arXiv:1712.01631v1 [cs.LO] 5 Dec 2017

Revisiting Concurrent Separation Logic

Pedro Soares* Antonio Ravara'and Simao Melo de Sousat

Abstract

We present a new soundness proof of Concurrent Separation Logic
(CSL) based on a structural operational semantics (SOS). We build on
two previous proofs and develop new auxiliary notions to achieve the
goal. One uses a denotational semantics (based on traces). The other
is based on SOS, but was obtained only for a fragment of the logic
— the Disjoint CSL — which disallows modifying shared variables
between concurrent threads. In this work, we lift such a restriction,
proving the soundness of full CSL with respect to a SOS. Thus con-
tributing to the development of tools able of ensuring the correctness
of realistic concurrent programs. Moreover, given that we used SOS,
such tools can be well-integrated in programming environments and
even incorporated in compilers.

Keywords: Concurrent Separation Logic; Structural Operational Semantics;
Soundness Proof.

1 Introduction

The aim of this work is to present a new soundness proof for Concurrent
Separation Logic 7], with respect to a structural operational semantics [11].
This work adapts and extends the results presented by Brookes [4] and by
Vafeiadis [16].

The axiomatic verification of programs goes back to Hoare Logic [6]. This
seminal work introduces two key ideas, i) the specification of programs by
means of what is known by a Hoare triple: {P}C{Q}, where P and @ are first

*Universidade do Porto, PT

fCITI & DI-FCT, Universidade Nova de Lisboa, PT

fLISP & LIACC& DI-FE, Universidade da Beira Interior, PT
This work was partially funded by Fundagdo para a Ciéncia e Tecnologia through
AVIACC project, grant PTDC/EIA-CCO/117590, and CITI/FCT/UNL, grant Pest-
OE/EEI/UI0527/2014.

http://arxiv.org/abs/1712.01631v1

order formulae, called the precondition and postcondition respectively, and C'
is an imperative program; ii) a deductive proof system to ensure the partial
correctness of programs. A program is partially correct, if every execution
of C' from a state respecting the precondition does not abort and when it
terminates the postcondition holds for its final state. The state for this logic
is formed only by the store, i.e. a partial function that records the value
of each variable. Hoare’s work gave rise to numerous deductive systems, for
instance the Owicki-Gries method (|9, 10]) and Separation Logic ([8, 13]).

The Owicki-Gries method is one of the first attempts to give a resource
sensitive proof system for concurrent programs. To do this, Owicki and Gries
augmented the programming language with 1) parallel composition, C' || C'; ii)
local resources, resource r in C'; and iii) a critical region, with r when B do C,
where r denotes a resource. Each resource has a mutual exclusion lock, an
assertion, called invariant, and a set of variables, called protected variables.

The execution of parallel composition non-deterministically chooses one of
the commands to execute first. As usual, the parallel execution is assumed to
be weakly fair, i.e. if a command is continually available to be executed, then
this command will be eventually selected. The resource command declares a
local variable r to be used in C. The critical region command waits for the
availability of the resource r, and when B holds, it acquires r and starts the
execution of C'; the resource r is released upon the execution of C' terminates.

The programs derivable by the Owicki-Gries method have to preserve the
resource invariants when the resource is free, and respect the protection of
variables by resources, i.e. a program needs to acquire all resources protect-
ing a variable, before the program can change that variable. The parallel
rule proposed by Owicki [9] requires that every variable occurring in the
derivation proof of one command cannot be changed by another command,
except for variables protected by a resource such that the variables only ap-
pear inside the critical region’s proof. Thus, the Owicki-Gries method is not
compositional.

Separation Logic (SL) supports reasoning about imperative programs
with shared mutable data and consequently about dynamical data struc-
tures, such as lists and trees. In order to do this, the assertion and program
languages used by Hoare had to be augmented. The assertions are extended
with the constructs emp, the empty memory; e — €', a single memory cell
e with the value €¢’; and P * @), two disjoint memory’s parts such that one
satisfies P and the other satisfies (). In this settings, the memory is usually
represented by the heap — a partial function from the set of locations to the
set of values. The store and the heap together define the state of a program.

The programing language is augmented with commands for memory ma-
nipulation. Naturally, the proof system is also extended with a rule for each

new command and with a frame rule, used to enlarge the portion of memory
considered in the condition of a specification. This rule is crucial to achieve
local reasoning: program specifications only need to consider the relevant
memory for their execution. Therefore, this local reasoning mechanism can
be used to establish the partial correctness of disjoint concurrent programs,
i.e. concurrent program which does not change shared variables.

In order to prove the soundness of the frame rule, and thus of local rea-
soning, it is sufficient to ensure the validity of two key properties: safety
monotonicity and the frame property. Safety monotonicity states that if an
execution does not abort for a given memory portion, then the execution does
not abort for any memory portion that contains the initial one. The frame
property says that if a command does not abort for a given memory portion,
then every execution on a larger memory corresponds to an execution on the
initial memory.

Recently provers based on separation logic were adopted in real industrial
projects, Facebook’s infer being the most prominent of such tools [5].

Since the introduction of SL, different authors adapted it to the verifi-
cation of concurrent programs. Vafeiadis and Parkinson introduced RGSep,
combining SL with Rely/Guarantee reasoning [17]. Reddy and Reynolds
introduced a syntactic control of interference in SL [12], borrowing ideas
from works on fractional permissions [2]. O’Hearn proposed Concurrent
Separation Logic (CSL), combining SL with the Owicki-Gries method [7].
Brookes formalized CSL, extending the traditional Hoare triples with a re-
source context I' and a rely-set A, what leads to specifications of the form
I' Ea{P}C{Q}. A resource context records the invariant and the protected
variables of each resource. A rely-set consists of all variables relevant for its
derivation tree. This set ensures that CSL is a compositional proof method,
proved sound with respect to a denotational semantics based on traces, where
a program state is represented by a store, a heap and sets of resources, ex-
pressing resource ownership [4]. Actually, the rely-set was introduced after
Wehrman and Berdine discovered a counter-example to the initial version of
CSL [3], and it is analogous to the set of variables used by Owicki and Gries
to check non-interference in their parallel rule.

