
OCR Post-correction for Detecting Adversarial Text Images
Niddal H. Imama,∗, Vassilios G. Vassilakisa and Dimitris Kolovosa

aUniversity of York, Heslington, York, YO10 5DD, United Kingdom

A R T I C L E I N F O

Keywords:
Deep Learning
Spam image
OCR
Text Recognition
Text Classification
Adversarial Text Attack

A B S T R A C T

The amount of images with embedded text shared on Online Social Networks (OSNs), such as
Twitter or Facebook has been growing in recent years. It is becoming important to analyse the images
uploaded into these platforms, as adversaries may spread images with toxic content or misinformation
(i.e. spam). Optical character recognition (OCR) systems have been used to detect images with
malicious content, where the embedded text gets extracted and classified using machine learning
algorithms. However, most existing OCR-based systems are adversary-agnostic models, in which
the extracted text from an image is not checked by humans before the classification. Consequently,
these fully automated models become vulnerable to minor modifications of images’ pixels or textual
content (e.g., character-level perturbations), which do not affect human understanding, but could
cause the OCR systems to misrecognise the embedded text. In this paper, we propose an OCR
post-correction algorithm to improve the robustness of OCR-based systems against images with
perturbed embedded texts. Experimental results showed that our proposed algorithm improves the
robustness of three state-of-the-art OCR models with at least 10% against adversarial text images, and
it outperforms five spellcheckers in correcting adversarial text. Also, we evaluated the perceptibility
of our adversarial images, and this study showed that 91% of the participants were able to correctly
recognise the adversarial text images. Additionally, we developed an adversary-aware OCR-based
system for detecting adversarial text images using the proposed algorithm, and our evaluation results
showed considerable improvement in the performance of an OCR-based system.

1. Introduction
Extracting and understanding text in images (e.g., printed

and handwritten documents, or natural scene text) is an area
of study that has been widely researched in recent years, due
to the increasing amounts of images shared on different On-
line Social Networks (OSNs) platforms. Optical Character
Recognition (OCR), a technology for extracting text from
images, has been the leading technology to understand text
embedded in images. The general system of OCR consists
of two components: text detection and text recognition. The
success of OCR in extracting text from cleaned documents
has led to its adoption as a prepossessing step in many
real-world applications, such as Neural Machine Translation
(NMT) [26], license plate recognition [53], cancer classifi-
cation [55], and recently, spam detection [6].

Figure 1: OCR-based system for detecting spam images

The process of classifying images with embedded text
using OCR systems involves three steps: text localisation
(detection), text recognition, and text classification (see Fig-
ure 1) [22]. The text localisation and recognition are used
to extract the embedded text, while the last step is for
classifying the text. There are two main challenges of using

ni571@york.ac.uk (N.H. Imam); vv573@york.ac.uk (V.G.
Vassilakis); dimitris.kolovos@york.ac.uk (D. Kolovos)

ORCID(s): 0000-0001-8399-0449 (N.H. Imam); 0000-0003-4902-8226
(V.G. Vassilakis); 0000-0002-1724-6563 (D. Kolovos)

OCR systems for image classification in an adversarial set-
ting, choosing the best text extraction and text classification
methods. First, extracting embedded text can be either at
sentence-level or word-level. In the first method, an OCR
reads the image line-by-line, and the detected text gets
checked and corrected by lexicon-based transcriptions [41],
whereby the prediction is constraint to a spellchecking dic-
tionary. As most of the text classification models depend on
the input context when making their prediction, extracting
text from images at sentence-level is suitable for scanned
documents, where the embedded text is distributed in lines
(see Figure 2). However, word-level text extraction, in which
embedded text is extracted as a list of words, is more suitable
for images found in OSNs. Figure 3 presents two examples
of images with embedded text that is distributed all over
the image being posted on Twitter. Extracting the embedded
text from such images by OCR systems that extract text
at sentence-level is however not applicable. Thus, related
studies in detecting spam image use word-level OCR [7].
Nevertheless, classifying list of words is another challenge,
as it could lead to higher false positive rates. For example, the
simplest way of classifying a list of words is by using a black-
list, but typical spam words (e.g. Viagra or call) might appear
in non-spam images. Although advanced text classification
methods use state-of-the-art Natural Language Processing
(NLP) models to classify extracted text from images, small
text perturbations can fool these models [42, 20, 15].

Another challenge is the robustness against adversarial
examples. There is a rapidly growing concern about test-
time attacks against neural network image classifiers. Some
studies investigated the robustness of this type of classifiers
against black-box model queries, whereas others studied the
robustness to the gradient-based optimization [39]. These

Imam et al.: Preprint submitted to Elsevier Page 1 of 15

Post-correction for Detecting Adversarial Text Image

Figure 2: Examples of scanned documents

Figure 3: Examples of Twitter’s images

attacks can either be targeted (i.e., designed for a specific
model) or non-targeted. There are two types of adversarial
examples in image processing models: adding perturbations
to the images pixels, or manipulating the embedded text in
images. Real-world applications are highly dependent on
the correctness of the OCR outputs. Mistakes could lead
to serious consequences. For example, a parking fine ticket
could be issued to a wrong car; incorrect medical diagnoses
might be produced, or messages may be misclassified as
spam [7, 5, 42]. Previous works focus on devising adver-
sarial examples against OCR systems by adding perturba-
tion or noise to images using Fast Gradient Sign Method
(FGSM [46]), DeepFool [32], or Generative Adversarial
Network (GANs) [18]. However, analysing extracted text
from the OCR system has not been well studied in the
literature. This type of attack can fool OCR-based systems.
Lexicon-based OCRs use predefined lexicons and they could
be useful for some tasks concerned with only producing out-
puts that are likely to be words in the target natural language,
whereas lexicon-free OCRs use Connectionist Temporal
Classification (CTC) [33]. Lexicon-based OCRs may fail
if used in security applications, as they cannot recognise
manipulated texts, and do not help security analysts to detect
new attacks, as they only correct output texts. Although
some lexicon-free OCRs can recognise manipulated texts,
their output may fool the deployed text classifier. These
text classifiers (e.g., NLP applications) are very sensitive
to certain words when making predictions, so a small ma-
nipulation on the image’s textual content could cause the
OCR-based system to misclassify the image [52]. Song and
Shmatikov [42] stated that there are no automated systems
that could check whether the text produced by OCR “makes

sense”. Also, they mentioned that systems sensitive to out-
of-context types of text manipulation, would be prone to
false positives and adversarial attacks. Li et al. [29] added
that a few defence methodologies have been proposed for
adversarial text attacks. Kurita et al. [27] stated that ad-
versarial text attacks are different from users’ errors (e.g.,
misspellings and slang), as users do not initially attempt to
avoid being detected.

While existing works investigate the effect of adversarial
text attacks against NLP applications, it is more challenging
to handle such attacks against OCRs. Related studies dis-
cuss two potential defence approaches, spell checking and
adversarial training [29, 27]. In adversarial training, noise
is added to generate adversarial examples in the training
dataset. One of the limitations of this method is the need
for the defender to identify details of the incoming attack,
such as the strategy and lexicon used by the adversary.
Also, the model is trained in an adversarial training fashion,
which could be over-fitting to the adversarial examples; thus,
leading to worse performance on clean datasets. On the other
hand, using spell checking algorithms is the most common
defence method against character-level perturbation in NLP
tasks [29]. Although spell checking methods could detect
and correct errors or adversarial examples, they cannot be
applied in all domains because their performance varies
depending on the type of misspelling [2].

In this paper, we investigate the effect of adversarial
text images (i.e., images with embedded adversarial text)
to OCR-based systems. This type of attack against OCR
has not been well studied although adversarial text attacks
have been widely discussed in the literature against NLP
applications; these attacks may involve character flips [20],
scramble text [27], substitute characters [29], or visual per-
turbations [15]. We preformed a character-level adversar-
ial attack against OCR-based systems, where adversaries
perturbed embedded text in an image by replacing a few
characters to cause the text recognition part of the OCR
(e.g., CTC) to misrecognise the text. We assumed that the
adversaries have very limited knowledge about the deployed
OCR (black-box setting). Components of automated systems
are rarely checked by humans, which makes them vulnerable
to adversarial attacks. Adversaries can take advantage of
this vulnerability to attack the OCR part of a system [42].
These attacks are common in OSNs, as they neither require
any knowledge about the deployed model, nor any linguistic
knowledge and human understanding [15]. In our previous
study [23], we encountered similar behaviours in health-
related spam campaigns on Twitter Arabic hashtags, where
adversaries purposefully misspelt spam words that are em-
bedded in images (see Figure 4). Thus, we proposed a text
classification step for OCR-based spam detector, in which
we used a black/white list method with human assistance to
detect new or modified words (adversarial examples) [22].
However, to reduce human intervention, in this current paper
a spellchecking-based algorithm was employed as an OCR
post-correction step for detecting and tracking malicious text
embedded in images was proposed. After the embedded text

Imam et al.: Preprint submitted to Elsevier Page 2 of 15

Post-correction for Detecting Adversarial Text Image

in an image gets extracted by the deployed OCR system, the
proposed algorithm detects the manipulated (i.e., adversar-
ial) embedded texts and de-noises them before they feed into
the text classifier model.

