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Distinguishing Natural and Computer-Generated
Images using Multi-Colorspace fused EfficientNet

Manjary P Gangan, Anoop K, and Lajish V L

Abstract—The problem of distinguishing natural images from
photo-realistic computer-generated ones either addresses natural
images versus computer graphics or natural images versus GAN
images, at a time. But in a real-world image forensic scenario, it
is highly essential to consider all categories of image generation,
since in most cases image generation is unknown. We, for
the first time, to our best knowledge, approach the problem
of distinguishing natural images from photo-realistic computer-
generated images as a three-class classification task classifying
natural, computer graphics, and GAN images. For the task,
we propose a Multi-Colorspace fused EfficientNet model by
parallelly fusing three EfficientNet networks that follow transfer
learning methodology where each network operates in different
colorspaces, RGB, LCH, and HSV, chosen after analyzing the
efficacy of various colorspace transformations in this image
forensics problem. Our model outperforms the baselines in
terms of accuracy, robustness towards post-processing, and gen-
eralizability towards other datasets. We conduct psychophysics
experiments to understand how accurately humans can distin-
guish natural, computer graphics, and GAN images where we
could observe that humans find difficulty in classifying these
images, particularly the computer-generated images, indicating
the necessity of computational algorithms for the task. We also
analyze the behavior of our model through visual explanations to
understand salient regions that contribute to the model’s decision
making and compare with manual explanations provided by
human participants in the form of region markings, where we
could observe similarities in both the explanations indicating the
powerful nature of our model to take the decisions meaningfully.

Index Terms—Digital Image Forensics, Computer-generated
images, GAN images, EfficientNet, Grad-CAM visualization.

I. INTRODUCTION

THERE is an exponential growth in the number of digital
images being produced and circulated through different

media sources day by day. This includes natural images of the
real-world scenes taken by a camera and computer-generated
images. The computer-generated images include images that
are generated by different graphics and rendering software and
also those generated using the latest deep learning algorithms
called Generative Adversarial Networks (GAN). The process
of computer generation of images tends to be such realistic
nowadays that it is impossible to differentiate natural images
from computer-generated images. Figure 1 shows some sample
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Fig. 1. A sample of GAN generated (left image), Computer graphics
generated (middle image) and natural (right image) images

images where, we can observe the extend of photorealism at-
tained in GAN generated (left image1) and computer graphics
generated (middle image2) images, making it hard to classify
them as computer-generated images and for the natural image
(right image, from the Computer Graphics versus Photographs
dataset [1]) at first glance, we might have an impression that
it is a computer graphics generated image. Hence, images that
reach us always have a question of authenticity, that is, whether
the image is a projection of a real-world event taken by a cam-
era or is it computer-generated content. Even though computer-
generated images are mostly seen produced for creative art,
entertainment, advertisement, joke, or satirical purposes, they
have high potential to easily propagate through social media
causing misinformation particularly, when presented with fake
stories or fake news [2]. They also have much darker sides
like the earlier incidents of claiming pornographic images
of children as computer-generated graphics images to escape
from legal actions3, to the recent incidents of creating nude
photographs of people from their original photographs through
GAN algorithms4. The deficiencies in human perception to
distinguish natural and computer-generated images without
the assistance of any additional tools [3] highly demands and
points out the necessity of computational algorithms in digital
image forensics to investigate images since the authenticity
of an image legally depends on whether it is a natural image
or computer-generated. Distinguishing natural from computer-
generated images has thus become one of the fundamental and
most actively researched problems in digital image forensics.

The previous works distinguishing natural images from
photo-realistic computer-generated ones either addresses the
natural images versus computer graphics problem or the
natural images versus GAN images problem, at a time. For

1https://github.com/NVlabs/stylegan2
2https://cgsociety.org/c/featured/1f9s/the-forever
3www.sciencedaily.com/releases/2016/02/160218144928.htm
4www.technologyreview.com/2020/10/20/1010789/ai-deepfake-bot-undres

ses-women-and-underage-girls/
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the natural image versus computer graphics problem, when
an image is not computer graphics it shall fall to the natural
image category, but it may sometimes actually belong to the
GAN category of computer-generated images which is not
considered for the task; similar issue may also occur for the
natural images versus GAN images problem. Therefore, in a
real-world scenario to provide a complete forensic solution to
distinguish natural images from computer-generated images,
since the image generation is unknown, it is highly essential to
consider all categories of images generation, including natural
images taken by a camera, computer graphics, and GAN
images. We, to the best of our knowledge, for the first time
attempt to address this gap of a generalized algorithm in digital
image forensics to distinguish natural images from photo-
realistic computer-generated images including both computer
graphics and GAN images as a three-class classification task
by proposing a Multi-Colorspace fused EfficientNet model.
The major contributions of our work include:-
• We introduce a deep learning based image forensic solution

to identify natural images and photo-realistic computer-
generated images including both the computer graphics and
GAN images

• We propose a Multi-Colorspace fused EfficientNet model
build by parallelly fusing three EfficientNet networks that
follow transfer learning methodology where each network
operates in different colorspaces, RGB, LCH, and HSV,
chosen after analyzing the efficacy of colorspace transfor-
mations in this forensic problem

• Our Multi-Colorspace fused EfficientNet model obtains
good forensic performance, outperforming the baselines in
terms of accuracy, robustness towards post-processing, and
generalizability towards other datasets

• We also conduct psychophysics experiments to assess the
capability of humans to classify natural images and photo-
realistic computer-generated images including computer
graphics and GAN images

• We analyze the behavior of our model through visual ex-
planations to understand the salient regions that contribute
to model’s decision making and compare with manual
explanations from the psychophysics experiments provided
by the human participants in the form of region markings

The rest of this paper is organized as follows. Section II
introduces some of the relevant related works and demarcates
our work from the related works. Section III discusses our
methodology with the motivation and detailed description of
our proposed work. Section IV presents the empirical study
with details of dataset, experimental settings, results and
discussion including the statistical significance, robustness,
generalizability, feature visualization and psychophysics ex-
periments, and model behavior analysis using activation maps.
Finally, section V draws the conclusions.

II. RELATED WORK

Since the previous image forensic works distinguishing nat-
ural images from computer-generated images either addresses
only the natural images versus computer graphics or the
natural images versus GAN images problem, in this section
we present a brief review of these two categories separately.