Alternatively, Vafeiadis proposed a structural operational semantics (SOS)
for concurrent programs synchronizing via resources, and proved the sound-
ness of a part of CSL, the Disjoint CSL (DCSL) [16]. DCSL and CSL have
different side conditions for the parallel rule. Concurrent threads, in DCSL,
must not modify all variables that appear in other Hoare triples, however
concurrent threads, in CSL, can not modify variables that belongs to other
rely-sets.

Our aim is to remove the disjointness condition and obtain a soundness

proof using a SOS for the full CSL (Section 6). The goal is relevant because
CSL has been adopted as the basis for most modern program logics, and it
is a step in the development of more expressive provers well integrated in
software development environments and compilers. Not only does it allows
proving correct concurrent programs manipulating shared resources, but also
provides techniques to equip compilers with mechanisms of detecting data-
races. Concretely, the contributions of this work are the following:

1. A novel notion of environment transition that simulates actions made
by other threads. We define it taking into account the rely-set, available
resources and their invariants (Section 5.1). This relation is crucial to
study the soundness of the parallel rule;!

2. The resource configuration that expresses ownership. It is defined by
three sets: owned resources, locked resources, and available resources
(Section 4.1). A program state is formed by a store, a heap and a
resource configuration. Brookes also used sets of resources to represent
resources ownership [4];

3. Hlustrative examples that we prove correct in CSL, showing the proof
system’s expressiveness (Section 3).

This paper is an extended version of [15]. We present herein more ex-
amples and sketches of the proofs of the results reported in the short paper
(which does not present proofs). Further examples and proofs in full detail
can be found in a technical report [14].

The paper is organized as follows: first, we review the syntax of concur-
rent resource-oriented programs with shared mutable data (Section 2.2) and
Concurrent Separation Logic proof system (Section 2.3), following the work
of Brookes [4]. Next, we present a structural operational semantics for the
previous programs (Section 4.1), along the lines of the work of Vafeiadis [16].
We state important results over this operational semantics for the sound-
ness proof, including safety monotonicity and frame property (Section 4.2).
Afterwards, we introduce the environment transition (Section 5.1). Finally,
we prove the soundness of Concurrent Separation Logic with respect to the
operational semantics we defined (Section 6).

2 Concurrent Separation Logic

We revisit Concurrent Separation Logic (CSL), as presented by Brookes [4].
First, we define the assertion language, then the syntax of commands for

Vafeadis used a completely different notion of environment transition (in RGSep [17]).

4

concurrent programs, and finally the inference rules for CSL.

2.1 Assertion Language

Consider a set Var of wvariables, ranged over by x,y,..., and a set Val of
values, that includes the integers and the value null. These meta-variables
may be indexed or primed.

[
|

T|nle +ex|eg—ex|er Xe
true | false |e; =ey | ey <ey | By A By | -B
P = B|-P|PiANPy|VzP|emp|ers e, e, ... ¢ | P xPy

Sy
Il

Figure 1: Syntax of the Assertion Language

The grammar in Figure 1 defines the syntax of the assertion language,
where e — €/, ¢€},..., e denotes e — €| x(e+1) — ehx---x(e+n—1)— €.
We assume the usual definitions of free variables of an assertion (FV).

We use the definition of SL for the validity of an assertion with respect to
the pair (s, h), where s and h are denoted by storage and heap, respectively,
and given by the functions:

s:Var — Val, h:Loc — Val,

where Loc C N is the set of current locations, for details see e.g. [8, Section
2|. The set of those pairs is denoted by S.

For an assertion P, we write s, h |= P if the assertion is valid for (s, h) € S,
and we write = P if s,h |= P for every (s,h) € S. We state a popular result
about the validity of assertion, see e.g. [16, Proposition 4.2].

Proposition 1. Let P be an assertion, (s,h),(s',h) € S. If s(z) = §'(z),
for every x € FV(P), then

s,h =P oiff $,h =P

For a given heap and storage, the precise assertions uniquely determine
the subheap that verifies it. The heap A’ is a subheap of h, if the domain of
h' is contained in the domain of ~ and the evaluation of A’ coincides with the
evaluation of h .

Definition 1. We say that an assertion P is precise if for every (s,h) € S
there is at most one subheap h' of h such that s,h' |= P.

5

Let Res be the set of resources names, which is disjoint from Var. The
resource context I' is used to represent a shared state. The resource context
I' has the form

r1(X1) @ Ry, 1m2(Xs) : Ro, ..., (Xy) @ Ry, (1)

where r; € Res are distinct, R; are precise assertions and X; C Var such
that FV(R;) C X;, for each i« = 1,2,...,n. The assertion R; represents a
resource invariant. Since CSL has the conjunction rule, the assertions R;
must be precise, as exemplified by Reynolds |7, Section 11].

Let Res(I") denote the set of resources names appearing in I', ranged over
by 7;. Furthermore, let PV (I') denote the set of all protected variables by
resources in I'; and PV (r;) := X, denote the set of protected variables by r;.

2.2 Programming Language

The language includes the basic commands to manipulate storage and heap:
c =x=e | x:=[e] | [e]:=e’ | x:=cons(€) | disp(e).

The basic commands use the notation of SL. The bracket parenthesis de-

notes an access to a heap location. For a vector € = (ey,...,e,), x:=cons(€)
allocates n sequential locations with values ey, ... e,. And disp(e) frees a
location.

The following grammar defines the syntax of the programming language,

C.

C = skip|c|Cy;Cy|if Bthen C else Cy | while B do C' |
resource 7 in C' | with 7 when B do C' | C || C

The set of modified variables by a program C, mod(C'), consists of all
variables x such that the program C' has one of the following commands:
x:=e, x:=[e] or x:=cons(e).

The set of resources occurring in a command C' is denoted by Res(C)
and it consists of all resources names r such that C' has one of the following
commands: with » when B do C', resource r in C.

The substitution on C' of a resource name r for a resource name r’ not
occurring in C'is denoted by C[r'/r].

The set of auxiliary variables have been useful to deduce more specific
post conditions for a program’s specification, see e.g. [10]. Those variables do
not impact the flow of the program. Next, we give the definition of auxiliary
variables for a command.

Definition 2. Let C' € C. We say that X is a set of auxiliary variables for
C' if every occurrence of x € X in C' is inside an assignment to a variable in

X.

After we have used the auxiliary variables to deduce a specification, we
want to remove them from the program. We replace every assignment to
an auxiliary variable by the command skip. This replacement is denoted by

O\ X.