Figure 4: Images with embedded manipulated text

This study aims to answer the following research ques-
tions: RQ1) Is the recognition of the state-of-the-art OCR
systems affected by the adversarial embedded text in images
(i.e., adversarial examples)? RQ2) Are autocorrectors (i.e.,
spell-checkers) sufficient for OCR-based systems to mitigate
the designed adversarial examples? RQ3) How can we im-
prove the robustness of OCR-based systems to mitigate the
designed adversarial examples? Our main contributions are
as follows:

1. We developed a black-box attack method that can
generate images of manipulated embedded text to
cause OCR-based systems to mis-recognise the text.

2. Human perception of the generated adversarial text
images is an important feature of adversarial exam-
ples. We evaluated the perceptibility of our adversarial
images by conducting a user study, and the results
showed that human understanding is not affected by
the manipulations.

3. We proposed an OCR post-correction algorithm for
denoising and classifying manipulated embedded text
in images. Specifically, the proposed method has been
designed to improve the robustness of OCR-based
detectors.

4. We developed an adversary-aware OCR-based detec-
tor that is robust to adversarial text images, adaptabile
to evolving attacks and interpretable to security ana-
lysts.

The rest of the paper is organised as follows: Section 2
discusses related work in the field of OCR systems. In Sec-
tion 3, the problem formulation is presented. The datasets,
methodology, and our proposed algorithm are presented in
Section 4. We quantitatively measured human perception
of the generated attacks and present our findings in Sec-
tion 5. Section 6 presents the results and analysis of three
experiments preformed to answer the research questions.
The discussion of the experiments’ results and its limitations
is presented in Section 7. Finally, Section 8 concludes the
paper and discuss future work.

2. Related Work
Related work to our study is divided into two folds:

adversarial text attacks and defensive methods in images

classification and text classification tasks. Since there is
paucity of research that investigates adversarial text attacks
against OCR-based models, we discussed adversarial attacks
against NLP applications. OCR-based systems often use
NLP applications as components of their systems. Thus,
it is important to understand attacks and defence methods
proposed against these applications.

2.1. Adversarial Text Attacks and Defences in
Images Classification Tasks.

OCR-based Security Models. Borisyuk et al., [6] con-
ducted one of the first studies that developed an OCR system
for detecting and recognizing text in images uploaded to
Facebook. The system, called Rosetta, consists of two mod-
els: text detection and text recognition. The text detection
model uses Fast Convolutional Recurrent Neural Network
(Fast-RCNN) to perform word detection. Then, for each
detected box, a fully-convolutional model, referred to as
Connectionist Temporal Classification (CTC), is used to
recognize text [19]. The recognition model predicts the
most likely character at each detected box in the image.
Also, Yuan et al., [52] developed a model called Malena,
which can detect different types of spam including images
carrying text, number, or QR code in Chinese social net-
works (Baidu, Tieba, and Sina Weibo). The authors used
a PixelLink-based OCR [10] for detecting text in images.
They generate 200 adversarial examples using the state-of-
the-art CW approach [9] to evaluate the robustness of their
OCR, and they successfully detected 196 of them. Tramer
et al. [45] developed a framework for blocking adversarial
ads in Facebook and web pages in general. The proposed
framework takes a screenshot of the page, locates images
by using off-the-shelf object detector, Yolov3; and then
extracts text from images using Tesseract OCR. The authors
evaluated the robustness of the framework different against
evasion attacks. They evaluated the robustness of Tesseract
OCR against the CW attack (𝓁2 norm).

Remarks. Although these studies employed OCRs for
security tasks; the vulnerability of these security models to
manipulated textual content of images has not been investi-
gated. Rosetta was designed to detect spam images, but the
vulnerability of the proposed OCR has not been evaluated.
The authors of [52] and [45] evaluated the robustness of their
OCRs using gradient-based attacks (e.g. adding noise or blur
to images). To the best of our knowledge, our work is the first
to investigate the robustness of OCR-based systems against
images with manipulated embedded text.

Adversarial Text Attack Methods. Adversarial text
attacks against OCR systems could be carried out either
by adding noise to the text locations in images, or by
injecting adversarial text into images. Although a large
number of works have been studied in a bid to examine
the former attack, no previous study has been conducted
towards investigating the later type of attack. Song and
Shmatikov [42] presented the first study of adversarial
examples against sequence labelling models in the image
domain. They proposed several gradient-based adversarial

Imam et al.: Preprint submitted to Elsevier Page 3 of 15

Post-correction for Detecting Adversarial Text Image

attacks against CTC-based OCRs that use Tesseract-ocr,
by adding perturbation to the most influential characters or
words in the scanned documents. The authors successfully
caused Tesseract-ocr to output the desired adversarial texts
with 84.8% accuracy. Also, they showed that their attack
could detect the prediction accuracy of NLP applications
that use OCR systems for pre-possessing. One limitation of
their attack is the transferability to different OCR systems.

Defence Methods. There are several studies that used
post-OCR correction to correct (denoising) OCR-ed texts.
One of the post-OCR correction methods is to use spell
checkers for correcting OCR’s errors [49, 35]. Taghva and
Stofsky [43] proposed spelling correction system (OCR-
Spell) for correcting OCR errors in text. The system uses
Longest common subsequence calculation to correct errors
of segmentation part of the OCR, such as iii → m , or cl →
d . In [8], authors proposed post-processing steps to improve
OCR’s accuracy using the Aspell API and a customized
words list. Thompson et al. [44] proposed a customised OCR
correction for Historical Medical text. The authors com-
pared the results of 4 spelling correctors: ASpell, Hunspell,
Microsoft Word, and MAC OS. Similarly, authors in [16]
compare the results of four string-to-string transformation
models: (DirecTL, SEQUITUR, ALISETRA, and Contex-
tual Edit Distance) in spelling error correction paradigm.
Additionally, a couple of competitions were organised by
International Conference in Document Analysis and Recog-
nition (ICDAR) on post-OCR text correction. Participants
were asked to perform two tasks: OCR-error detection and
correction. Several methods have been proposed in ICDAR-
2019, such as context-based Character Correction using
BERT [11] and dictionary-based detection.

Remarks. The related studies use a post-correction step
to improve the recognition of OCR systems that are designed
for analysis of the scanned documents. The tasks of extract-
ing and understanding text in scanned documents are easier
than images uploaded into OSNs. Images uploaded into
OSNs are much nosier as they could contain overlaid texts on
top of images. Also, the embedded text in images cannot be
read line-by-line, because the rotation of the embedded text
can either be vertical or horizontal. Additionally, these stud-
ies showed that applying automatic spellchecking to misspelt
words alone is unreliable. Some of the shortcomings of
spellcheckers that need to be addressed include, complexity,
out-of-vocabulary words (OOV), and many others. For ex-
ample, OCRSpell is complex and requires extensive feature
engineering, as its operation involves five models. Other
studies [8, 44] have not considered detecting and tracking
manipulated texts. In this paper, we focused on OCR systems
designed for analysing images with embedded text. The
perturbation of multiple characters in a document does not
affect human understanding, as they can infer the meaning
of the perturbed words from the context. On the other hand,
images with embedded text tend to contain less text, which is
a constraint that needs to be considered by adversaries when
adding perturbations to text in images.

2.2. Adversarial Text Attacks and Defence in Text
Classification Tasks.

Gradient-based Attack Methods. Character-level per-
turbation attacks against text classification models have
been widely studied in the literature. These attacks can
be launched as either in a white-box or black-box setting.
Heigold et al. [20] proposed several character perturba-
tion methods for attacking NLP models (e.g., bpe-LSTM-
BLSTM, char-LSTM-BLSTM and char-CNN Highway-
BLSTM). They found that character-based approaches are
more sensitive than BPE-based approaches. Ebrahimi et
al. [13] proposed the HotFlip method for generating ad-
versarial examples against character-level neural classifiers.
The attack targets the one-hot encoding step of the character-
level embedding process. They chose the best character to
be flipped by computing gradient with respect to one-hot
encoding. Also, they used a beam-search optimisation to find
a set of manipulation (flip, insert, delete) that could fool the
deployed classifier. Moreover, the authors extended HotFlip
in Ebrahimi et al. [12] by adding targeted attacks against
character-level NMT. The authors concluded that adversarial
training could improve the robustness of the deployed text
classifier against such attacks. Similarly, Miyato et al. [31]
investigated the robustness of recurrent neural networks
(RNNs) by perturbing the continuous word embedding,
rather than the discrete word inputs, such as one-hot vectors.
Their results showed that adversarial and virtual adversarial
training improved the classification performance and the
quality of word embeddings. Also, Gong et al. [18] pro-
posed adversarial text attack against Convolutional Neural
Network (CNN), with only a few words changed using
FGSM and DeepFool. On the other hand, Belinkov and
Bise [5] proposed several black-box attacks against NMT,
such as swap, middle and fully random, and keyboard type.
They treated typos and misspellings as adversarial attacks.
Their experiments showed that models trained on mix noise
performs worse than models trained on a specific type of
noise.

