 17, 19, 22, 24, 32], and we will
use the automata-based representation introduced by Mauw et al. [22] to
describe them. The main feature of this type of protocols is that, in order
to obtain tight values on the round-trip-time calculation, they use simple
lookup operations during the time-measurement phase.

An automaton, i.e. a state-labeled Deterministic Finite Automaton (DFA),
is of the form (Σ,Γ, Q, q0, δ, `), where Σ is a set of input symbols, Γ is a set of

23

output symbols, Q is a set of states, q0 ∈ Q is the initial state, δ : Q×Σ→ Q
is a transition function, and ` : Q→ Γ is a labeling function.

Example 2 (Cyclic tree automata.). As a running example, we consider
a concrete type of automaton (Σ,Γ, Q, q0, δ, `), called cyclic tree automa-
ton, that resembles the tree structure used in [3]. Cyclic tree automata (see
Figure 9) are characterized by a depth d, which determines the number of
states in Q to be equal to 2d+1 − 1. The input and output symbol sets are
binary, i.e. Σ = Γ = {0, 1}, and the transition function is defined in two
steps. First, given the set of states Q = {q0, . . . , q2d+1−2}, δ(qi, 0) = q2i+1

and δ(qi, 1) = q2i+2, for every i ∈ {0, . . . , 2d − 2}. The remaining states
connect back to q1 and q2 as follows, δ(qi, 0) = q1 and δ(qi, 1) = q2, for every
i ∈ {2d − 1, . . . , 2d+1 − 2}.

q0

q1 q2

q3 q4 q5 q6

Figure 9: A cyclic tree automaton with depth 2. Dashed and solid edges
represent transitions with input symbol 0 and 1, respectively.

In a lookup-based protocol, prover and verifier move through a given
automaton in a synchronous way by feeding the transition function with a
sequence of challenges sent by the verifier; starting from the initial state.
For example, in Figure 9, if the verifier sends challenges 0, 1 and 1, then
both prover and verifier are meant to follow the path q1q4q2. Each of those
transitions are regarded as a lookup operation, because the prover’s responses
are determined by the labels of the states in the path. Taking back our
running example, the prover’s response to challenge 0 is `(q1), to a second
challenge 1 is `(q4), and to a third challenge 1 is `(q2).

The formalization of the prover-to-verifier interaction described above is
as follows. Given an automaton A = (Σ,Γ, Q, q0, δ, `) and a current state

24

Verifier V Prover P
key k, threshold ∆

Initial Phase
nonce NP

NP←−−−−−−−
nonce m

MACk(NP ,NV),NV−−−−−−−−−−−−−−−−−−→
If MACk(NP , NV)
is incorrect, abort.

(Q, q0, δ, `) = (Q, q0, δ, `) =
f(k,NP , NV) f(k,NP , NV)

Fast Phase
for i = 0 to n− 1

ci ∈R {0, 1}
Start Clock

ci−−−−−−→
qi+1 = δ(qi, ci)
ri = `(ri+1)

Stop Clock
ri←−−−−−−

store ∆ti
Final phase

If any ri is incorrect
or ∆ti > ∆, abort.

Figure 10: The class of lookup-based memory erasure protocol.

q ∈ Q, a lookup operation is regarded as a transition to a new state q′ =
δ(q, c) where c ∈ Σ is a verifier’s challenge. The corresponding response
for such challenge is the output symbol attached to the new state q′, i.e.,
`(q′). We use δ̂(c0 · · · ci) to denote the state reached by the sequence of
input symbols c0, . . . , ci. Formally, δ̂(c0 · · · ci) = δ(δ̂(c0 . . . ci−1), ci) if i > 0,
otherwise δ̂(c0) = δ(q0, c0). Similarly, ˆ̀(c0 · · · ci) = `(δ̂(c0 · · · ci)) is used to
denote the output symbol assigned to the state reached by the sequence
c0 · · · ci. Finally, the sequence of output symbols resulting from the input
sequence c0 . . . ci in an automaton A is denoted ΩA(c0 · · · ci).