2.3 Inference rules

In this section, we present the most relevant inference rules for CSL as stated
by Brookes [4]. First, we define what is a well-formed specification in CSL.

Definition 3. Let I' be a resource context, A C Var, P,(Q assertions and
C € C. The specification of a program has the form

[Ea {P}C{Q}.

Moreover we say that the specification of the program is well-formed, if
FV(P,Q) C A and FV(C) C AUPV(D).

In Figure 2, we present some inference rules of CSL. The inference rules
are only applied for well-formed specifications. The specifications derivable
by SL are denoted by F5%.

The rule for basic commands are inherited from SL by adding the rely-
set (containing all relevant variables for the derivation) and imposing that
protected variables are not modified. The sequential and frame rules are
very similar to the respective rules of SL, but the rely-set needs to take
into account the rely-sets of both programs or the variables of the framed
assertion.

In the critical region rule, if the command inside the critical region pre-
serves the invariant, when B is initially respected, then the resource context
can be expanded by r. Note that the rely-set does not need to include all
protected variables, however the well-formedness of the specification must be
preserved. In the local resource rule, we are able to take out a resource from
the assumption’s resource context to the conclusion’s local condition. The
parallel rule (PAR) has the side condition below that restricts the interference
between programs.

mod(Ch) N Ay = mod(Cy) N Ay = 0. (*)

Cha {P}CH{P} T ha, {P}C{Ps}
r l_AlUAQ {Pl}Cl , Cz{Ps}

(SKP) (SEQ)

I {P}skip{P}

mod(c) ¢ PV(T) FF{P}e{Q} ['Fa {P}C{Q} mod(C)NFV(R)=10
I't4 {P}c{Q} ['Favrviry {P* RYC{@Q * R}
I'+4{PABC{P} ['Eg {PIC{Q1} T Ea, {P}C{Qs}

F}_A {P}WhlleBdO C{P/_'B} () F"AluAg {Pl/\PQ}C{Ql/\QQ}

(BC) (FRA)

(CONJ)

I'Ea {PABICH{Q} T'hay, {PABIC{Q}
[Fa,u4, {P}if B then C) else Co{Q}

(IF)

PEa{P}C{Q} FP =P FEQ=Q ACA
I'Ea {P}C{Q'}
IFax {P}C{Q} XNFEV(P,Q)=0 XNPV()=0 X isauxiliary for C
I'Fa{P}C\ X{@}

Ui’ /r) b4 {P}C[r" /r][{Q} 1" ¢ Res(C) 1’ ¢ Res(T)

i {PYC{Q}
DEa {PCH{Q1} T ha, {P}C{Q2}
I'Faua, {PL* P}C || Co{Qr + Q)

['taux {(P A B) * R}C{Q % R} [,r(X): Rty {P}C{Q}

[, 7(X) : R F4 {P}with 7 when B do C{Q} I'Faux {P = R}resource 1 in C{@ * R}

(CONS)

(AUX)

(REN)

™) paR)

(CR)

(RES)
Figure 2: Rules of the Inference System

In order to obtain the inference rules of DCSL we erase the rely-set from
the CSL inference rules and change the side condition in the parallel rule
(PAR) to the following condition:

mod(C’l) N FV(PQ, CQ, QQ) = mod(Cg) N FV(Pl, Cl, Ql) = (Z)

Note that every valid specification in DCSL is also valid in CSL, consid-
ering that A; = FV(P;, C;,Q;), for i = 1,2.

3 Motivating examples

3.1 Semaphore

In this example, we present a simple binary semaphore for two threads. Sim-
ilar examples were studied in |7, Section 4]|. We use the resource invariant to
infer the properties of mutual exclusion, absence of deadlocks and starvation.
This example is a solution to the critical region problem in [1, Section
3]. In contrast to the usual solutions, we obtain a simpler solution for the
critical region problem, due to the command with r when B do C.
We have the following specifications for the thread p:

se(p,q) : S g {emp}P(p){emp},
se(p,q) : S to {emp}V (p){emp},

where
e S=[p=0Aq=0)V(p=1Aq=0)V(p=0Aq=1)] A emp,
e P(p) = with se when q = 0 do p:=1,
e V(p) = with se do p:=0.

Consider the next well-formed specification of programs.

l_{p,q} {(emp Aq =0)* S}

{q=0A emp}

p:=1
{pP=1Aq=0Aemp}
{emp * S’}

and

Fipay {empx S}
{{0=0Agq=0)V(0=0Aq=1)] Aemp}

p:=0
{l{r=0Aq=0)V(p=0Aq=1)] Aemp}
{emp x S’}

Applying the (C'R) rule we obtain the desired specifications. Considering
the analogous programs and derivations for the thread ¢ we obtain:

se(p,q) : S to {emp}P(g){emp},

se(p,q) : S g {emp}V (¢){emp},

where
e P(q) = with se when p =0 do gq:=1 and
e V(q) = with se do q:=0.

Using the (PAR) rule, we obtain the next specification.

se(p,q) : S o {emp}(P(p); VI(p)) Il (P(q); V(g)){emp}

This program is a solution to the critical region problem. Next, we add a
Critical Region between the operation P and () in the previous specification.
And, we discuss the properties of mutual exclusion, absence of deadlocks and
starvation.

Consider a Critical Region (C.R.) and the following program

pr=0; q:=0;
resource se in
while true do || while true do

P(p); P(q);
C.R; C.R;
V(p) V(q)

The execution of the program is inside the critical region for the thread
p (q), if p =1 (¢ = 1, respectively). The mutual exclusion follows from the
resource invariant S.

The execution of this program is free from deadlock, because the resource
invariant implies that one of the control variables p =0V q = 0.

After the execution of the critical region, the execution of V(p) or V(q)
allows the execution of P(p) and P(q). Assuming the fairness of the parallel
execution, the program is free from starvation.

3.2 Concurrent stack

First, to show that DCSL is not as expressive as CSL, we present an example
of parallel operations over a stack that cannot be proved correct in the former
but can be in the latter.

10

Let us specify a stack with operations pop and push. The stack is repre-
sented by the resource st in the following way

st({z,y}) : stack(z),

where {z,y} is the set of variables protected by st, and stack(z) is defined by
(z = null A emp) V (Fapz — a,b* stack(b)).
The operations pop and push over a stack are defined below.
pop(x1) = with st when —(z = null) do (y:=z; xl:=y ; zz=[y+1] ; disp(y+1)),
push(x2) = with st do (y:=cons(x2,z); z=y).