Other Attack Methods. Unlike previous works that
used projected gradient, the authors in [17] proposed a novel
framework, DeepWordBug, which generated character-level
perturbation on text data. The authors swap, substitute,
delete, and insert characters, to generate OOV, in a bid
to force RNN to classify text as unknown. Their method
of attack successfully reduced the prediction accuracy of
word-LSTM and char-LSTM models. Also, they concluded
that adversarial training could improve the robustness of
these models against their attack better that using auto-
correctors. Li et al. [29] proposed adversarial attacks against
Deep Learning Text Understanding (DLTU) in black-box
and white-box settings. They proposed five bug genera-
tion methods: insert, delete, swap, substitute-character, and
substitute-word. The authors evaluated their attacks against
spelling checker and adversarial training. The results showed
that spelling checker could be used against adversarial text
attacks. Whereas, the effectiveness of adversarial training
reduced in defending against unknown adversarial attacks.

Imam et al.: Preprint submitted to Elsevier Page 4 of 15

Post-correction for Detecting Adversarial Text Image

Schuster et al., [39] proposed a non gradient-based attack
at training time, in which they changed words locations
in the embeddings to misclassification. The authors inves-
tigated two defence methods: using anomaly detection in
word frequencies and filtering out high-perplexity sentences.
They found that filtering out sentence with ungrammatical
sequence of words was the better defence method; whereas,
using conjection-based and perplexity-based type of poison-
ing attacks could evade such detection method.

Defence Methods. Rojas Galeano [38] proposed a method
for detecting the homoglyph anomaly, which is a type of
text manipulation intended to circumvent verbatim-based
filters (e.g. sma!l or s.m.a.i.l). The authors used a penalty
function crafted specifically to homoglyph substitutions-
type of manipulation, aimed at detecting and tracing the
locations of the potential obfuscations in text. The function
takes users’ generated text and an obscenity (vulgarity) as in-
puts and computes the edited distance between the two. The
proposed edit penalty function compares between characters
of the two inputs, and if admissible substitution symbols or
bogus segmentation characters are found, these characters’
positions are assigned 0, otherwise the positions will be 1.
Although the proposed homoglyph/segmentation–safe dis-
tance (HS-dist) outperforms Levenshtein distance (L-dist)
in discovering homoglyph similarities between obfuscations
and obscenities, HS-dist runs four-times slower than L-dist.

BERT-based Defence Methods. Recent studies have
evaluated the robustness of BERT, which is one of the best
state-of-the-art methods for NLP benchmarks and sentiment
analysis tasks. Authors in [36] proposed a semi-character
based RNN (ScRNN) to tackle character-level adversarial at-
tacks. The proposed defence method consists of two stages: a
word recognition model and a classifier. The defence method
was able to restore BERT’s accuracy from 45% to 75%
against character-level adversarial attacks. Another BERT-
defence method was proposed in [25] and it outperforms
spell checker and ScRNN. The authors have not considered
the adaptability and interpertability which are important
factors to ensure longevity. Additionally, Eger et. al.,[14]
propose catalogue and benchmark of low-level adversarial
attacks against NLP’s models. Their results show that the
Robustly optimized BERT approach (RoBERT) is not robust
to several benchmark attacks.

Remarks. These attacks used norm restrictions to ensure
the validity of the perturbations. However, applying the
same method for crafting adversarial text examples require
some adaptations. A survey conducted by Zhang et al. [54]
provides the difference between attacking Deep Neural Net-
works (DNNs) using adversarial images and text. There
are two main challenges when generating adversarial text:
1) the gradient-based adversarial attack cannot be directly
applied to the discrete data; 2) the level of manipulation is
constrained by human perception [50]. The closest attack
method to the attack investigated in this paper is the Deep-
WordBug [17], but our attack targets OCRs and we focused
on replacing characters with visually similar symbols or
numbers. In terms of defensive methods, The discussed

studies have shown that adversarial training is very effective
against these gradient-based attacks. However, such defence
requires knowing details about the incoming attacks, and
the trained model may become overfitted to the adversarial
examples [29, 42]. Additionally, the possible forms of a ma-
nipulated word makes the training dataset more sparse [20].
The authors in [39] discussed defending adversarial text
attacks by measuring the perplexity of sequences (i.e., how
linguistically likely a sequence is), and they found that adver-
saries could evade such methods by deliberately reducing the
perplexity. The algorithm proposed in [38] requires an extra
step to find the matching words before calculating the edited
distance. Also, it requires manually building a blacklist of
potential words that could be manipulated by adversaries.
Since calculating the edited distance, adding extra step and
retraining ScRNN [36] are expensive and time consuming,
we choose to use a spell checker in this paper. Although the
model proposed in [25] outperforms the spell checker and
ScRNN, it consists of 3 steps, which include a BERT and
a language model. This adds extra computation time and
complexity when used as an OCR post-correction. Since the
authors have not considered how these models can evolve
over time, they cannot detect new modified words. Table 1
summarises the related works to our current paper in terms
of the model used, type of attack and defence method.

3. Attacks Against OCR-based Detectors
3.1. Problem Formulation

Consider an input image with embedded text sequence
𝑋 = [𝑋1, 𝑋2, ..., 𝑋𝑁], where 𝑋 is a sentence that consists
of a number of tokens (i.e, words) 𝑋𝑁 , and 𝑁 is the number
of words in a sentence. Each word 𝑋𝑁 consists of characters
𝑋𝑁 = [𝑥1, 𝑥2, ..., 𝑥𝑛], where 𝑛 is the number of characters
in the word. The deployed OCR model 𝑓 scans the input
𝑋 image’s contents and outputs the class of the image 𝑌 =
[𝑌1, 𝑌2, ..., 𝑌𝑀], which is a predicted sequence of words, and
𝑀 is the number of predicted tokens. The neural network
of CTC that is used by the OCR outputs a sequence of
probability vectors for each word 𝑓 (𝑋𝑁) = 𝑌𝑀 where 𝑦𝑚
∈ [0, 1]|Γ| is the probability distribution over all characters
(alphabets) Γ at position m. Since the length of the input
sequence 𝑛 and predicted sequences 𝑚 are not generally
equal m ≥ n, it is hard to measure 𝑝(𝑌 |𝑋) from 𝑓 (𝑋).
Thus, a valid alignment 𝑎 of 𝑦 is used to measure 𝑝(𝑌 |𝑋).
If sequence 𝑎 = [𝑎1, 𝑎2, ..., 𝑎𝑖] and 𝑎𝑖 ∈ Γ ∪ {𝑏𝑙𝑎𝑛𝑘} can be
turned into y by removing blanks, which symbolized by −
and sequential duplicate characters, a is considered a valid
alignment of y. For example, [b, b, -, u, y, y] is a valid
alignment for [b, u, y] [42, 19]. To this end, there are two
problems OCR-based systems can face at two stages under
an adversarial attack.

At the text recognition stage, a pre-traind CTC-based
OCR model 𝑓 is used to map 𝑋 → 𝑌 . An adversary
aims to launch an untargeted attack that causes the CTC
neural network to misrecognize a few characters of the input
sequence 𝑥 𝜖 𝑋 and predict invalid alignment 𝑎́ that is

Imam et al.: Preprint submitted to Elsevier Page 5 of 15

Post-correction for Detecting Adversarial Text Image

Table 1
Related works that studied adversarial text attack either
against OCR-based or NLP-based applications

Title Model Attack Defence
Rosetta- Large
Scale System for
Text Detection
and Recognition
in Images [7]

OCR-based
system for
detecting spam
in Facebook

None None

Stealthy Porn-
Understanding
Real-World
Adversarial
Images for
Illicit Online
Promotion [52]

OCR-based
framework for
spam images in
Weibo

C&W None

AdVersarial-
Perceptual Ad
Blocking meets
Adversarial
Machine
Learning [45]

OCR-based
framework
for detecting
adversarial ads in
facebook and the
web page

C&W None

Fooling OCR Sys-
tems with Adver-
sarial Text Im-
ages [42]

OCR-based for li-
cense plate recog-
nition system and
scan document

optimization-
based

None

Strategies for Re-
ducing and Cor-
recting OCR Er-
rors [38]

OCR-post
correcter model
for OCR error
correction

None None

Improving OCR
Accuracy for
Classical Critical
Editions [8]

OCR-post
correcter model
for OCR error
correction

None None

A Tool for
Facilitating OCR
Postediting
in Historical
Documents [43]

OCR-post
correcter model
for historical
documents
correction

None None

On Obstructing
Obscenity
Obfuscation [38]

Verbatim-based
filters

character
level pertur-
bations

Spelling
correction-
based

Towards Robust
Toxic Content
Classification [27]

NLP-based
model for
toxic comment
detection

character
level pertur-
bations

Denoising

Autoencoder

Black-box
Generation of
Adversarial
Text Sequences
to Evade
Deep Learning
Classifiers [17]

NLP-based classi-
fier

character
level pertur-
bations

None

TEXTBUGGER-
Generating
Adversarial
Text Against
Real-world
Applications [29]

Deep Learning-
based Text
Understanding
(DLTU)

character
and word
level pertur-
bations

None

Our paper OCR-based
system for
detecting images
in Twitter

character
level pertur-
bations

Spelling
correction-
based

different from the ground truth 𝑎 𝜖 𝑌 . So that 𝐹 (𝑥́) = 𝑎(𝑎 ≠
𝑦). For example, an adversary can manipulate one or two
characters of an input image’s textual content, which could
cause the CTC to misrecognise the text since the conditional
probability of CTC depends on the probability vectors and
the ground truth label [33]. Figure 5 shows an example of
character-level perturbation.

