
A Projection-Stable Grammatical Model for the Distributed
Execution of Administrative Processes with Emphasis on Actors’
Views

Milliam Maxime ZEKENG NDADJI a,b

Maurice TCHOUPÉ TCHENDJI a,b

Clémentin TAYOU DJAMEGNI a

Didier PARIGOT c

a Department of Mathematics and Computer Science, University of Dschang
b FUCHSIA Research Associated Team, https://project.inria.fr/fuchsia/
c Inria, Sophia Antipolis, France

{ndadji.maxime, maurice.tchoupe}@univ-dschang.org, dtayou@yahoo.com, didier.parigot@inria.fr

Abstract. During the last two decades, the decentralized execution of business processes has
been one of the main research topics in Business Process Management. Several models (lan-
guages) for processes’ specification in order to facilitate their distributed execution, have been
proposed. LSAWfP is among the most recent in this area: it helps to specify administrative
processes with grammatical models indicating, in addition to their fundamental elements, the
permissions (reading, writing and execution) of each actor in relation to each of their tasks. In
this paper, we present a model for a completely decentralized and artifact-centric execution of
administrative processes specified using LSAWfP. The presented model puts particular emphasis
on actors’ views: it then allows the confidential execution of certain tasks by ensuring that, each
actor potentially has only a partial perception of the processes’ global execution states. The model
thus solves a very important problem in business process execution, which is often sidelined in
existing approaches. To accomplish this, the model rely on three projection algorithms allowing
to partially replicate the processes’ global execution states at a given moment, to consistently up-
date the obtained partial states and to deduce new coherent global states. The proposal of these
three algorithms, the proof of underlying mathematical tools’ stability and a proposal of their
implementation, are this paper’s main contributions.

Keywords: Administrative Processes, Projection, Grammars, Views, LSAWfP

Address for correspondence: ndadjimaxime@yahoo.fr (Zekeng Ndadji Milliam Maxime)

ar
X

iv
:2

10
2.

10
56

6v
2

 [
cs

.S
E

]
 2

7
M

ar
 2

02
1

https://project.inria.fr/fuchsia/

2 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

1. Introduction

Administrative business processes are those of which all cases are known and predictable; that is to say,
tasks sequencing rules are simple and clearly defined [1, 2]: they are the most frequently encountered
in practice [3, 4] (the peer review process [5, 6, 7, 8, 9], the insurance claims process [10, 11], etc.).
In its most widespread approach, Business Process Management (BPM) technology breaks down the
automation of a given business process to its formal specification (modelling) in a workflow language
[4]. The resulting process (workflow) model generally describes all the process’s tasks, the control
flow that link them (routing) and the actors in charge of executing them [3].

For the decentralized execution of an administrative process described in any workflow language,
one can imagine a distributed Workflow Management System (WfMS) made up of several reactive
agents or peers, driven by human agents (actors in charge of executing tasks), coordinating with each
other using an artifact that they cooperatively edit. In fact, the distributed execution of an administra-
tive process is similar to the cooperative edition of a form that has to circulate from site to site (mobile
form) in order to be edited by the different actors of the process. Upon its arrival on a site, the actor
associated with the site must be able to examine it and deduce without ambiguity, the already edited
fields (these correspond to the already executed tasks of the process), the fields that he must immedi-
ately edit (these correspond to the ready tasks that he must execute), and possibly, the sites to which
he must return/redirect the form for further processing at the end of its edition. It is easy to imagine
that there could be forms with independent fields that need to be filled in by different actors. In this
case, in order to speed up processing, it is acceptable that at a given time, there may be several replicas
of the form that are simultaneously edited in the system.

A major characteristic of administrative processes is confidentiality: not all actors in an admin-
istrative process are necessarily aware of all processing and/or data generated in the process. It is
therefore natural to assume that the form that is presented to an actor for editing on a site is only a po-
tentially partial replica of the global form1; this (partial) replica only contains information (relating to
processing and data) that is of proven interest to the considered actor. Once a partial replica of a form
has been received, it is essential to ensure that all editing actions on it can be consistently integrated
into the global form. In order to satisfy this constraint, it is sufficient for each actor to have a local
"supervisor" who must control his editing actions. The confidential execution of certain tasks as well
as the access restriction to certain process data are generally only very rarely addressed in existing
process management approaches. Most of the studies that do mention these aspects, either relegate
them to second place or do not treat them formally like other aspects. In this study, the focus is on
these concerns.

The form described in the two paragraphs above can be seen as a structured document (a tree)
circulating from site to site, to be extended by cooperative editions made at the level of its leaves
(positive edition2). The nodes of this tree therefore represent either the tasks already executed, or those
ready to be executed; moreover, the relations between nodes (father-son, brother-brother) correspond

1The global form contains all the data already filled in so far by the various actors in the system. It therefore gives the
process’ global execution status at a given moment, by explicitly highlighting the fields already edited, those ready to be
immediately edited, and those that will be edited later (in the case of dependencies between fields).
2In a positive edition, no information is erased [12, 13]. Editing actions on the document have the effect of making the tree
representing it grow, by adding sub-trees at the level of its leaves.

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 3

exactly to the ordering of tasks. This tree is called "artifact" in the artifact-centric approach to business
process modelling.

Based on the cooperative editing model of structured documents studied in the works of Badouel
et al. [14, 15, 16, 17, 18, 19], we propose in this paper, a model for the distributed execution of ad-
ministrative processes (cooperative edition of artifacts) that relies on algorithms to obtain : (1) partial
replicas of the global artifact (artifact projection algorithm); these contain only the information rel-
evant to the considered actors; (2) local models that constrain local editing actions on local artifacts
(model projection algorithm), so as to ensure that these are always "expandable" as editing actions
(updates) on the global artifact (expansion algorithm). The proposed execution model applies only to
process models obtained using the language LSAWfP (A Language for the Specification of Adminis-
trative Workflow Processes) [7, 8, 9]. LSAWfP is a new language designed for the specification (using
a variant of attributed grammars) of administrative processes with particular emphasis placed on the
modelling (using views) of the perceptions that the various actors have on processes and their data.
The specification of a particular process in this language is given by a triplet (a Grammatical Model of
Administrative Workflow Process - GMAWfP -) W f = (G,LPk ,LAk) wherein, G is the model of tasks
and their sequencing, LPk and LAk represent respectively the list of actors and their accreditations3. If
we consider a GMAWfP W f = (G,LPk ,LAk) to be executed in a decentralized manner, then the main
contributions of this paper are as follows:
1) The proposal of algorithms for:

• artifacts’ projection; which, given an artifact t that conforms to the (global) model G and the
accreditation in reading AAi(r) (known as view and denoted Vi) of an actor Ai, allows to find its
partial replica tVi

;

• model’s projection; which permits, from a view Vi and a global model G, to derive a local model
GVi

. GVi
will guide the actions carried out by a given actor on partial replicas from his site, in

order to ensure consistency with respect to the global model G.

• expansion-pruning; which enable the inverse projection of a partial replica tma j
Vi

updated by a
given actor Ai according to a local GMWf GVi

; the goal is to integrate the contributions made
by the local actor into an artifact t f that conforms to the global model G.

2) A study of stability properties of artifacts and their model, when using the proposed algorithms.
3) A Haskell implementation of the proposed algorithms.

Organization of the manuscript: in the remainder of this manuscript, we briefly present the LSAWfP
language and an example of a process modelled using it (sec. 2.2). We then present the artifact-centric
model of process execution considered in this paper, in order to motivate the need to propose stable
projection algorithms (sec. 2.3). We continue by proposing versions of the three projection algorithms
covered in this paper as well as a study of some of their properties (sec. 3). We end with a discussion
and a conclusion.

3The accreditation of a given actor provides information on its rights (permissions) relatively to each sort (task) of the
studied process.

4 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

2. On the Modelling and the Execution of Administrative Business Pro-
cesses using LSAWfP

Several tools have been developed to address process modelling. Among the most well-known are the
BPMN standard (Business Process Model and Notation) [20] which uses a formalism derived from
that of statecharts, and the YAWL language (Yet Another Workflow Language) [21, 3, 22] based on
Petri nets. Despite the significant research progress around these workflow languages, they are often
criticized for having a much too great expressiveness compared to the needs of professionals in the
field [23], for not being based on solid mathematical foundations and/or for not being intuitive [24]:
This justifies the emergence of several other languages such as LSAWfP [7, 8, 9]. In this section, we
present the LSAWfP language and its illustration: the specification of the administrative process used
as a running example along this paper. The artifact-centric execution model of LSAWfP’s specifica-
tions is also presented in order to motivate the current work.