The operation pop picks the first node of a non-empty stack and passes
it to the variable x1. In the following specification, the program performs a
pop over a shared stack and it disposes the memory space retrieved by the
stack.

st(z,y) : stack(z) - {emp}pop(x1) ; disp(x1){emp}. (2)
To prove this result in DCSL, we use the rules of SL and the critical

region rule, by omitting the rely-set. Consider the following derivation, that
proves the validity of the program inside the critical region.

- {emp* 3., 2 a,bx stack(b)}
y:=z;
{emp * 3., y — a, b= stack(b)}
x1l:=y;
{emp x J,p X1 — a * y+1 — b= stack(b))}
z=[y+1];
{emp * 3, x1 — a *x y+1 — z * stack(z))}
disp(y+1)
{(3s x1 — a) * (stack(z))}

Applying the critical region rule, the resource st appears and we obtain,
st(z,y) : stack(z) b {emp}pop(x1){ 3, x1 — a}.

Using the sequential and deallocation rules of SL we get the specification (2).

Now, we turn our attention to the push operator over a stack, showing
that the following specification is valid in the context of DCSL. Let push
insert an element x2 in the top of a stack.

st(z,y) : stack(z) F {emp}push(x2){emp}.

11

As before, from SL inference rules, we obtain the specification below. Then
we can apply the critical region rule to obtain the specification above.

F {emp x stack(z)}
y:=cons(x2,z);
{y = x2,z * stack(z)}
{emp * 3, y — a, b * stack(b)}

z=y
{emp * 3, z — a, b= stack(b)}

Until now we have shown that each specification is derivable in DCSL;
now we want to study their parallel composition. To apply the parallel rule
we need that the variables modified by one program cannot occur free in the
other.

mod(pop(x1) ; disp(x1)) = {x1,y,z}, mod(push(x2)) = {y, z}.

The variables z and y are used in both specifications. Hence it is not
possible to apply the DCSL parallel rule and obtain a specification for the
parallel execution of pop and push.

In order to express the specification above in the context of CSL it is
necessary to define the rely-set for the operation of pop and push, that are
{x1} and {x2}, respectively.

It is straightforward, using the derivations above, to infer, in CSL, the
following specifications:

st(z,y) : stack(z) Fxay {emp}pop(x1) ; disp(x1){emp},

st(z,y) : stack(z) Fyoy {emp}push(x2){emp}.
To apply the CSL parallel rule, we need to check that there is no interfer-
ence between rely-sets and modified variables. Since mod(push(x2))N{x1} =
() and mod(pop(x1) ; disp(x1)) N {x2} = 0, by parallel rule we infer:

st(z,y) : stack(z) Fixaxey {emp}(pop(x1); disp(x1)) || push(x2){emp}.

As this example shows we can obtain, at least, simpler specifications using
CSL than DCSL, and prove correctness of more programs.

4 Operational Semantics

In this section, we describe a structural operational semantics (SOS) that
we use to prove the soundness of CSL. We mostly follow the approach of
Vafeiadis [16]. Let us introduce the concept of resource configuration, which
records the state of each declared resource.

12

4.1 Program transition

We start by extending the programming language with a command for exe-
cutions inside a critical region. We denote this command by within r do C,
where r is an acquired resource and C' is a command. In the extended
programming language, we can associate to each command a set of locked
resources, Locked(C') which is inductively defined by:

Locked(C, ; Cy) = Locked(CY),

Locked(C, || Cy) = Locked(Cy) U Locked(Cy),
Locked(resource r in C') = Locked(C) \ {r},
Locked(within r do C') = Locked(C') U {r},
Locked(C) = 0, otherwise.

Moreover the set of resources occurring in a command is extended with all
resources names 7 such that the command also includes within r do C.

Let O, L, D be disjoint pairwise subsets of resources names. We say that
p = (O,L,D) is a resource configuration, where O are resources owned by
the running program, L are resources locked by others programs and D are
available resources. The set of resources configurations is denoted by O.

We write r € p (r ¢ p) if r € (OULUD) (r ¢ (OULU D), respectively),
and (0, L, D)\ {r} = (O\ {r}, L\ {r}, D\ {r}).

Usually the state of a machine in SL consists of a storage, s, and a heap,
h. However, we define a program’s state by a triple (s, h, p). The program
transitions, that define the SOS, are represented by the relation —, defined
from the tuple (C, (s, h, p)) to (C’, (s', I/, p')) or the abort state (abort), where
C,C"eC, (s,h),(s,h) € Sand p,p' € O.

For a basic command ¢ we denote by [¢|(s,h) the result of executing ¢
for the pair (s, h), in the context of SL. The result of the execution of ¢ on a
pair (s, h) can be a pair (s, ') or abort. In Figure 3, we display the program
transitions.

Since most of the program transitions are standard, we only emphasize
how we manage the resource configuration. First note that it is not changed
by any transition of basic commands (BCT'). The acquisition of a resource
by the transition (W0) requires that the resource is available and transfers it
to the set of owned resources; the release of a resource made by (W2) returns
the resource to the set of available resources. The local resource command
does not add the resource to the resource configuration, since that would
break locality, i.e., the local resource should only be visible to who created
it. For the local resource we use the set of locked resources, Locked(C'), to
determine if a resource should be in the set of owned or available resources. In

13

017 (87 h7p) _>p Ci’ (Sl? h/”l)/)
C(1 ' 027 (37 ha P) _>p O{) 027 (Sla hl7 pl>

(51) (52)

skip; Cs, (s, h, p) =, Ca, (s, h, p)

LP
while B do C, (s, h, p) —, if B then C'; while B do C' else skip, (s, h, p) (LP)

Cla (Sa h: /)) _>P C{ (Sla h/,p/)
Cl H C27 (57 ha p) —p O{ H 027 (5,7 hl?/),)

s(B) = true
if B then C; else Cy, (s, h, p) =, C1, (s, h, p)

(P1)

(IF1)

027 (Sa h7 p) —p Cé* (Slu h/', Pl)
Gy H s, (57 h, P) —p Gy H 057 (5/7 h/a ﬂ/)

s(B) = false
if B then C else Cy, (s, h, p) =, Cs, (s, h, p)
rép
resource 1 in skip, (s, b, p) —, skip, (s, R, p) (R0)