Figure 10 depicts our class of lookup-based memory erasure protocols.
It consists of three phases. An initial phase where verifier and prover agree
on an automaton (Σ,Γ, Q, q0, δ, `), such as a cyclic tree automaton. In this
phase, the prover authenticates the verifier to prevent unauthorized readers
from erasing its memory. After the initial phase, the fast phase starts, con-
sisting of a series of rapid bit exchanges where the prover is challenged to
traverse the automaton generated during the initialization phase. In the final
phase the verifier takes a decision based on the round-trip-times values and
the prover’s responses obtained during the fast phase. Details on each phase
is given next.

25

Initial phase. As in the high-level specification depicted in Figure 7, the
first two messages of the protocol are used by the prover to authenticate the
verifier before executing the remainder of the protocol, i.e. before erasing
its memory. If this authentication step is successful, both prover and verifier
build an automaton (Σ,Γ, Q, q0, δ, `) based on the output of a pseudo random
function f(.) seeded with the triple (k,NP , NV). Detail on how such automa-
ton can be built based on the output of a pseudo-random function can be
found in [3] and [22]. Here we abstract away from those details and consider
the output of the initial phase to be a randomly chosen automaton from a
set of automata. Formally, let UΣ,Γ be the universe of automata with input
and output symbol set Σ and Γ, respectively. Given a lookup-based memory
erasure protocol P , we use Pini ⊆ UΣ,Γ to denote all possible automata that
can result from the initial phase in P .
Fast phase. The fast phase of the protocol P starts right after agreeing on a
random automaton (Σ,Γ, Q, q0, δ, `) from Pini. It consists of the following n
rounds. For i = 0 to i = n − 1, the verifier picks a random bit ci ∈R {0, 1}
and sends it to the prover. Upon reception of ci, the prover applies the
transition function qi+1 = δ(qi, ci) and returns the label `(qi+1) of the state
qi+1, with q0 being the initial state of the automaton. The verifier stops the
timer immediately after receiving the prover’s response and calculates the
round-trip-time ∆ti.
Final phase. At the end of the fast phase the verifier checks that all round-
trip-times are below the pre-defined time threshold ∆. The verifier also
checks that all responses are correct by traversing the automaton with its
own challenges c0, . . . , cn−1. If either of those verification steps fails, the
verifier considers the protocol unsuccessful.

Our main claim here is that the protocol in Figure 7 is an accurate ab-
straction of the lookup-based memory erasure protocol in Figure 10, provided
that guessing the automaton used during an honest prover-to-verifier execu-
tion is unfeasible for an attacker. Although this does not necessarily prevent
probabilistic attacks, as we show next, it asserts that lookup-based memory
erasure protocols contain no logical flaws. That is to say, the introduced
lookup-based memory erasure protocol resists man-in-the-middle attackers
as defined in Sections 4 and 5.

26

7.2 Security and communication complexity trade-off

The security and communication complexity trade-off stems from the fact
that the portion of the prover’s memory that can be attested is proportional
to the communication complexity of the protocol [31, 18, 25, 12, 16]. In
lookup-based memory erasure protocols, we define communication complex-
ity as the number of rounds n used during the fast phase, and memory to be
attested as the size of the automaton agreed upon during the initial phase.

We consider an implementation-independent notion of size for automata,
which corresponds to the number of states of an automaton. Formally, given
A = (Σ,Γ, Q, q0, δ, `) we consider the function size(.) defined by size(A) =
|Q|.

In an honest session between prover and verifier, the outcome of the initial
phase is an automaton randomly chosen from the set Pini. In this case, the
memory required on the prover’s side to execute the protocol is at least the
size of the automaton agreed upon with the verifier. However, a fraudulent
prover may use a smaller automaton with the intention of successfully passing
the memory erasure protocol without fully erasing its memory.