A. Natural Images versus Computer Graphics Images

The works distinguishing natural images and computer
graphics have been reported since 1990s, which are mostly
based on color features [4], [5]. The differences in generation
of natural images and computer graphics, camera or device
properties, etc., are considered for the traditional feature
based classification works [6]–[8]. Many other feature based
works using color, texture, and shape based statistical features
followed this area of image forensics study [9]–[11]. Leverag-
ing features from various image transformation domains like
wavelet [12], contourlet [13], quaternion wavelet [14], etc., is
another approach that can be seen in the traditional feature
based works. Later, with revolutionary progress in the area
of neural networks, contributions can be seen using Convolu-
tional Neural Networks (CNN) which avoids the burdensome
process of finding out discriminative features and exhibit
comparatively higher performance than the traditional feature
based classification approaches [15], [16]. A few deep learning
based works that employ the transfer learning methodology
by using pre-trained off-the-shelf networks [17]–[19] can also
be seen in the literature. Apart from considering the full-
sized images, some works crop images into fixed size patches
and derive results of the full-sized images from these image
patches [20]–[22]. Besides the aforesaid objective studies there
are also a very few number of subjective studies that involve
humans to distinguish natural images and graphics images
using certain psychophysics experiments [23]–[25].

B. Natural Images versus GAN Images

The works in this category are comparatively much recent
ensuing the advent of new and powerful class of deep learning
algorithms called Generative Adversarial Networks. Unlike
previous problem, very few works employ the traditional hand-
crafted feature based classification [26], [27], and majority
of the works in literature approach this problem using deep
learning algorithms [28]–[30]. Besides the works targeting to
detect images generated from a single GAN algorithm [26],
[31], [32], there are also works for the attribution of known
GANs which are used to generate the fake images [33]–[35].
Many works in this problem are seen to specifically work
over the GAN generated human faces rather than considering
heterogeneous image contents [36]–[38].

C. Our work in context

In the literature, works either address only the natural
images versus computer graphics problem or natural images
versus GAN images problem, at a time. However, such a closed
set will not suit the real-world scenario that requires a single
forensic system to authenticate an image by investigating
multiple types of image generations, where in most cases the
image generation is unknown. Therefore, unlike the previous
image forensic works that had always been dealt with as a
two-class classification problem, we for the first time, to the
best of our knowledge, attempt the image forensic task of
distinguishing natural images from computer-generated im-
ages as a three-class classification problem classifying natural
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images, computer graphics, and GAN images. We perform a
deep neural network based classification with transfer learning
methodology that avoids the burdensome process of feature
extraction and feature selection as in the case of conventional
feature extraction based approaches.

Different from the transfer learning based work to distin-
guish natural images from computer graphics proposed by
Rezende et al. [17] using the ResNet architecture with 25.6M
parameters, our choice of network, the EfficientNet, is 4.9
times smaller, with just 5.3M parameters. When compared to
the deep learning based works proposed by Cui et al. [15],
and Quan et al. [21], that utilizes an earlier Columbia dataset
[39] with considerably less amount of images for a deep
learning task (800 images per class), the choice of our dataset
is more challenging in the real world forensic scenario by
maintaining heterogeneity in each of the three classes so that
to build a generalized robust model that is unbiassed towards
any particular image category, origin or generating algorithm,
without compromising the number of images in dataset (4000
images per class). Also, we avoid patch based implementation
in our deep learning approach because, firstly such patch
based approaches are computationally very expensive than
taking full-sized images for checking whether an image is
fully computer-generated or is it taken by a camera (e.g., [21]
extracts 200 patches from a single image), and moreover, such
patch based implementations might be more suitable for image
forgery problems to detect the manipulated image regions.

Apart from [40], [41] that choose certain colorspace trans-
formations in their work to distinguish natural images from
computer-generated images, we examine in detail which col-
orspaces provide high classification accuracies for the task of
distinguishing natural images from computer-generated images
including computer graphics and GAN images, and also the
chances of improvement in accuracy by fusing the networks
operating in different colorspaces. Among the various works
in literature to distinguish natural images from computer-
generated images, no much works are seen to discuss the
interpretability or behavior of model; a work in this regard
would be [21], that tries to understand what the model learns to
differentiate natural and computer graphics images. Whereas,
in our three-class classification work for natural, graphics
and GAN images, besides visualizing the explanations of
correct and wrong predictions for model behavior analysis,
we also compare the visual explanations of our model with
the human explanations labeled as region markings during
the psychophysics experiments, to look for any similarities
between the model and human explanations, and to understand
whether our model is predicting the decisions meaningfully.

III. METHODOLOGY

We formulate the image forensic task of distinguishing
natural images from computer-generated images as a three-
class classification task with the classes being Real, GAN, and
Graphics, where the class Real indicates natural images, and
the classes GAN and Graphics indicates computer-generated
images. Even though both GAN and Graphics images are
computer-generated, we maintain them as separate classes,

Fig. 2. The general machine learning frameworks for image forensic problem

since they follow entirely different process of image genera-
tions. Accordingly, we put up an amendment to the depiction
of general framework followed for the natural images versus
computer-generated images problem as outlined by Quan et al.
[21], by incorporating our three-class classification approach,
in figure 2. Framework A indicates conventional feature based
classification that finds a mapping y = clf (ftr(x)) between
the training data x and corresponding label y using a good
choice of feature set (ftr) and classifier (clf ) combination.
Whereas, framework B indicates deep neural network based
classification that avoids tiresome process of hand-crafted
feature extraction and feature selection. In this work, we follow
the framework B of deep neural network based classification,
where we aim to find the best-fit mapping function M :
y = M(x) for the training data (x1, y1), (x2, y2), ..., (xn, yn),
where xi indicates ith image in the training set and yi indicates
the corresponding image label, denoted as 0 for the class GAN,
1 for Graphics and 2 for Real. Deep neural networks also allow
the option of transfer learning where a network pre-trained
over very large datasets for some n-class classification task
can be utilized for another m-class classification task even with
less number of training data. Such a knowledge transfer from
the source network helps to obtain high accuracy in the target
network of different tasks. We incorporate transfer learning
methodology which helps to transfer information from an
object classification network trained on the huge ImageNet
[42] dataset with 1000 classes, to our three-class forensic task.