Figure 5: An example of adversarial text

At the text classification step, NLP models (e.g., BERT)
are used to classify the extracted text. For example, in
Figure 5 the manipulated embedded text of the input image
𝑋 = [𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5] is 𝑋′ = [𝑋1,𝑋

′

2, 𝑋3, 𝑋
′

4,𝑋5].
The manipulated words 𝑋′

2 and 𝑋′

4 could cause the deployed
classifier to missclassify the input image. Even if we train
the CTC to recognise manipulated characters, the extracted
manipulated text could fool the deployed text classifier be-
cause NLP applications are sensitive to character-level per-
turbations. Utilizing adversarial training to improve the ro-
bustness of the deployed NLP model against this attack is
challenging since the possible perturbed word formed make
the training datasest more sparse. For example, flipping at
most one character of a word of length 𝑛 could make up to
𝑛𝐶 different word forms, where𝐶 is the number of characters
in the vocabulary [20]. Such an attack is common in OSNs as
it does not require knowledge about the functionality of the
deployed OCR-based system. The adversary only needs to
know about the blacklist (e.g., sensitive words) used by the
deployed model, which can easily be done in OSNs through
exploratory attack, and then manipulate these words [23].
Hence, a pre-processing step that could check the extracted
text from images before it being fed into the deployed text
classifier is needed.

3.2. Threat Model
The adversaries’ goal is to violate the integrity of the de-

ployed OCR-based detector by obfuscating detection through
manipulating images embedded text. The attack specificity
can either be targeted or indiscriminate. Here we consider
targeted attacks, in which the adversaries manipulate spe-
cific words (e.g., spam or toxic words). The adversaries’
knowledge about the deployed detector is assumed to be
very limited (black-box attack setting). In OSNs adversaries
could learn about the deployed detector by sending carefully
crafted massages and use the detector’s feedback to learn
some of its characteristics [23]. However, they do not know
the details of the deployed model. In terms of the adversaries
capability, it is assumed that the adversary is only capable of
influencing the deployed detector before the testing stage
(exploratory attack). Although some studies showed that
adversaries are capable of manipulating the training data
(causative attack), we consider the more realistic attack, in
which they can only influence the detector before the testing
stage. This assumption can be generalised to different OSNs
that utilize OCR-based detectors since these platforms share

Imam et al.: Preprint submitted to Elsevier Page 6 of 15

Post-correction for Detecting Adversarial Text Image

a lot of similarities. Generally, the steps of OCR systems are
easy for adversaries to reconstruct [42].

4. Methodology and Design
This section describes the methodology used in this

work. First, the datasets used for building and evaluating
the proposed OCR-based system. Then, we present the algo-
rithm used for generating the adversarial examples. Finally,
the proposed defence method is described.

4.1. Datasets
We study adversarial examples of images with embed-

ded text on three benchmark datasets created for text classifi-
cation tasks. The testing datasets were partially manipulated
and used for evaluation. These datasets were chosen because
they are widely used in related studies that focused on de-
tecting malicious activities (e.g., spam and toxic or offensive
comments detection).

SMS Spam Dataset1 We used the dataset built by
Almeida et al. [1], for building our images dataset. The
adopted dataset is a collection of SMS massages collected
from the Grumbletext Web site, which is a UK forum created
for cell phone users to make public claims about SMS spam
messages. The dataset consists of 5,574 short messages;
4,827 ham and 747 mobile spam messages.

Jigsaw2 dataset consists of 215,000 annotated com-
ments from Wikipedia, and it was used in one of Kaggle’s
challenges (Toxic comments classification Challenge). The
dataset contains six attributes (toxic, severe toxic, obscenity,
threat, insult, and identity hate). However, we only use one
of them which is a general toxicity label.

The offensEval 20193 dataset consists of 13,240 tweets
that have been annotated through crowd-sourcing. The
dataset is labelled into two classes: offensive and non offen-
sive tweets [27]. It was built for identifying and categorising
offensive language on Social Media.

These datasets were used to create our images since there
are no publicly available datasets that suit our needs. All the
generated datasets were published at Mendeley Data [21].
The following section discusses the steps preformed for
building our dataset.

4.2. Adversarial Text Images
Defining gradients in symbolic text is hard [17], so we

generated adversarial examples (i.e., images with embedded
adversarial text) directly on the images content through the
following steps. First, we used Algorithm 1 for automatically
generating adversarial text. The algorithm scans the input’s
characters, and if a character in the input matches one of the
characters in the mapping list, it flips the character. The list
includes the following: !, @, $, 1, 0, and more symbols can
be added. If an input word includes any of the characters
in the character map list, that character will be flipped to

1https://www.kaggle.com/uciml/sms-spam-collection-dataset/data
2https://www.kaggle.com/c/jigsaw-toxic-comment-classification-

challenge/data
3https://competitions.codalab.org/competitions/20011

its visually similar symbol or number. We chose the most
frequent spam words in SMS Spam dataset, toxic words
in Jigsaw dataset, and offensive words in OffensEval 2019
dataset using Term Frequency-Inverse Document Frequency
(TF-IDF). Then, we used a synthetic data generator 4 for
embedding the perturbed text into images. Figure 6 provides
examples of the adversarial examples used in this study

Algorithm 1: Adversarial Example Generator
Input: word 𝑋 = (𝑥1, ..., 𝑥𝑛)
Output: adversarial word 𝑋′

/* most frequent pairs of letters mapping dictionary */

1 SymbolMap𝐷𝑖𝑐𝑡 = [a: @, s: $, i: !, l: 1, o: 0]
2 for each char 𝑥𝑛 in word 𝑋 do
3 if char in SymbolMap. Keys then
4 word.replace(char, SymbolMap.get(char)

5 end for
6 Return 𝑋′

Figure 6: Images with embedded adversarial text

4.3. Proposed Defence Method
Directly applying an automatic spellchecker to mis-

spelled words is often unreliable. The suggested candidate
words of the deployed spellchecker could be wrong or, the
word list used in the spellchecker might not include some
words. These limitations could correct the input word with
an error [8], which could increase the false negative rate in
security applications. Also, spelling correction algorithms
cannot differentiate between typos or misspelling and text
perturbations. Spell checkers often correct mistakes and
compute the edit distance, which could tell whether the
mistake is addition or deletion. In our case, we want to
know whether the misspelling is an adversarial example
(e.g., replacement or swapping), or not and to keep tracking
these adversarial examples so we can update our system. An
important point that needs to be considered when designing
a detection system in an adversarial setting is the ability to
handle adversarial drift (i.e, a drift that may occur as a result
of new adversarial examples) [40]. Thus, the spell checker
must either find the closest correction or print out the error,
as it might be a new kind of manipulation.

Proposed Algorithm. In order to overcome the above
shortcomings, we propose an algorithm 5 for detecting ad-
versarial text embedded in images. The proposed algorithm
was inspired by a basic spelling correction algorithm that
was proposed by Peter Norvig [34]. Our algorithm denoises

4https://github.com/Belval/TextRecognitionDataGenerator
5https://github.com/niddal-imam/Post-OCR-Correction

Imam et al.: Preprint submitted to Elsevier Page 7 of 15

Post-correction for Detecting Adversarial Text Image

errors and outputs the class of the error detected in the text
(e.g., repeated characters, swapped characters, substituted
characters, or OOV). Detecting the type of error helps in
distinguishing between adversarial attacks, typos, or mis-
spellings along with other adversarial activities that need
to be considered, such as the importance of the word being
perturbed. The process of the proposed algorithm involves
three steps: lookup, scanning, and correction. First, it checks
if the extracted word includes errors by looking up for a
matching word in the dictionary. Second, if a matching word
does not exist, the algorithm will check if it contains any
symbols, repeated or swapped characters to be denoised.
Also, this scanning step tracks the type of error and checks
if the corrected word exists in the dictionary. For example,
if a symbol or repeated character is detected, the algorithm
will substitute the symbol or delete the repeated character
and denoise the text by using the adopted spell checker. The
adopted spell checker finds the correction 𝑐, out of all pos-
sible candidate corrections, that maximizes the probability
that 𝑐 is the intended correction, given the original word
𝑤 [34]:

𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∈𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑃 (𝑐) 𝑃 (𝑤|𝑐) ∕ 𝑃 (𝑤) (1)

Finally, if the extracted word (i.e., input) cannot be
corrected, it will be classified as OOV. As mentioned above,
adaptability of the detection system is important in an ad-
versarial setting. Hence, extracted text that could not be
corrected will be collected and used for updating the system
as these OOV might be new adversarial examples. The
output of the algorithm will be the input correction and the
type of detected error.

