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Abstract

The popularity of various social platforms has prompted more people to share
their routine photos online. However, undesirable privacy leakages occur
due to such online photo sharing behaviors. Advanced deep neural network
(DNN) based object detectors can easily steal users’ personal information
exposed in shared photos. In this paper, we propose a novel adversarial ex-
ample based privacy-preserving technique for social images against object
detectors based privacy stealing. Specifically, we develop an Object Disap-
pearance Algorithm to craft two kinds of adversarial social images. One can
hide all objects in the social images from being detected by an object detec-
tor, and the other can make the customized sensitive objects be incorrectly
classified by the object detector. The Object Disappearance Algorithm con-
structs perturbation on a clean social image. After being injected with the
perturbation, the social image can easily fool the object detector, while its
visual quality will not be degraded. We use two metrics, privacy-preserving
success rate and privacy leakage rate, to evaluate the effectiveness of the
proposed method. Experimental results show that, the proposed method
can effectively protect the privacy of social images. The privacy-preserving
success rates of the proposed method on MS-COCO and PASCAL VOC
2007 datasets are high up to 96.1% and 99.3%, respectively, and the privacy
leakage rates on these two datasets are as low as 0.57% and 0.07%, respec-
tively. In addition, compared with existing image processing methods (low
brightness, noise, blur, mosaic and JPEG compression), the proposed method
can achieve much better performance in privacy protection and image visual
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quality maintenance.

Keywords: Artificial intelligence security, Privacy protection, Social
photos, Adversarial examples, Object detectors

1. Introduction

In recent years, artificial intelligence (AI) techniques have been widely
applied in a variety of tasks. Although bringing many conveniences, the
abuse of AI techniques will also cause a series of security problems, such as
social privacy disclosure. With the popularity of social platforms, people are
keen to share their photos online. However, malicious hackers or entities can
leverage the deep neural network (DNN) based object detectors (or image
classifiers) to extract valuable private information from those uploaded social
photos. In this way, they can analyze and explore users’ preferences, and
push the accurate and targeted commercial advertisements [1]. Moreover,
the leakage of sensitive information (such as identity) can even cause the
users to suffer from property losses. For example, Echizen [2] indicated that
the fingerprint might be stolen from the shared photos that contain the “V”
gesture.

So far, there are several defense strategies to protect the privacy of the
shared social photos. The most direct and common countermeasure is to set
user access control [3–5], where the strangers are not permitted to browse
private personal photos. In addition, the image encryption based techniques
[6, 7] are also effective for protecting sensitive data on shared photos. How-
ever, the above two methods will either reduce the users’ social experience
(access control), or will require huge computation overhead (image encryp-
tion). Therefore, the image processing methods, such as blur, noise and
occlusion, have been widely used to protect the privacy contents in images.
However, these image processing methods will greatly affect the visual qual-
ities of the photos. Moreover, they are ineffective to resist the detection of
those advanced DNN based object detectors [8, 9].

In this work, we propose a novel adversarial example based method to
protect social privacy from being stolen. The key idea is that, the DNN
based object detectors are sensitive to small perturbations [8, 10, 11], i.e.,
adversarial examples. By constructing adversarial version of these uploaded
social photos, i.e., adding some visual invisible perturbations into the photos,
the DNN based object detectors can be successfully fooled. Consequently, the
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object detectors will make incorrect predictions, or even completely unaware
of the existence of the objects in a photo, thus the private information in the
social photos can be protected.

The main contributions of this paper are as follows:

• Protect the social privacy effectively without affecting the vi-
sual qualities of the photos. We propose a method based on ad-
versarial examples to protect the privacy in social photos, which can
make Faster R-CNN [12] detector fails to predict any bounding box in
a social image. Experimental evaluations on two datasets (MS-COCO
[13] and PASCAL VOC 2007 [14]) show that, the privacy-preserving
success rate of the proposed method is high up to 96.1% and 99.3%, re-
spectively. Compared with existing social privacy protection methods,
the proposed method can effectively protect image contents by fooling
DNN based object detectors, without affecting the visual qualities of
the social photos.

• Supporting customized privacy setting. Some objects (such as
person or commercialized objects) in social images contain personal
information and thus can be considered as sensitive objects. The pro-
posed method can not only hide all the objects from being detected,
but can also make the customized sensitive objects in a social image be
incorrectly predicted. The user can customize the sensitive objects that
he wants to keep private. After the social image is processed by the
proposed method, Faster R-CNN will identify the customized sensitive
objects incorrectly.

