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Abstract

In this contribution we propose a novel steganographic method based on several orthogonal
polynomials and their combinations. The steganographic algorithm embeds a secrete message
at the first eight coefficients of high frequency image. Moreover, this embedding method uses
the Beta chaotic map to determine the order of the blocks where the secret bits will be inserted.
In addition, from a 128-bit private key and the steps of a cryptography algorithm according to
the Advanced Encryption Standard (AES) to generate the key expansion, the proposed method
generates a key expansion of 2560 bits, with the purpose to permute the first eight coefficients of
high frequency before the insertion. The insertion takes eventually place at the first eight high
frequency coefficients in the transformed orthogonal moments domain. Before the insertion of
the message the image undergoes a series of transformations. After the insertion the inverse
transformations are applied to the original transformations in reverse order. The experimental
work on the validation of the algorithm consists of the calculation of the Peak Signal-to-Noise
Ratio (PSNR), the Universal Image Quality Index (UIQI), the Image Fidelity (IF), and the
Relative Entropy (RE), comparing the same characteristics for the cover and stego image. The
proposed algorithm improves the level of imperceptibility and security analyzed through the
PSNR and RE values, respectively.

AMS Subject Classification: 94A08; 94A29; 94A60; 94A62; 94A05

Key Words and Phrases: Steganography, chaotic fractional map, DCT domain, imper-
ceptibility, visual quality, security.

1 Introduction

Nowadays, in the era of the so-called Internet of Things and ubiquitous computing, all kind of com-
munications is becoming to be strongly connected to the Internet, which has definitively become a
backbone of the infrastructure of the modern world. This fact made it possible that the information
transits by means of dissimilar communication channels, being used in considerable applications
in science, in engineering, and in the industry [54]. Being a means of efficient communication, the
Internet becomes a vulnerable tool for the information it carries, which can be acceded in many in-
stances by non-authorized people, as well as consulted, modified and even destroyed. However, the
great quantity of transmitted, potentially sensitive information requires sophisticated techniques
of protection [55].
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Most frequently secure communication is achieved by the method of encryption [56]. Neverthe-
less, all electronic communications are being continuously and automatically monitored by both
private and state-owned intelligent systems that have an enormous computer power. In particular,
every transmission of cipher-text calls the attention of any of these systems and certainly is chosen
to be analyzed, among others, by competitors and any sort of opposing forces. The use of electronic
transmission media requires a method that calls less attention of the supervisory automatic sys-
tems. Modern Steganography offers a level of service that includes privacy, authenticity, integrity,
and confidentiality of the transmitted data [53].

Steganography is the science or art of secret communication between two sides that attempts
to conceal the existence of the message, such that the secrete data remains imperceptible to any
adversary [8]. Steganography methods embed the secret data in an appropriate and innocent
multimedia carrier. The media with or without hidden information are called stego-media and
cover-media, respectively. Often used media are text [21], image [32], video [9] and audio files [64].
In steganography, there are two common methods of embedding data, which can be classified into
two categories, namely spatial domain and frequency-domain methods, see [53] for more details.
In the spatial domain method, the secret message is directly inserted into the least significant bit
(LSB) of image pixels [26]. In the frequency domain, however, the cover image is first transformed
from the spatial to a frequency domain using some methods such as orthogonal moments, discrete
wavelet transform or discrete cosine transform (DCT), then the secrete message is embedded in
the transformed coefficients, and finally the data are transformed back from the frequency-domain
to the spatial domain [53].

In spite of their scare use in steganography, orthogonal moments count with a large trajectory
in image processing. The pioneering work on moment invariants was started by Hu (1962), who
introduced this concept for pattern recognition [25]. Then, around two decades later, Teague [57]
proposed continuous orthogonal polynomials as basis functions to calculate continuous moments
such as Legendre or Zernike moments, thus demonstrating that images can be reconstructed with
these orthogonal moments. However, these moments usually involve two kinds of inherent errors
in digital images with a high computational cost. These error are (a) the discrete approximation
of the continuous integrals, and (b) the transformation of the image coordinate system into the
domain of the polynomials, see [12].

In order to solve this problem, discrete orthogonal moments such as Krawtchouk, Tchebichef,
Hahn, Charlier and Meixner moments have been successfully introduced within the field of image
analysis [27, 31, 50, 70]. The implementation of these moments does not require any numerical
approximation since the basis set is orthogonal in the discrete domain of the image coordinate
space [12, 44].

In steganography field, there are a couple of contributions that use orthogonal moments.
Elshoura and Megherbi [18] proposed two high capacity information hiding schemes in the fre-
quency domain, in which large amounts of information can be hidden in gray level images with
high transparency using Tchebichef moments. Whereas in [19], the authors presented a secure high
capacity image information hiding scheme where two completely separate arbitrary full-scale gray
level images, one hidden information image and one authentication watermark image are embedded
hidden in the Tchebichef moments of a carrier image with very high imperceptibility.

Our main goal is to obtain a steganography system with a higher level of imperceptibility
keeping up to an acceptable degree of security at the same time. Therefore, we introduce the idea
of the use of some discrete orthogonal moments, which are powerful tools for processing images in
the area of image analysis, but we now propose to apply this tool systematically for the purpose
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of stegonagraphy. Regarding the great variety of orthogonal moments, we focus principally on the
discrete Krawtchouk, Tchebichef, Hahn, Charlier and Meixner orthogonal polynomials, as well as
the q-Krawtchouk, q-Hahn, q-Charlier and q-Meixner orthogonal polynomials.