A. Motivation

Some state-of-the-art works for distinguishing natural im-
ages from computer-generated images discuss the future scope
of fusing deep learning models to create ensembled archi-
tectures that can improve classification accuracies [17], [21].
Our concept of network fusion for distinguishing natural
from computer-generated images is motivated from ColorNet
[43], where the authors’ demonstrate that colorspace trans-
formations can significantly effect classification accuracies
and observe that there is no hundred percentage correlation
between different colorspace transformed images.

Our choice of base network for network fusion was centered
on the motivation that it should have less number of parameters
so that to reduce network complexity but without compro-
mising on classification accuracy. This might make easier
the chances of network fusion by not much shooting up the
complexity of fused network. Hence, among the wide range
of deep neural network architectures we choose one of the
latest networks, EfficientNet [44], as the base network for our
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study that shows high performance in ImageNet recognition
challenge [42]. The classification based on transfer learning
methodology using a pre-trained EfficientNetB0 model helps
to reduce training complexity, by keeping the number of
trainable parameters of a single EfficientNetB0 network to a
very short number of only 3843.

B. Single Colorspace EfficientNet Network (SC-EffNet)

We perform classification based on transfer learning
methodology using a pre-trained EfficientNetB0 model by
removing its top dense layer with 1000 neurons and instead,
fitting a fully connected dense layer with 3 neurons and
softmax activation for our three-class classification task. All
other layers in the EfficientNetB0 network are kept frozen
while training and validating our task. The initial phase of
classification was performed on the dataset by considering
input images without any color conversion, i.e., in the RGB
colorspace itself (SC-EffNetRGB). EfficientNetB0 network can
intake input images within the data range 0-255 since data
normalization is included as a part of its architecture. Hence,
while implementing an EfficientNetB0 model for RGB images,
the input images are not rescaled to the range 0-1 as like the
normal procedure of multiplication with 1./255, which is most
commonly performed while implementing many off-the-shelf
deep neural network architectures.

In our image forensic task of classifying GAN, Graphics,
and Real images we were curious to know the colorspaces
that significantly effect classification accuracies. Hence, next
we perform classifications using the EfficientNetB0 model
over colorspace transformed images. The colorspaces chosen
for our set of experiments include HLS, HSV, LAB, LCH,
XYZ, YCbCr, YDbDr, YIQ, YPbPr, and YUV, which are the
most commonly known and used color spaces. Except HLS
and YDbDr all other colorspaces we have chosen are also
experimented in ColorNet [43], because of their easiness in
transformation from RGB. For compiling the model we use
categorical cross-entropy as the loss function, Adam optimizer
with learning rate 0.001, batch size of 256 and 100 epochs.

In case of colorspaces other than RGB, we perform an
additional rescaling procedure over the transformed images
as their intensities do not follow the range 0-255 for being
admitted to the EfficientNetB0 model. The rescaling procedure
we have followed in the proposed work is given in algorithm
1. We were curious whether rescaling colorspace transformed
images would in any case reduce the classification accuracies.
But we could find that the classification accuracies instead
improved on rescaling colorspace transformed images to the
range 0-255 for every colorspace transformation, particularly
for LAB and LCH colorspaces. Also, we were able to im-
plement classification in HLS colorspace only after rescaling.
The test accuracies of classification for RGB images, and for
the colorspace transformed images without rescaling and after
rescaling is shown in table I

Our three-class forensic task of distinguishing GAN, Graph-
ics, and Real images obtains a highest accuracy of 82.13
percentage when images are in the RGB colorspace itself, as
against ColorNet [43] performed over the object classification

Algorithm 1: Rescale image to the data range 0-255
Input: Colorspace transformed image Timg with color

channels [ch1, ch2, ch3]
Output: Rescaled image Rimg

1 Initialize Rimg to be empty
2 for i← 1 to 3 do
3 min(i) = min(Timg[chi])
4 max(i) = max(Timg[chi])

5 Rimg [chi] = round
(

Timg [chi]−min(i)

max(i)−min(i)
× 255

)
6 end
7 return Rimg

TABLE I
ACCURACY OF SC-EffNet FOR DIFFERENT COLORSPACES IN PERCENTAGE

(THE HIGHEST ACCURACY IS GIVEN IN BOLDFACE)

Colorspace Without Rescaling After Rescaling
RGB 82.13 -
HLS - 77.79
HSV 77.96 80.38
LAB 40.29 77.42
LCH 36.33 80.52
XYZ 80.00 80.26
YCbCr 74.66 75.75
YDbDr 75.13 75.58
YIQ 74.83 76.54
YPbPr 74.17 75.92
YUV 74.38 75.79

TABLE II
CLASS ACCURACY AND TOTAL ACCURACY OF SC-EffNet FOR DIFFERENT

COLORSPACES IN PERCENTAGE (THE HIGHEST TWO ACCURACIES IN EACH
CLASS AND TOTAL ACCURACY ARE GIVEN IN BOLDFACE)

Colorspace GAN Graphics Real Total Accuracy
RGB 88.75 79.88 77.75 82.13
HLS 90.13 70.75 72.50 77.79
HSV 93.88 75.63 71.63 80.38
LAB 88.13 70.38 73.75 77.42
LCH 92.87 74.88 73.82 80.52
XYZ 90.75 74.61 75.42 80.26
YCbCr 84.38 68.88 74.00 75.75
YDbDr 87.38 66.25 73.13 75.58
YIQ 86.38 69.88 73.37 76.54
YPbPr 84.13 70.88 72.75 75.92
YUV 81.00 71.00 75.38 75.79

task which obtains highest accuracy in the LAB colorspace.
Also, we observe that three other colorspaces HSV, LCH,
and XYZ have their accuracies near to RGB after rescaling,
unlike ColorNet where except LAB every other colorspace
have similar values of accuracies. A much more detailed view
of the classification results showing accuracies of each class
separately is shown in table II.