2.1. A Running Example: the Peer-Review Process

The peer-review process is a commonly used example of business process to illustrate workflow lan-
guages [5, 6, 7, 8, 9]. We choose it in this manuscript because it is easy to describe and (that’s the
most important) it perfectly illustrates the concepts that we handle. The description that we consider
is the same as the one in [7]: the process involves four actors (an editor in chief - EC -, an associated
editor - AE - and two referees - R1 and R2 -) coordinating to evaluate a manuscript (paper) submitted
for their review.

• The process starts when the EC receives the paper;

• Upon receipt, the EC pre-validates the paper (let us call this task "A"); after the pre-validation,
he can accept or reject the paper for various reasons (subject of minor interest, paper not within
the journal scope, non-compliant format, etc.);

• If he rejects the paper, he writes a report (task "B") then notifies the corresponding author (task
"D") and the process ends;

• Otherwise, he chooses an AE and sends him the paper;

• The AE prepares the manuscript (task "C") forms a referees committee (two members in our
case) and then triggers the peer-review process (task "E");

• Each referee reads, seriously evaluates the paper (tasks "G1" and "G2") and sends back a
report (tasks "H1" and "H2") and a message (tasks "I1" and "I2") to the AE;

• After receiving reports from all referees, the AE takes a decision and informs the EC (task "F")
who sends the final decision to the corresponding author (task "D").

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 5

2.2. Process Modelling with LSAWfP

LSAWfP is a recent language specifically designed for administrative process modelling. It relies on
a variant of attributed grammars to provide a framework for the modelling of the main conceptual
aspects of such processes: these are the aspects related to tasks’ scheduling (the lifecycle model),
to data consumed and produced by tasks (the informational model), and to resources in charge of
executing tasks (the organizational model) [25]. In addition, LSAWfP puts a particular emphasis on
the modelling (using views) of the perceptions that the various stakeholders have on processes and
their data in order to guarantee confidentiality. To model a given process with LSAWfP, four key steps
must be followed: (1) model the process scenarios using annotated trees and (2) derive from annotated
trees, an abstract grammar which will be used as lifecycle model; then (3) identify the actors involved
in the process execution and (4) establish the role played by each of them using a list of accreditations.

2.2.1. Modelling Process Scenarios using Artifacts

LSAWfP is founded on the principle that, by definition, all execution scenarios, all actors and the role
they play in relation to tasks of a given administrative process Pad , are known in advance. LSAWfP
therefore proposes to model each Pad’s execution scenario using an annotated tree ti called target
artifact. In such a tree, each node (labelled Xi) potentially corresponds to a task Xi of Pad and each
hierarchical decomposition (a node and its sons) corresponds to a scheduling: the task associated
with the parent node must be executed before those associated with the son nodes; the latter must be
executed according to an order - parallel or sequential - that can be specified by particular annotations
"#" (is sequential to) and "‖" (is parallel to) which will be applied to each hierarchical decomposition.
The annotation "#" (resp. "‖") reflects the fact that the tasks associated with the son nodes of the
decomposition must (resp. can) be executed in sequence (resp. in parallel).

For the running example (the peer-review process), there is only two execution scenarios: the
one in which the EC immediately rejects the paper and the one in which the paper goes through
the validation process. These can be modelled using the two artifacts art1 and art2 in figure 1. In
particular, we can see that art1 shows how the task "Receipt and pre-validation of a submitted paper"
assigned to the EC, and associated with the symbol A (see sec. 2.1), must be executed before tasks
associated with the symbols B and D that are to be executed in sequence.

Figure 1. Example of target artifacts for a given process (peer-review process)

6 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

2.2.2. Deducing the Grammatical Model of Workflow (GMWf)

After modelling the scenarios of the studied process using target artifacts, LSAWfP suggests to extract
from them, an abstract grammar called a Grammatical Model of Workflow (GMWf). This is done
by simply substituting the set of target artifacts by a grammar G (a GMWf) in which, each symbol
refers to a task and, each production p is of one of the following two forms: p : X0→ X1 # . . . # Xn or
p : X0 → X1 ‖ . . . ‖ Xn. These two forms of productions perfectly models the two types of ordering
(parallel or sequential) retained in the design of the target artifacts. In this case, each target artifact ti
is conform to G and we note ti ∴G; also the root symbols of the different target artifacts make up the
set of axioms of G. A GMWf can then be formally defined as follows:

Definition 2.1. A Grammatical Model of Workflow (GMWf) is defined by G= (S ,P ,A) where :

• S is a finite set of grammatical symbols or sorts corresponding to various tasks to be executed
in the studied business process;

• A ⊆ S is a finite set of particular symbols called axioms, representing tasks that can start an
execution scenario (roots of target artifacts), and

• P ⊆ S × S ∗ is a finite set of productions decorated by the annotations "#" (is sequential to)
and "‖" (is parallel to): they are precedence rules. A production P =

(
XP(0),XP(1), · · ·XP(|P|)

)
is

either of the form P : X0→ X1 # . . . #X|P|, or of the form P : X0→ X1 ‖ . . . ‖ X|P| and |P| designates
the length of P right-hand side. A production with the symbol X as left-hand side is called a
X-production.

Considering the case of the peer-review process whose target artifacts are represented in figure 1,
the derived GMWf is G= (S ,P ,A) in which the set S of grammatical symbols is S = {A,B,C,D,E,F,
G1,G2,H1,H2, I1, I2} (see sec. 2.1); the only initial task (axiom) is A (then A = {A}) and the set P
of productions is:

P1 : A→ B #D P2 : A→C #D P3 : C→ E #F P4 : E→ G1 ‖ G2
P5 : G1→ H1 # I1 P6 : G2→ H2 # I2 P7 : B→ ε P8 : D→ ε

P9 : F → ε P10 : H1→ ε P11 : I1→ ε P12 : H2→ ε

P13 : I2→ ε

2.2.3. Identifying the Actors of the Process

The identification of the actors taking part in the execution of the process is easily done with the help
of its textual description. For example, according to the description of the peer-review process, four
(k = 4) actors participate in its execution: an editor in chief (EC), an associated editor (AE) and two
referees (R1 and R2). So we deduce that the list of actors is LPk = {EC,AE,R1,R2}.

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 7

2.2.4. Establishing the List of Accreditations

LSAWfP proposes a mechanism called accreditation, inspired by the nomenclature of rights used
in Unix-like systems, to ensure better coordination between actors and to eventually guarantee the
confidentiality of certain actions and data. The accreditation of a given actor provides information on
its rights (permissions) relatively to each sort (task) of the studied process’s GMWf. There is three
types of accreditation:
1. The accreditation in reading (r): an actor accredited in reading on sort X must have free access to its
execution state (data generated during its execution). The set of sorts on which an actor is accredited
in reading is called his view. Any sort X belonging to a given view Vi (X ∈ Vi) is said to be visible,
and those not belonging to it are said to be invisible.
2. The accreditation in writing (w): an actor accredited in writing on sort X can execute the associated
task4. Any actor accredited in writing on a sort is accredited in reading on it.
3. The accreditation in execution (x): an actor accredited in execution on sort X is allowed to ask the
actor who is accredited in writing in it, to execute it. More formally, an accreditation is defined as
follows:

Definition 2.2. An accreditation AAi defined on the set S of grammatical symbols for an actor Ai,
is a triplet AAi =

(
AAi(r),AAi(w),AAi(x)

)
such that, AAi(r) ⊆ S also called view of actor Ai, is the set

of symbols on which Ai is accredited in reading, AAi(w) ⊆ AAi(r) is the set of symbols on which Ai is
accredited in writing and AAi(x) ⊆ S is the set of symbols on which Ai is accredited in execution.