In this contribution, we describe a steganographic algorithm that embeds a secret message in
the first eight high frequency coefficients of a given image. These coefficients are calculated by the
orthogonal moments mentioned above and their combinations. In addition, a 128-bit private key
is used, which generates a binary sequence to permute the first eight high-frequency coefficients
before insertion. This strategy takes into account that modern steganographic techniques follow
the Kerckhoffs’s principle, according to which the opponent knows the technique used to hide the
embedded message, and the security of the stego system is based only on the choice of hidden
information shared between the sender and the receiver, called stegokey [45]. Furthermore, this
embedding method uses the chaotic map Beta [69] to determine the order of the blocks where the
secret bits will be inserted, since this system is characterized by a pseudo-random behavior and a
high sensitivity to initial conditions.

The structure of this paper is the following: In Section 2 we presented the literature survey. In
Section 3, we introduce some preliminary results which will be very useful in the research presented.
In Section 4, we describe the proposed embedding and extraction algorithms. Finally, in Section
5, we show the experimental results.

2 A review of related works

Several state-of-the-art steganographic research on hiding images in a DCT domain were reported
in literature at recent years. In [52], the authors proposed a new robust steganography algorithm
based on discrete cosine transform, the Arnold transform and chaotic systems. Thereby, the chaotic
system is used to generate a random sequence to be used for spreading data in the middle frequency
band DCT coefficient of the cover image. Moreover, the security is increased by scrambling the
secret data using an Arnold Cat map before embedding. Mali et al. in [35] presented a robust and
secured method of embedding a high volume of text information in digital cover images without
incurring any perceptual distortion. Moreover, this method is robust against intentional or un-
intentional attacks such as image compression, tampering, resizing, filtering and Additive White
Gaussian Noise. For the selection of the embedding locations in the frequency domain the Image
Adaptive Energy Thresholding is used. Then, in [4] the authors present an elegant steganographic
method at enhancing the reliability of the Mali et al.’s algorithm by overcoming the problem of
misidentified blocks. To do so, an embedding map is adopted to indicate the location of the blocks.
This means that some regions of the image are exploited for hiding data while some others are
used for hiding the embedding map. In addition, the blocks, in which the data is concealed, are
determined according to Mali et al.’s algorithm. In [33], a steganographic scheme based on the
varieties of coefficients of the discrete cosine transformation of an image was proposed. Here, the
authors use a integer mapping to implement the DCT, whereas that in [28], a novel domain sepa-
ration technique is proposed which is based on randomization of DCT kernel matrix. Habib et al.
in [22] presented an interesting DCT steganographic method that spreads out randomly the secret
bits within the cover image using chaos. Here, a digital chaotic generator based on two perturbed
PWLCM is used to generate a binary stream, which is used to determine the positions of DCT
coefficients in which the secret data is embedded. In [17], the authors proposed a steganographic
tool based on DCT, which is implemented to hide confidential information about a nuclear reactor,
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using the sequential embedding method in the middle frequency. Saidi et al. in [48] proposed a
novel steganographic scheme based on chaotic map in the DCT domain, which applies the DCT
on the cover image and scans the AC coefficients in a zigzag form the least significant to the most
significant (inverse zigzag scanning). Here, the embedding/extracting process depends on a piece-
wise linear chaotic map, where its initial condition/control parameters are adopted as secret keys
of the designed scheme. The authors of [43] proposed a combination of DCT steganography and
cryptography using the one-time pad or Vernam cipher implemented on a digital image. In [41] a
new discrete cosine transform approach for color image steganography is proposed. It implements
a global adaptive-region embedding scheme that allows for extremely high embedding capacities
while maintaining enhanced perceptibility.

In [7] the authors proposed a novel steganography technique of transform domain JPEG that
provides high embedding performance while introducing minimal changes in the cover carrier image,
thus maintaining minimum detectability against blind steganalysis schemes. This algorithm, named
DCT-M3, uses the modulo of the difference between two DCT coefficients to embed two bits of the
compressed form of the secret message. In addition, Rabie et al. [42] proposed a novel approach
for color image steganography in the discrete cosine transform domain, that promotes an optimal
embedding capacity while improving the stego image quality. This proposed approach is based on
the observation that the space reserved for embedding the secret data varies with the statistical
characteristics of the cover image and exploits a quadtree adaptive-region embedding scheme to
individuate good cover image segments, in relation to the correlation of pixels, for embedding the
secret information. Recently, in [53], Soria and Berres proposed a novel steganographic method
based on the compression standard according to the Joint Photographic Expert Group and an
Entropy Tresholding technique. This scheme uses one public key and one private key to generate a
binary sequence of pseudo random numbers that indicate where the elements of the binary sequence
of a secret bits will be inserted. Moreover, this algorithm improves the level of imperceptibility.
Then, in [15] Chowdhuri et al. presented a novel steganographic scheme, in which a weighted ma-
trix is designed for highly compressed color images through a discrete cosine transform in order to
maintain a good balance between payload and imperceptibility. After the color cover image is par-
titioned into three color channels (YCbCr), then then DCT coefficient matrix is obtained from each
(8× 8) image blocks of from each YCbCr channel separately. Using a pre-determined quantization
table, a quantized DCT coefficient is obtained from each block. Next, the AC coefficients, except
0, are collected from quantized DCT coefficients. The collection of AC components is controlled by
a 128 bits shared secret key, which is used to generate a 512 bits binary stream by using SHA-512.
Then, a series of (3× 3) original matrices are formed to hide secret data. Finally, a predetermined
weighted matrix is employed to select the embedding position within a (3× 3) coefficient matrix of
a cover image through the sum of the entry-wise multiplication operation.