5. Human Perception
We quantitatively measured human perception of the

generated images with embedded perturbed text. This is an
important step when devising adversarial examples against
ML models, as it ensures that the perturbations do not affect
human understanding [29, 53, 48]. We conducted a survey,
which consists of ten images (adversarial examples) and two
multiple choice questions for each image. We perturbed one
character for the first five images and two characters for the
rest. To avoid any bias, participants are asked whether they
can understand the text in an image and only if their answer is
yes, then they can choose the correct word. The total number
of questions is 35. The survey’s link was distributed using
Facebook, Twitter, and Amazon Mturk.

Survey Results. The total number of participants was
220, and participants of age 25-34 were the majority, with
46.33%. 55% of the participants were male and 45% female.
85.77% hold a Bachelor or higher degree. We first showed
the participants the image and asked them if they can under-
stand the text. Then, if the answer is YES, we asked them to
choose the correct word. Participants were able to recognise
the text with at least 91% accuracy, which means users’
understanding is not affected by our adversarial examples.
Also, 56.07% of them have encountered similar images, and

37.11% reported that such images could be found on social
media. Moreover, 51.40% of the participants stated that they
have used scrambled text when they are writing text.

The results of the survey showed that humans can recog-
nise the embedded perturbed text in images. Also, these kind
of images are found in social media more often than in e-
mails or SMS. Additionally, most of the participants have
seen such images and used scrambled text.

6. Experimental Results and Analysis
We ran the experiments on Linux Ubuntu 18.04 LTS

operating system with Intel(R) Core(TM) i7-8750H CPU
2.20GHz x 12 of 983.4 GB memory. Through experiments,
our goals were to answer the three research questions that
were defined in Section 1.

To answer the research questions, three different exper-
iments were performed. First, we compared the results of
five spellcheckers in correcting adversarial text. Second, we
launched our black-box attack against four state-of-the-art
OCRs. Third, we investigated using our proposed algorithm
in OCR-based systems designed for detecting images with
malicious contents (i.e., spam, toxic, and offensive).

6.1. Effect of Adversarial Text on Auto-correction
Since we chose to use a spellchecker in our defence

method, a natural question arise: can spell checkers de-
tect adversarial text? For this experiment, we used six
spellchecking tools to correct/ denoise the same manipulated
text (i.e., substitute one or two characters). The tools are
listed below:

1. Peter Norvig [34]: a spellchecking algorithm that
generates candidates within 2 edited distance from the
original word, and the highest frequent word is chosen
as the correct word.

2. SymSpell 6: a spellchecking tool that uses the Sym-
metric Delete spelling correction algorithm to reduce
the complexity of calculating edit distances and look-
ing up dictionary.

3. Hunspell 7: one of the most popular spellcheckers
used by LibreOffice, OpenOffice.org, Mozilla Firefox
3 Thunderbird, and Google Chrome.

4. Pyspellchecker 8: a spellchecker based on Peter Norv-
ing’s algorithm that uses a Levenshtein Distance algo-
rithm and a list of frequency words to find corrections.

5. Textblob 9: a python library that provides different
NLP tasks including spell correction, which uses Peter
Norving’s algorithm.

Following the methodology used in [2] to test the
spellcheckers, we generated four types of adversarial text
including our attack using a list of top 20 frequent words in
the SMS dataset. We used the DeepWordBug method pro-
posed by Gao et al. [17] to generate three adversarial texts:

6https://github.com/wolfgarbe/SymSpell
7https://github.com/hunspell/hunspell
8https://pypi.org/project/pyspellchecker/
9https://github.com/sloria/TextBlob

Imam et al.: Preprint submitted to Elsevier Page 8 of 15

Post-correction for Detecting Adversarial Text Image

Table 2
Some of the adversarial text examples used in experiments

Original Flipping Swapping Deletion Insertion
Busy Bu$y Bsuy Bsy B*usy
Caller C@1ler Claler Cller C*aller
Reply Rep1y Rpely Rply R*eply
winner w!nner wniner wnner w*inner

(1) insertion: inserted one random character to the words
(e.g., c*all), (2) deletion: we removed the second character
(one was removed per word), and (3) swapping: we swapped
the second and third characters in the word (one swap per
word). Also, we used our developed method to generate (4)
flipping: we substituted one or two characters with visually
similar symbols or numbers. Table 2 presents some of the
adversarial text examples used in the experiments. The met-
ric used for evaluating the performance of the spellcheckers
is correction accuracy. Figures 7,8,9,10 present the results of
the six spellcheckers to correct the four types of adversarial
text. The experiments showed that the six spellcheckers
preformed the worst when we deleted a character from the
words, whereas they preformed the best against the swapping
type of adversarial text. The proposed algorithm outper-
forms the five spellchecking tools in correcting two types
of adversarial text attacks: flipping and swapping. Also, it
achieved the second best results in correcting deletion and
insertion type of adversarial text attacks. Figure 7 shows that
Pyspellchecker achieves the best result as it corrects 80% of
the adversarial text examples, whereas Hunspell is the worst
tool among the five spellchecking tools. Also, our proposed
algorithm outperformed the five spellcheckers in correcting
the targeted type of adversarial text attack with 20%. Hence,
in this experiment, we answered (RQ1) as the results showed
that using an auto-correction tool against adversarial attacks
is not sufficient. These findings support the results of related
studies [27] and [17].

6.2. Effect of Adversarial Text Images on OCRs
In the second part of experiments, we demonstrated

the effect of the character-level text attack against the text
recognition part of OCR systems. Three benchmark OCRs
were used to evaluate the effectiveness of the attack. In
the text recognition part of the OCR, two techniques are
commonly used for the prediction stage: CTC and Attention-
based sequence prediction (Attn). These two techniques have
been used in many OCR systems. Several related works
used CTC-based OCRs for spam image detection, such as
Rosetta [7] and Ads blocking [45]. To evaluate OCRs that
use CTC, we chose Rosetta, as it was designed for detecting
spam images uploaded to Facebook. Also, Tesseract was
chosen because it is open-source and publicly available,
and is widely used in many OCR-based applications [45].
For Att-based OCR experiment, we used Thin-plate-spline
(TPS) based Spatial transformer network (STN)[3]. The TPS
achieves the 1st place in ICDAR2013 focused scene text and
ICDAR2019 ArT, and 3rd place in ICDAR2017 COCO-Text

Figure 7: Insertion

Figure 8: Deletion

Figure 9: Swapping

Figure 10: Flipping

and ICDAR2019 ReCTS (task1). Two different versions of
TPS were used: TPS-NS (non case-sensitive) and TPS-S
(case-sensitive). Table 3 shows some examples of images
with perturbed embedded text that are misrecognised by
TPS.

Imam et al.: Preprint submitted to Elsevier Page 9 of 15

Post-correction for Detecting Adversarial Text Image

Table 3
Examples of images with perturbed embedded text misrecog-
nized by Att-based OCR

Adversarial Examples Prediction Confidence
1!ve ilve 0.65
c@$h cosh 0.86
C@1ler coiler 0.85
1@test 10test 0.68

Table 4
Results of the adversarial images with perturbed text against
the three OCRs. The best results are highlighted in bold

Models Perturbed Character CRW TED

TPS-NS
0 85% 6%
1 72% 12%
2 54% 28%

TPS-S
0 100% 6%
1 51% 19%
2 26% 46%

Tesseract
0 100% 100%
1 21% 33%
2 15% 60%

Rosetta
0 87% 5%
1 72% 12%
2 46% 20%

In this section, we evaluate the text recognition accuracy
of the four state-of-the-art OCR systems: TPS-NS, TPS-S,
Tesseract, and Rosetta. First, we evaluate the recognition ac-
curacy when using images with clean embedded text. Then,
we evaluate the OCR systems when one or two characters are
perturbed. Measurement metrics used for our experiments
were Correctly Recognized Word (CRW) and Total Edited
Distance (TED) [24]. CRW is the total number of correctly
recognized words by an OCR system, whereas TED is a
weighted sum of the Levenshtein distances between the
correction of the OCR and the corresponding token in the
Ground Truth [37]. The lower the total edited distance,
the better. The code adopted for the evaluation was built
by [24] for the Incidental Scene Text 2015 competition. The
results of our attacks against the four OCRs are presented
in Tables 4 and 5. Table 4 presents the results of the four
OCRs without using the proposed OCR post-correction al-
gorithm. The results showed that the recognition accuracy
of the OCRs dropped significantly when manipulating two
characters. These results proved that adversaries can launch
a black-box adversarial text attack against OCRs without
knowledge about their functionality and parameters (answer
to RQ2). The highest recognition accuracy when manipulat-
ing two characters was achieved by TPS-NS, while the worst
was achieved by Tesseract.