Definition 4 (Fraudulent prover). Given a protocol P, a fraudulent prover
is defined by a function c : Pini → UΣ,Γ such that for every A ∈ Pini,
size(A) ≥ size(c(A)).

The probability of success of a fraudulent prover is calculated by, given
a random automaton A = (Σ,Γ, Q, q0, δ, `) ∈R Pini and random sequence
c0 · · · cn−1 ∈R Σn,

Pr(ΩA(c0 · · · cn−1) = Ωc(A)(c0 · · · cn−1)),

The space saving of a fraudulent prover is given by the formula,

1−
∑

A∈Pini
(size(A)− size(c(A)))∑
A∈Pini

size(A)
,

Maximizing both probability of success and space saving is unattainable.
The smallest automaton a fraudulent prover can use consists of a single state
with two self-transitions, one with 0 and another with 1. But, in this case its
probability of success becomes 1/2n, where n is the number of rounds during
the fast phase. Thus fraudulent provers will aim at striking a good trade-off
between probability of success and space savings.

27

In general, we are interested on an optimal fraudulent prover that achieves
the maximum probability of success restricted to a given size for the au-
tomata. This might be achieved by using automata minimization techniques,
such as [33], where sub-automata that repeats often are assigned a single
state. Although this is a promising research direction, we focus in this arti-
cle on a simpler fraudulent strategy that consists of ignoring portions of the
automaton in order to meet a given memory requirement. The problem of
determining and analyzing optimal fraudulent provers is thus left for future
work.

7.3 Analysis of a protocol based on cyclic tree au-
tomata

We deliver a concrete trade-off analysis by considering a lookup-based mem-
ory erasure protocol that only utilizes cyclic tree automata of a given depth,
called tree-based memory erasure protocol. That is, given the universe of
cyclic tree automata with depth d, denoted Td, we define the tree-based
memory erasure protocol to be a lookup-based protocol with Pini = Td. We
also consider that a fraudulent prover can remove a subtree from a cyclic tree
automaton, with the idea of leaving room to the malicious software to persist
in memory. Formally, given a cyclic tree automaton A = (Σ,Γ, Q, q0, δ, `) of
depth d, denoted T `d , the fraudulent prover chooses a state qi ∈ Q and dis-
connects it from the tree as follows. For every qj ∈ Q such that δ(qj, b) = qi
with b ∈ {0, 1}, δ(qj, b) is set to be equal to δ(qj,¬b). The resulting set of
disconnected states Sqi is inductively defined by qi ∈ Sqi and qx ∈ S(qi) ⇐⇒
∃qy ∈ Q : y = 2x − 2 ∨ y = 2x − 1. States in Sqi are consequently removed
from Q. We use Aqi to denote the resulting automaton.

Theorem 4. Let d be a depth value and Td the universe of cyclic tree au-
tomata with state set Q = {q0, . . . , q2d+1−2}. Given a state qi ∈ Q with
i > 0, let Pqi be a fraudulent prover defined by c(A) = Aqi for every A ∈ Td.
If n = d × x for some positive integer x, then for a random automaton
A = (Σ,Γ, Q, q0, δ, `) ∈R Td and random sequence C ∈R Σn,

Pr(ΩA(C) = Ωc(A)(C)) =

(
1− 1

2di
+

1

2n+1

)x
,

28

Proof. Let C = c0 · · · cn−1. We use dA(qi, qj) to denote the distance of a
shortest path between states qi and qj in the automaton A. Let di = dA(q0, qi)

and c̃0 · · · c̃di−1 be the sequence of input symbols such that ˆ̀(c̃0 · · · c̃di−1) = qi.
Assume n = d. If c0 · · · cdi−1 6= c̃0 · · · c̃di−1, then ΩA(c0 · · · cn−1) = Ωc(A)(c0 · · · cn−1)

given that no state in A that has been removed in c(A) is used. Otherwise,
If c0 · · · cdi−1 = c̃0 · · · c̃di−1, ΩA(c0 · · · cn−1) = Ωc(A)(c0 · · · cn−1) with probabil-
ity 1