3 Preliminaries results

In this section, a systematic representation of orthogonal polynomials is given that are later used
for the domain mappings.
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3.1 Discrete orthogonal polynomials

The nth-order discrete orthogonal polynomials are those polynomials that satisfy the orthogonality
condition [38, 39]

N∑
x=0

Pm(x)Pn(x)wλ(x) = d2
n(λ)δm,n, λ = 1, . . . , 5, (1)

for the weight function wλ(·) and the squared norm d2
n(λ), with the Kronecker delta function δm,n,

N ∈ Z+ and 0 ≤ m,n ≤ N .
Specific values for the parameters used in (1), namely for N , wλ(·), d2

n(λ), λ = 1, . . . , 5, cor-

responding to the Krawtchouk Kp,N
n (x) with 0 < p < 1, Tchebichef tNn (x), Hahn Hα,β,N

n (x) with

α, β ≥ −1, Charlier Cαn (x) with α > 0 and Meixner Mβ,γ
n (x) with β > 0, 0 < γ < 1, polynomials,

respectively, are given in the Tables 1–2.

Table 1. Characterization of the Krawtchouk, Tchebichef and Hahn polynomials.

Pn(x) Kp,N
n (x) (λ = 1) tNn (x) (λ = 2) Hα,β,N

n (x) (λ = 3)

N N N − 1 N − 1

wλ(x)
(
N
x

)
px(1− p)N−x 1

(α+1)x(β+1)N−x
(N−x)!x!

d2
n(λ) (−1)n n!

(−N)n

(
1−p
p

)n
(2n)!

(
N+n
2n+1

) (−1)nn!(β+1)n(α+β+n+1)N+1

(−N)n(2n+α+β+1)N !(α+1)n

αNn (Np− 2np+ n− x)
√

(1−p)(n+1)
p(N−n) 1 1

βNn p(n−N) 2x−N+1
n

√
4n2−1
N2−n2 An(x)

√
d2n−1(3)

d2n(3)

γNn
n(1−p)2

p

√
(n+1)n
(N−n)2

n−1
n

√
2n+1
2n−3

√
N2−(n−1)2

N2−n2 −Bn(x)

√
d2n−2(3)

d2n(3)

K λ,N
n (x) Kp,N−1

n (x)
√

w1(x)
d2n(1)

tNn (x)√
d2n(2)

Hα,β,N
n (x)

√
w3(x)
d2n(3)

The computation of the discrete orthogonal moments by using Kp,N
n (x), tNn (x), Hα,β,N

n (x),

Cαn (x) and Mβ,γ
n (x) presents numerical fluctuations [10, 37, 63, 67]. Therefore a more stable version

of them should be used. A normalized and weighted version of the discrete polynomials can be
defined by K λ,N

n (x), see Tables 1–2.

Indeed, K λ,N
n (x), with λ = 1, . . . , 5, satisfy the following recurrence relation [24] for λ =

1, . . . , 5,
αNn K λ,N

n (x) = βNn K λ,N
n+2δλ,1−1(x) + γNn K λ,N

n+δλ,1−2(x), n ≥ 2− δλ,1,

where the coefficients αNn , βNn and γNn are given in Table 1. In addition, An(x) and Bn(x) (compare
fourth column of Table 1) are given by

An(x) = 1 +Bn(x)− x (2n+ α+ β + 1)(2n+ α+ β + 2)

(n+ α+ β + 1)(n+ α+ 1)(N − n)
,
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Table 2. Characterization of the Charlier and Meixner polynomials.

Pn(x) Cαn (x) (λ = 4) Mβ,γ
n (x) (λ = 5)

N N N

wλ(x) e−ααx

x!
γxΓ(β+x)
x!Γ(β)

d2
n(λ) n!

αn
n!(β)n

γn(1−γ)β

αNn 1 1

βNn
α−x+n−1

α

√
α
n −x−xγ−n+1+γβ+γ−γn

γ

√
γ

n(β+n−1)

γNn −
√

n−1
n − (n−1)(n−2+β)

n(n−1+β)

K λ,N
n (x) Cαn (x)

√
w4(x)
d2n(4)

Mβ,γ
n (x)

√
w5(x)
d2n(5)

and

Bn(x) =
n(n+ β)(N + n+ α+ β + 1)

(2n+ α+ β)(n+ α+ β + 1)

2n+ α+ β + 2

(n+ α+ 1)(N − n)
.

3.2 Hypergeometric orthogonal polynomials

The nth-order hypergeometric orthogonal polynomials (q-Krawtchouk Kn(q−x; p,N ; q) with 0 <
q < 1, p > 0, q-Hahn Qn(q−x;α, β,N ; q) with 0 < αq < 1, 0 < βq < 1, q-Meixner Mn(q−x; b, c; q)
with 0 < bq < 1, c > 0 and q-Charlier Cn(q−x; a; q) with with a > 0 [30]), are those polynomials
that satisfy the orthogonality condition

N∑
x=0

Pm(q−x)Pn(q−x)wλ(x) = d2
n(λ)δm,n, λ = 6, . . . , 9,

where N ∈ Z+, 0 ≤ m,n ≤ N . Here, the weight function wλ(·) and the squared norm d2
n(λ),

λ = 6, . . . , 9, corresponding to these polynomials, respectively, are given in the Tables 3–4.
On the other hand, these polynomials satisfy the following recurrence relation

(q−x − 1)Pn(q−x) = EnPn+1(q−x)− [En + Fn]Pn(q−x) + FnPn−1(q−x), n ≥ 1,

where the coefficients En and Fn are given in the Tables 3–4. This result is used to calculate
higher-order hypergeometric orthogonal polynomials.