In Table 5, we evaluated the four OCRs using our pro-
posed OCR post-correction algorithm. The results demon-
strated that our algorithm improves the recognition accuracy
of the OCRs by at least 10%. The best text recognition
results archived by TPS-S with 82% and 72% CRW. The
results of this OCR system improves by at least 30% when

Table 5
Results of the three OCRs after using the proposed post-
correction. The best results are highlighted in bold

Models Perturbed Character CRW TED

TPS-NS 1 82% 10%
2 69% 19%

TPS-S 1 82% 9%
2 82% 10%

Tesseract 1 72% 17%
2 69% 25%

Rosetta 1 82% 10%
2 69% 31%

manipulating one character of an input image, and 45% when
manipulating two characters (answer to RQ3).

6.3. An Adversary-aware OCR-based Detector
In the last part of the experiments, we investigate using a

Multiple Classifier System (MCS) to design an adversary-
aware OCR-based detector that is robust, adaptable and
interpretable. As the generated attack can affect the text
classification part of OCR-based detector, we evaluate the
developed adversary-aware OCR-based detector using an
MCS for the text classification task. Additionally, we design
this part of the detector to ensure adaptability and inter-
pretability. For aggregating the output of the MCS, there are
different methods that could be used, such as linear, non-
linear, statistical, and ML combination methods [4]. Kurita
et al. [27] used a linear aggregation method that makes
its final prediction based on the arithmetic mean of two
models’ predicted probabilities. Their results showed that
the ensembled model outperforms a single classifier when
tested on a dataset that includes adversarial text. In the ML
aggregation method, a learner algorithm (e.g., DT, K-NN)
that learns from the base classifiers’ accuracy is applied
as a higher level classifier. [51] discussed the potentials
of using Multi Kernel Learning (MKL) for combining the
output of multiple classifiers, visual and textual. The authors
discussed the advantages and disadvantages of aggregating
different deep learning based models using kernel learning.
Voting rules, which is a non-linear aggregation method, is
widely used, and there are several combination rules, such
as majority voting, weighted voting, minimum probability,
maximum probability, multiplication of probabilities, and
average of probabilities [30]. Using such methods adds more
complexity to the detector, which makes it non-interpretable
and makes it difficult to be adaptable. Hence, we used
a Fuzzy Rule Based (FRB) classifier for aggregating the
outputs of the three classifiers.

The developed adversary-aware OCR-based detector
was designed to extract text from images and to classify the
images based on the embedded text. First, we designed the
components of the OCR-based detector and then we used it
for toxic comments and offensive tweets detection. Figure 11
shows the structure of the developed OCR-based detector. It
consists of three steps: OCR system, OCR post-correction,

Imam et al.: Preprint submitted to Elsevier Page 10 of 15

Post-correction for Detecting Adversarial Text Image

Figure 11: The Structure of the developed OCR-based detec-
tors

and text classification. In the OCR system, we use off-the-
shelf tools, PixelLink [10], for localising/ detecting text in
images. It is a scene text detector model that has been used
in [52]. For the text recognition, we chose the TPS-S (case
sensitive) model since it achieves the best results in the above
experiments. In the second step of our detector, the proposed
algorithm was used for denoising and classifying errors or
adversarial text. The last step is text classification, in which
we used two text classifiers: context-based and blacklist-
based classifiers. We used MCS for three reasons: (1) the
output of the OCR system is a list of words, which can
affect the accuracy of a context-based classifier, (2) a related
study [27] shows that the ensemble model outperforms a
model that uses a single classifier, and (3) to ensure that an
adversary-aware OCR-based detector can evolve over time
in the face of a potential new text manipulation attack.

The context-based classifier relies on the input words
order when making its final decision and the blacklist-based
classifier, which is a unigram model based on single words,
and it is very sensitive to most frequent words. Consequently,
we designed our detector to make its final decision based on
the output of three classifiers: The results of our proposed
algorithm, the context-based classifier and the blacklist-
based classifier, which are fed into the FRB part of the
text classification step for the final decision. The classifiers
were trained in parallel using the same training dataset.
The FRB will make its final decision based on the majority
voting rules. For example, if one of the text classifiers and
the proposed algorithm classification agree on an input 𝑋
class 𝑌 , or if both disagree with the output of the proposed
algorithm, then the output of the two classifiers will be used
for the final decision. Samples that the classifiers disagree
on will be collected and used by a security analyst to up-
date the classifiers. The denoising classification part of the
OCR-post correction outputs four type of errors (swapping,
flipping, repetition, or OOV). In this study, we consider
text that contains a combination of letters and numbers or
letters and symbols (i.e., flipping), or a text that contains a
letter repeated more than twice (i.e., repetition) as malicious
classes. Thus, the output of the denoising classification part
of the OCR-post correction will be 1 if flipping or repetition
is detected and 0 otherwise.

For generating adversarial text images, we used Algo-
rithm 1. We selected 60 samples from each testing dataset
(40 non-toxic and 20 toxic), and manipulated the most

frequent words. We only manipulated the toxic and offen-
sive samples of the testing datasets since our threat model
assumes that adversaries would only manipulate malicious
samples.

Figure 12: The results of the developed OCR-based detector
using three different text classifiers that were evaluated on
clean, manipulated, and corrected test datasets

After describing the components of our detector, we
now discuss the functionality. First, the OCR system part
localises the text in an input image and extracts the detected
text. Second, our proposed OCR post-correction corrects
(denoises) and classifies the extracted text. The output of the
text denoising part of the OCR post-correction is fed into the
text classifiers. On the other hand, the output of the denoising
classification part of the OCR-post correction, which is a
type of error (swapping, flipping, repetition, or OOV), is
used along with the output of the text classifiers for the final
decision. In the last step, we used the two text classifiers
(context-based and blacklist-based), and the FRB for the
final decision. In case of a disagreement between classifiers,
majority voting will be considered and the samples will be
collected for updating the classifiers by the security analyst.
In Figure 12, we compared the results of our OCR-based
detector using three sota text classifiers. We used BERT,
which has been used in related studies and has been shown
to have the capability to handle OOV [27]. Also, several
studies showed that Doc2vec [28], which captures the mean-
ing within embedding, could detect spam tweets with high
accuracy [47]. The third classifier was a simple logistic
regression with unigram (LR). All classifiers were trained on
clean datasets (i.e., datasets that do not include adversarial
text) and evaluated on clean, manipulated and denoised test
datasets. Following the evaluation method in [27], the results
showed that BERT achieves the best results among the three
classifiers. In addition, the results showed that when using
our algorithm for denoising the output of the OCR, the recall
(i.e., ability of the classifier to detect malicious samples) of
the developed detector improved by at least 10%.

In addition, we investigated whether the accuracy of the
text classifiers used in the developed adversary-aware OCR-
based detector is affected by the output of the OCR, which
is a set of words instead of a sentence. As we discussed
earlier in Section 1, one of the adversary techniques used to
fool OCR-based detectors is to spread the embedded text all
over the image (see Figure 2). Thus, to mitigate against such

Imam et al.: Preprint submitted to Elsevier Page 11 of 15

Post-correction for Detecting Adversarial Text Image

Table 6
Examples of the original test dataset samples and the OCR’s
output samples

Original OCR output
Great. So should i send
you my account number

account should number
Great i send you my So

Sir Goodmorning, Once
free call me

morning Good Once me
call Sir free

Where are you call me Where you me are call
Just now saw your mes-
sage.it k da:)

message Just your saw
now tl age da

adversarial activities, extracting a list of embedded words
from images could be used. However, since we use a text
classifier as part of the OCR-based detector, we compared
the results of the three text classifiers using the original
version of jigsaw and OffensEval-2019 test datasets and the
OCR’s output version of the test datasets. Table 6 presents
some examples of samples from the SMS test dataset. It
shows the original sentences and the output of the OCR. Fig-
ures 13 and 14 compared the results of the developed OCR-
based detector using the three text classifiers. The compar-
ison was performed using the two test datasets, jigsaw and
OffensEval-2019. After training the three text classifiers, we
evaluated the classifiers on the original test datasets and the
output of the OCR system. The results in Figures 13 and 14
show that the performance of the context-based classifiers
(i.e., BERT and Doc2vec) was affected by the change in
the words order, whereas it was more stable when using the
LR with unigrams. As the LR classifier is sensitive to the
most frequent words, we used MCS (BERT and LR) for the
text classification task. In the last experiment, we compared
the results of the developed adversary-aware OCR-based
detector using a single classifier and MCS.