From the task assignment for the peer-review process in the running example, it follows that the
accreditation in writing of the EC is AEC(w) = {A,B,D}. Moreover, since he can only execute task
D if task C (executed by the AE) is already executed (see artifacts art1 and art2, fig. 1), he must be
accredited in execution on C to be able to request its execution; therefore, we have AEC(x) = {C}. In
addition, in order to be able to access all the information on the progress of the peer-review evaluation
(task C) and synthesize the right decision to be returned, the EC must be able to consult reports (tasks
I1 and I2) and messages (tasks H1 and H2) of the referees, as well as the decision made by the AE (task
F). These tasks, in addition to AEC(w)

5 constitute the set AEC(r) =VEC = {A,B,C,D,H1,H2, I1, I2,F}
of tasks on which he is accredited in reading. Doing so for each of the other actors leads to the
deductions of the accreditations represented in the table 1 and we have LAk = {AEC,AAE ,AR1,AR2}.
Finally the Grammatical Model of Administrative Workflow Process: with LSAWfP, the mod-
elling of a process results in a triplet W f = (G,LPk ,LAk) (called a Grammatical Model of Administra-
tive Workflow Process - GMAWfP -) wherein, G is the GMWf, LPk is the list of actors and LAk is the
list of their accreditations.

2.3. An Artifact-Centric Model for the Distributed Execution of GMAWfP

The artifact-centric paradigm, emerged in the early 2000s, has become the most exploited current of
thought for process modelling and execution (workflow management) over the last two decades [3].

4Let’s recall that the execution of a task is assimilated to the edition (extension) of a particular node in an artifact.
5Remember: any actor accredited in writing on a sort is accredited in reading on it.

8 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

Table 1. Accreditations of the different actors taking part in the peer-review process

Actor Accreditation
Editor in Chief (EC) AEC = ({A,B,C,D,H1,H2, I1, I2,F},{A,B,D},{C})
Associated Editor (AE) AAE = ({A,C,E,F,H1,H2, I1, I2},{C,E,F},{G1,G2})
First referee (R1) AR1 = ({C,G1,H1, I1},{G1,H1, I1}, /0)

Second referee (R2) AR2 = ({C,G2,H2, I2},{G2,H2, I2}, /0)

Several works [26, 27, 28, 29, 30, 31, 32, 33, 34] have been undertaken to develop this paradigm.
According to it, workflow management focuses on both automated processes and data manipulated
using the concept of business artifact. A business artifact is considered as a document that conveys
all the information concerning a particular case of execution of a given business process, from its
inception in the system to its termination. In this section, we present an artifact-centric model for the
distributed execution of GMAWfP inspired by the work of Badouel et al. on cooperative editing of
structured documents [14, 15, 16, 18, 19]. We begin by presenting individually, the key concepts of
the execution model, before examining the overall behaviour of the distributed system.

2.3.1. Key Elements and Constraints of the Execution Model

The Execution Environment: to execute a given GMAWfP in a decentralized mode, we consider a
completely decentralized (P2P) WfMS model (which we call P2P-WfMS-View) whose instances (the
peers) are installed on the sites of the various actors involved in processes execution. During the
process execution, these peers communicate (sending/receiving requests/responses) by exchanging
copies of a (global) artifact said to be under execution. Such an artifact provides information on
already executed tasks and on those ready to be executed.

As in the work of Badouel et al. [14, 15, 16, 18, 19], we represent an artifact under execution
by a tree (a structured document) that contains buds. These indicate at a moment, the only places
where contributions are expected. A bud can be either unlocked or locked depending on whether the
corresponding task (node) is ready to be executed (edited) or not. Buds are typed; a bud of type X ∈ S
is a leaf node labelled either by Xω or by Xω depending on its state (locked or unlocked) (see fig. 2).
The local actions of a given actor will therefore have the effect of extending (editing) its received copy
of the (global) artifact by developing, through appropriate productions, the different unlocked buds it
contains.

The Confidential Execution of Certain Tasks: for confidentiality reasons, each actor acts on a
potentially partial replica of the local copy of the (global) artifact: this partial replica contains only
the information to which the concerned actor can have access. Technically, a partial replica tVi

of an
artifact t is obtained by projection (using an operator π said of artifact projection) of t according to
the view Vi of the concerned actor: we note tVi

= πVi
(t).

The Need of a Local GMWf at each Site: since the local actions of a particular actor depend on
his perception of the process, it is necessary to control them in order not only to preserve the possible

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 9

Figure 2. An intentional representation of an annotated artifact containing buds.

confidentiality of certain tasks, but also to ensure the consistency of local updates. To do this, one must
derive a local GMWf on each site, by projecting the global GMWf according to the view of the local
actor (GMWf projection). This projection is carried out using Π operator and the GMWf obtained is
noted GVi

= ΠVi
(G).

The Expansion Operation: still with the aim of ensuring system convergence, the contributions
made by a given actor and contained in an updated partial replica tma j

Vi
, must be integrated into the local

copy of the (global) artifact before any synchronization between peers. It is therefore necessary to be
able to merge these two artifacts, which are based on two different models. We find here, a version of
the expansion problem as formulated in [14].

2.3.2. Execution Model and Peer Activity

Globally then, before the execution of a given process, peers are configured using its GMAWfP
(W f = (G,LPk ,LAk)). From the global GMWf G and the view Vi of the local actor, each peer de-
rives by projection, a local GMWf GVi

= ΠVi
(G). Then, the execution of a process case is triggered

when an artifact t is introduced into the system (on the appropriate peer); this artifact is actually an
unlocked bud of the type of one axiom AG ∈ A (initial task) of the (global) GMWf G (see fig. 3).
During execution, peers synchronize themselves by exchanging their local copies of the artifact being
executed.

After receiving an artifact t ∴G on a given peer, the latter projects it (see Peer i in fig. 3) according
to the local view Vi. The obtained partial replica tVi

∴ GVi
is then completed (edited) when needed:

the result of this edition is an artifact tma j
Vi

∴GVi
such as tma j

Vi
is an update of tVi

(tma j
Vi
≥ tVi

).

At the end of the completion, the expansion-pruning of the obtained updated partial replica tma j
Vi

∴
GVi

is made in order to obtain the updated configuration t f ∴G of the (global) artifact local copy (see
Peer i in fig. 3). If the resulting configuration shows that the process should be continued at other
sites6, then replicas of the artifact are sent to them. Else7, a replica is returned to the peer from whom
the artifact was previously received.

6This is the case when the artifact contains buds created on the current peer and whose actors accredited in writing are on
distant peers.
7The artifact is complete (it no longer contains buds), or semi-complete (it contains buds that were created on other peers
and on which, the actor on the current peer is not accredited in writing).

10 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

Figure 3. Overview of the distributed execution of a given process.

3. Projection Algorithms for the Distributed Execution of GMAWfP

The GMAWfP execution model is mainly based on three algorithms: artifact projection, GMWf pro-
jection and expansion. In this section, we propose versions of these algorithms as well as a study of
some of their mathematical properties guaranteeing the correction of the execution model, and the co-
herence of the distributed system formed by the peers in charge of the execution of a given GMAWfP.

3.1. The Artifact Projection Algorithm

3.1.1. The Algorithm

Technically, the projection tVi
of an artifact t according to the view Vi = AAi(r) is obtained by deleting

in t all nodes whose types do not belong to Vi (all invisible nodes). In our case, the main challenges
in this operation are:

(1) nodes of tVi
must preserve the previously existing execution order between them in t,

(2) tVi
must be build by using exclusively the only two forms of production retained for GMWf and

(3) tVi
must be unique in order to ensure the continuation of process execution (see sec. 2.3.2).

The projection operation is noted π. Inspired by the one proposed in [14], it projects an artifact by
preserving the hierarchy (father-son relationship) between nodes of the artifact (it thus meets challenge
(1)); but in addition, it inserts into the projected artifact when necessary, new additional (re)structuring
symbols (accessible in reading and writing by the agent for whom the projection is made). This enables
it to meet challenge (2). The details of how to accomplish the challenge (3) are outlined immediately
after the algorithm (algorithm 1) is presented.

Figure 4 illustrates the projection of an artifact of the peer-review process relatively to the R1 (first
referee) and EC (Editor in Chief) views. Note the presence in tVEC

of new (re)structuring symbols (in
gray). These last ones make it possible to avoid introducing in tVEC

, the production p : C→ H1 # I1 ‖

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 11

Figure 4. Example of projections made on an artifact and partial replicas obtained.