• Use the attack method as a defense. Adversarial example used to
be a malicious attack method against DNN models. In this paper, we
are doing the opposite by using the attack as a defense technique for
resisting the detection of DNN based object detectors, so as to protect
the privacy information in shared social photos from being disclosed.

The rest of this paper is organized as follows. Section 2 describes the
related work on adversarial example attacks, the workflow of Faster R-CNN,
and the existing social privacy protection works against DNN based privacy
stealing. Section 3 elaborates the proposed method. Section 4 presents the
experimental results on two standard image datasets. This paper is concluded
in Section 5.
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2. Related work

In this section, the adversarial example attacks, the workflow of Faster
R-CNN, and the existing four social privacy protection works against DNN
based privacy stealing, are reviewed.

2.1. Adversarial example attacks

Some researches have indicated that DNN models are vulnerable to adver-
sarial examples, and a range of adversarial example generation methods have
been proposed. Szegedy et al. [15] first proposed adversarial example attacks
against the DNN models, and developed the L-BFGS algorithm to construct
the adversarial perturbations. By adding the generated perturbations into a
clean image, the target DNN model will output the incorrect classification
result. Then, Goodfellow et al. [16] proposed the Fast Gradient Sign Method
(FGSM) to explain the linear behavior of adversarial perturbations, which
is effective to accelerate the generation of adversarial examples. Carlini and
Wagner [17] constructed the high-confidence adversarial examples with three
different distance metrics (i.e., L0 distance, L2 distance, and L∞ distance),
and their generated adversarial examples could successfully fool the distilled
neural networks. Chen et al. [18] developed the ShapeShifter attack to craft
physical adversarial examples to fool road sign object detectors. By applying
the Expectation over Transformation technique [19, 20], the ShapeShifter is
robust to the changes of different distances and angles.

2.2. Workflow of Faster R-CNN

The workflow of the Faster R-CNN detector includes two stages [12]:
region proposal and box classification. In the first stage, the features in
an image are extracted, and the region proposal network (RPN) is used to
determine where an object may exist and mark the region proposal. In the
second stage, the corresponding objects in the marked region proposals are
classified by DNN based classifier. Meanwhile, the bounding box regression
[21] is performed to obtain the accurate location of each object in the image.

2.3. Social privacy protection against DNN based privacy stealing

We proposed the idea of this paper in 2019 and applied for a Chinese
patent [22]. Besides, few exploratory studies have been conducted on the
protection of image privacy against DNN based privacy stealing. Li et al.
[23] presented the Private Fast Gradient Sign Method (P-FGSM) to prevent
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the scene (e.g., hospital, church) in social images from being detected by
DNN model. They added imperceptible perturbation to the social images to
generate the adversarial social images, in which the scene will be incorrectly
classified by DNN classifier. Shen et al. [24] proposed an algorithm to pro-
tect the sensitive information in social images against DNN based privacy
stealing and keep the changes of the social images imperceptible. They also
conducted a human subjective evaluation experiment to evaluate the factors
that influence the visual sensitivity of human [24]. The difference between
our work and [24] is that, [24] focuses on preventing sensitive information
from being detected by DNN based classifier, while our work focuses on pre-
venting sensitive objects from being detected by object detector. Shan et al.
[25] proposed a Fawkes system to protect personal privacy against unautho-
rized face recognition models. Specifically, they add pixel-level perturbations
to user’s photos before uploading them to the Internet [25]. The functionality
of unauthorized facial recognition models trained on these photos with per-
turbations will be deteriorated seriously. The differences between our work
and [25] are that: (i) The work [25] protects social privacy against facial
recognition models, while our method protect social privacy against object
detectors. (ii) The work [25] adds adversarial images to the training set
of unauthorized facial recognition models to influence the training phase of
these models (which is a strong assumption), while our work focuses on the
testing phase of DNN detectors.

The above three related works focus on privacy protection against the
image classifiers. Compared with image classifiers, attacking or deceiving
object detectors is more challenging [8, 26, 27]. The reasons are as follows.
First, an object detector is more complex, which can detect multiple objects
at once. Second, the object detector can infer the true objects by the ob-
tained information from the image background. To the best of the authors’
knowledge, the only social privacy protection work against object detectors
is Liu et al. [8]. Liu et al. [8] constructed the adversarial examples with a
stealth algorithm, which made all objects in the image invisible to the object
detectors, thus protecting the image privacy from being detected. Compared
to the work [8], our work has the following differences: (i) The mechanisms
are different. The work [8] focuses on the region proposal stage (the first
stage) of Faster R-CNN, while our method focuses on the classification stage
(the second stage) of Faster R-CNN. Moreover, our method leverages the
classification boundary of object detector to craft perturbations. Specifi-
cally, the position of the feature point of each bounding box is moved and
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crossed the classification boundary, which make object detector cannot find
any sensitive object and abandon the corresponding bounding boxes, while
the stealth algorithm in [8] performs a backpropagation on the loss function
to create perturbations and suppress the generation of bounding boxes. (ii)
The effects are different. The work [8] can hide all the objects in a social im-
age from being detected, while our method can not only achieve this, but can
also make the customized sensitive objects in a social image be misclassified
as other classes.