We can observe that the accuracy of each class varies
highly with the colorspaces. The accuracy of class GAN is
comparatively higher than the other two classes for all the
colorspaces. The highest accuracy for class GAN is observed
in HSV colorspace and for the classes Graphics and Real is
observed in RGB colorspace. LCH and XYZ are the other col-
orspaces that shows nearest higher accuracies for these classes.
Since the highest accuracies for each of the classes when
viewed individually are obtained in different colorspaces, there
is a scope of increasing the total accuracy of our task by
combining these colorspaces. We try to combine the SC-EffNet
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TABLE III
ACCURACY OF MC-EffNet FOR COLORSPACE NETWORK COMBINATIONS IN

PERCENTAGE (THE HIGHEST ACCURACY IS GIVEN IN BOLDFACE)

Colorspace network combination Accuracy
RGB + HSV 86.04
RGB + LCH 86.63
RGB + XYZ 82.63
RGB + LCH + HSV 87.96
RGB + LCH + HSV + XYZ 86.83

networks of the colorspaces which shows highest accuracy for
each class when treated individually and also the colorspaces
which shows highest overall accuracy, i.e., the combinations
of RGB, HSV, LCH, and XYZ, to form a Multi-Colorspace
fused EfficientNet.

C. Multi-Colorspace fused EfficientNet Network (MC-EffNet)

For combining the networks of colorspaces, each colorspace
except RGB is rescaled and passed through a separate Effi-
cientNetB0 model pre-trained over the ImageNet dataset. The
top dense layer of each EfficientNetB0 with 1000 neurons
is removed and all its layers are kept frozen for the train-
ing phase, similar to the SC-EffNet based classification. The
EfficientNetB0 networks without top dense layer now return
a feature vector of size 1280, for each colorspace network.
We construct a parallelly fused model where outputs of all
colorspace networks used for fusion are concatenated and
provided to a dense layer with three neurons suitable for our
classification task. The test accuracies of the fused models
formed from RGB, HSV, LCH, and XYZ colorspace networks
are shown in table III. Our fusion technique shows increase
in the overall accuracy, especially the combination of three
colorspace networks RGB, LCH and HSV that produces a high
accuracy of 87.96 percentage, an increase of 5.83 percentage
points from the SC-EffNetRGB model. But, the addition of
XYZ colorspace network again to this fused model is seen
to slightly degrade the accuracy. Hence, we adhere to the
three colorspaces RGB, LCH and HSV to build our Multi-
Colorspace fused EfficientNet model, MC-EffNet-1.

Since the image forensic computation models, apart from
providing high accuracies, should also show good amount
of robustness towards post-processed images, we tested MC-
EffNet-1 over JPEG compressed images. We observe that,
even though MC-EffNet-1 gives high classification accuracy
for original images without any post-processing, the model
accuracy decreases highly for JPEG compressed images, even
for a quality factor of 90 (shown in table IV). Interestingly,
the decrease in test accuracy for JPEG compressed images
is comparatively higher for class GAN than Graphics and
Real, when observed class wise. We also provide accuracies of
the base SC-EffNet networks over JPEG compressed images
in table IV. For SC-EffNetRGB, we can observe that with an
increase in compression (or decrease in quality factor), there
exists a decrease in classification accuracy, but the rate of
decrease is not as high as for MC-EffNet-1. But when we
check SC-EffNetLCH and SC-EffNetHSV, we can observe a very
quick decay in their accuracies for compressed images. This
helps to finalize that even though LCH and HSV colorspace

TABLE IV
MODEL ACCURACY OVER ORIGINAL IMAGES AND JPEG COMPRESSED

IMAGES IN PERCENTAGE FOR DIFFERENT QUALITY FACTORS (qf )

Model Original
images

JPEG compressed images
qf=90 qf=80 qf=70 qf=60 qf=50

MC-EffNet-1 87.96 74.79 68.20 64.75 63.37 62.16
SC-EffNetRGB 82.13 80.20 77.04 77.63 78.00 78.13
SC-EffNetLCH 80.79 62.96 59.29 56.00 54.17 54.46
SC-EffNetHSV 80.38 67.58 62.08 59.63 58.54 57.25

transformations can highly increase the classification accura-
cies of images without any post-processing, they do not behave
well with JPEG compressed images.

On further investigation we observe blocking artifacts in
the compressed images, particularly in the compressed GAN
images, which on colorspace transformations becomes very
much visible as blocks with uniform intensity values, replacing
original intensities and region or shape information in that
area of compressed images. This creates a difference in image
content between the same image moving through the RGB
pipeline and the LCH or HSV pipeline of MC-EffNet-1 for
the compressed images, which might be the major cause for
such degradation in model accuracy for compressed images.
This difference in image content between the compressed
images passed through the RGB pipeline and the LCH or HSV
pipeline can be seen increasing while quality factor decreases.

To maintain the advantage of high model accuracy provided
by LCH and HSV colorspace transformations and to eliminate
the negative effect of blocking artifacts when dealing with
compressed images, we attach an additional pre-processing
block to the LCH and HSV pipeline, that employs a laplacian
of gaussian filter over the images, and add the residuals
to corresponding images to avoid loss of information. The
advantage of passing an image through different filters before
computations are well explored in many fields of image foren-
sics [45]–[47]. Such pre-processing operations can very well
study hidden data representations to understand natural image
statistics or any deviations from these statistics. Inspired by
such image forensics works, our usage of laplacian of gaussian
filter to pre-process colorspace transformed images refines
MC-EffNet-1 model to a more robust MC-EffNet-2 model that
achieves improved robustness towards JPEG compressions.
Also, with the addition of laplacian of gaussian pre-processing
block in MC-EffNet-2, the overall test accuracy improves to
89.38 percentage, an increase of 1.42 percentage points from
MC-EffNet-1. The overall architecture of our Multi-Colorspace
fused EfficientNet model, MC-EffNet-2 is given in figure 3.

IV. EMPIRICAL STUDY

A. Dataset

In this study, we utilize a total of 12000 images, where
GAN, Graphics and Real classes contain 4000 images each.
For Graphics and Real classes, images are collected from
the Computer Graphics versus Photographs dataset [1], which
is a challenging dataset with diversity in image category,
origin, quality and content. The class Graphics of the dataset
include photorealistic images which are not easily manu-
ally predictable as computer graphics images and excludes
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Fig. 3. The overall architecture of our Multi-Colorspace fused EfficientNet model, MC-EffNet-2

graphical icons. Similarly, to incorporate heterogeneity and to
avoid bias in the class GAN, we collect images from four
different GAN algorithms, ProgressiveGAN [48], StyleGAN
[49], StyleGAN2 [50] and StyleGAN2-ADA [51], considering
their excellent performances to generate high quality realistic
images. The entire dataset maintains heterogeneity in every
class, with several different categories like outdoor and indoor
scenes, objects, animals, characters, landscapes, architectures,
etc. The entire dataset is split to the ratio 60:20:20 to form
the train, validation and test sets, where images belonging to
different categories are split proportionally across each set.