H2 # I2 # F whose form does not correspond to the two forms of production retained for the GMWf
writing8.

Let’s consider an artifact t and note by n = X [t1, . . . , tm] a node of t labelled with the symbol X
and having m sub-artifacts t1, . . . , tm. Note also by pn, the production of the GMWf that was used to
extend node n; the type of pn is either sequential (i.e. pn is of the form pn : X → X1 # . . . # Xm where
X1, . . . ,Xm are the roots of the sub-artifacts t1, . . . , tm) or parallel (pn : X → X1 ‖ . . . ‖ Xm). Concretely,
to project t according to a given view V (i.e to find projst = πV (t)), a depth path of t is performed
and invisible nodes are erased or replaced by new nodes associated with (re)structuring symbols to
preserve the subtree structure. To do so, the recursive processing presented in algorithm 1, is applied
to the root node n = X [t1, . . . , tm] of t.

Note that the algorithm described here applies to all artifacts (including those containing buds)
because there is no need to apply any special treatment (locking or unlocking) on buds: they must also
be just erased or kept in the artifact to ensure consistency of the execution model. Note also that, this
algorithm can return several artifacts (a forest). To avoid that it produces a forest in some cases and
thus meet challenge (3), we make the following assumption:

GMAWfP manipulated in this work are such that all actors are accredited in reading on
the GMWf axioms (axioms’ visibility assumption).

The designer must therefore ensure that all actors are accredited in reading on all GMWf axioms.
To do this, after modelling a process Pad and obtaining its GMWf G = (S ,P ,A), it is sufficient (if
necessary) to create a new axiom AG on which, all actors will be accredited in reading, and to associate
it with new unit productions9 pa : AG→ Xa where, Xa ∈ A is a symbol labelling the root of a target

8Note that this production specifies in its right-hand side that we must have parallel and sequential treatments. Inserting S1,
S2 and S3 allows to rewrite p in four productions p1 : C→ S1 #F , p2 : S1→ S2 ‖ S3, p3 : S2→H1 # I1 and p4 : S3→H2 # I2.
9A production of a context free grammar is a unit production if it is on the form A→ B, where A and B are non-terminal
symbols.

12 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

Algorithm 1 Algorithm to project a given artifact according to a given view.

• If symbol X is visible (X ∈ V) then :
1. n is kept in the artifact;
2. For each sub-artifact ti of n, having node ni = Xi

[
ti1 , . . . , tik

]
as root (of which pni is the production that

was used to extend it), the following processing is applied :
a. The projection of ti according to V is done. We obtain the list projsti = πV (ti) =

{
tiV1

, . . . , tiVl

}
;

b. If the type of pni is the same as the type of pn or the projection of ti has produced no more than one
artifact (|projsti | ≤ 1), we just replace ti by artifacts tiV1

, . . . , tiVl
of the list projsti ;

Otherwise, a new (re)structuring symbol Si is introduced and we replace the sub-artifact ti with a new
artifact new_ti whose root node is nti = Si

[
tiV1

, . . . , tiVl

]
;

3. If the list of new sub-artifacts of n contains only one element t1 having n1 = S1

[
t1V1

, . . . , t1Vl

]
(with S1 a

newly created (re)structuring symbol) as root node, we replace in this one, t1 by the sub-artifacts t1V1
, . . . , t1Vl

of n1. This removes a non-important (re)structuring symbol S1.
• Else, n is deleted and the result of the projection (projst) is the union of the projections of each of its
sub-artifacts: projst = πV (t) =

⋃m
i=1 πV (ti)

artifact. Moreover, the designer of the GMWf must statically choose the actor responsible for initiating
the process. This actor will therefore be the only one to possess an accreditation in writing on the new
axiom AG.

3.1.2. Studying the Stability Property with the Artifact Projection Algorithm

Proposition 3.1. For all GMAWfP W f = (G,LPk ,LAk) verifying the axioms’ visibility assumption,
the projection of an artifact t which is conform to its GMWf (t ∴ G) according to a given view V ,
results in a single artifact tV = πV (t) (stability property of artifacts through the usage of π).

Proof:
Let’s show that πV (t) produces a single tree tV which is an artifact. Note that the only case in which
the projection of an artifact t according to a view V produces a forest, is when the root node of t is
associated with an invisible symbol X (X /∈V). Knowing that t ∴G and that W f validates the axioms’
visibility assumption, it is deduced that the root node of t is labelled by one of the axioms AG of G and
that AG ∈V (hence the uniqueness of the produced tree). Since the projection operation preserves the
form of productions, it is concluded that tV = πV (t) is an artifact. ut

3.2. The GMWf Projection Algorithm

3.2.1. The Algorithm

The goal of this algorithm is to derive by projection of a given GMWf G = (S ,P ,A) according to
a view V , a local GMWf GV = (SV ,PV ,AV) (we note GV = ΠV (G)). The proposed algorithm

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 13

(algorithm 2) generates the set of target artifacts10 denoted by G then, it simply project each target
artifact according to the view V , then gather the productions in the obtained partial replicas while
removing the duplicates.

Algorithm 2 Algorithm to project a given GMWf according to a given view.

1. First of all, it is necessary to generate all the target artifacts denoted by G (see note (1) below); we thus
obtain a set artsG = {t1, . . . , tn};
2. Then, each of the target artifacts must be projected according to V . We thus obtain a set artsGV ={

tV1
, . . . , tVm

}
(with m ≤ n because there may be duplicates; in this case, only one copy is kept) of artifacts

partial replicas;
3. Then, collect the different (re)structuring symbols appearing in artifacts of artsGV , making sure to remove
duplicates (see note (2) below) and to accordingly update the artifacts and the set artsGV . We thus obtain a
set SVStruc

of symbols and a final set artsGV =
{

tV1
, . . . , tVl

}
(with l ≤ m) of artifacts. These are exactly the

only ones that must be conform to the searched GMWf GV . So we call them, local target artifacts for the
view V ;
4. At this stage, it is time to collect all the productions that made it possible to build each of the local target
artifacts for the view V . We obtain a set PV of distinct productions.
The searched local GMWf GV = (SV ,PV ,AV) is such as:

a. its set of symbols is SV = V ∪SVStruc
;

b. its set of productions is PV ;
c. its axioms are in AV = A

Note (1): To generate all the target artifacts denoted by a GMWf G = (S ,P ,A), one just has to use the
set of productions to generate the set of artifacts having one of the axiom AG ∈ A as root. In fact, for each
axiom AG, it should be considered that every AG-production P = (AG,X1 · · ·Xn) induces artifacts {t1, . . . , tm}
such as: the root node of each ti is labelled AG and has as its sons, a set of artifacts {ti1 , . . . , tin}, part of the
Cartesian product of the sets of artifacts generated when considering each symbol X1, · · · ,Xn as root node.
Note (2): In this case, two (re)structuring symbols are identical if for all their appearances in nodes of the
different artifacts of artsGV , they induce the same local scheduling.

Figure 5 illustrates the research of a local model GVEC
such as GVEC

= ΠVEC
(G) with VEC =

AEC(r) = {A,B,C,D,H1,H2, I1, I2,F}. Target artifacts generated from G (fig. 5(b)) are projected
to obtain two local target artifacts for the view VEC (fig. 5(c)). From the local target artifacts thus
obtained, the searched GMWf is produced (fig. 5(d)).

The GMWf projection algorithm presented here only works for GMWf that do not allow recursive
symbols11. We therefore assume that:

For the execution model presented in this paper, the manipulated GMAWfP are those
whose GMWf do not contain recursive symbols (non-recursive GMWf assumption).

With this assumption, it is no longer possible to express iterative routing between process tasks (in the
general case); except in cases where the maximum number of iterations is known in advance.
10This generation is necessary because each peer is only configured using the GMWf G and therefore does not possess all
its target artifacts, even though the designer produced G using these artifacts.
11It is only in this context that all the target artifacts can be enumerated.

14 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

Figure 5. Example of projection of a GMWf according to a given view.