3. Proposed adversarial example based privacy-preserving tech-
nique

In this section, the proposed adversarial example based social privacy-
preserving technique is elaborated. First, the privacy protection goals for
social photos are described. Second, the overall flow of the proposed method
is presented. Third, the Object Disappearance Algorithm is elaborated. The
proposed method can generate two kinds of adversarial examples. One can
make all the objects in a social image invisible, and the other can make the
customized sensitive objects in a social image be incorrectly predicted.

3.1. Privacy goal

DNN based object detectors perform excellently in various computer vi-
sion tasks. The deep learning based object detectors can be divided into
two categories: (i) one-stage object detectors, such as You Only Look Once
(YOLO) [28], and Single Shot Multibox Detector (SSD) [29]; (ii) two-stage
object detectors, such as Faster R-CNN [12], and Region-based Fully Con-
volutional Networks (R-FCN) [30]. Existing research [31] has indicated that,
compared to SSD and R-FCN, the Faster R-CNN can achieve more superior
performance on the trade-off between speed and detection accuracy. Be-
sides, generally, Faster R-CNN has higher detection accuracy than that of
YOLO detector. Therefore, in this paper, the proposed method is targeting
at protecting image privacy from being detected by Faster R-CNN detectors.

The privacy goal of the proposed method includes two aspects: one is
that Faster R-CNN fails to predict any bounding box in an image, which
will be discussed in Section 3.3, and the other is that Faster R-CNN can
predict some bounding boxes in an image but classifies the sensitive objects
incorrectly, which will be discussed in Section 3.4. If one of these two aspects
is met, it is considered that the social privacy is successfully protected. To
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achieve the first aspect, we need to make sure that for each bounding box,
the score of each bounding box is lower than the threshold, which can be
formalized as:

max[Pk(x′)] < T (k = 1, 2, ..., K) (1)

where x′ is an adversarial social image. K is the number of classes that an
object detector can recognize (K = 80 in the experiment), and k denotes
the k -th category. Pk is the score of class k of the bounding box. T is the
detection threshold of the system.

For an object detector, it outputs bounding boxes with high scores (higher
than the threshold), and discards the bounding boxes with low scores (lower
than the threshold). Equation (1) indicates that the scores predicted by
Faster R-CNN for all the bounding boxes are all lower than the threshold.
Therefore, the system will abandon all bounding boxes and detect nothing
in the adversarial social image.

The proposed adversarial example based method can make all objects in
a social image undetectable by Faster R-CNN (the first aspect), which will
be discussed in Section 3.3. In addition, the proposed method can also make
the customized sensitive objects incorrectly classified as another object (the
second aspect), which will be discussed in Section 3.4.

3.2. Overall flow

The overall flow of the proposed method is shown in Fig. 1. The method
takes users’ photos as the inputs, and outputs the adversarial examples to
deceive the Faster R-CNN object detector. First, pre-detection is performed
on the users’ photos to obtain the detected objects. Then, the classes that
do not belong to those correctly detected classes are selected as non-sensitive
classes (defined in Section 3.3). Second, the region proposals r1, r2, ..., rm are
obtained in the classification stage of Faster R-CNN. Third, the adversarial
attack is implemented at the second stage (i.e., the classification stage) of
Faster R-CNN by iteratively constructing the perturbation in the image.
The perturbation is iteratively constructed until that, for every bounding
box, the score of each object is lower than the threshold, which will cause
Faster R-CNN to discard all the bounding boxes. In this way, the generated
adversarial social image can successfully deceive the Faster R-CNN detector
when it is uploaded to the social platforms.
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Figure 1: The overall flow of the proposed adversarial example based privacy-preserving
technique.