B. Experimental Settings

In our MC-EffNet-2 model, with the use of transfer learning
methodology, the concatenation of feature outputs from the
three colorspace pipelines (RGB, LCH and HSV) produces
a feature vector of length 3840, which is then provided to a
dense layer with 3 neurons and softmax activation making the
total trainable parameters of the model to be 11523. The model
is compiled with categorical cross-entropy as loss function,
Adam optimizer with learning rate 0.001, batch size of 256
and 100 epochs. We compare the performance of our MC-
EffNet-2 model with a set of baselines discussed below.

Baselines: Since our work is the first of its kind considering
the task of distinguishing natural images from photo-realistic
computer-generated images including, both computer graphics
and GAN images, as a three-class classification task, we
perform baseline comparison for our work by implementing
state-of-the-art works belonging to the categories, natural
images versus computer graphics, natural images versus GAN
images, and one another off-the-shelf deep neural network
architecture, as three-class classification tasks.
• Quan et al. [21] (natural images versus computer graph-

ics): A CNN based work that proposes a local-to-global
strategy for predicting the classification results of local
patches after which the global classification results of the
full-sized images is derived by majority voting. They com-
pare their work with another patch-based CNN approach
[20], and four other state-of-the-art feature based works [6],
[11], [52], [53], where their work obtains higher accuracies

and robustness. Hence we choose this work as a baseline
to compare our work, by replacing the final dense layer
of two neurons in their CNN model with three neurons to
suit our three-class classification task.

• Rezende et al. [17] (natural images versus computer graph-
ics): A work that uses ResNet-50 for classifying natural
images and computer-generated images. They perform a re-
sult comparison between their 7 deep learning experimental
settings and the 17 approaches implemented in [1]. Among
all the 24 results, their experimental setting of transfer
learning combined with a shallow classifier SVM with
RBF kernel obtains highest accuracy than the other deep
learning settings and feature based approaches. Hence, we
choose their high accuracy experimental setting as one of
the baselines for comparing our work by replacing the top
layer to suit our three-class classification task.

• Nataraj et al. [28] (natural images versus GAN images):
A CNN based work to detect GAN images by using
the co-occurrence matrix of the RGB channels. Their
work obtains higher accuracy when compared against three
state-of-the-art works, first based on steganalysis features
[46], [47], second, deep learning work extracting residual
features [45], and third, fine-tuning generic deep learning
architecture of XceptionNet [54] pre-trained on ImageNet.
Hence, we choose this work as a baseline to compare our
proposed work, by replacing their final sigmoid layer with
our dense layer of 3 neurons with sofmax activation.

• InceptionResNet [55] (Off-the-shelf deep neural network):
A model that shows high classification accuracy for Im-
ageNet classification task with almost 55.8M parameters.
We attempt transfer learning methodology on Inception-
ResNetV2 pre-trained over ImageNet dataset by freezing
all its layers during the training phase and replacing the
final prediction layer of 1000 neurons with three neurons.
Other hyperparameters include batch size 256, Adam op-
timizer with learning rate 0.01 and 100 epochs.

C. Results and Discussions
Our MC-EffNet-2 model achieves a test accuracy of 89.38

percentage, a gain of 1.42 percentage points when compared
to MC-EffNet-1, and a gain of 7.25 percentage points when
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Fig. 4. Confusion matrix of MC-EffNet-2

TABLE V
COMPARISON OF MODEL PERFORMANCE ACCURACIES IN PERCENTAGE

(THE HIGHEST ACCURACY IS GIVEN IN BOLDFACE)

Model GAN Graphics Real Total Accuracy
Quan et al. [21] 56.08 72.88 69.79 66.25
Rezende et al. [17] 59.40 52.83 57.40 56.54
Nataraj et al. [28] 76.00 48.25 57.13 60.46
InceptionResNet [55] 85.25 73.50 79.63 79.46
MC-EffNet-2 (Our model) 96.75 83.75 87.63 89.38

compared to SC-EffNetRGB that achieves highest accuracy
among single colorspace models. Figure 4 shows the confusion
matrix of test result for our MC-EffNet-2 model. Class GAN
obtains higher accuracy than the other two classes Graphics
and Real. For class GAN, MC-EffNet-2 obtains an accuracy of
96.75 percentage, i.e., a gain of 2.87 percentage points when
compared to SC-EffNetHSV that obtains the highest accuracy
of 93.88 percentage for class GAN among single colorspace
models. Similarly, class Graphics achieves an accuracy of
83.75 percentage, i.e., a gain of 3.87 percentage points when
compared to the highest accuracy of 79.88 percentage for class
Graphics obtained for SC-EffNetRGB among single colorspace
models. The class Real seems to be most advantaged of the
fusion technique which achieves 87.63 percentage accuracy,
a high gain of 9.88 percentage points when compared to the
highest accuracy of 77.75 percentage obtained for class Real
of SC-EffNetRGB among single colorspace models.

Table V presents a comparison of model performances in
terms of test accuracies of individual classes and total accuracy
for our MC-EffNet-2 model against the chosen baselines. The
results indicate that our model obtains the highest overall ac-
curacy, and highest accuracies even for the individual classes.
Among the baselines, the next higher accuracy shown by
InceptionResnet is less than our model by 9.92 percentage
points. All the models including those proposed for natural
images versus computer graphics problem, except the model
proposed by Quan et al. [21], show a similar trend of higher
accuracy for class GAN followed by class Real and then
Graphics. Whereas, the model proposed by Quan et al. [21]
shows higher accuracy for the class Graphics for which
the model was originally proposed, but not higher than the
accuracy for class Graphics achieved by our MC-EffNet-2.