2n−di+1 , given that c0 · · · cn−1 and A are randomly chosen. Because the

probability of c0 · · · cdi−1 = c̃0 · · · c̃di−1 is equal to 1
2di

, we obtain an overall
probability of

Pr(ΩA(C) = Ωc(A)(C)) = 1− 1

2di
+

1

2di
× 1

2n−di+1

= 1− 1

2di
+

1

2n+1
,

For the general case where n = d× x, we notice that, by construction of
the cyclic tree automaton, the following property holds,

ΩA(c0 · · · cn−1) =ΩA(c0 · · · cd−1) · ΩA(cd · · · c2d−1)·
· · · · ΩA(cn−d · · · cn−1),

The same property holds for the modified automaton c(A). Therefore,

Pr(ΩA(c0 · · · cn−1) = Ωc(A)(c0 · · · cn−1)) =
j=x∏
j=1

Pr(ΩA(c(j−1)d · · · cjd−1) = Ωc(A)(c(j−1)d · · · cjd−1)) =(
1− 1

2di
+

1

2n+1

)x
,

To illustrate the security and communication complexity trade-off, we
consider a cyclic tree automaton of depth d = 12, which gives 213− 1 states.
We claim that an automaton of this size requires at least 1Kb of memory
based on a rough conversion of 1bit per state. Figure 11 depicts, for different
values of the number of rounds n, the space saving and success probability

29

10
−20

10
−15

10
−10

10
−5

10
0

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

Space Savings

n = 12*4
n = 12*8

n = 12*16
n = 12*32
n = 12*64

Figure 11: Trade-off between communication complexity and security. The
y-axis is in logarithmic scale.

achieved by an attacker that uses the strategy of removing a full subtree from
the automata. Larger space saving is achieved by disconnecting states closer
to the root state q0.

The two expected trade-off can be observed in Figure 11. On the one
hand, the larger the space saving the smaller the probability of success of the
considered strategy. On the other hand, the security of the protocol increases
with the number of rounds. For space savings of around 10%, the fraudulent
prover succeeds with high probability, unless n is sufficiently large. For exam-
ple, n = 12× 4 gives a probability of success of 0.58, while n = 12× 64 gives
1.96× 10−4. In comparison to distance bounding protocols, where 48 rounds
are regarded as a good balance between security and communication com-
plexity, lookup-based memory erasure protocols seem to require significantly
more message exchanges. We remark, however, that this problem is inherent
to most remote memory attestation and memory erasure procedures.

8 Conclusion

In this article we addressed the problem of formal verification of memory
erasure protocols. We used a symbolic model by Basin et al. [5] to provide
the first definition of secure memory erasure that can be used for formal
reasoning, and proved that no protocol can meet such property against the

30

standard Dolev-Yao adversary. This motivated the formalization of a slightly
weaker attacker, called a distant attacker, which is a Dolev-Yao adversary
restricted to a given distance threshold on their interaction with honest par-
ticipants. Our main result consists of the first memory erasure protocol
that resists man-in-the-middle attacks, which we proved contains no logical
flaws based on the protocol verification tool Tamarin [23] and recent re-
sults on causality-based characterization of distance bounding protocols [21].
Because the considered security model cannot reason about message size,
we instantiated the introduced protocol using standard cryptographic nota-
tion for distance bounding protocols and analyzed the resulting security and
communication complexity trade-off.

References

[1] Mahmoud Ammar, Wilfried Daniels, Bruno Crispo, and Danny Hughes.
Speed: Secure provable erasure for class-1 iot devices. In 8th ACM
Conference on Data and Application Security and Privacy, CODASPY
’18, pages 111–118. ACM, 2018.