(P2)

(IF2)

(P3)

skip||skip, (s, i, p) =, skip, (s, h, p)

C,(s,h,(OU{r},L,D)) =, C" (s,I,p) r¢p=(0,L,D) rée Locked(C)

1
resource in C, (s, h, p) —, resource rin C’, (s', I, p" \ {r}) (R1)

C,(s,h, (O, L,DU{r})) =, C", (s, I,p') r¢p=(0,L,D) r¢ Locked(C)

R2
resource 1 in C, (s, h, p) —, resource rin C", (s', W, p" \ {r}) (R2)

p=(0,L,DU{r}) p=(OU{r},L,D) s(B)=true
with ~ when B do C, (s, h, p) —, within r do C, (s, h, p/)

(W0)

reO C,(s,h,(O\{r},L,D))—,C" (s,N,(0,L, D))
within r do C, (s, h, (O, L, D)) —, within r do C’, (s, ', (O" U {r}, L', D’)

(W1)

p=0U{r},L,D) p=(0,L,DU{r})
within 7 do skip, (s, h, p) =, skip, (s, , p')

[c](s,h) = (',)
¢, (s, h, p) =, skip, (', I, p)

(W2) (BCT)

Figure 3: Program Transitions

14

rep
resource 7 in C, (s, h, p) —, abort

(RA) s W A)

with when B do C, (s, h, p) —, abort

r € Locked(C) C,(s,h,(OU{r},L,D)) —, abort (RAI) [c|(s,h) = abort (
resource 7 in C, (s, h, (O, L, D)) —, abort ¢, (s, h,p) =, abort

BCA)

r ¢ Locked(C) C,(s,h,(0,L,DU{r})) —, abort RAD
resource 7 in C, (s, h, (O, L, D)) —, abort (RA2)

Cy, (s, h, p) =, abort
Cy; Cy, (s,h, p) —, abort (54)

CJ (57 h7 p\ {7’}) _>P abort
within r do C, (s, h, p) —, abort

C1, (s, h, p) —, abort
C1 || Cy, (s, h, p) —, abort

(WAL (PA1)

r¢ 0 Cy, (s, h, p) —, abort
within + do C. (5. 1, (0,1, D)) =, abort ' A2 GGy, (5,7 p) =, abort A2

Figure 4: Abort Transitions

Proposition 3, we prove that Locked(C') is equal to the set of owned resources
along an execution starting in a non-extended command.

In Figure 4, we include transitions that abort. As in SL, a memory
fault causes the program to abort. The parallel command aborts if one of
its commands aborts. The local resource command aborts, if the command
tries to create a pre-existing resource. The critical region command aborts if
it tries to acquire an undeclared resource, if the execution inside the critical
region aborts, or if an acquired resource is not in the set of owned resources.

Next, we check that program transitions are well-defined.

Proposition 2. Let C,C" € C, (s,h),(s,h') € S and O,L,D,0", L', D" C
Res. If (O,L,D) € O and

C,(s,h,(O,L,D)) =, C" (s}, (O',L',D")),
then (O',L',D"Ye€ O, L=L andOUD =0"UD".
Proof. We prove the result by induction on the rules of —,,.
Let C,C" € C, (s,h),(s,h) € S, O,0,L,L',D,D" C Res such that
(O,L,D) € O and
C,(s,h,(O,L,D)) =, C" (s,h, (O, L', D")).
The proof is immediate for the rules (S1), (5S2), (LP), (IF1), (IF?2),
(P1), (P2), (P3), (RO) and (BCT).

15

If the transition is (R1). We have that » ¢ (O, L, D), C' = resource r in C,
C" = resource in C" and r € Locked(C') such that

C,(s,h,(OU{r}, L,D)) —,C" (s, 1, (0", L", D"),

where (O, L", D")\ {r} = (O, L', D).
By induction L = L”, (O",L",D") € O and OU{r}uD = 0O"UD".
From r ¢ L, it follows that r ¢ L”. Hence L = L. Because r ¢ (O, L, D),

O'uUD =(O"uD"Y\{r}=OuUu{r}uD)\{r}=0UD.
From O' = O" \ {r} and D' = D"\ {r}, we obtain that
o'nD =O"\{r})yn(D"\{r}) CO"nD" =0,

O'NL ="\ {r})nL" Co"NL" =4,
D,mL/ — (Dl/\{r})mL/l g D//mLIIIQ.

Hence (O', L', D’) € O.

The case (R2) is analogous to the previous one.

If the transition is given by (W0). We have D' = D\ {r}, O’ = O U {r},
L=1L"and r e D. And

OnNnD =Ou{rh)n(D\{r})=On(D\{r}) COnD=1,
onl=0Qu{rh)nL=0OnL)Uu{r}nL)={r}nL =90,
LI'nD' =Ln(D\{r})CLND=40.

Therefore (O, L', D") € O. Moreover, O'UD" = (OU{r})U(D\{r}) =
OUDand L=1".

If the transition is given by (W1). We have r € O, C' = within r do C
and C" = within 7 do C" such that

C, (s,h, (O\{r}, L, D)) —, C", (s, I/, (0", L", D")),
where O'=0"U{r}, L' =L1", D' = D".
By induction hypothesis, we know that (O”,L", D") € O, L = L” and
(O\{r})uD=0"uD".
Therefore L =L and OUD ={r}uO0”"UD"=0"UD'".
It remains to check that (O, L', D’) € O, this follows from
oOnNnL =00"u{rh)nL"=O0"NnL"YU{r}nL) =10,

oOnNnD =O"u{rh)ynD"=O"NnD"YU{r}nD") =0,

16

L'nD' =L"nD"=40.
If the transition is given by (W2). We have r € O, L= L', D' = DU{r}
and O' = O\ {r}. Note that

ONnL CcONnL=0,
O'ND = (O\{r})n(DU{r}) S (OND)U((O\{r})n{r}) =0,
I'nD =Ln(DU{r})=(LNnD)U(Ln{r}) =0.

Then (O',L',D') € O, L =L and O'UD" = (O\ {r}) U (DU {r}) =
OuUD. O

We say that a command C” is reachable from a CSL’s command C' if there
are (s, h,p), (s, 1, p) and k such that

C, (s, h,p) —)ﬁ (s 0P

and C, (s, h, p) 7@% abort for every j < k, where —>Ii) denotes the composition
of 7 transitions. In the next proposition, we see that owned resources are
equal to locked resources, along an execution starting from a non-extended
command.