3.3. Object Disappearance Algorithm

We propose an Object Disappearance Algorithm which is presented in
Algorithm 1, to generate adversarial examples and prevent Faster R-CNN
from predicting any bounding box (the first aspect as discussed in Section
3.1). The proposed method focuses on attacking the classification network
at the second stage (i.e., the classification stage) of Faster R-CNN. The
adversarial attack includes two steps. First, the pre-detection on the original
image x is performed to obtain the predicted classes, including the correct and
incorrect prediction results. We define the correctly predicted classes as the
sensitive classes that need to be protected. In this paper, for an unprocessed
social image, the sensitive objects are the objects that appear in the image
and can be detected by object detector, and the non-sensitive objects are
the objects that do not appear in the image. For different social images, the
sensitive objects and the non-sensitive objects are different. Then, the non-
sensitive class set Y ′ = {y′1, y′2, ..., y′K−d} is selected, where K is the number
of classes that an object detector can recognize, and d is the number of
classes that are detected in the original image. y′1, y

′
2, ..., y

′
K−d do not belong

to these correctly detected classes and are the classes of objects that do not
appear in the original image x. Second, the region proposals r1, r2, ..., rm are
obtained in the classification stage of Faster R-CNN, and the perturbations
are constructed iteratively in the original image x with the following formula:

arg min
x′
i

1

m

∑
rj

L(F (x′i), y
′
t) (2)

where x′i is an adversarial example generated in the i-th iteration. rj rep-
resents the j -th predicted bounding box, and the total number of bounding
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boxes is m. y′t is the label of the non-sensitive class and y′t ∈ Y ′. y′t is not
a fixed class label and is sequentially selected from the set Y ′ in each itera-
tion. F represents the classification network of Faster R-CNN, and L is the
loss function that computes the difference between the output F (x′i) of the
classification network and the non-sensitive class label y′t.

Algorithm 1 Object Disappearance Algorithm.

Input: original image x; perturbation constraint ε; detection threshold T ;
maximum number of iterations I;

Output: adversarial example x′;
1: Initialize x′0 = x; i = 1;
2: Conduct a pre-detection on x to obtain the classified objects;
3: Select the non-sensitive class set Y ′;
4: Obtain the region proposals r1, r2, ..., rm in the classification stage of

Faster R-CNN.
5: while i < I do
6: Add perturbation to the original image x and get the adversarial

example x′i;
7: Clamp(x′i, x

′
i−1 − ε, x′i−1 + ε);

8: Use the classification network to predict the class of objects for all
the bounding boxes in x′i;

9: Get the scores S of each class for all the bounding boxes;
10: smax = max(S);
11: if smax < T then
12: x′ = x′i;
13: break;
14: end if
15: i = i + 1;
16: end while
17: return x′;

In each iteration, we sequentially select the non-sensitive class y′t from
the set Y ′. Then, we construct the adversarial perturbation with formula (2)
and utilize the constraint ||x′i − x′i−1|| < ε to make the perturbation visually
invisible, where ε restricts the intensity of the generated perturbations. After
the adversarial example x′i for the i-th iteration is generated, the classification
network F is used to predict the classes of objects for all the bounding boxes
r1, r2, ..., rm. Subsequently, the scores S of each class for all the bounding
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boxes r1, r2, ..., rm will be obtained. S can be considered as a matrix as
follows:

S =


s11 s12 · · · s1K
s21 s22 · · · s2K
...

...
. . .

...
sm1 sm2 · · · smK

 (3)

where sij is the score of class j for the i-th bounding box (i = 1, 2, ...,m, j =
1, 2, ..., K). The maximum score smax is then calculated, where smax repre-
sents the maximum score of all classes for all the bounding boxes r1, r2, ..., rm
in the generated adversarial example x′i. We denote the maximum number of
iterations as I. The iteration process is terminated when the iteration num-
ber reaches I or smax is lower than the threshold, which means that there is
no bounding box that can be detected by Faster R-CNN.

Here, we explain the reason why the above algorithm can cause all ob-
jects in the generated adversarial example invisible. For sensitive classes in
an image, adding perturbation with Equation (2) can change the classifi-
cation boundary of sensitive classes and reduce the scores of them. Thus,
the scores of sensitive objects are below the detection threshold. For non-
sensitive classes, the multi-classes perturbing method restraints the increase
of non-sensitive objects’ scores with insufficient iterations. As a result, the
scores of non-sensitive objects are also below the detection threshold. As a
result, the score of each class for any bounding boxes will be lower than the
threshold, which makes Faster R-CNN discard all the bounding boxes and
detect nothing in the adversarial social image.