Figure 13: Effect of change in the words order on the text
classifiers using the Jigsaw dataset

In Table 7, we make the following comparison: the
results of using a single text classifier and MCS with or
without our OCR post-correction. We found that the devel-
oped OCR-based detector achieves better results when using
MCS than when using a single text classifier, in terms of
Precision, Recall, and F1-score. In addition, the results of
each individual classifier improved when using OCR post-
correction. In detail, the results in Table 7 show that the
performance (i.e., recall and F1-score) of the three OCR-
based detector using two datasets decreased under attack by

Figure 14: Effect of change in the words order on the text
classifiers using the OffensEval-2019 dataset

at least 10%, while they improved by at least 10% when
using our algorithm. For example, the recalls of Doc2vec
under attack improve when using our algorithm from 30%
to 55% and from 35% to 75% on Jigsaw and Offensive-
2019 datasets respectively. We considered the recall and F1-
score as our threat model assumes that adversaries would
only manipulate the malicious samples. These results reflect
that fact that the robustness of the OCR-based detectors
improve when our algorithm is used. Robustness here refers
to the action of decision makers (i.e., text classifiers) through
correcting/ denoising the output of the OCR system, and
classifying the type of error.

In addition, one of the goals of using MCS is to reduce
the false positive rate of the detector. We can see in Table 7
that the precision of the blacklist-based classifier (the LR) is
lower than precision of the context-based classifiers (BERT),
because it is sensitive to the most frequent words. Thus, to
overcome this issue, we used the FRB that considers major-
ity voting of the two classifiers and the proposed algorithm
classification of the corrected error. The results show that the
precision of the MCS is better than that of both classifiers.
Additionally, we conducted our investigation using the OCR-
based detector with MCS to deal with evolving attacks and to
be interpretable for debugging. The results in Table 7 show
that using the MCS of BERT and LR with the proposed al-
gorithm achieved better overall performance. The proposed
OCR post-correction is designed to denoise errors and to
classify the type of errors. When the error is classified as
OOV by the proposed algorithm, but becomes classified as
non-malicious by any of the text classifiers, this type of error
will be used as an indicator of a new possible attack. Hence,
these examples will be collected and checked by the security
analyst to confirm if the detector needs to be updated.

7. Discussion
The experiments performed in this study showed how

the proposed algorithm can improve the robustness of OCR-
based systems to images with embedded manipulated text.
Denoising the output of the OCR systems could be helpful
in the classification task. Most importantly, classifying the
type of errors helps detect adversarial examples. Although
we focused on a particular adversarial attack, where an ad-
versary replaces characters with similar looking symbols or
numbers, our algorithm could be modified to detect different

Imam et al.: Preprint submitted to Elsevier Page 12 of 15

Post-correction for Detecting Adversarial Text Image

Table 7
Detailed results of the developed adversary-aware OCR-based
detector on two datasets and three test datasets: clean,
manipulated, and denoised datasets. The best results are
highlighted in bold. The MCS (BERT and LR) outperforms
using a single text classifier

Model
Testing

Data

Jigsaw Offensive-2019

Percision Recall F1 Percision Recall F1

BERT

clean

77 35 48 67 60 63

Doc2vec 55 65 59 72 75 73

LR 65 80 72 72 85 77

BERT

manipulated

77 25 38 67 15 24

Doc2vec 55 30 39 72 35 47

LR 65 15 24 72 20 31

BERT

Denoised

77 55 64 67 80 83

Doc2vec 55 55 55 72 75 73

LR 65 75 51 72 85 78

MCS 87 85 86 82 85 83

adversarial attacks. For example, it could be modified to
detect an adversarial text attack, in which adversaries replace
some characters in important words with asterisks (e.g.,
st**id). This has been shown in the first experiment (see
Section 6). Also, the experiments show that the proposed
algorithm can be used for improving the robustness of NLP
applications. The results in Subsection 6.1 show that our
algorithm outperforms five spellcheckers.

Generally speaking, when designing an automated ML-
based model in an adversarial environment, very important
points that need to be taken into account at the design stage
are the adaptability to evolving attacks and interpretability
to security analysts. In other words, we need our model to
evolve over time in the face of new attacks. The proposed
OCR post-correction has been designed to detect OOV,
which could be used as an indicator of a new attack. For
instance, an increased number of OOV in images with non-
malicious content requires debugging the model to inves-
tigate if there is a new attack. Additionally, in this paper,
we show that the proposed algorithm can be used with any
OCR-based detector designed for adversarial environments.
For example, we investigate improving the robustness of the
Facebook spam image detector Roseeta using our OCR post-
correction algorithm.

There are some limitations that future research needs
to consider. In order for our OCR post-correction to be
effective, the OCR system needs to accurately recognise the
embedded text in images. The recognition accuracy of OCRs
is affected by noise and adversarial perturbations. This is
especially true for images uploaded onto OSNs, which are
images with text overlaid on top of them; extracting text from
such images with high accuracy is an area that requires more
research. Also, the robustness of the OCR-based systems
against adversarial image attacks (e.g., FGSM or Adversarial
Watermarks) needs to be considered. Additionally, one of the
drawbacks of OCR systems when used for detecting spam
images is that the embedded text gets extracted as a list of
words, which affects the text classification. In this study, we

used an MCS with the FRB classifier to tackle this issue.
However, more research to find a method for re-ordering the
extracted words needs to be conducted.

8. Conclusion
Using an OCR in cybersecurity systems is an important

and challenging problem. In this paper, we investigated the
robustness of OCR-based systems against images with em-
bedded adversarial text (i.e., adversarial text images). Simi-
lar to other application domains (e.g., NLP), we found that
state-of-the-art OCRs are vulnerable to such slightly manip-
ulated embedded text that does not affect human understand-
ing. We described our proposed OCR post-correction, which
denoises and classifies various types of errors to improve
the robustness of OCR-based systems against character-level
adversarial attacks. Our algorithm improves the text recog-
nition of state-of-the-art OCRs by over 10%. Additionally, as
a case study, we showed how our algorithm could improve
the overall performance of OCR-based systems designed to
detect images with embedded malicious content (e.g., spam,
toxic or offensive comments). The developed adversary-
aware OCR-based detector consists of an OCR and an MCS
text classification model along with the proposed algorithm.
As demonstrated by our experiments, our algorithm im-
proves the accuracy of the detector by over 20%. From a
security point of view, utilising an OCR post-correction not
only provides robustness against adversarial examples, but it
also provides adaptability and interpretability, which helps
detect unknown attacks.

The investigation of OCR-based detectors in this paper
reveals that there are some limitations that future research
needs to consider. Specifically, the extracted text from im-
ages needs to be checked before it is fed into a text classifi-
cation part of an OCR-based detector. Although the recogni-
tion accuracy of OCRs has been improving over the last few
years in document classification tasks, this accuracy drops
with noisy images. Thus, improving the text recognition
accuracy and robustness of OCRs in an adversarial setting
is an area that requires more research. Additionally, another
area that future research needs to focus on is the word order
of the extracted text from an image. One of the drawbacks
of OCRs when used for detecting spam images is that the
embedded text gets extracted as a list of words, which affects
the text classification. Hence, a method for re-ordering the
extracted words needs to be researched further.

References
[1] T. Almeida, J. M. G. Hidalgo, and T. P. Silva. Towards SMS spam

filtering: Results under a new dataset. International Journal of
Information Security Science, 2(1):1–18, 2013.

[2] B. Alshemali and J. Kalita. Toward mitigating adversarial texts.
International Journal of Computer Applications, 178(50):1–7, 2019.

[3] J. Baek, G. Kim, J. Lee, S. Park, D. Han, S. Yun, S. J. Oh, and H. Lee.
What is wrong with scene text recognition model comparisons?
dataset and model analysis. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4715–4723, 2019.

[4] S. Barak, A. Arjmand, and S. Ortobelli. Fusion of multiple diverse
predictors in stock market. Information Fusion, 36:90–102, 2017.

Imam et al.: Preprint submitted to Elsevier Page 13 of 15

Post-correction for Detecting Adversarial Text Image

[5] Y. Belinkov and Y. Bisk. Synthetic and natural noise both break
neural machine translation. In International Conference on Learning
Representations, 2018.

[6] F. Borisyuk, A. Gordo, and V. Sivakumar. Rosetta: Large scale
system for text detection and recognition in images. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 71–79. ACM, July 2018.

[7] F. Borisyuk, A. Gordo, and V. Sivakumar. Rosetta: Large scale
system for text detection and recognition in images. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 71–79, 2018.

[8] F. Boschetti, M. Romanello, A. Babeu, D. Bamman, and G. Crane.
Improving OCR accuracy for classical critical editions. In Interna-
tional Conference on Theory and Practice of Digital Libraries, pages
156–167. Springer, 2009.

[9] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. In 2017 ieee symposium on security and privacy (sp), pages
39–57. IEEE, 2017.