Proposition 3. Let C,C" € C, (s,h),(s',1/) € S, p € O, T be a resource
context, and k > 0 such that C" is reachable from C.
If C,(s,h, (0,0, Res(T')) =F C", (s, I, p)), then

p' = (Locked(C"), 0, Res(T") \ Locked(C")).

Proof. Let C,C" € C, (s,h),(s',h') € S, p' € O, T be a resource context, and
k > 0 such that C’ is reachable from C'.
The proof is done by induction on k.
Let kK = 0. Then ¢’ = C'is a non-extended command and Locked(C) = ().
Let k =n + 1. Then there exist C”, s”, h”, p” such that

C,(s,h, (0,0, Res(T')) —, C", (s", 1", p") =, C", (s', 1, p').

Note that C” is reachable from C'. By the induction hypothesis on k, we
have that
p" = (Locked(C"),0, Res(I") \ Locked(C")).

Now, we prove the result from k to k£ + 1 by induction on the program
transitions. The proof is immediate or an immediate consequence of the
induction on the program transition for all transitions except (W0) and (1W2),
which change the locked resources.

However in both cases the resulting resource configuration preserves that

¢’ = (Locked(C"),0, Res(T") \ Locked(C")). O

17

The proposition above reinforces the idea that the transitions (R1) and
(R2) are well defined. Furthermore, it completely describes the resource
configuration along an execution.

4.2 Properties of program transitions

We state now the main properties of the program transitions. We start with
the safety monotonicity and the frame property that are essential to show
the soundness of the frame rule, as well as of the parallel rule. The property
of safety monotonicity and frame property original appears in the context of
Separation Logic and are still valid in the Concurrent Separation Logic.

Let h,g be heaps. If they have disjoint domains we write hlg, and we
denote by h W g the union of disjoint heaps. If g is a subheap of h, h\ g
denotes the heap h restricted to dom(h) \ dom(g).

Proposition 4. Let C € C, (s,h) € S, and p € O. Suppose hg is a heap
such that hLhp. If C, (s, h, p) #, abort, then C,(s,h W hp, p) #+, abort.

Proposition 5. Let C,C" € C, (s,h),(s',h') €S, and p,p’ € O.
Suppose hp is a heap such that hLhp. If C, (s, hWhp, p) —, C', (s', I, p)
and C, (s, h,p) /+, abort, then hp is a subheap of ' and

C,(s,h,p) =, C", (s, W\ hi, p).

The proofs follow a standard pattern (See 7 for the proofs).

By safety monotonicity and frame property we know that the execution
of parallel commands only affects his own heap; however it is necessary to
have dual properties for the resource configuration. Next, we state these dual
properties.

Proposition 6. Let C € C, (s,h) € S, and (O1UOs, L, D), (01, LUO,, D) €
O. If C,(s,h,(01,LU Oy, D)) +/, abort, then

C, (s, h, (01U Oy, L, D)) +, abort.

Proof. We will prove the contra-position by induction on the rules of —,.

Let C €C, (s,h) € S, and (O UO,, L, D), (01, LUOy, D) € O such that
C, (s, h, (01U Oy, L, D)) —, abort.

If the transition is given by (BCA). The transition is independent from
the resource configuration. Then

C, (S, h, (01, LU 02, D)) —p abort.

18

If the transition is given by (RA) or (W A). The conclusion follows from
re (Ol,L U OQ,D) iff re (01 U O,, L, D)

If the transition is given by (W A2). We have r ¢ O1 U Oy. Then r ¢ O,
and

C, (s, h, (01, LU Oy, D)) —, abort.

If the transition is given by (PA1). We have
Ch,(s,h,(O1 U0y, L, D)) —, abort.

Using the induction hypotheses, C1, (s, h, (O1, LUO, D)) —, abort. Then
C, (s, h, (01, LU Oy, D)) —, abort.

The cases (PA2), (SA), (RALl), (RA2) and (WAL) are similar to the
previous case.]

The dual of the frame property for resource configurations is the following.

Proposition 7. Let C,C" € S, (s,h),(s,1) € S, and p1,p2,p € O such
that p/ = (O/,L,D/), P1 = (Ol U OQ,L,D) and P2 = (Ol,LU OQ,D). [f
C, (s, h, p2) #+p abort and C, (s, h, p1) —, C', (s, b, p'), then Oy C O" and

C, (8, h, pg) —p C/, (8/, h/, (O/ \ 02, LU 02, D/))

Proof. Let C,C",s,8',h,h',O1, L, Oy, D,0", D" as stated in the proposition.
Suppose that C, (s, h, (O1, L U Oy, D)) #, abort and

C, (8, h, (Ol U 02, L, D)) —p Cl, (SI, h/, (OI, L, DI))

The prove is done by induction on the program transitions.

If the transition is given by (S1), (LP), (IF1), (I1F2), (BCT) or (P3),
the transition does not depend on the resource configuration. Then, the
conclusion is immediate.

If the transition is given by (0).

We have C' = with when B do C, ¢" = withinrdo C, r € D, s(B) =
true, s =5, =h,O' =0, U0, U{r} and D' =D\ {r}.

Then Oy C O’ and O’ \ Oy = O1 U {r}. Therefore

C, (s, h, (01, LU Oy, D)) —, C", (s, K, (O’ \ Oy, LU Oy, D')).

If the transition is given by (W1).

19

We have C' = within 7 do C', €’ = within r do ", 7 € (O; U O3) N O’ and
C,(s,h, (0O, U0\ {r}, L, D)) =, C", (s, W, (O'\ {r}, L, D")).

From C, (s, h, (01, L U Oy, D)) +, abort, we know that r € O; and

C,(s,h,(O1\ {r},LUOy, D)) +, abort.

Now, we can apply the induction hypothesis to conclude that Oy C O"\{r}
and

C, (s,h, (O1\ {r}, LU 04, D)) =, C", (', 1, (O'\ {r}) \ Os, LU 05, D')).

Note that Oy C O\ {r} C O’ and (O'\ {r})\ O = (O"\ O2) \ {r}.
From r € O;NO" and r ¢ Oy, we know that » € O;N(O"\ Oy). Therefore

C, (s, h, (01, LU Oy, D)) —, C", (s, K, (O’ \ Oy, LU Oy, D')).