3.4. Customized privacy setting

In this section, we describe another method (denoted as Msen) of generat-
ing adversarial examples which can protect the customized sensitive objects
in the social images. In a social photo, some objects are usually sensitive and
private, such as: (i) Person. The person in a social photo may involve users’
personal information. For example, a common V-shaped gesture photo may
contain the fingerprint information of an user. (ii) Commercialized objects.
Some commercial objects (such as handbags, sports balls, and books) may re-
veal users’ interests. The leakage of these commercialized objects may bring
unnecessary advertising to users. To avoid the disclosure of the sensitive ob-
jects in the shared social photos, the proposed method can also provide users
with privacy settings, where users can customize the sensitive objects that
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he wants to protect and the specific class ynon that he wants the sensitive
objects to be misclassified as. The proposed method can achieve this purpose
by iteratively constructing perturbations on social images with the following
formula:

arg min
x′
i

1

m

∑
rj

L(F (x′i), ynon) (4)

The perturbation is iteratively constructed until that, for every bound-
ing box, the scores of the customized sensitive objects are lower than the
threshold. Msen can cause the score of the class ynon to be higher than the
threshold, which will make Faster R-CNN classify the customized sensitive
objects as the class ynon. As a result, Faster R-CNN cannot detect the cus-
tomized sensitive object and will present the bounding boxes with wrong
class (the non-sensitive class ynon).

We denote the method introduced in Section 3.3 as Mall, and the method
in this section as Msen. We use AEall and AEsen to represent the adversarial
examples generated by Mall and Msen, respectively. The difference between
the workflows of Mall and Msen is shown in Fig. 2. Mall performs pre-
detection on the original social image to obtain the non-sensitive classes and
utilizes multiple non-sensitive classes to generate adversarial example, while
Msen does not perform pre-detection and utilizes a fixed non-sensitive class
ynon to generate adversarial example.

Customized 

sensitive classes

Adversarial 

example AEall

Adversarial 

example AEsen

Multiple non-

sensitive classes

An fixed non-

sensitive class

Detected 

sensitive classes

(Msen)

(Mall)
Pre-detection

User 

customization Add perturbation to x

Social image x Add perturbation to x

Figure 2: The difference between the workflows of Mall and Msen.

In a word, this paper provides two adversarial example based method
(Mall and Msen) to protect the privacy of social photos. Mall hides all objects
in a social image from being detected by Faster R-CNN, while Msen is used
to protect the sensitive objects customized by the users.

4. Experimental results

In this section, we evaluate the proposed method. First, the experimen-
tal settings, the experimental datasets, and the two evaluation metrics, are
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described in Section 4.1. Second, we demonstrate the effectiveness of the
proposed method in terms of two metrics: the privacy-preserving success
rate (Section 4.2) and the privacy leakage rate (Section 4.3). Then, we ex-
plore the impacts of two parameters (perturbation constraint ε and detection
threshold T ) on the proposed method in Section 4.4. Finally, we compare
the proposed method with the existing image processing methods in Section
4.5.

4.1. Experimental setup

In our experiments, we evaluate the performance of the proposed method
on the Faster R-CNN [12] Inception v2 [32] model. The model has been pre-
trained on the Microsoft Common Objects in Context (MS-COCO) dataset
[13] with Tensorflow [33] platform. We conduct the experiment on MS-COCO
dataset [13] and PASCAL VOC 2007 dataset [14]. The MS-COCO dataset
has more than 200,000 images for object detection. It contains 80 object
categories including people, vehicles, animals, sports goods, and other com-
mon items [13]. The PASCAL VOC 2007 dataset [14] has 20 categories,
most of which are the same as the categories in MS-COCO dataset. We ran-
domly select 1,000 images from MS-COCO dataset [13], and 1,000 images
from PASCAL VOC 2007 dataset [14], respectively, to evaluate the proposed
method.

We use two metrics, named privacy-preserving success rate and privacy
leakage rate, to evaluate the proposed method on protecting the privacy of
social images. As mentioned in Section 3.3 and Section 3.4, the proposed
social privacy-preserving method can generate two kinds of adversarial ex-
amples. As discussed in Section 3.4, we use AEall to represent the adversarial
examples that aim to make all objects invisible, and AEsen to represent the
adversarial examples that aim to hide the customized sensitive object. The
privacy-preserving success rate (Rall) for adversarial examples AEall can be
formalized as:

Rall =
Nall

N
(5)

where Nall is the number of adversarial social images AEall in which Faster
R-CNN cannot present any bounding boxes. N is the number of all the
adversarial social images. The privacy-preserving success rate (Rsen) for
adversarial examples AEsen can be formalized as:

Rsen =
Nsen

N
(6)
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where Nsen is the number of adversarial examples AEsen in which Faster
R-CNN classifies the customized sensitive class incorrectly.