1) Statistical significance: In addition to the significant
gains achieved by our MC-EffNet-2 model in terms of accuracy
over various baselines, we conduct statistical significance test
between our model and the baselines. We perform the Stuart-
Maxwell5 test with conventional significance level, i.e., a p-
value of 0.05. We obtain a p-value of 0.00187 between our
MC-EffNet-2 model and the model that obtained highest ac-
curacy among the baselines (InceptionResNet), and a p-value
of 0.01036 between our MC-EffNet-2 model and the model
that obtained highest accuracy among the Single Colorspace
EfficientNet Networks (SC-EffNetRGB), which provides enough
evidence to conclude that the results of our MC-EffNet-2 model
are statistically significant over the best baselines.

2) Robustness against Post-processing: Post-processing op-
erations are quite common when uploading images to the
web or social media. Therefore, apart from producing good
accuracies on original images in the dataset, an effective
algorithm for image forensics should also be robust over post-
processing operations. We evaluate robustness of our model
and baselines towards the typical post-processing operation of
JPEG compression, where the models trained on original data
are tested over ten different JPEG compression quality factors
within the range 100 to 10, in steps of 10. The result of our
robustness test is shown in figure 5, where we can observe
that even though accuracy of our MC-EffNet-2 model drops
with the decrease of quality factor, it always achieves better
performance than the baselines for all the quality factors. Also,
we can observe that our MC-EffNet-2 model attains highly
improved robustness than MC-EffNet-1 with the inclusion of
pre-processing block to the colorspace transformations. As like
the classification results of original images without compres-
sion here also InceptionResnet is the baseline that shows next
higher results for different quality factors. The entire results
over different compression quality factors indicate that our
MC-EffNet-2 model achieves better robustness towards post-
processing based on JPEG compression than the baselines.

3) Generalizability: We analyze generalizability of our
MC-EffNet-2 model and the baselines by testing over three
dataset combinations that are unseen during the training phase.
In the first dataset, images for Real and Graphics classes
are collected from PIM-Google (photographic images from
Google Image Search) and PRCG (photo-realistic computer
graphics images) sets of Columbia dataset [39], respectively,
and images for class GAN is collected from the generated
images of PG2 (Pose Guided Person Generation [56]) GAN
algorithm that produces high quality and realistic person
images. The Columbia dataset [39] contains large diversity
in image content. Many previous state-of-the-art works utilize
this dataset for the two-class natural images versus computer
graphics problem [6], [15], [21], [57]. From this dataset with
800 images per class, we collect only twenty percent of the
data, i.e., 160 images per class randomly (without considering
the five images which were associated with incorrect labels in
PIM-Google class as per the findings in [21]), since it is only
for testing model generalizability. To build a balanced dataset
we follow the same number of 160 random images from PG2

5http://www.john-uebersax.com/stat/mcnemar.htm#stuart

http://www.john-uebersax.com/stat/mcnemar.htm#stuart
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Fig. 5. Classification accuracies for various JPEG compression quality factors

for class GAN. Apart from PIM-Google and PRCG, Columbia
dataset also consists of another set, PIM-Personal (photo-
graphic images from the authors’ personal collections), with
800 natural images which constitutes the second dataset for
generalizability test, by replacing class Real of the first dataset
with 160 images randomly collected from PIM-Personal class.

Another dataset combination mostly used in many pre-
vious state-of-the-art works [20], [21], [57] for the natural
images versus computer graphics problem is the RAISE [58]
versus Level-Design Reference Database [59]. We collected
160 images randomly from RAISE dataset that consists of
high-resolution raw and uncompressed images specifically for
image forensic research investigations and converted them
directly to JPEG format to form class Real of the third
dataset. The Level-Design Reference Database consisting of
screenshots from various video games can be seen utilized
in [20] by selecting only those screenshots which seem to
be photo-realistic followed by cropping them to remove the
gaming information like dialogues, text bars, etc. From these
images provided by [20], we collect 160 images to form class
Graphics of the third dataset. To form class GAN we collect
images generated by CycleGAN [60] that generates high-
quality realistic images, utilized in many state-of-the-art works
to detect GAN images [28], [29], [35]. For CycleGAN images,
instead of choosing a single category of images from various
unpaired image-to-image translation categories of objects and
scenes, we collect 160 images randomly from the horses-to-
zebra, zebra-to-horse, apple-to-orange and orange-to-apple cat-
egories. Table VI shows the results of generalizability tests for
our model and baselines when tested over the three datasets,
where we can clearly observe that our model outperforms all
the baselines. Higher accuracies obtained for our model over
the datasets on which the model was not originally trained,
indicates the promising nature of our approach for tackling
future challenges in computer-generated images. Also, we can
observe that even though our model is trained on the category
of GAN algorithms that generate whole new images, such as

TABLE VI
MODEL GENERALIZABILITY OVER DIFFERENT DATASETS IN PERCENTAGE

(THE HIGHEST ACCURACY IS GIVEN IN BOLDFACE)

Model
PG2×

PRCG×
PIM-Google

PG2×
PRCG×

PIM-Personal

Cycle GAN×
Raise×

Level-Design
Quan et al. [21] 54.22 56.27 60.01
Rezende et al. [17] 51.25 51.21 50.92
Nataraj et al. [28] 49.17 53.63 48.75
InceptionResNet [55] 62.08 67.16 71.74
MC-EffNet-2 (Our model) 81.04 85.21 84.79

StyleGAN, it could perform well on CycleGAN which belongs
to the attribute transfer category of GAN algorithms.

4) Feature Visualization: Our MC-EffNet-2 model, projects
raw pixels of input images with dimension 224×224×3, or
feature vector of size 150528 to a lower dimension feature
vector of size 3840, with an intention to provide good amount
of separability between the three classes so that the top classi-
fier layer attains a high classification accuracy. To understand
the separability of features projected from our model we
implement a technique for dimensionality reduction called t-
Distributed Stochastic Neighbor Embedding (t-SNE) [61] that
can visualize high dimensional features into a two-dimensional
plane. We project both the raw image features, and the output
features from MC-EffNet-2 into two-dimensional plots, with
three different colors indicating three different classes. The
plots are given in figure 6 where green circles represent the
class GAN, pink diamonds represent the class Real and blue
squares represent the class Graphics. As can be seen from
the t-SNE visualizations, the raw image features are more
clustered particularly towards the center of the plot, whereas,
the output features from our MC-EffNet-2 model are seen to
be more separated. Thus, the t-SNE visualizations prove that
our MC-EffNet-2 model suits the forensic task of classifying
natural images from computer-generated images including
both computer graphics and GAN images by projecting the
raw image pixels to a much better and separable feature space.