3.2.2. Some Properties of the GMWf Projection Algorithm

Proposition 3.2. For all GMAWfP W f = (G,LPk ,LAk) verifying the axioms’ visibility and the non-
recursivity of GMWf assumptions, the projection of its GMWf G = (S ,P ,A) according to a given
view V , is a GMWf GV = ΠV (G) for a GMAWfP W fV verifying the assumptions of axiom visibility
and non-recursivity of GMWf (stability property of GMWf through the usage of Π).

Proof:
Let’s show that GV = ΠV (G) is a GMWf for a new GMAWfP W fV =

(
GV ,LPk ,LAVk

)
that verifies

the assumptions of axioms’ visibility and non-recursivity of GMWf. As W f = (G,LPk ,LAk) validates
the non-recursivity of GMWf assumption, the set of target artifacts (artsG = {t1, . . . , tn}) that it denotes
is finite and can therefore be fully enumerated. Knowing further that W f validates the axioms’ visibil-
ity assumption, it is deduced that the set artsGV =

{
tV1

= πV (t1) , . . . , tVn
= πV (tn)

}
is finite and the

root node of each artifact tVi
is associated with an axiom AG ∈A (see proposition 3.1). GV being built

from the set artsGV , its axioms AV = A are visible to all actors and its productions are only of the two
forms retained for GMWf. In addition, each new (re)structuring symbol (S ∈ SVStruc

)) is created and
used only once to replace a symbol that is not visible and not recursive (by assumption) when project-
ing artifacts of artsG. The new symbols are therefore not recursive. By replacing in LAk the view V by

V ∪SVStruc
, one obtains a new set LAVk

of accreditations for a new GMAWfP W fV =
(
GV ,LPk ,LAVk

)
verifying the assumptions of axioms’ visibility and non-recursivity of GMWf. ut

Proposition 3.3. For all GMAWfP W f = (G,LPk ,LAk) verifying the axioms’ visibility and the non-
recursivity of GMWf assumptions, the projection of an artifact t which is conform to the GMWf G

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 15

according to a given view V , is an artifact which is conform to the projection of G according to V
(∀t, t ∴G⇒ πV (t) ∴ ΠV (G)).

Proof:
Knowing that the considered GMAWfP W f = (G,LPk ,LAk) verifies the axioms’ visibility and the
non-recursivity of GMWf assumptions, it is deduced that the set of its target artifacts artsG (those
who helped to build its GMWf G) is finite and any artifact that is conform to its GMWf G is a target
artifact (∀t, t ∴G⇔ t ∈ artsG). Therefore, considering a given artifact t such that t is conform to G
(t ∴ G), one knows that it is a target artifact (t ∈ artsG) and its projection according to a given view
V produces a single artifact tV = πV (t) (see "stability property of π", proposition 3.1) such as t and
tV have the same root (one of the axioms AG ∈ A of G). Since t is a target artifact, its projection tV
(through the renaming of some potential (re)structuring symbols) is part of the set artsGV of artifacts
that have generated GV = ΠV (G) by applying the projection principle described in the algorithm 2.
Therefore, the productions involved in the construction of tV are all included in the set of productions
of the GMWf GV = ΠV (G). As the set of axioms of GV is AV = A , it is deduced that AG ∈ AV and
concluded that tV ∴GV . ut

Proposition 3.4. Consider a GMAWfP W f = (G,LPk ,LAk) verifying the axioms’ visibility and the
non-recursivity assumptions. For all artifact tV which is conform to ΠV (G), it exists at least one arti-
fact t which is conform to G such that tV = πV (t) (∀tV , tV ∴ ΠV (G)⇒∃t, t ∴G and tV = πV (t)).

Proof:
With proposition 3.2 ("stability property of Π") it has been shown that the projection GV = ΠV (G)
according to the view V of a GMWf G verifying the axioms’ visibility and the non-recursivity as-
sumptions, is a GMWf verifying the same assumptions. On this basis and using similar reasoning
to that used to prove the proposition 3.3, it’s been determined that an artifact tV that is conform to
GV , is one of its target artifacts (local target artifact for the view V): i.e, tV ∈ artsGV . Referring
to the projection process which made it possible to obtain GV , it is determined that the set artsGV
is exclusively made up of the projections of the set artsG = {t1, . . . , tn} of G’s target artifacts. tV is
therefore the projection of at least one target artifact ti ∈ artsG of G (tV = πV (ti)). Knowing that
∀t, t ∴ G⇔ t ∈ artsG (see proof of proposition 3.3), it is deduced that ti ∴ G and the proof of this
proposition is made. ut

By applying the GMWf projection algorithm presented above (algorithm 2) to the running exam-
ple, one obtain the productions listed in table 2 for the different actors respectively. In the illustrated
case here, we have considered an update of the GMWf of the peer-review process so that it validates
the axioms’ visibility assumption.

3.3. The Expansion Algorithm

3.3.1. The Algorithm

Consider an (global) artifact under execution t, and tV = πV (t) its partial replica on the site of an actor
Ai whose view is V . Consider the partial replica tma j

V ≥ tV obtained by developing some unlocked buds

16 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

Table 2. Local GMWf productions of all the actors involved in the peer-review process.

Actor Productions of local GMWf

EC

P1 : AG→ A P2 : A→ B #D P3 : A→C #D
P4 : C→ S1 #F P5 : S1→ S2 ‖ S3 P6 : S2→ H1 # I1
P7 : S3→ H2 # I2 P8 : B→ ε P9 : D→ ε

P10 : F → ε P11 : H1→ ε P12 : I1→ ε

P13 : H2→ ε P14 : I2→ ε

AE

P1 : AG→ A P2 : A→C P3 : C→ E #F
P4 : E→ S1 ‖ S2 P5 : S1→ H1 # I1 P6 : S2→ H2 # I2
P7 : H1→ ε P8 : I1→ ε P9 : H2→ ε

P10 : I2→ ε P11 : F → ε P12 : AG→ ε

R1
P1 : AG→C P2 : C→ G1 P3 : G1→ H1 # I1
P4 : H1→ ε P5 : I1→ ε P6 : AG→ ε

R2
P1 : AG→C P2 : C→ G2 P3 : G2→ H2 # I2
P4 : H2→ ε P5 : I2→ ε P6 : AG→ ε

of tV as a result of Ai’s contribution. The expansion problem consists in finding an (global) artifact
under execution t f , which integrates nodes of t and tV . To solve this problem made difficult by the
fact that t and tV are conform to two different models (G and GV = ΠV (G)), we perform a three-way
merge [35]. We merge the artifacts t and tV using a (global) target artifact tg such that:

(a) t is a prefix of tg (t ≤ tg)

(b) tma j
V is a prefix of the partial replica of tg according to V

(
tma j
V ≤ πV (tg)

)
The proposed algorithm proceeds in two steps.

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 17

Step 1 - Search for the merging guide tg

The search of a merging guide is done by (algorithm 3) generating the set of target artifacts denoted
by G, then filtering this set to retain only those for which t is a prefix (see the definition of the prefix
relationship in algorithm 3) and tma j

V is a prefix of their projection according to the view V .

Algorithm 3 Algorithm to search a merging guide.

1. First of all, we have to generate the set artsG = {t1, . . . , tn} of target artifacts denoted by G;
2. Then, we must filter this set to retain only the artifacts ti admitting t as a prefix (criterion (a)) and whose
projections according to V (tiV j

) admit tma j
V as a prefix (criterion (b)). It is said that an artifact ta (whose root

node is na = Xa[ta1 , . . . , tal]) is a prefix of a given artifact tb (whose root node is nb = Xb[tb1 , . . . , tbm]) if and
only if the root nodes na and nb are of the same types (i.e Xa = Xb) and:

a. The node na is a bud or,
b. The nodes na and nb have the same number of sub-artifacts (i.e l = m), the same type of scheduling for

the sub-artifacts and each sub-artifact tai of na is a prefix of the sub-artifact tbi of nb.
We obtain the set guides =

{
tg1 , . . . , tgk

}
of artifacts that can guide the merging;

3. Finally, we randomly select an element tg from the set guides.

Step 2 - Merging t, tma j
V and tg

The problem here is to find an artifact t f that includes all the contributions already made during the
workflow execution. The structure of the searched artifact t f is the same as that of tg: hence the interest
to use tg as a guide. The merging is carried out by the algorithm 4. Technically, the three artifacts t,
tma j
V and tg are explored in depth simultaneously and a specific treatment is applied according to the

configuration of the visited nodes: if the three nodes visited at a given time are mergeable (they are of
the same type and some are updates of others) then, the most up-to-date node is retained and added to
the resulting artifact; otherwise, the nodes preventing the merge are ignored (pruning).