To further explore the effectiveness of the proposed method on preventing
the privacy leakage, we use a metric named privacy leakage rate. The privacy
leakage rate represents how many sensitive contents are detected by Faster
R-CNN in social images. The privacy leakage rate Pall for the adversarial
social images that aim to hide all the objects (AEall) can be calculated as
follows:

Pall =
A

O
(7)

where A is the number of bounding boxes that are detected in all the ad-
versarial social images AEall, including the correct and incorrect detection
results. O is the number of bounding boxes that are detected in all the orig-
inal social images, including the correct and incorrect detection results. The
privacy leakage rate Psen for the adversarial social images that aim to hide
the customized sensitive objects (AEsen) can be expressed as:

Psen =
Asen

Osen

(8)

where Asen is the number of bounding boxes of the customized sensitive
classes that are correctly detected in the adversarial social images AEsen.
Osen is the number of bounding boxes of customized sensitive classes that
are correctly detected in the original social images.

4.2. Privacy-preserving success rate

In this section, we use the privacy-preserving success rate to evaluate the
proposed method. Fig. 3 shows four examples to illustrate the effectiveness
of the proposed method. The four examples consist of the original images, the
detection results of the original images, the detection results of adversarial
examples AEall, and the detection results of adversarial examples AEsen,
respectively. Faster R-CNN can easily recognize all the sensitive objects if
the shared images are unprocessed, as shown in Fig. 3(a) and Fig. 3(b).
Specifically, all the persons are accurately detected in Fig. 3(b). However,
Faster R-CNN detects nothing in the adversarial examples AEall, as shown
in Fig. 3(c). Meanwhile, it is hard for humans to observe the differences
between adversarial examples AEall and the original images. In Fig. 3(d), all
the persons in adversarial examples AEsen are misclassified as other objects.
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(a) (b) (c) (d)

Figure 3: Image examples. (a) Original images; (b) the detection results of original images;
(c) the detection results of AEall; (d) the detection results of AEsen.

The above results indicate that, the proposed method can protect the social
privacy effectively without affecting the visual effect of social images.

The privacy-preserving success rates of the proposed method are shown
in TABLE 1. In the experiment, we select 1,000 images in each dataset
and test the privacy-preserving success rates for the adversarial social image
AEall and AEsen, respectively. The success rates of AEall on MS-COCO
and PASCAL VOC 2007 datasets are 96.1% and 99.3%, respectively. The
success rates of AEsen on the two datasets are 96.5% and 99.4%, respectively.
The privacy-preserving success rates of AEall and AEsen are very close and
both reach a very high level. The results indicate that the proposed method
performs well on protecting the privacy of social photos.

4.3. Privacy leakage rate

In this section, we use privacy leakage rate to evaluate the proposed
method. We calculate the privacy leakage rates for AEall and AEsen on MS-

14



Table 1: Privacy-preserving success rates of the proposed method on MS-COCO and
PASCAL VOC 2007 datasets. AEall represents the adversarial examples that aim to
protect all objects. AEsen represents the adversarial examples that aim to protect the
customized sensitive object.

Dataset
Privacy-preserving success rate

AEall AEsen

MS-COCO [13] 96.1% 96.5%
PASCAL VOC 2007 [14] 99.3% 99.4%

COCO and PASCAL VOC 2007 datasets, respectively. As shown in TABLE
2, the privacy leakage rates for adversarial social images AEall on the two
datasets are 0.57% and 0.07%, respectively, and the privacy leakage rates for
adversarial social images AEsen on the two datasets are 2.23% and 0.18%,
respectively. The privacy leakage rates of AEall and AEsen both reach a very
low level. The results indicate that, our method can protect the sensitive
objects from being detected by Faster R-CNN.

Table 2: Privacy leakage rates of two kinds of adversarial examples on MS-COCO and
PASCAL VOC datasets.

Dataset
Privacy leakage rate
AEall AEsen

MS-COCO [13] 0.57% 2.23%
PASCAL VOC 2007 [14] 0.07% 0.18%

Considering that our method may have different privacy protection effects
for different sensitive objects, we select 9 different sensitive objects and cal-
culate the privacy leakage rates of these objects, respectively. The 9 classes
are person, elephant, airplane, laptop, traffic light, book, sports ball, parking
meter, and cell phone. In the experiment, we select 300 images from MS-
COCO dataset [13] for each class. Fig. 4 shows the privacy leakage rates
of the nine sensitive objects in the adversarial social images AEsen. The re-
sult indicates that, the proposed method can effectively prevent the privacy
information in the social image from being detected. The privacy leakage
rates of the nine sensitive classes are all in a very low level (lower than 2%).
Moreover, the privacy leakage rate of the elephant class is as low as 0.26%.