[10] D. Deng, H. Liu, X. Li, and D. Cai. Pixellink: Detecting scene text via
instance segmentation. In Thirty-second AAAI conference on artificial
intelligence, 2018.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1, pages 4171–4186, 2019.

[12] J. Ebrahimi, D. Lowd, and D. Dou. On adversarial examples for
character-level neural machine translation. In Proceedings of the 27th
International Conference on Computational Linguistics, pages 653–
663, 2018.

[13] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou. HotFlip: White-box
adversarial examples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 2), pages 31–36, 2018.

[14] S. Eger and Y. Benz. From hero to zéroe: A benchmark of low-
level adversarial attacks. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics
and the 10th International Joint Conference on Natural Language
Processing, pages 786–803, 2020.

[15] S. Eger, G. G. Şahin, A. Rücklé, J.-U. Lee, C. Schulz, M. Mesgar,
K. Swarnkar, E. Simpson, and I. Gurevych. Text processing like
humans do: Visually attacking and shielding NLP systems. In
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 1634–1647,
Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[16] S. Eger, T. vor der Brück, and A. Mehler. A comparison of four
character-level string-to-string translation models for (OCR) spelling
error correction. The Prague Bulletin of Mathematical Linguistics,
105(1):77, 2016.

[17] J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi. Black-box generation of
adversarial text sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages 50–56. IEEE,
2018.

[18] Z. Gong, W. Wang, B. Li, D. Song, and W.-S. Ku. Adversarial texts
with gradient methods. arXiv preprint arXiv:1801.07175, 2018.

[19] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369–376, 2006.

[20] G. Heigold, S. Varanasi, G. Neumann, and J. van Genabith. How
robust are character-based word embeddings in tagging and mt against
wrod scramlbing or randdm nouse? In Proceedings of the 13th Con-
ference of the Association for Machine Translation in the Americas
(Volume 1: Research Track), pages 68–80, 2018.

[21] N. Imam. Synthetic datasets of adversarial images. https://data.

mendeley.com/datasets/2g3c836mh3/1, 2021.

[22] N. Imam and V. Vassilakis. Detecting spam images with embedded
Arabic text in Twitter. In 2019 International Conference on Document
Analysis and Recognition Workshops (ICDARW), volume 6, pages 1–
6. IEEE, 2019.

[23] N. H. Imam and V. G. Vassilakis. A survey of attacks against Twitter
spam detectors in an adversarial environment. Robotics, 8(3):50,
2019.

[24] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bag-
danov, M. Iwamura, J. Matas, L. Neumann, V. R. Chandrasekhar,
S. Lu, et al. ICDAR 2015 competition on robust reading. In 2015 13th
International Conference on Document Analysis and Recognition
(ICDAR), pages 1156–1160. IEEE, 2015.

[25] Y. Keller, J. Mackensen, and S. Eger. BERT-Defense: A probabilistic
model based on BERT to combat cognitively inspired orthographic
adversarial attacks. arXiv preprint arXiv:2106.01452, 2021.

[26] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT:
Open-source toolkit for neural machine translation. In Proceedings
of ACL 2017, System Demonstrations, pages 67–72, 2017.

[27] K. Kurita, A. Belova, and A. Anastasopoulos. Towards robust toxic
content classification. arXiv preprint arXiv:1912.06872, 2019.

[28] Q. Le and T. Mikolov. Distributed representations of sentences and
documents. In International conference on machine learning, pages
1188–1196, 2014.

[29] J. Li, S. Ji, T. Du, B. Li, and T. Wang. TextBugger: Generating
adversarial text against real-world applications. In 26th Annual
Network and Distributed System Security Symposium, 2019.

[30] O. Matan. On voting ensembles of classifiers. In Proceedings of
AAAI-96 workshop on integrating multiple learned models, pages 84–
88. Citeseer, 1996.

[31] T. Miyato, A. M. Dai, and I. Goodfellow. Adversarial training
methods for semi-supervised text classification. arXiv preprint
arXiv:1605.07725, 2016.

[32] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool:
a simple and accurate method to fool deep neural networks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2574–2582, 2016.

[33] N. Mor and L. Wolf. Confidence prediction for lexicon-free OCR. In
2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 218–225. IEEE, 2018.

[34] P. Norvig. How to write a spelling corrector. Online at: http://norvig.
com/spell-correct. html, 2007.

[35] A. Poncelas, M. Aboomar, J. Buts, J. Hadley, and A. Way. A tool
for facilitating OCR postediting in historical documents. In Proceed-
ings of LT4HALA 2020-1st Workshop on Language Technologies for
Historical and Ancient Languages, pages 47–51, 2020.

[36] D. Pruthi, B. Dhingra, and Z. C. Lipton. Combating adversarial
misspellings with robust word recognition. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics,
pages 5582–5591, 2019.

[37] C. Rigaud, A. Doucet, M. Coustaty, and J.-P. Moreux. ICDAR 2019
competition on post-OCR text correction. In 2019 International
Conference on Document Analysis and Recognition (ICDAR), pages
1588–1593. IEEE, 2019.

[38] S. Rojas-Galeano. On obstructing obscenity obfuscation. ACM
Transactions on the Web (TWEB), 11(2):1–24, 2017.

[39] R. Schuster, T. Schuster, Y. Meri, and V. Shmatikov. Humpty dumpty:
Controlling word meanings via corpus poisoning. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1295–1313. IEEE,
2020.

[40] T. S. Sethi and M. Kantardzic. Handling adversarial concept drift in
streaming data. Expert systems with applications, 97:18–40, 2018.

[41] B. Shi, X. Bai, and C. Yao. An end-to-end trainable neural network
for image-based sequence recognition and its application to scene
text recognition. IEEE transactions on pattern analysis and machine
intelligence, 39(11):2298–2304, 2016.

[42] C. Song and V. Shmatikov. Fooling ocr systems with adversarial text
images. arXiv preprint arXiv:1802.05385, 2018.

Imam et al.: Preprint submitted to Elsevier Page 14 of 15

https://data.mendeley.com/datasets/2g3c836mh3/1
https://data.mendeley.com/datasets/2g3c836mh3/1

Post-correction for Detecting Adversarial Text Image

[43] K. Taghva and E. Stofsky. OCRSpell: an interactive spelling cor-
rection system for OCR errors in text. International Journal on
Document Analysis and Recognition, 3(3):125–137, 2001.

[44] P. Thompson, J. McNaught, and S. Ananiadou. Customised OCR
correction for historical medical text. In 2015 Digital Heritage,
volume 1, pages 35–42. IEEE, 2015.

[45] F. Tramèr, P. Dupré, G. Rusak, G. Pellegrino, and D. Boneh. Adver-
sarial: Perceptual ad blocking meets adversarial machine learning. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2005–2021, 2019.

[46] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel. Ensemble adversarial training: Attacks and defenses.
arXiv preprint arXiv:1705.07204, 2017.

[47] C. VanDam, F. Masrour, P.-N. Tan, and T. Wilson. You have been
caute! early detection of compromised accounts on social media. In
2019 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pages 25–32. IEEE, 2019.

[48] P. Vijayaraghavan and D. Roy. Generating black-box adversarial
examples for text classifiers using a deep reinforced model. In
U. Brefeld, E. Fromont, A. Hotho, A. Knobbe, M. Maathuis, and
C. Robardet, editors, Machine Learning and Knowledge Discovery
in Databases, pages 711–726, Cham, 2020. Springer International
Publishing.

[49] M. Volk, L. Furrer, and R. Sennrich. Strategies for reducing and
correcting OCR errors. In Language technology for cultural heritage,
pages 3–22. Springer, 2011.

[50] B. Wang, H. Pei, H. Liu, and B. Li. Advcodec: Towards a uni-
fied framework for adversarial text generation. arXiv preprint
arXiv:1912.10375, 2019.

[51] T. Wang, L. Zhang, and W. Hu. Bridging deep and multiple kernel
learning: A review. Information Fusion, 2020.

[52] K. Yuan, D. Tang, X. Liao, X. Wang, X. Feng, Y. Chen, M. Sun, H. Lu,
and K. Zhang. Stealthy porn: Understanding real-world adversarial
images for illicit online promotion. In 2019 IEEE Symposium on
Security and Privacy. IEEE, 2019.

[53] M. Zha, G. Meng, C. Lin, Z. Zhou, and K. Chen. RoLMA: A
practical adversarial attack against deep learning-based LPR systems.
In International Conference on Information Security and Cryptology,
pages 101–117. Springer, 2019.

[54] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li. Adversarial
attacks on deep-learning models in natural language processing: A
survey. ACM Transactions on Intelligent Systems and Technology
(TIST), 11(3):1–41, 2020.

[55] G. Zuccon, A. N. Nguyen, A. Bergheim, S. Wickman, and N. Grayson.
The impact of OCR accuracy on automated cancer classification of
pathology reports. In Health Informatics: Building a Healthcare
Future Through Trusted Information, pages 250–256. IOS Press,
2012.

Imam et al.: Preprint submitted to Elsevier Page 15 of 15