To avoid numerical fluctuations, we rescale these polynomials in order to obtain a more stable
version. A normalized version can be defined by K λ,N

n (x), with λ = 6, . . . , 9, see Tables 3–4.
In continuation we define K 10,N

n (x) corresponding to the discrete cosine transform

K 10,N
n (x) = σ(n) cos

(
πn(2x+ 1)

2N

)
, σ(n) =

{√
1/N if n = 0,√
2/N otherwise.
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Table 3. Characterization of the q-Krawtchouk and q-Hahn polynomials.

Pn(q−x) Kn(q−x; p,N ; q) (λ = 6) Qn(q−x;α, β,N ; q) (λ = 7)

wλ(x) (−p)−x (q−N ;q)x
(q;q)x

(αq,q−N ;q)x
(q,β−1q−N ;q)x

(αβq)−x

d2
n(λ) (1+p)(q,−pqN+1;q)n(−pq;q)N (−pq−N )n

pN (1+pq2n)(−p,q−N ;q)n
qn

2−(N+1
2 ) (αβq2;q)N (q,αβqN+2,βq;q)n(1−αβq)(−αq)n

(βq;q)N (αq,αβq,q−N ;q)n(αq)N (1−αβq2n+1)
q(
n
2)−Nn

En
(1−qn−N )(1+pqn)

(1+pq2n)(1+pq2n+1)
(1−qn−N )(1−αqn+1)(1−αβqn+1)

(1−αβq2n+1)(1−αβq2n+2)

Fn −pq2n−N−1 (1+pqn+N )(1−qn)
(1+pq2n−1)(1+pq2n)

−αqn−N (1−qn)(1−αβqn+N+1)(1−βqn)
(1−αβq2n)(1−αβq2n+1)

K λ,N
n (x) Kn(q−x; p,N ; q)

√
w6(x)
d2n(6)

Qn(q−x;α, β,N ; q)
√

w7(x)
d2n(7)

Table 4. Characterization of the q-Charlier and q-Meixner polynomials.

Pn(q−x) Cn(q−x; a; q) (λ = 8) Mn(q−x; b, c; q) (λ = 9)

wλ(x) ax

(q;q)x
q(
x
2) (bq;q)x

(q,−bcq;q)x c
xq(

x
2)

d2
n(λ) q−n(−a; q)∞(−a−1q, q; q)n

(−c;q)∞
(−bcq;q)∞

(q,−c−1q;q)n
(bq;q)n

q−n

En aq−2n−1 c(1−bqn+1)
q2n+1

Fn
(1−qn)(a+qn)

q2n
(1−qn)(c+qn)

q2n

K λ,N
n (x) Cn(q−x; a; q)

√
w1(x)
d2n(1)

Mn(q−x; b, c; q)
√

w2(x)
d2n(2)
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3.3 Orthogonal moments

Let C denote the cover image and let (Bi,j) be a block of N ×N bytes of C, with i, j = 0, . . . , N −1.

Let (Bλ,ξm,n) be the corresponding block of N × N of the orthogonal moments of (m + n)-th order
(direct moment transform), with 1 ≤ λ, ξ ≤ 10 and m,n = 0, . . . , N − 1. The relationship between

Bλ,ξm,n and its inverse Bλ,ξ
i,j ≡ Bi,j (inverse moment transform) is given by [66]

Bλ,ξm,n =
∑

0≤i,j≤N−1

Kλ,ξ
m,n(i, j)Bi,j , (2)

Bλ,ξ
i,j =

∑
0≤m,n≤N−1

Bλ,ξm,nKλ,ξ
m,n(i, j), (3)

where Kλ,ξ
m,n(x, y) = K λ

m (x)K ξ
n (y) with 1 ≤ λ, ξ ≤ 10. Notice that, Bλ,λm,n with 1 ≤ λ ≤ 9 represents

the orthogonal moments of Krawtchouk (K), Tchebichef (T), Hahn (H), Charlier (C), Meixner
(M), q-Krawtchouk (qK), q-Hahn (qH), q-Charlier (qC) and q-Meixner (qM) respectively, and B10,10

m,n

represents the DCT. In addition, Bλ,ξm,n with λ 6= ξ represents the combinations of the previous cases
(separable moments), some of them studied in [11, 23, 49, 58, 72]. For example, B4,7

m,n represents
the Charlier-q-Hahn moments, which we denote it by (CqH).

The software implementation of (2)–(3) can be easier computed by matrix multiplications,

(Bλ,ξm,n) = A(Bλ,ξ
i,j )BT , (Bλ,ξ

i,j ) = AT (Bλ,ξm,n)B,

respectively, where A = (K λ
j (i))0≤i,j≤N−1 and B = (K ξ

j (i))0≤i,j≤N−1.

3.4 Generation of chaotic positions

The Beta function

β(x, p, q, ϕ1, ϕ2) =


(
x− ϕ1

ϕc − ϕ1

)p( ϕ2 − x
ϕ2 − ϕc

)q
if x ∈ [ϕ1, ϕ2] ,

0 otherwise,

where p, q, ϕ1, ϕ2 ∈ R with ϕ1 < ϕ2 and

ϕc =
pϕ2 + qϕ1

p+ q
,

is used in neural networks because of its high flexibility and its universal approximation charac-
teristics [69]. According to scientific literature, several authors [60, 61, 65] have proposed novel
steganographic algorithms based on chaotic maps, which are nonlinear systems suitable to design
secure embedding methods [48]. Indeed, these systems are characterized by a pseudo random be-
havior and an high sensitivity to initial conditions and control, unpredictability, ergodicity, etc
[36].

In this work we use the Beta chaotic map created by the authors of [69], which is mathematically
defined by

xn = rβ(xn−1, p, q, ϕ1, ϕ2), n ≥ 1,
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where p = b1 + c1a and q = b2 + c2a, being b1, c1, b2 and c2 adequately chosen constants. The
parameter r, which is multiplied with the chaotic map, has the role to control the amplitude of
the Beta map, and a denotes the bifurcation parameter [69]. Thus, the chaotic positions can be
generated by the Algorithm 2, and uses the following notations.