5) Psychophysics Experiments: We were also curious about
how accurately humans can distinguish natural images from
photo-realistic computer-generated images including computer
graphics and GAN images. Hence, in this study, we also per-
form a manual classification test for GAN, Graphics and Real
class of images by gathering information from eleven human
participants on a set of 330 images randomly selected from
the test data used in our study. The participants belong to the
age group 22 to 40 years with normal or corrected-to-normal
visual acuity and normal color vision. We utilize an annotation
tool VIA [62], that helps participants to label each image as
GAN, Graphics or Real, and also to mark parts/regions in
the image that explains their decisions. This way of asking
human participants to provide evidence/explanation in the
form of region markings allows to omit the chances of lucky
guesses and moreover provides insight to what the participants
perceive as a suspect and/or evidence in the images. In VIA
the participants can zoom and or zoom out images for better
analysis and no other constraints like viewing distance, time
for observation, etc. are imposed. Each participant is asked
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(a) Raw image features (b) MC-EffNet-2 features

Fig. 6. t-SNE visualizations of the feature vectors. ( indicates GAN, indicates Graphics and, indicates Real images)

to label thirty images randomly chosen and assigned to them
and each image is annotated only once. For a participant, the
entire experiment on thirty images including marking their
explanations in the images takes nearly 45 minutes.

We also compute the accuracy of our MC-EffNet-2 model
over the same set of 330 images selected for psychophysics
experiments, for comparison. Figure 7 shows the confusion
matrices of manual classification performed by human partic-
ipants and that of our MC-EffNet-2 model over 330 images.
For manual classification, we obtain a total accuracy of 62.42
percentage, whereas for the same set of images our MC-EffNet-
2 model obtains a higher accuracy of 85.15 percentage, i.e., a
very high gain of 22.73 percentage points. We can observe that
the ability of humans to classify Real images is almost near to
our MC-EffNet-2 model with a decrease of 5 percentage points
for manual classification, but for Graphics images MC-EffNet2
highly outperforms manual classification. Similarly, in case of
GAN images, manual classification accuracy is almost half of
MC-EffNet-2. The overall results indicate that the ability of
humans to identify photo-realistic computer-generated images
is very low and hence there is a high necessity of image
forensic algorithms that can computationally aid to distinguish
natural images and photo-realistic computer-generated images.
Our MC-EffNet-2 model with a high classification accuracy,
especially for the photo-realistic computer-generated images,
is thus a better solution for the forensic task of distinguishing
natural images from photo-realistic computer-generated im-
ages. We also compute the Stuart-Maxwell statistical signifi-
cance test between our model and manual classifcation, where
we obatin a p-value of 2.481E-06 indicating the significance
of our MC-EffNet-2 model over manual classification.

(a) Manual classification

(b) MC-EffNet-2

Fig. 7. Confusion matrices of classification performed by human participants
and our MC-EffNet-2 model

D. Understanding the Explanations

Apart from analyzing model performance, we also investi-
gate the behavior of our MC-EffNet-2 model so that we can
trust the predictions of our deep learning model. We utilize
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Gradient-weighted Class Activation Mapping (Grad-CAM)
[63] that makes use of class-specific gradient information to
make a deep learning model more transparent through visual
explanations. To obtain visual explanations we employ Grad-
CAM at the penultimate layer of our fully trained and saved
MC-EffNet-2 model, which constructs coarse localization maps
of the salient regions in input images that are significantly
important for the predictions.

Since our task is formulated as an image classification
problem build using transfer learning methodology over the
source networks of pre-trained EfficientNets, originally meant
for object classification task, first, we try to identify whether
our fused model is still looking for objects while making
the decisions, or is it looking for the regions significant for
classifying natural images and computer-generated ones in
a forensic perspective. To address this question we take the
Grad-CAM explanations of our MC-EffNet-2 model and also
the base network, EfficientNetB0 which is pre-trained on the
ImageNet data, on a set of images in our dataset. The Grad-
CAM explanations from both the models for GAN, Graphics
and Real images are shown in table VII. The EfficientNetB0
network which is pre-trained on the ImageNet data, as obvious,
mainly highlights the objects present in images. But, we
can observe that, even though our entire fused MC-EffNet-
2 model is built over the base network of EfficientNet which
was originally designed for an object classification task, after
applying transfer learning towards our forensic task, does not
primarily give importance to the objects as in the source task,
rather highlights the regions that are significant in classifying
them as GAN, Graphics or Real in a forensic perspective. This
indicates the fitness of our MC-EffNet-2 model as a forensic
solution to classify GAN, Graphics and Real images.

Accordingly, we try to understand what makes our MC-
EffNet-2 model label an image as GAN, Graphics or Real
in context of image forensics. In this stage, we also utilize
the manual explanations in the form of region markings
(yellow bounding boxes6) from the human participants of our
psychophysics experiments, to compare whether the Grad-
CAM explanations given by our model have any similarities
with manual explanations. We first take the case of images for
which our model and human participants provide correct pre-
dictions and analyze the Grad-CAM and manual explanations
of these images. Table VIII shows the examples of this case,
where each set of three columns indicates the GAN, Graphics
and Real classes, respectively, and for each class, we provide
three sample images with their corresponding Grad-CAM and
manual explanations. In the first image of a sheep among the
GAN generated ones, we can observe that the image is not
completely formed and there are missing regions like legs
of the sheep. When we look at the Grad-CAM explanations
provided by our MC-EffNet-2 model, we can see that the model
captures image regions of legs and also the slight difference in
fur color and texture near the neck region. For the same image,
human participant has marked the leg region as an explanation
for their decision of labeling that image as GAN image.
Similarly in the second GAN image of a bird where the image

6The bounding box boundaries are thickened for better visibility

is not completely formed at the head region and the texture
of bird is misplaced towards bottom of the image, Grad-CAM
captures both these regions along with the tail region of bird
and also some part of the surroundings. The human participant
has manually marked the region at head and misplaced texture
at the bottom of the image. In next GAN image of a human
face where no misformations or misplacements can be seen
evidently, Grad-CAM mainly highlights texture of hair, some
regions on face and also some part of the surroundings. In
this case, human participant has highlighted the hair region as
an explanation. Hence, in the GAN image examples, we can
see that there are similarities between Grad-CAM explanations
provided by our model and manual explanations.