If the transition is given by (W2).

We have C' = within r do skip, C" = skip, ' = s, i/ = h, r € O; U O,
O =(01U0)\ {r} and D' = DU {r}.

As before, we know that » € O;. Hence we can rewrite the set of owned
resources in the following expression

O =01\ {r})UO,.
Then Oy C O and
C,(s,h,(0O1,LUOq,D)) =, C" (s, b, (O"\ Oy, LU Oy, D")).

If the transition is given by (R0).

We have C' = resource 7 in skip, C" = skip, s = s, K = h, r ¢ (O; U
Oy, L, D), O' =0, U0y and D' = D. Then Oy C O'.

From r ¢ (O, U Oy, L, D), we know that r ¢ (O, L U Oy, D). Therefore

C, (s, h, (01, LU Oy, D)) —, C", (s, K, (O’ \ Oy, LU Oy, D')).

If the transition is given by (R1).

We have C' = resource r in C', C" = resource r in C’, r ¢ (01U O, L, D),

r € Locked(C') and
C,(s,h, (0, U0, U{r}, L, D)) =, C" (s, 1, (0" L,D")),

such that 0" U D" = 0" U D" U {r}.

20

From C, (s, h, (01, LUO,, D)) +, abort, we know that ¢ (O, LUO,, D)

and

C,(s,h,(O1U{r}, LUOy, D)) +, abort.
By induction hypothesis, we have that Oy C O” and
C, (s,h, (O, U{r}, LU Oy, D)) =, C,(s,h, (0" \ O, LU Oy, D")).

From O” C O'U{r} and r ¢ O,, we have that Oy C O'.
Moreover, we get that (O”\ Oy) U D" = (O"\ Oy) U D" U {r}. Therefore

C, (s, h, (01, LU Oy, D)) —, C", (5,1, (O'\ Oy, LU Oy, D')).

The case (R2) is similar to the previous case.
If the transition is given by (P1).
We have C'= C || Cy, C" = C1 || Cy and

Cl, (S, h, (01 U 02, L, D)) —p C{, (8/, hl, (O/, L, DI))

And Cy, (s, h, (01, L U O4, D)) 4, abort, since C, (s, h, (O1,L U Oq, D)) #,
abort.
By the induction hypothesis, we conclude that Oy C O" and

C1, (s,h, (01, LUOgy,D)) =, C1, (s, 1/, (0" \ Oz, LU Oy, D")).
Therefore

C,(s,h,(0O1,LUOq,D)) =, C" (s, b, (O"\ Oy, LU Oy, D")).
The cases (P2) and (S2) are similar to the previous case. O

The previous propositions allow us to make a correspondence between the
transitions in a parallel execution to transitions of its commands executed
independently.

For the soundness of the renaming rule, we prove that the execution of a
program and its renaming version are equivalents.

Proposition 8. Let C,C" € C, (s,h),(s,h') €S, p,p' € O, and r,7" € Res
such that r' ¢ Res(C') and r'" & p.

1. C, (s, h,p) />, abort if and only if C[r' /7], (s, h, p[r’/T]) />, abort.
2. C,(s,h,p) =, C' (s, p) if and only if
Clr'/r], (s, hy plr'/r]) =, C[' /7], (s, W P /).

21

Proof. Let C,C" € C, (s,h),(s',h') €S, p,p € O, and r,7" € Res such that
r" ¢ Res(C) and 1" ¢ p.

Note that C[r’/r|[r/r"] = C and p[r'/r][r/r'| = p. Hence, we only need to
prove one direction of the equivalence. We prove both by induction on —,,.

For the first one, we suppose that C, (s, h, p) —, abort and prove that
Clr'/r], (s, h, plr'/r]) —, abort.

Suppose that the transition to the abort state is given by (BCA).

Note that the transitions is independent from the resource configuration
and C[r'/r] = C. Then

Clr'/r], (s, h, p[r'/7]) —, abort.
Suppose that the transition is given by (PA1). Then C' = C} || Cy and
C1, (s, h,p) —, abort.

We know that " ¢ Res(C}), because 1’ ¢ Res(C'). Using the induction
hypothesis, we have that

C1[r' /7], (s, hy pr'/7]) =, abort.

Hence
Clr'/r], (s, h, plr'/r]) —, abort.

The cases (P2) and (SA) are identical to the previous case.

Suppose that the transition is given by (RA). We have C' = resource # in C
and 7 € p.

Note that C[r'/r] = resource #[r' /r] in C[r'/r] and

rep it #r'/r] e plr’/r].
Therefore
C[r'/r], (s, h, p[r'/r]) —, abort.

The cases (W A) and (W A2) are analogous to the case before.)
Suppose that the transition is given by (RA1). We have C' = resource 7 in C,

7 € Locked(C) 7 ¢ p= (0, L, D) and

C, (s, h, (OU {#}, L, D)) —, abort.

We have that ' ¢ Res(C') C Res(C). From the induction hypothesis, we
conclude that

Clr'/r), (s, h, (O] /r) U {7 /r]}, L[r' /r], D[r' /7])) =, abort.

22

Note that C[r’/r] = resource #[r'/r] in C[r'/r] and

7 € Locked(C) iff #[r'/r] € Locked(C[r'/r]).

Therefore
Clr'/r], (s, h, plr'/r]) —, abort.

The case (RA2) is analogous to the previous case. .
Suppose that the transition is (W Al). We have C' = within 7 do C' and

€. (s.h,p\ {7}) =, abort,

We know that ' ¢ Res(C) and 1’ ¢ p\ {#}, because r’ ¢ Res(C) and
" ¢ prespectively. By induction hypothesis, we have the following transition

Cr' /1], (s, by (p\ {7} /r]) = abort.
Note that (p \ {7})["/r] = p[r’/r] \ {#[r'/r]}. Therefore
Clr'/r], (s, h, plr'/r]) —, abort.

This concludes the proof of the first equivalence. For the second equiva-
lence, we suppose that C, (s, h, p) —, C’, (s, h', p'). And show that

Clr'/r], (s, hy plr'/r]) =y O 7], (s, W 0T /).

Suppose that the transition is given by (BCT), (LP), (IF1), (IF2),
(S1) or (P3). The transition does not depend in the resource context or the
resource names. So, C[r'/r], (s, h, p[r'/r]) —, C'[r' /7], (s, W, p'[r"]7]).