[2] Gildas Avoine, Muhammed A. Bingöl, Ioana Boureanu, Srdjan Čapkun,
Gerhard Hancke, Süleyman Karda, Chong Hee K., Cédric Lau-
radoux, Benjamin Martin, Jorge Munilla, Alberto Peinado-Dominguez,
Kasper B. Rasmussen, Dave Singelée, Aslan Tchamkerten, Rolando
Trujillo-Rasua, and Serge Vaudenay. Security of distance-bounding: A
survey. ACM Computing Surveys, 51(5), 2018.

[3] Gildas Avoine and Aslan Tchamkerten. An efficient distance bound-
ing RFID authentication protocol: Balancing false-acceptance rate and
memory requirement. In 12th International Conference on Information
Security (ISC’09), volume 5735 of LNCS, pages 250–261. Springer, 2009.

[4] David Basin and Cas Cremers. Know your enemy: Compromising adver-
saries in protocol analysis. ACM Trans. Inf. Syst. Secur., 17(2):7:1–7:31,
November 2014.

[5] David A. Basin, Srdjan Capkun, Patrick Schaller, and Benedikt
Schmidt. Let’s get physical: Models and methods for real-world security

31

protocols. In Theorem Proving in Higher Order Logics, 22nd Interna-
tional Conference, TPHOLs 2009, Munich, Germany, August 17-20.,
pages 1–22, 2009.

[6] David A. Basin, Cas Cremers, and Simon Meier. Provably repairing the
ISO/IEC 9798 standard for entity authentication. Journal of Computer
Security, 21(6):817–846, 2013.

[7] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In CSF’01, pages 82–96, 2001.

[8] Stefan Brands and David Chaum. Distance-bounding protocols. In
EUROCRYPT’93, pages 344–359, 1993.

[9] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols
and their use for building secure channels. In EUROCRYPT ’01, pages
453–474, 2001.

[10] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A comprehensive symbolic analysis of TLS 1.3. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 1773–1788, 2017.

[11] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, 29(2):198–207,
1983.

[12] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time com-
putable self-erasing functions. In 8th Conference on Theory of Cryptog-
raphy, TCC’11, pages 125–143. Springer-Verlag, 2011.

[13] Aurélien Francillon, Quan Nguyen, Kasper B. Rasmussen, and Gene
Tsudik. A minimalist approach to remote attestation. In Conference on
Design, Automation & Test in Europe, DATE ’14, pages 244:1–244:6,
2014.

[14] Ali Özhan Gürel, Atakan Arslan, and Mete Akgün. Non-uniform step-
ping approach to RFID distance bounding problem. In 3rd International
Conference on Autonomous Spontaneous Security (SETOP’10), volume
6514 of LNCS, pages 64–78. Springer, 2011.

32

[15] Gerhard P. Hancke and Markus G. Kuhn. An RFID distance bound-
ing protocol. In 1st International Conference on Security and Privacy
for Emerging Areas in Communications Networks (SecureComm’05) ,
Athens, Greece, 5-9 September, pages 67–73. IEEE Computer Society,
2005.

[16] Ghassan O. Karame and Wenting Li. Secure erasure and code update in
legacy sensors. In Trust and Trustworthy Computing - 8th International
Conference, TRUST 2015, Heraklion, Greece, August 24-26, pages 283–
299, 2015.

[17] Süleyman Kardas, Mehmet Sabir Kiraz, Muhammed Ali Bingöl, and
Hüseyin Demirci. A novel RFID distance bounding protocol based on
physically unclonable functions. In RFIDSec’11, volume 7055 of LNCS,
pages 78–93. Springer, 2012.

[18] Nikolaos P. Karvelas and Aggelos Kiayias. Efficient proofs of secure
erasure. In Security and Cryptography for Networks - 9th International
Conference, SCN 2014, Amalfi, Italy, September 3-5, pages 520–537,
2014.