Next, we analyze Grad-CAM and manual explanations of
Graphics images in the second set of columns. For all the cor-
rect predictions of Graphics images Grad-CAM explanations
are most commonly seen to highlight uneven illuminations or
illuminated regions in the images. Human participants are also
seen to mark such regions of uneven illuminations. In the third
set of Real images, Grad-CAM explanations are commonly
seen to be centered on the surroundings, focussing on complex
variabilities in the background regions. In the first Real image,
along with the surrounding regions a major significance can be
seen given to the shadow of swan in water, by Grad-CAM as
well as the human participant. Similarly, the feather regions
in second image and the clouds in third image can be seen
highlighted in both Grad-CAM and manual explanations. From
the overall results, we can sum up that the explanations of our
MC-EffNet-2 model are mostly similar to manual explanations,
and also our model is able to identify more number of
salient regions than human participants, to distinguish natural
and computer-generated images. The explanations demonstrate
the powerful nature of our MC-EffNet-2 model to take the
decisions meaningfully.

We also try to get insights on wrong predictions by exam-
ining images for which the human participants provide correct
predictions but our MC-EffNet-2 model produces wrong pre-
dictions. A few examples of this case are given in table IX. The
first image (a) is GAN which is manually predicted as GAN
itself but MC-EffNet-2 misclassifies it as a Real. The Grad-
CAM explanation from MC-EffNet-2 shows that the decision
is produced from the head region, rock at bottom of the image
and the surroundings but not mainly from the misformed
regions like the leg region. Similarly in (d), Graphics is mis-
classified as Real taking into account the region of mountains
and some parts of the background rather than considering the
regions of illuminations in the image as usually seen in case
of graphics images. For Graphics image (c) which is manually
predicted as a Graphics itself, MC-EffNet-2 misclassifies it as
a GAN. The Grad-CAM explanation shows that it produces
decision from only the object region of one of the photographs
in the image and not the regions of illuminations as usually
seen in case of Graphics images. Similarly, in Real image (e),
the object regions of sheeps are highlighted by MC-EffNet-2
than the meaningful explanations like shadows or surroundings
as usually seen for the Real images, which might be the reason
for its misclassification as GAN. Whereas, in the images (b,f)
MC-EffNet-2 highlights the uneven illuminations which might
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TABLE VII
GRAD-CAM EXPLANATIONS FROM THE BASE NETWORK EFFICIENTNETB0 AND OUR MC-EffNet-2 MODEL FOR GAN, GRAPHICS AND REAL IMAGES

GAN Graphics Real
Original
image

Grad-CAM explainations Original
image

Grad-CAM explainations Original
image

Grad-CAM explainations
EfficientNetB0 MC-EffNet-2 EfficientNetB0 MC-EffNet-2 EfficientNetB0 MC-EffNet-2

TABLE VIII
EXPLANATIONS OF IMAGES FOR WHICH OUR MC-EffNet-2 MODEL AND HUMAN PARTICIPANTS BOTH PRODUCES CORRECT PREDICTIONS

GAN Graphics Real
Original
image

Grad-CAM
explaination

Manual
explanation

Original
image

Grad-CAM
explaination

Manual
explanation

Original
image

Grad-CAM
explaination

Manual
explanation

be the reason for its misclassification as Graphics image.

V. CONCLUSION

In this work, we proposed deep learning based Multi-
Colorspace fused EfficientNet model to classify natural images
and photo-realistic computer-generated images including both
computer graphics and GAN images, as against the state-
of-the-art works that have always discussed either natural
images versus computer graphics or natural images versus
GAN images problem, at a time. We compared our model with
state-of-the-art methods where our model outperforms all the
baselines in terms of performance accuracy, robustness against
typical post-processing operation of JPEG compression, and
generalizability towards other datasets, which demonstrates
the utility of our model in real-world forensic applications.
We also conducted psychophysics experiments to realize how
capable humans are in classifying natural images and photo-
realistic computer-generated images, where, the results of
manual classification accuracy was lower than our model ac-
curacy, particularly in classifying the photo-realistic computer-
generated images, indicating the necessity and usefulness of
our computational model for the task. We also analyzed the

behavior of our model by visualizing the salient regions in
the images that are responsible for classification decisions.
We compared these visual explanations of our model with
the explanations manually labeled by the human participants
for their correct predictions, where we could observe simi-
larities between the explanations of our model and manual
explanations, indicating that our model takes decisions mean-
ingfully. To our best knowledge, such a comparison of visual
explanations to understand whether our model behaves alike
human explanations to produce the decisions meaningfuly is
a new attempt that might even be useful in other digital
image forensics or multimedia security tasks. To aid future
research, these manual classifications along with the manually
labelled visual explanations, and other relevant materials,
including the source code will be made publicly available at
https://github.com/manjaryp/GANvsGraphicsvsReal and
https://dcs.uoc.ac.in/cida/projects/dif/mceffnet.html along with
the publication. In the future, we are considering to extend
our work to identify other forensic attacks like the recaptured
images. We are also considering to extend our work to classify
natural and computer generated videos.

https://github.com/manjaryp/GANvsGraphicsvsReal
https://dcs.uoc.ac.in/cida/projects/dif/mceffnet.html
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TABLE IX
EXPLANATIONS OF IMAGES FOR WHICH HUMAN PARTICIPANTS PROVIDE CORRECT PREDICTIONS BUT MC-EffNet-2 PRODUCES WRONG PREDICTIONS

GAN Graphics Real
Original
image

Grad-CAM
explaination

Manual
explanation

Original
image

Grad-CAM
explaination

Manual
explanation

Original
image

Grad-CAM
explaination

Manual
explanation

(a) MC-EffNet-2 miclassifies GAN as Real (c) MC-EffNet-2 miclassifies Graphics as GAN (e) MC-EffNet-2 miclassifies Real as GAN

(b) MC-EffNet-2 miclassifies GAN as Graphics (d) MC-EffNet-2 miclassifies Graphics as Real (f) MC-EffNet-2 miclassifies Real as Graphics
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