3.3.2. Some Properties of the Expansion Algorithm

Proposition 3.5. For any update tma j
V in accordance with a GMWf GV = ΠV (G), of a partial replica

tV = πV (t) obtained by projecting (according to the view V) an artifact t being executed in accordance
with the GMWf G of a GMAWfP verifying the axioms’ visibility and the non-recursivity assumptions,
there is at least one target artifact (the three-way merge guide) tg ∈ artsG of G such as:

(a) t is a prefix of tg (t ≤ tg)

(b) tma j
V is a prefix of the partial replica of tg according to V

(
tma j
V ≤ πV (tg)

)
Proof:
Thanks to the proposals 3.2, 3.3 and the artifact editing model used here12, it is established that since

12An artifact is developed at the level of its leaves using the productions of the GMWf to which it conforms.

18 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

Algorithm 4 Three-way merging algorithm.

A prefixed depth path of the three artifacts (t, tma j
V and tg) is made simultaneously until there is no longer a

node to visit in tg. Let nti (resp. ntma j
V j

and ntgk
) be the node located at the address wi (resp. w j and wk) of t

(resp. tma j
V and tg) and currently being visited. If nodes nti , ntma j

V j

and ntgk
are such that (processing):

1. ntma j
V j

is associated with a (re)structuring symbol (fig. 6(d)) then: we take a step forward in the depth path

of tma j
V and we resume processing;

2. nti , ntma j
V j

and ntgk
exist and are all associated with the same symbol X (fig. 6(a) and 6(b)) then: we insert

ntma j
V j

(it is the most up-to-date node) into t f at the address wk; if ntma j
V j

is a bud then we prune (delete sub-

artifacts) tg at the address wk; we take a step forward in the depth path of the three artifacts and we resume
processing.
3. nti , ntma j

V j

and ntgk
exist and are respectively associated with symbols Xi, X j and Xk such that Xk 6= Xi and

Xk 6= X j (fig. 6(e)) then: we add ntgk
in t f at address wk. This is an upstair bud; we take a step forward in the

depth path of tg and we resume processing.
4. nti (resp. ntma j

V j

) and ntgk
exist and are associated with the same symbol X (fig. 6(c) and 6(f)) then: we insert

nti (resp. ntma j
V j

) into t f at the address wk; if nti (resp. ntma j
V j

) is a bud, we prune tg at the address wk; we take a

step forward in the depth path of the artifacts t (resp. tma j
V) and tg, then we resume processing.

the artifact t being executed in accordance with G is a prefix of a non-empty set of G’s target artifacts
arts

′
G =

{
t
′
1, . . . , t

′
n

}
(∀1 ≤ i ≤ n, t ≤ t

′
i), its projection tV according to the view V is a prefix of

a non-empty set arts
′
GV

=
{

t
′

V1
, . . . , t

′

Vm

}
of GV = ΠV (G)’s local target artifacts for the said view

(∀1≤ j ≤ m, tV ≤ t
′

V j
): elements of arts

′
G are potential merging guides candidates that all verify the

property (a). In addition, using the propositions 3.2 and 3.4, it is established that each element of
arts

′
GV

is the projection of at least one element of arts
′
G according to the view V (1). Given that tma j

V
is obtained by developing buds of tV in accordance with GV , it is inferred that tma j

V is a prefix of a
non-empty subset artsma j

GV
⊆ arts

′
GV

of local target artifacts for the view V (2). With the proposition

3.4 once again, it is determined that for each artifact t
′

V j
∈ artsma j

GV
, there is at least one artifact tg j that

is conform to G such as t
′

V j
= πV

(
tg j

)
: this new set artsma j

G = {tg1 , . . . , tgk} is made up of potential

merging guides candidates that all verify the property (b). Results (1) and (2) show that artsma j
G and

arts
′
G are not disjoint. As a consequence, the set guides = artsma j

G ∩arts
′
G of potential merging guides

that all verify both property (a) and (b) is not empty. ut

Corollary 3.6. For an artifact t being executed in accordance with a GMWf G of a GMAWfP verify-
ing the axioms’ visibility and the non-recursivity assumptions, and an update tma j

V ≥ tV of its partial
replica tV = πV (t) according to the view V , the expansion of tma j

V contains at least one artifact and
the expansion-pruning algorithm presented here returns one and only one artifact.

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 19

Figure 6. Some particular cases to be managed during the expansion.

This result (corollary 3.6) derives from the proof of the proposition 3.5 (there is always at least
one artifact in the expansion of tma j

V under the conditions of corollary 3.6) and from the fact that in the

20 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

last instruction of the algorithm 3, an artifact is randomly selected an returned from a non-empty set
of potential guides (only one of the expansion artifacts is used in the three-way merging).

3.4. A Haskell Implementation of the Algorithm presented in this Work

You can find types and functions (coded in Haskell13) that perform the projections as described in this
paper in the https://github.com/MegaMaxim10/GMAWfP-Projection-Algorithms Git14 repos-
itory. These tools have been proposed as a proof of concepts. More specifically, they include types
for encoding annotations (sequential, parallel, locked, unlocked, etc.) on artifacts, their nodes and
productions. There are also simple types for manipulating productions, artifacts, GMWf,... as well as
the actual projection functions. All of these tools are provided in a file that can be directly interpreted
using a Haskell interpreter like the Glasgow Haskell Compiler15. A readme and comments have been
added to make it easier to get to grips with the provided implementation as shown in the screenshot in
figure 7.

Figure 7. A screenshot of the provided Git repository.

One observation that can be quickly made by consulting the provided Haskell code is that, it is
quite long. This shows that the proposed algorithms are difficult to present with common notations (in
pseudo-code form or even directly in code); this is why we have opted to present them with instructions
written in natural language and sprinkled with a few mathematical formulas (it was more concise
and precise that way). Nevertheless, we have chosen to use Haskell (a functional language) to code
our functions because, the Haskell code is generally self-descriptive (i.e. very close to semi-formal
descriptions) and more compact than those written in other languages.

13Haskell: https://www.haskell.org/, visited the 01/08/2020.
14Git: https://git-scm.com/, visited the 01/08/2020.
15The Glasgow Haskell Compiler: https://www.haskell.org/ghc/, visited the 01/08/2020.

https://github.com/MegaMaxim10/GMAWfP-Projection-Algorithms
https://www.haskell.org/
https://git-scm.com/
https://www.haskell.org/ghc/

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 21

4. Related Works and Discussion

4.1. Projection of Trees in a Cooperative Editing Workflow

Some works of the literature have focused on the projection of trees that conform to grammatical
models in a cooperative editing workflow. We present some of them here and discuss our results as
we go along.

In their structured cooperative editing model, Badouel et al. [14] proposed a tree projection algo-
rithm operating in the general case: i.e. even in the case in which trees are not annotated and their
roots may be invisible; the projection may thus produce a forest. The artifact projection algorithm
proposed in this manuscript is a specialization of their own in the case of annotated trees, constructed
using only two types of productions: it was therefore necessary to be able to add new (re)structuring
symbols during the projection in order to guarantee the stability of models through this operation.
Moreover, the scope of application of the algorithm we propose requires that the projection always
provides a single artifact: hence the axioms’ visibility assumption.

The authors of [14] also proposed a solution to the expansion problem. More precisely, they pro-
posed to associate to the updated partial replica whose expansion is sought, a tree automaton with
exit states [18] generating the documents of the expansion. This tree automaton is constructed using
the global grammatical model, the considered view and the updated partial replica. In our case, an
additional parameter has been added: the global artifact whose partial replica has been updated. This
is where the interest of performing a three-way merge comes from. Moreover, we did not need the
automaton structure because we made the assumption of non-recursivity of the manipulated grammat-
ical model. Let us also mention that our expansion is followed by a pruning to better correspond to
the field of application of this paper (the decentralized execution of GMAWfP).