X card(A) the cardinality of the set A (number of elements of the set).

X The function Reduce returns the array without repeated elements.

X || concatenation.

X L \ τ the set difference of L and τ .

Algorithm 2 which calls and itself recursively and Algorithm 1.

Algorithm 1 β(x0, n, r, a, b1, c1, b2, c2, ϕ1, ϕ2)

Input: x0, n, r, a, b1, c1, b2, c2, ϕ1, ϕ2.
Output: {x1, . . . , xn}.
• p← b1 + c1a;
• q ← b2 + c2a;
for i = 1; i ≤ n do
x0 ← rβ(x0, p, q, ϕ1, ϕ2);
/ xi ← floor(mod(1014x0), n);

end for

Algorithm 2 Chaotic-Positions (x0, L, r, a, b1, c1, b2, c2, ϕ1, ϕ2)

Input: x0, L, r, a, b1, c1, b2, c2, ϕ1, ϕ2.
Output: ρ = {ρ1, . . . , ρcard(L)}.
• τ ← Reduce(β(x0, card(L), r, a, b1, c1, b2, c2, ϕ1, ϕ2));
if card(τ) == 1 then
ρ← L;

else if card(τ) == card(L) then
ρ← τ ;

else
ρ← τ || Chaotic-Positions (x0, L \ τ, r, a, b1, c1, b2, c2, ϕ1, ϕ2);

end if

3.5 Key expansion of 2560 bits

There are two types of cryptography techniques, namely private key and public key cryptography.
Public key cryptography is an asymmetric cryptography technique which encrypts the message
with a private key and decrypts it with a public key. Private key cryptography is a symmetric
cryptography technique which encrypts and decrypts a message with the same key. Advanced
Encryption Standard (AES) [3] is a standard for the encryption of electronic data, which was
accepted as FIPS standard by the National Institute of Standards and Technology (NIST) in
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November 2001. AES is a symmetric key block cipher, which means that the same key is used both
by sender and receiver. It can encrypt and decrypt data blocks of 128 bits, using key size of 128, 192,
and 256 bits. Moreover, most of the operations in the AES algorithm take place on bytes of data,
which are represented in the field GF(28), called the Galois Field. AES can be implemented on
various platforms especially on small devices. It is carefully tested for many security applications.

Algorithm 3 Key Expansion

Input: κ = κ0 ∪ κ1 ∪ · · · ∪ κ15.
Output: P.
for p = 1; p < 3 do

for i = 0; i < 4 do
ωi ← (κ4i, κ4i+1, κ4i+2, κ4i+3);

end for
for i = 4; i < 44 do
τ ← ωi−1;
if i mod 4 == 0 then
τ ← Subbytes(RotWord(τ))⊕ Rcon(i/4);

end if
ωi ← ωi−4 ⊕ τ ;

end for
ω ← ω4 ∪ ω5 · · · ∪ ω43;
if p == 1 then
ϑ← ω;

else
ϑ← ϑ ∪ ω;

end if
κ← ω40 ∪ ω41 ∪ ω42 ∪ ω43;

end for
/ P ← byte2bin(ϑ);

In this paper we use the same steps as those developed for the AES to generate the key expansion
of 2560 bits. From an initial key κ = κ0 ∪ κ1 ∪ · · · ∪ κ15 of 16 bytes (128 bits), a binary sequence of
2560 bits is created as described in Algorithm 3. The following list defines the used abbreviations.

• RotWord(·) takes a four-byte word and performs a cyclic permutation, i.e, RotWord((a, b, c, d)) =
(b, c, d, a).

• Subbytes(·) takes a four-byte input word and applies an S-box to each of the four bytes to
produce an output word.

• Rcon(·) is a constant defined as:

X Rcon(j) = (R(j), 0, 0, 0),

X Each R(j) is the element of Galois field GF(28) corresponding to the value x(j−1) module
x8 + x4 + x3 + x+ 1.

• ⊕ is the exclusive OR operation, defined by:
0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1.
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• byte2bin(·) converts a byte sequence to a binary sequence.

4 Proposed Algorithm

In this Section we propose a new steganographic algorithm. It is assumed that L is the length
of the binary sequence of the secrete message M = {m` ∈ {0, 1}: 1 ≤ ` ≤ L}, where m` is a bit
containing 0 or 1.

4.1 Permutation rule

We denote by P(ν,$) and P−1(ν,$) the following functions

Algorithm 4 P(ν,$)

Input: ν, $.
Output: υ.
• j = 0;
for i = 1; i ≤ length($) do

if $(i) == 1 then
j = j + 1;
υ(j)← ν(i);

end if
end for
if j 6= length($) then

for i = 1; i ≤ length($) do
if $(i) == 0 then
j = j + 1;
υ(j)← ν(i);

end if
end for

end if

Here, we denote by |X| the number of bits of an array of bits X which are equal to 1.

4.2 Details on quantification procedure and zig-zag scan

In the quantification procedure, the blocks of 8× 8 bytes are quantified by

Θλ,ξu,v = round

(
Bλ,ξu,v
Qµu,v

)
, 0 ≤ u, v ≤ 7. (4)
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Algorithm 5 P−1(ν,$)

Input: ν, $.
Output: υ.
• j = 0;
• ψ ← ν1, . . . , ν|$|;
for i = 1; i ≤ length($) do

if $(i) == 1 then
j = j + 1;
υ(i)← ψ(j);

end if
end for
• j = 0;
• ψ ← ν|$|+1, . . . , νlength($);
for i = 1; i ≤ length($) do

if $(i) == 0 then
j = j + 1;
υ(i)← ψ(j);

end if
end for

where

Qµ = χ(µ)



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


, (5)

with χ(µ) =
100− µ

50
, with 50 < µ < 100, see [53].