15



0.63%
0.26%

0.74%
0.38%

0.58%

1.12%

0.61%

1.94%

0.72%

book
elep

hant

cell
 phone

airp
lane

traf
fic l

ight

parking meter laptop
perso

n

sports b
all

0

1

2

3

Pr
iv

ac
y 

le
ak

ag
e r

at
e (

%
)

Sensitive classes

Figure 4: Privacy leakage rates of AEsen on nine sensitive object classes.

4.4. Parameter discussion

In the proposed method, there are two parameters that may affect the
performance: the perturbation constraint ε and the detection threshold T .
The perturbation constraint ε constrains the intensity of the perturbation,
which makes the difference between the original image and the adversarial
example difficult to be noticed. The detection threshold T determines the
number of bounding boxes that are presented by Faster R-CNN.

We set the values of the perturbation constraint ε to be 1/255∼10/255
because these values of ε are small enough and can make the generated
perturbations difficult to be noticed. The privacy-preserving success rate
Rsen and the privacy leakage rate Psen of adversarial social images AEsen

under different ε settings are shown in Fig. 5. It can be seen that when
ε < 3/255, both the privacy-preserving success rate Rsen and the privacy
leakage rate Psen change drastically as ε increases, and Rsen and Psen tend
to stabilize when ε > 3/255. Moreover, when ε = 3/255, the value of Rsen

already reaches a high level (96.5%) and the value of Psen is only 2.52%.
Note that, the larger the value of ε is, the larger the perturbation strength to
an image. A large perturbation strength may affect the visual quality of the
perturbed image. Therefore, ε = 3/255 has the optimal performance when
considering the trade-off between privacy preserving effect and perturbation
strength.

We also study the relationship between ε and the image quality. Struc-
tural Similarity (SSIM) [34] and Peak Signal to Noise Ratio (PSNR) are two
quantitative metrics to reflect the visual quality of the processed images.
PSNR describes the pixel level difference between two images, while SSIM
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[34] shows structural changes of a processed image. The higher the value of
PSNR and SSIM [34], the more similar between the original image and the
modified image. Fig. 6 presents the PSNR and SSIM of the modified images
AEsen under different settings of perturbation constraint ε. Both PSNR and
SSIM show downward trends with the increase of ε. In other words, the
smaller the value of ε, the better the visual quality of the image. Therefore,
the value of ε should be as small as possible to maintain a good visual qual-
ity for the adversarial example. In conclusion, ε = 3/255 is supposed to be
the optimal one when considering the trade-off between image quality and
privacy leakage rate.
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Figure 5: The privacy-preserving success rate and the privacy leakage rate of adversarial
social images AEsen under different perturbation constraint ε.

We further explore the impact of the detection threshold T on the privacy-
preserving success rate and privacy leakage rate. The privacy-preserving
success rates of AEall and AEsen under different T are shown in Fig. 7. It can
be seen that the success rate of AEall increases rapidly as T increases when T
is in [0.2, 0.3], and the success rate of AEsen is always in a high level. When
T reaches 0.3, the privacy-preserving success rates for AEall and AEsen are
96.1% and 96.5%, respectively. When T = 0.4, the privacy-preserving success
rates for AEall and AEsen are 99.5% and 99.6%, respectively. Generally,
for most object detectors, the detection threshold is set to be higher than
0.5 in order to achieve high detection accuracy. This indicates that, the
proposed method has a good performance in terms of privacy preserving
when detection threshold T is set to be greater or equal to 0.3.

In addition, we also calculate the privacy leakage rate of the proposed

17



1/
25

5
3/

25
5

5/
25

5
7/

25
5

9/
25

5
11

/2
55

13
/2

55
15

/2
55

17
/2

55
19

/2
55

36

40

44

48

52

56

 PSNR
 SSIM

Perturbation constraint 

PS
N

R

0.92

0.94

0.96

0.98

1.00

 S
SI

M

Figure 6: PSNR and SSIM between original images and the adversarial examples AEsen

under different perturbation constraint ε.
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method under different settings of the detection threshold T , as shown in
TABLE 3. It is shown that the privacy leakage rate decreases with the
increase of T . When T = 0.4, the privacy leakage rates of AEall and AEsen

are 0.06% and 0.42%, respectively, which indicate that the proposed method
has a good performance in preventing privacy leakage. Generally, for most
object detectors, the detection threshold is set to be higher than 0.5 in order
to achieve high detection accuracy. The result indicates that, the proposed
method can effectively reduce the scores of most bounding boxes to below
0.3, which will lead these bounding boxes to be discarded.

Table 3: Privacy leakage rate of adversarial examples under different detection threshold
T .