About our expansion-pruning algorithm, note that the choice of the merging guide is made ran-
domly from a set of potential candidates. This consideration was made to simplify the work presented
here. Indeed, if the initial grammatical model is specified without ambiguity (an ambiguity could come
from an execution scenario that contains another one) then there is no problem with this consideration.
However, in the presence of a grammatical model subject to design errors, the choice of a three-way
merge guide must be made with caution because it determines the continuation of the execution (the
scenario to follow): this choice could therefore be made by one of the actors involved in the execution
of the process (maybe the process owner). This opens an interesting perspective on the verification of
the specifications produced with LSAWfP.

The authors of [16] have proposed a grammatical model for structured cooperative editing. They
also proposed an algorithm for projecting a grammar according to a view. Their algorithm proceeds by
successive rewrites of the productions whose right hand side contains invisible symbols: the invisible
symbols are replaced by the right hand sides of productions for which they appear on the left hand
side. The rewrites are made until there are no more invisible symbols. As in our case, (re)structuring
symbols are added if necessary and the initial model must not admit recursion: it therefore seems that
the projection of grammatical models admitting recursive symbols is an interesting avenue of research.
However, our GMWf projection algorithm is completely based on the artifact projection algorithm.
Rewritings of the productions are thus implicitly realized during the projection of the artifacts.

In a more general perspective, Foster et al. [36, 37] proposed a solution to the view update prob-

22 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

lem in the case of tree-structured data. More specifically, they offer a domain-specific programming
language in which all expressions denote bi-directional transformations on trees. In a sense, these
transformations make it possible to project a so-called "concrete tree" in order to obtain a simplified
view (a so-called "abstract view") of it. In the other direction, transformation operations allow to
merge a modified abstract view with the original concrete tree to obtain a modified concrete tree. The
algorithms proposed by Foster et al. manipulate unranked trees (i.e trees with unranked nodes) while
ours only manipulate ranked trees. They are therefore not interested by documents models (gram-
mars) which are an essential tools in our study. Let’s note also that, the concept of views they use in
their work is different from ours; it’s rather more close to the one encountered in works on databases
[38, 39, 40, 41, 42].

4.2. Confidentiality using Views in BPM Approaches

We are not aware of many studies that have looked at the consistency of views in the decentralized
execution of processes using BPM technology. We hereby present a few that have mentioned the
concept of views.

The studies in [43, 44, 45, 46, 47, 48, 49] propose mechanisms for the construction of views
guaranteeing the stability of the base models. Here, the views are in fact, process models that guarantee
a certain degree of confidentiality. The studies in [43, 44, 45, 46] apply in the case of process-centric
workflows, while those in [47, 48, 49] apply in the case of artifact-centric workflows. The main
difference between these studies and ours is that, we manipulate trees and grammatical models where
they are interested in arbitrary graphs or stack automata.

In the SwinDeW [50] approach to decentralised workflow management, the authors propose a
"know what you should know" policy to manage confidentiality. According to this policy, a workflow
is partitioned (projected) into individual tasks after it is modelled completely (using any workflow lan-
guage), and definition of individual tasks is then distributed to appropriate peers for storage. Unlike
ours, the SwinDeW approach is not artifact-centric and the authors do not really propose projection
algorithms; rather, they propose a formalism for modelling each task in order to facilitate their distri-
bution and decentralized execution.

Hull et al. [29] proposed a new approach to interoperation of organizations hubs based on business
artifacts. It provides a centralized point where stakeholders can access data of common interest and
check the current status of an aggregate process. They proposed three kinds of access restrictions
namely windows, views and Create-Read-Update-Delete (CRUD). "Windows" provide a mechanism
to restrict which artifacts a stakeholder can see; "views" provide a mechanism to restrict what parts
of an artifact a stakeholder can see; and the CRUD is used to restrict the ways that stakeholders can
read and modify artifacts. This approach differs from ours by the fact that it is centralized and that its
confidentiality policy is only interested in the artifacts and not in their models.

5. Conclusion

In this work, we have presented the LSAWfP language for the specification of administrative workflow
processes using grammatical models. We then presented a decentralized and artifact-centric execution

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 23

model (P2P-WfMS-View) of the workflow processes specified using LSAWfP. Based on the princi-
ples of this model, we proposed versions of its key algorithms (algorithm for projecting an artifact,
algorithm for projecting a GMWf and algorithm for expanding a partial replica). The proposed al-
gorithms are perfectly usable since we have proven the stability of our main mathematical tools when
using them. We have implemented them in Haskell and tested them with very satisfactory results.
However, in order for our algorithms to produce the expected results, we have made some assump-
tions. Notably the non-recursivity of GMWf assumption, which had the direct effect of limiting a
little bit the expressiveness of LSAWfP. An interesting perspective of this work therefore consists in
proposing other versions of the algorithms presented here, which would take up the same fundamental
principles while raising the non-recursivity of GMWf assumption in order to offer more facility to the
designers of GMAWfP.

References
[1] McCready S. There is more than one Kind of Workflow Software. Computerworld, 1992. 2.

[2] Van Der Aalst WMP. The Application of Petri Nets to Workflow Management. Journal of Circuits,
Systems, and Computers, 1998. 8(01):21–66.

[3] Van Der Aalst WMP. Business process management: a comprehensive survey. ISRN Software Engineer-
ing, 2013. 2013.

[4] Dumas M, La Rosa M, Mendling J, Reijers HA. Fundamentals of Business Process Management, Second
Edition. Springer, 2018. ISBN 978-3-662-56508-7.

[5] Van Der Aalst WMP, Barthelmess P, Ellis CA, Wainer J. Proclets: A framework for lightweight interacting
workflow processes. International Journal of Cooperative Information Systems, 2001. 10(04):443–481.

[6] Badouel E, Hélouët L, Kouamou GE, Morvan C. A Grammatical Approach to Data-centric Case Man-
agement in a Distributed Collaborative Environment. CoRR, 2014. abs/1405.3223. 1405.3223, URL
http://arxiv.org/abs/1405.3223.

[7] Zekeng Ndadji MM, Tchoupé Tchendji M, Tayou Djamegni C, Parigot D. A Language for the Specifica-
tion of Administrative Workflow Processes with Emphasis on Actors’ Views. In: Gervasi O. et al. (eds)
Computational Science and Its Applications - ICCSA 2020. ICCSA 2020. Lecture Notes in Computer
Science, volume 12254. Springer, 2020 pp. 231–245.

[8] Zekeng Ndadji MM, Tchoupé Tchendji M, Tayou Djamegni C, Parigot D. A Grammatical Model for the
Specification of Administrative Workflow using Scenario as Modelling Unit. In: Florez H., Misra S. (eds)
Applied Informatics. ICAI 2020. Communications in Computer and Information Science, volume 1277.
Springer, 2020 pp. 131–145.

[9] Zekeng Ndadji MM, Tchoupé Tchendji M, Tayou Djamegni C, Parigot D. A Language and Methodology
based on Scenarios, Grammars and Views, for Administrative Business Processes Modelling. Paradigm-
Plus, 2020. 1(3):1–22.

[10] Esparza J, Hoffmann P. Reduction rules for colored workflow nets. In: International Conference on
Fundamental Approaches to Software Engineering. Springer, 2016 pp. 342–358.

[11] Cartledge D, Danis H, Jacobus J, Burke S, Millington M, Sierra S, Smith G. System and method for
workflow management, 2020. US Patent 10,546,272.

1405.3223
http://arxiv.org/abs/1405.3223

24 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

[12] Saito Y, Shapiro M. Optimistic replication. ACM Computing Surveys (CSUR), 2005. 37(1):42–81.

[13] Shapiro M. Optimistic Replication and Resolution. In: Encyclopedia of Database Systems, Second
Edition. Springer-Verlag, 2018. doi:10.1007/978-1-4614-8265-9_258.

[14] Badouel E, Tchoupé Tchendji M. Merging Hierarchically-Structured Documents in Workflow Systems.
Electronic Notes in Theoretical Computer Science, 2008. 203(5):3–24.

[15] Tchoupé Tchendji M. Une Approche Grammaticale pour la Fusion des Réplicats Partiels d’un Document
Structuré: Application à l’Édition Coopérative Asynchrone. Phd thesis, Université de Rennes I (France),
Université de Yaoundé I (Cameroun), 2009.