The transformation of the matrix
(
Θλ,ξu,v

)
, with 0 ≤ u, v ≤ 7, to a vector νλ,ξ = {νλ,ξi : 1 ≤ i ≤

64} of length 64 is done by the zigzag order scan, see Figure 1, which aligns frequency coefficients
in ascending order starting from frequency zero (DC coefficient) to high frequency components
(AC coefficients), see [72]. Indeed, the AC coefficients consist of three parts, those that occur at
low, at middle and at high frequency, respectively, [53]. The non-zero AC coefficients occur at
low and middle frequency, and perturbations to them do not affect the visual quality, whereas the
zero AC coefficients occur usually at middle and high frequency, so modifications to them break
the structure of continuous zeros and abrupt non-zero values give a hint of the existence of secret
bits [68].

4.3 Embedding Algorithm

The binary secret message M is inserted into the cover image by the embedding procedure described
in Algorithm 6.
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Figure 1. Zigzag order scan

Input: Secret message M, cover image C, quality factor µ, private key of 128 bits κ and the initial
conditions x0, a, b1, c1, b2, c2, ϕ1, ϕ2, which can also be adopted as a private key jointly with the
control parameter r.
Output: Stego image S.
Procedure: In the proposed algorithm, it is assumed that the emitter as well as the receiver hold
the same system of private keys. Indeed, the emitter generates the stego image from the private
key of 128 bits and sends it trough an insecure channel to the receiver, which can extract the secret
message from the aforementioned key.

The emitter generates the stego image S according to Algorithm 6. Firstly, the proposed
algorithm splits the cover image C =

⋃
k∈KB

k up into card(K) non-overlapping blocks Bk of
64 × 64 bytes. Then, taking the chaotic positions (see Algorithm 2) into account, it divides each
one of the blocks Bρk up into non-overlapping blocks of 8×8 bytes, which are permuted by using the
Hilbert order scan, see Figure 2. Next, it applies the direct moment transform (2) to each resultant
block of 8 × 8 bytes. Then, each one of these blocks is quantified according to the quantification
matrix (5). Next, the zigzag scan is applied to the matrix of the quantized coefficients, see Figure
1, with the purpose to align frequency coefficients in ascending order. Afterwards, the first eight
coefficients of high frequency are permuted by using the binary sequence P and the permutation
rule P(·, ·). Thus, the secrete bits are embedded in the permuted coefficients. After the insertion
of the secret message the back transformation is realized in reverse order: the permuted coefficients
with the embedded secrete bits are reorganized by using the binary sequence P and the permutation
rule P−1(·, ·), then by the zigzag scan the matrix of order 8 is reconstructed, which afterwards is
unquantified multiplying by the quantification matrix (5). Finally, the inverse moment transform
(3) is applied in order to reconstruct the image, obtaining the expected stego image S.
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Figure 2. Hilbert order scan

For abbreviation we denote by

X ∆(η) the function that reorganizes the vector η of length 64 to a matrix of order 8, taking
into account the zigzag scan order 1.

X R(x, β) to the function that replaces the Least Significant Bit (LSB) of x ∈ N by β ∈ {0, 1},
see [53].
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Algorithm 6 Embedding Algorithm

Input: M, C, µ, x0, a, b1, c1, b2, c2, ϕ1, ϕ2, r;
Output: S;
. Divide the cover image C =

⋃
k∈KB

k into card(K) non-overlapping blocks Bk of 64× 64 bytes;
. {ρ1, . . . , ρcard(K)} ← Chaotic-Positions (x0, {1, . . . , card(K)} , r, a, b1, c1, b2, c2, ϕ1, ϕ2);

. {h1, . . . , h64} ← Hilbert order scan, see Figure 2;

. ς = ` = 0;
for k ∈ K do
. Divide Bρk =

⋃
j∈{1,...,64}B

ρk,j into 64 non-overlapping blocks Bρk,j of 8× 8 bytes;
for j ∈ {1, . . . , 64} do
. Bλ,ξ,j ← Bρk,hj : Calculate the direct moment transform coefficients (Bλ,ξ,j) for (Bρk,hj )
according to (2);
. Θλ,ξ,j ← Bλ,ξ,j : Quantify Bλ,ξ,j according to (4);
. νj ← Θλ,ξ,j : Apply the zigzag scan, see Figure 1;
. ς ← mod(ς, 2560) + 1;
. aj ←P({νj2, . . . , ν

j
9}, {P8(ς−1)+1, . . . ,P8ς});

for q ∈ {1, . . . , 8} do
if ` < L then
. `← `+ 1;
if ajq < 0 then
. ajq ← −R(|ajq|,m`);

else
. ajq ←R(ajq,m`);

end if
end if

end for
. {νj2, . . . , ν

j
9} ←P−1(ajk, {P8(ς−1)+1, . . . ,P8ς});

. Θ
λ,ξ,j ← ∆(νj);

. Bλ,ξ,j ← Θ
λ,ξ,j

: Multiply the previous matrix by the quantification matrix (5);

. B
ρk,hj ← Bλ,ξ,j : Apply the inverse moment transform according to (3);

end for
. B

ρk ←
⋃
j B

ρk,j ;
end for
/ S ←

⋃
k B

k
;

4.4 Extracting Algorithm

Input: Stego image S, quality factor µ, private key of 128 bits κ and the initial conditions
x0, a, b1, c1, b2, c2, ϕ1, ϕ2, which can also be adopted as a private key jointly with the parameter
control r.
Output: Secret message M.
Procedure: The receiver obtains the secret bits from Algorithm 7.