Detection threshold 0.2 0.24 0.28 0.32 0.36 0.4
Privacy

leakage rate
AEall 8.56% 3.84% 0.86% 0.27% 0.12% 0.06%
AEsen 4.53% 3.36% 2.61% 1.03% 0.50% 0.42%

4.5. Comparison with traditional image processing methods

In this section, we compare the proposed method with the traditional im-
age processing methods. The traditional image processing methods includes
low brightness, noise, mosaic, blur, and JPEG (Joint Photographic Experts
Group) compression [8, 9].

We select 500 images from MS-COCO dataset to conduct the experi-
ment. Fig. 8 shows an example image processed by different methods and
the detection results. As shown in Fig. 8(a), if the image is unprocessed,
Faster R-CNN is able to accurately identify all the objects. As shown in Fig.
8(b), although low-brightness method seriously degrades the visual quality
of the social image, Faster R-CNN can still identify all the objects correctly.
As shown in Fig. 8(c)∼Fig. 8(f), the persons are all correctly detected in
the images processed by blur, mosaic, noise and JPEG compression method,
which indicate that these methods are all ineffective to protect the sensitive
objects. As shown in Fig. 8(g) and Fig. 8(h), Faster R-CNN detects noth-
ing in AEall and recognizes person as dining table in AEsen, which indicate
that the proposed adversarial example based method can successfully deceive
Faster R-CNN. The reason why the proposed method can resist the detection
is that, the feature of a bounding box extracted by Faster R-CNN can be
considered as a point in the hyperplane. The proposed method can change
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the position of the feature point and makes it cross the classification bound-
ary, which will cause the bounding box to be misclassified or be discarded
[8].

(a) Original image (b) Low brightness

(c) Blur (d) Mosaic

(e) Noise (f) JPEG Compression

(g) Adversarial examples AEall (h) Adversarial examples AEsen

Figure 8: The image example processed by different methods and the detection results
from Faster R-CNN.

TABLE 4 presents the comparison between the proposed method and the
above five image processing methods (low brightness, noise, mosaic, blur,
and JPEG compression [8, 9]) in terms of privacy-preserving success rate,
privacy leakage rate, PSNR, and SSIM. The results indicate that the pro-
posed method can effectively protect the privacy of social images as the
privacy-preserving success rates of AEall and AEsen are 96.2% and 96.6%,
respectively, and the privacy leakage rates of AEall and AEsen are 0.54% and
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2.20%, respectively. The five traditional image processing methods all fail
to protect the social privacy as the privacy-preserving success rates of the
five methods are all lower than 5.4%. Compared with the five traditional
image processing methods, the proposed method has almost no influence on
the visual quality of social images as the values of PSNR and SSIM of the
proposed method are significantly higher than that of the five traditional
image processing methods. Especially, the values of PSNR and SSIM of the
proposed AEsen are 46.91 and 0.992, which are much higher than that of
other methods.

Table 4: Comparison between the proposed adversarial example based method and other
five image processing methods.

Methods
Privacy-preserving

success rate
Privacy

leakage rate
PSNR SSIM

Low brightness 0.6% 100% 8.46 0.252

Blur (Gaussian) 0.4% 100% 24.08 0.676

Mosaic 2.2% 78.19% 23.87 0.683

Noise 0.8% 95.55% 22.68 0.437

JPEG compression 5.4% 57.32% 24.96 0.687

The proposed AEall 96.2% 0.54% 27.16 0.751

The proposed AEsen 96.6% 2.20% 46.91 0.992

5. Conclusion

The malicious attackers can obtain private and sensitive information from
uploaded social photos using object detectors. In this paper, we propose an
Object Disappearance Algorithm to generate adversarial social images and
prevent the object detectors from detecting privacy information. The pro-
posed method injects imperceptible perturbations to the social images before
they are uploaded online. Specifically, the proposed method generates two
kinds of adversarial social images. One can hide all the objects from being
detected by Faster R-CNN, and the other can lead Faster R-CNN to misclas-
sify the customized objects. We use two metrics, named privacy-preserving
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success rate and privacy leakage rate, to evaluate the effectiveness of the
proposed method, and use PSNR and SSIM to evaluate the impact of the
proposed method on the visual quality of social images. Experimental results
show that, compared with traditional image processing methods (low bright-
ness, blur, mosaic, noise, and JPEG compression), the proposed method
can effectively resist the detection of Faster R-CNN, while has the minimal
influence on the visual quality of social images. The proposed method iter-
atively constructs perturbation to generate adversarial social images. In the
future work, we will study the acceleration method for adversarial examples
generation to reduce the overhead.
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