[16] Tchoupé Tchendji M, Djeumen D R, Atemkeng T M. A Stable and Consistent Document Model Suitable
for Asynchronous Cooperative Edition. Journal of Computer and Communications, 2017. 5(08):69.

[17] Tchoupé Tchendji M, Zekeng Ndadji MM. Réconciliation par consensus des mises à jour des répliques
partielles d’un document structuré. In: CARI 2016 Proceedings, volume 1. 2016 pp. 84–96.

[18] Tchoupé Tchendji M, Zekeng Ndadji MM. Tree Automata for Extracting Consensus from Partial Replicas
of a Structured Document. Journal of Software Engineering and Applications, 2017. 10(05):432–456.

[19] Zekeng Ndadji MM, Tchoupé Tchendji M. A Software Architecture for Centralized Management of
Structured Documents in a Cooperative Editing Workflow. In: Innovation and Interdisciplinary Solutions
for Underserved Areas, pp. 279–291. Springer, 2018.

[20] Model BP. Notation (BPMN) version 2.0. OMG Specification, Object Management Group, 2011. pp.
22–31.

[21] Van Der Aalst WMP, Ter Hofstede AHM. YAWL: yet another workflow language. Information systems,
2005. 30(4):245–275.

[22] Van Der Aalst WMP. Business process management as the "Killer Ap" for Petri nets. Software & Systems
Modeling, 2015. 14(2):685–691.

[23] Zur Muehlen M, Recker J. How much language is enough? Theoretical and practical use of the business
process modeling notation. In: Seminal Contributions to Information Systems Engineering, pp. 429–443.
Springer, 2013.

[24] Börger E. Approaches to modeling business processes: a critical analysis of BPMN, workflow patterns
and YAWL. Software & Systems Modeling, 2012. 11(3):305–318.

[25] Divitini M, Hanachi C, Sibertin-Blanc C. Inter-Organizational Workflows for Enterprise Coordination. In:
Coordination of Internet agents, pp. 369–398. Springer, 2001.

[26] Nigam A, Caswell NS. Business artifacts: An approach to operational specification. IBM Systems Journal,
2003. 42(3):428–445.

[27] Assaf MA. Towards an integration system for artifact-centric processes. In: Proceedings of the 2016 on
SIGMOD’16 PhD Symposium. ACM, 2016 pp. 2–6.

[28] Deutsch A, Hull R, Vianu V. Automatic verification of database-centric systems. ACM SIGMOD Record,
2014. 43(3):5–17.

[29] Hull R, Narendra NC, Nigam A. Facilitating workflow interoperation using artifact-centric hubs. In:
Service-Oriented Computing, pp. 1–18. Springer, 2009.

[30] Lohmann N, Wolf K. Artifact-centric choreographies. In: International Conference on Service-Oriented
Computing. Springer, 2010 pp. 32–46.

M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes 25

[31] Assaf MA, Badr Y, Amghar Y. A Continuous Query Language for Stream-Based Artifacts. In: Interna-
tional Conference on Database and Expert Systems Applications. Springer, 2017 pp. 80–89.

[32] Assaf MA, Badr Y, El Khoury H, Barbar K. Generating Database Schemas from Business Artifact Models.
I.J. Information Technology and Computer Science, 2018. 2:10–17. doi:10.5815/ijitcs.2018.02.02.

[33] Boaz D, Limonad L, Gupta M. BizArtifact: Artifact-centric Business Process Management, June 2013,
2013. URL https://sourceforge.net/projects/bizartifact/,accessed12December2019.

[34] Badouel E, Hélouët L, Kouamou GE, Morvan C, Fondze Jr NR. Active workspaces: distributed collab-
orative systems based on guarded attribute grammars. ACM SIGAPP Applied Computing Review, 2015.
15(3):6–34.

[35] Mens T. A State-of-the-Art Survey on Software Merging. Journal of IEEE Transactions on Software
Engineering, 2002. 28(5):449–462.

[36] Foster JN, Greenwald MB, Moore JT, Pierce BC, Schmitt A. Combinators for bi-directional tree transfor-
mations: a linguistic approach to the view update problem. ACM SIGPLAN Notices, 2005. 40(1):233–246.

[37] Foster JN, Greenwald MB, Moore JT, Pierce BC, Schmitt A. Combinators for bidirectional tree trans-
formations: A linguistic approach to the view-update problem. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 2007. 29(3):17–es.

[38] Caruccio L, Polese G, Tortora G. Synchronization of queries and views upon schema evolutions: A survey.
ACM Transactions on Database Systems (TODS), 2016. 41(2):1–41.

[39] Alwehaibi A, Atay M. A rule-based relational xml access control model in the presence of authorization
conflicts. In: Information Technology-New Generations, pp. 311–319. Springer, 2018.

[40] Meier A, Kaufmann M. Nosql databases. In: SQL & NoSQL Databases, pp. 201–218. Springer, 2019.

[41] Horn R, Fowler S, Cheney J. Language-Integrated Updatable Views (Extended version). arXiv preprint
arXiv:2003.02191, 2020.

[42] Segoufin L, Vianu V. Projection Views of Register Automata. In: Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. 2020 pp. 299–313.

[43] Liu DR, Shen M. Workflow modeling for virtual processes: an order-preserving process-view approach.
Information Systems, 2003. 28(6):505–532.

[44] Chebbi I, Dustdar S, Tata S. The view-based approach to dynamic inter-organizational workflow cooper-
ation. Data & Knowledge Engineering, 2006. 56(2):139–173.

[45] Eshuis R, Grefen P. Constructing customized process views. Data & Knowledge Engineering, 2008.
64(2):419–438.

[46] Zhao X, Liu C, Sadiq W, Kowalkiewicz M. Process view derivation and composition in a dynamic col-
laboration environment. In: OTM Confederated International Conferences" On the Move to Meaningful
Internet Systems". Springer, 2008 pp. 82–99.

[47] Yongchareon S, Liu C. A process view framework for artifact-centric business processes. In: OTM
Confederated International Conferences" On the Move to Meaningful Internet Systems". Springer, 2010
pp. 26–43.

[48] Yongchareon S, Liu C, Zhao X. An artifact-centric view-based approach to modeling inter-organizational
business processes. In: International Conference on Web Information Systems Engineering. Springer,
2011 pp. 273–281.

https://sourceforge.net/projects/bizartifact/, accessed 12 December 2019

26 M. Zekeng et al. / A Grammatical Model for the Distributed Execution of Administrative Processes

[49] Yongchareon S, Yu J, Zhao X, et al. A view framework for modeling and change validation of artifact-
centric inter-organizational business processes. Information systems, 2015. 47:51–81.

[50] Yan J, Yang Y, Raikundalia GK. SwinDeW-a P2P-Based Decentralized Workflow Management System.
IEEE Trans. Systems, Man, and Cybernetics, Part A, 2006. 36(5):922–935.

	1 Introduction
	2 On the Modelling and the Execution of Administrative Business Processes using LSAWfP
	2.1 A Running Example: the Peer-Review Process
	2.2 Process Modelling with LSAWfP
	2.2.1 Modelling Process Scenarios using Artifacts
	2.2.2 Deducing the Grammatical Model of Workflow (GMWf)
	2.2.3 Identifying the Actors of the Process
	2.2.4 Establishing the List of Accreditations

	2.3 An Artifact-Centric Model for the Distributed Execution of GMAWfP
	2.3.1 Key Elements and Constraints of the Execution Model
	2.3.2 Execution Model and Peer Activity

	3 Projection Algorithms for the Distributed Execution of GMAWfP
	3.1 The Artifact Projection Algorithm
	3.1.1 The Algorithm
	3.1.2 Studying the Stability Property with the Artifact Projection Algorithm

	3.2 The GMWf Projection Algorithm
	3.2.1 The Algorithm
	3.2.2 Some Properties of the GMWf Projection Algorithm

	3.3 The Expansion Algorithm
	3.3.1 The Algorithm
	3.3.2 Some Properties of the Expansion Algorithm

	3.4 A Haskell Implementation of the Algorithm presented in this Work

	4 Related Works and Discussion
	4.1 Projection of Trees in a Cooperative Editing Workflow
	4.2 Confidentiality using Views in BPM Approaches

	5 Conclusion