For abbreviation we denote the function that extracts LSB of x ∈ N by R−1(x), see [53].
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Algorithm 7 Extracting Algorithm

Input: S,L, µ, x0, a, b1, c1, b2, c2, ϕ1, ϕ2, r;
Output: M;
. Divide the stego image S =

⋃
k∈KB

k into card(K) non-overlapping blocks Bk of 64× 64 bytes;
. {ρ1, . . . , ρcard(K)} ← Chaotic-Positions (x0, {1, . . . , card(K)} , r, a, b1, c1, b2, c2, ϕ1, ϕ2);

. {h1, . . . , h64} ← Hilbert order scan, see Figure 2;

. ς = ` = 0;
for k ∈ K do
. Divide Bρk =

⋃
j∈{1,...,64}B

ρk,j into 64 non-overlapping blocks Bρk,j of 8× 8 bytes;
for j ∈ {1, . . . , 64} do
. Bλ,ξ,j ← Bρk,hj : Calculate the direct moment transform coefficients (Bλ,ξ,j) for (Bρk,hj )
according to (2);
. Θλ,ξ,j ← Bλ,ξ,j : Quantify Bλ,ξ,j according to (4);
. νj ← Θλ,ξ,j : Apply the zigzag scan, see Figure 1;
. ς ← mod(ς, 2560) + 1;
. aj ←P({νj2, . . . , ν

j
9}, {P8(ς−1)+1, . . . ,P8ς});

for q ∈ {1, . . . , 8} do
if ` < L then
. `← `+ 1;
/ m` ←R−1(|ajq|);

end if
end for

end for
end for

5 Results and discussion

In this section the experimental results of the proposed algorithm are presented. The proposed
algorithm is implemented in Python 3.7 for both Windows and Linux operating systems. The
source codes will be made accessible in the complementary material. For the experimental analysis
several color images with size (512×512) were collected from four different datasets: image dataset
of 1500 RGB-BMP images, transformed from Caltech birds’ dataset in JPEGC format [5], image
dataset of 1500 RGB-BMP images, transformed from NRC dataset in TIFF format [5], image
database [2] available in the University of Southern California and image dataset available at [1].
For the experimental results several different randomly generated keys were used. We have tested
our proposed algorithm by inserting a message of 98304 bits.

In addition, a comparison of the proposed method with respect to the methods proposed by
Habib et al. (Hab. M.) [22], Sahar (Sah. M.) [17], Saidi et al. (Said. M.) [48] and Chowdhuri et al.
(Chow. M.) [15] is included in this section. The performance of the proposed approach has been
studied using different kinds of statistical measures.

5.1 Imperceptibility test

The distortion level of the stego image with respect to its cover image in a steganographic system
is measured in terms of Peak Signal to Noise Ratio (PSNR) [34], which is calculated using the
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Mean Square Error (MSE). In addition, this measure is used to evaluate the invisibility of a secret
message [6] as well as the imperceptibility [8] and the visual quality [20, 40, 59] of the stego image
compared to the cover image, with decibel (db) as measurement unit. Higher PSNR indicates that
the reconstruction of the image is of higher quality, [16]. The PSNR is given by [53]

PSNR = 10 log10

(
Ξ2

MSE

)
,

where
MSE = (mnρ)−1

∑
γ∈Γ

‖C (γ)− S (γ)‖2 ,

and C and S are the cover image and the stego image respectively, of size m × n × ρ, with C,S ∈
{0, 1, . . . ,Ξ}, and Ξ = max(max(C),max(S)).

The index set γ = (`1, `2, `3) sums over the set

Γ = {1, . . . ,m} × {1, . . . , n} × {1, . . . , ρ},

where ρ = 1 for gray scale images and ρ = 3 for color images of 24 bits.

Figure 3. PSNR values corresponding to proposed method for the four datasets

In the first experiment, we use the PSNR as a measure to evaluate the level of imperceptibility
and distortion as well as to measure the different between cover and stego images. The experi-
mental results showed that the proposed algorithm produced good quality stego images with good
PSNR values, see Figure 3, which is in correspondence with the heuristic values of PSNR [46, 53].
Moreover, this experiment showed that for the four datasets, the results of imperceptibility corre-
sponding to the proposed method for (T, TDCT, MT, MDCT, qCT, qCDCT, qMT, qMDCT and
DCTT) were best to the obtained by proposed method for DCT transform, see Figure 3.

In the boxplots drawn in Figure 4, the horizontal axis represents the different methods that
are compared, and the vertical axis represents the PSNR values. The upper and lower limit of
the rectangle are the upper and lower quartiles (Q1 and Q3) of test results separately, and the
difference between the upper and lower quartile is the quartile difference IQR. The red line in the
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rectangle is the median. The two black horizontal lines at Q3 + 1.5IQR and Q1 − 1.5IQR are the
cut-off points for abnormal values, known as the internal limit. The data outside the internal limits
is outliers and is represented by the red ‘+’. The Figure 4 shows that the boxplots corresponding
to proposed method are comparatively short, which suggests that overall PSNR values have a high
level of agreement with each other.