[19] Chong Hee Kim and Gildas Avoine. RFID distance bounding protocols
with mixed challenges. IEEE Transactions on Wireless Communica-
tions, 10(5):1618–1626, 2011.

[20] G. Lowe. A hierarchy of authentication specifications. In CSF’97, pages
31–43, 1997.

[21] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-
Rasua. Distance-bounding protocols: Verification without time and lo-
cation. In 39th IEEE Symposium on Security and Privacy, SP, 21-23
May 2018, San Francisco, California, USA, pages 549–566, 2018.

[22] Sjouke Mauw, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. A class
of precomputation-based distance-bounding protocols. In 1st IEEE Eu-
ropean Symposium on Security and Privacy, EuroS&P, Saarbrücken,
Germany, March 21-24, pages 97–111, 2016.

[23] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin.
The TAMARIN prover for the symbolic analysis of security protocols.
In CAV’13, pages 696–701, 2013.

33

[24] Jorge Munilla and Alberto Peinado. Distance bounding protocols for
RFID enhanced by using void-challenges and analysis in noisy channels.
Wireless Communications and Mobile Computing, 8(9):1227–1232, 2008.

[25] Daniele Perito and Gene Tsudik. Secure code update for embedded de-
vices via proofs of secure erasure. In 15th European Symposium on Re-
search in Computer Security (ESORICS’10), Athens, Greece, September
20-22., pages 643–662, 2010.

[26] Alejandro Proano and Loukas Lazos. Packet-hiding methods for prevent-
ing selective jamming attacks. IEEE Trans. Dependable Secur. Comput.,
9(1):101–114, January 2012.

[27] Patrick Schaller, Benedikt Schmidt, David A. Basin, and Srdjan Cap-
kun. Modeling and verifying physical properties of security protocols for
wireless networks. In CSF’09, pages 109–123, 2009.

[28] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. SCUBA: Secure code update by attestation in sensor
networks. In 5th ACM Workshop on Wireless Security, WiSe ’06, pages
85–94. ACM, 2006.

[29] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van
Doorn, and Pradeep Khosla. Pioneer: Verifying code integrity and en-
forcing untampered code execution on legacy systems. SIGOPS Oper.
Syst. Rev., 39(5):1–16, October 2005.

[30] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep K.
Khosla. SWATT: software-based attestation for embedded devices. In
24th IEEE Symposium on Security and Privacy (S&P’04), 9-12 May
2004, Berkeley, USA, page 272, 2004.

[31] Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher, and Yongdae
Kim. Remote software-based attestation for wireless sensors. In 2nd
European Conference on Security and Privacy in Ad-Hoc and Sensor
Networks, ESAS’05, pages 27–41. Springer-Verlag, 2005.

[32] Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. The
Poulidor distance-bounding protocol. In RFIDSec’10, volume 6370 of
LNCS, pages 239–257. Springer, 2010.

34

[33] Lynette van Zijl, Graham Muller, and Jan Daciuk. Minimization of
unary symmetric difference nfas. South African Computer Journal,
34:69–75, 2005.

[34] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. Efficient software-based fault isolation. SIGOPS Oper. Syst. Rev.,
27(5):203–216, December 1993.

35

	1 Introduction
	2 Background
	3 Secure memory erasure in the presence of distant attackers
	3.1 Secure memory erasure
	3.2 The adversarial model

	4 The Security Model
	4.1 Messages, events and inference rules
	4.2 A security protocol semantics

	5 An underapproximation of secure memory erasure
	5.1 Analyzing a variant of SPEED
	5.2 Impossibility result towards secure memory erasure

	6 A secure memory erasure protocol
	6.1 The protocol
	6.2 Security analysis

	7 A protocol based on cyclic tree automata
	7.1 Lookup-based memory erasure protocols
	7.2 Security and communication complexity trade-off
	7.3 Analysis of a protocol based on cyclic tree automata

	8 Conclusion