Moreover, for the four datasets the median of PSNR values corresponding to proposed method
is greater in value than the median of PSNR values corresponding to Habib et al., Sahar, Saidi et
al. and Chowdhuri et al. methods. In addition, of the four datasets is deduced that the 100% of
PSNR values corresponding to proposed method is upper to PSNR values corresponding to Habib
et al., Sahar and Chowdhuri et al. methods, while that the 75% of PSNR values corresponding to
several orthogonal moments is upper to 75% of PSNR values corresponding to Saidi et al. method.
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Figure 4. PSNR values. The first row contains the PSNR values corresponding to the first and second
dataset while the second to third and fourth

5.2 Quality test

Usually the image quality based on the Human Visual System (HVS) is measured by the Universal
Image Quality Index (UIQI), which was proposed by Wang and Bovik in [62]. This measure is
universal in the sense that it does not take the viewing conditions or the individual observer into
account [12]. Moreover, it does not use traditional error summation methods [71]. The dynamic
range of UIQI is between -1 and 1. For identical images its value will be 1.

UIQI =
4σCS

σ2
C + σ2

S

C S
C2

+ S2 ,
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where
C = (mnρ)−1

∑
γ∈Γ

C (γ) ,

S = (mnρ)−1
∑
γ∈Γ

S (γ) ,

σ2
C = (mnρ− 1)−1

∑
γ∈Γ

(
C (γ)− C

)2
,

σ2
S = (mnρ− 1)−1

∑
γ∈Γ

(
S (γ)− S

)2
,

σCS = (mnρ− 1)−1
∑
γ∈Γ

[(
C (γ)− C

) (
S (γ)− S

)]
.

The second experiment shows that there are no significant differences between the cover and the
stego images, since the UIQI values are close to unity. Additionally, in almost all the cases, the
stego images obtained by the proposed method have major visual quality in comparison to the
methods proposed by the other authors, see Figure 5.
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Figure 5. UIQI values. The first row contains the UIQI values corresponding to the first and second dataset
while the second to third and fourth

5.3 Similarity test

Image fidelity is a measure that shows a consistent relationship with the quality perceived by the
human visual perception. Moreover, measure it is a metric measure the similarity between the
cover image C and the stego image S after insertion of the message [53]. It is defined by [29, 51, 53]

IF = 1−
∑
γ∈Γ

(C (γ)− S (γ))2 /
∑
γ∈Γ

C (γ)2 .

If the stego image is a close approximate of the cover image, then the value of IF would be close
to unity.
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In the third experiment, the values of IF were found for the four Datasets. It can be observed
that the IF values tend to one, see Figure 6, which shows that is a high similarity between the
cover image and the stego image after insertion of the secrete bits.

Figure 6. IF values. The first row contains the IF values corresponding to the first and second dataset
while the second to third and fourth

5.4 Security test

The security of a steganographic system is defined in terms of the relative entropy

RE (PC ||PS) =
∑

PC

∣∣∣∣log
PC
PS

∣∣∣∣ ,
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where PC and PS represent the distribution of cover and stego image, respectively. This statistical
measure was proposed by Cachin in [13, 14]. Moreover, a steganographic system is said to be

X ε-secure if RE (PC ||PS) ≤ ε,

X perfectly secure if RE (PC ||PS) = 0.

Summing up, for the RE (PC ||PS), the closer the value is to 0, the higher the level of security.
In the forth experiment we observe that the values of the relative entropy are close to zero,

which affirms that the steganographic system obtained from the proposed algorithm is sufficiently
secure, see Figures 7–8. Moreover, for the four datasets, the results of security corresponding to the
proposed method for several orthogonal moments were best to the obtained by proposed method
for DCT transform, see Figure 7. And on the other hand, for the first dataset, the RE values
obtained by the proposed method (TH, TM, TqC, TqM, CT, CDCT, MT, MDCT, qCT, qCDCT,
qMT, qMDCT, DCTC, DCTM, DCTqC, DCTqM) are smaller in comparison to the obtained by
Habib et al., Sahar, Saidi et al. and Chowdhuri et al., see Figure 8. Similar results are obtained
for the other databases.

Figure 7. RE values corresponding to proposed method for the four datasets
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Figure 8. RE values. The first row contains the RE values corresponding to the first and second dataset
while the second to third and fourth

5.4.1 Embedding capacity

The performance of steganographic algorithms can be measured by two main criteria, embedding
capacity and detectability. Thus novel steganographic algorithms are expected to increase the
image capacity and the encryption strength of the message. The image capacity can be increased
by adaptive strategies which decide where best to insert the message [53].

In steganography the embedding capacity is defined as the maximum number of bits that can be
embedded in a given cover image. However, the steganographic capacity is the maximum number
of bits that can be embedded in a given cover image with a negligible probability of detection by
an adversary. Therefore, the embedding capacity is larger than the steganographic capacity [47].
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In the fifth experiment we have tested embedding capacity through the PSNR values and the
RE values. Here, we conclude that, the proposed approach can achieve high embedding capacity
in comparison with the methods proposed by Habib et al., Sahar, Saidi et al. and Chowdhuri et
al., keeping a high level of imperceptibility and security, see Figure 9.

Figure 9. Embedding capacity

Conclusions

In this contribution, we propose a new steganographic algorithm which embeds a secrete message
in the first eight AC coefficients. Here these coefficients are determined from some orthogonal
polynomials and their combinations. Moreover, we use the Beta chaotic map to determine the order
of the blocks where the secret bits will be inserted and we use a 128-bit private key to generate a
key expansion of 2560 bits, with the propose to permute the first eight AC coefficients before the
insertion. According to the analysis of PSNR, of UIQI values and of IF, it is demonstrated that in
the stego image there are no detectable anomalies to simple sight with respect to the cover image.
Also, the obtained values for the relative entropy show that the steganographic system obtained
by the proposed algorithm is sufficiently secure. In addition, the experimental results evidenced
that the orthogonal moments MT, MDCT, qCT, qCDCT, qMT, qMDCT supply a higher level of
imperceptibility keeping up an acceptable degree of security at the same time.
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