Suppose that the transition is given by (P1), (P2) or (S2). Using the
induction hypothesis, it is straightforward that

Clr'/rl, (s, by plr'fr]) =y C'T'fr], (8 00 P /).

Suppose that the transition is given by (R0). Then C' = resource 7 in skip,
C" = skip and 7 ¢ p. Note that 7[r'/r] & p[r’'/r]. Hence

Clr'/rl, (s, hy plr'/r]) =y CT' /7], (s, W 0T /).

Suppose that the transition is given by (R1). Then C' = resource " in C,
C" =resource 7 in C', 7 ¢ p, 7 € Locked(C) and

C,(s,h, (OU{#},L,D)) —, C", (s, W, p"),
where p" \ {r} = p'.

23

Note that ' ¢ Res(C) and ' ¢ (O U {r},L,D). By the induction
hypothesis, we have the following transition

Clr'/r], (s, h, (OU AR}, L, D)l Jr]) =, C' Jr), (8", 1, 0" /7).

Moreover, we know that (p” \ {#})[r'/r] = p"[r"/r] \ {#]r'/r]} = p/[r'/r] and
rlr'/r] € Locked(C[r'/r]). Therefore,

Clr'/r], (s, hy plr'/r]) =y O [r], (s, W 0T /).

The cases (R2) and (IW1) are analogous to the previous case.

Suppose that it is (W0). Then s(B) = true, C' = with # when B do C,
C" = within 7 do C, p = (O, L, DU {#*}) and o/ = (OU {7}, L, D).

When 7 # r, the conclusion is immediate. Suppose that 7 = r.

We have C[r' /7] = with 7/ when B do C[r'/r], C'[+' /r] = within 7 do C[r /7],
plr'/r] = (O,L,DU{r'}) and p'[r'/r] = (OU{r"}, L, D).

It follows that

Clr'/rl, (s, hy plr'/r]) =y O [r], (s, 1 0T /).

The case (W2) is analogous to the previous case. 0

5 Validity

In this section, we start by defining the validity of specifications in the SOS
presented before. This captures the idea that a specification is valid if and
only if every execution starting from a state that respects the precondition
and the shared state is not faulty and if it terminates, then the postcondition
and the shared state are respected.

Let I" be a resource context and D = {r;,,...,r;, } € Res(I'), we define
@L(r)=Ry*x...xR;,, invl):= & I(r).
reD reRes(T")

Definition 4. We write I' = {P}C{Q}, if for every (s,h) € S such that
s,h = Pxinv(l), we have that

o C, (5,h,(0,0,res(')) A% abort, for every k > 0. And
o [f there exist (s',h') € S and k > 0 such that
C, (s,h, (0,0, res(I"))) =% skip, (s, 1, (0,0, res(T))),
then s',h' = Q x inv(T).

24

However we were not able to inductively prove the soundness of CSL using
this notion, because we can not emulate the change of parallel execution in
all its parts. The rest of this section is devoted to see how we overcome
this difficulty. Thus we introduce the environment transition, that will be
essential to spread changes made in the state by one program to other parallel
programs. And we give a refined notion of validity for the SOS extended with
the environment transition, this new notion is called safety. We finish this
section by seeing that safety implies validity.

5.1 Environment transition

In order to define the environment transition, we define the environment
transformation respecting a set of variables. This transformation modifies the
storage and the resource configuration, afterwards the environment transition
combines this transformations with modification in the shared state.

Definition 5. Let (s, h,(O,L,D)),(s',h, (O, L', D")) be states and A C

Var. We say that the environment transforms (s, h, (O, L, D)) into (s', h, (O, L', D))
respecting A and we write (s, h, (O, L, D)) s (s',h, (O, L', D)) if s(x) =

s'(x), for every x € A, and L' UD' = LU D.

Note that the environment transformation preserves the local heap and
the owned resources, since other programs cannot change them. Furthermore,

the environment transformation, «é/», naturally defines a relation between
states. It is easy to see that this relation is an equivalence relation and it
is order reversing with respect to A. In the next proposition, we state this
properties.

Proposition 9. Let A, A C Var. The relation s s an equivalence rela-
tion. If A" C A and (s, h,p) R (s', 1, p'), then (s, h,p) s (s', 1, p).

We denote the environment transition by £>6, it is a relation between
(C,(s,hWhg,p)) and (C, (s',hW hg, p')), where C' is a command and (s, h &
ha, p), (8", hWhy,, p') are states, and it is defined by the rule below. Consider

the set A" = AUU, cpockeaic) PV (r). IE (s, R, p) s (s".h,p'), s,he = ® I'(r)
reD
and s, hy, = re@%/F('r’), then

(E)
C, (s, h W ha, p) 5. C, (s hw hig, o)

As noted before the environment transition is used to simulate modifi-
cation done by parallel program. The environment transition can be used

25

to: change the storage, except for variables in the rely-set A or variables
protected by a locked resources; interchange locked resources and available
resource; and modify the available shared heap.

We extend the transitions on the SOS with the environment transition,
and we define the relation 25 from (C,(s,h,p))to (C",(s' 1, p')) or to abort,
where C, C" are commands and (s, h, p), (s, 1/, p') are states. This relation is
given by

AT AT
=, U

5.2 Safety

For a command C', we associate the set of variables passive to be changed
by C'in the next transition, and we denote it by chng(C'). This set consists
of all variables x such that C' can perform a transition using x:=e; x:=[e] or
x:=cons(e).

In the next definition of a program’s safety with respect to a state for
the following n transitions, we include some additional properties that will
be useful to prove the soundness of CSL.

Definition 6. Let C € C, (s,h) € S, p € O, T be a resource context,) be
an assertion and A C Var. We say that Safe,(C, s, h,p,T',Q, A) is always
valid, and Safe, (C,s,h,p,I',Q,A) is valid if:

(i) If C = skip, then s, h = Q;
(i1) C, (s, h,p) +, abort;
fii) chng(C) O U, epyp PV (r) = 0;
(iv) For every hg such that hlhg, s,hg E ® ['(r) and

reD
AL N
07<S7h’th7p) — C7<Sah7p>7
then there exist ' and hly such that h = I’ & hl,

s hg E ® T(r), Safe,(C', s b, 0, T,Q,A) is valid.

reD’

The property (i) states that if the execution terminates, then () is re-
spected. In the property (ii), we ensure that the next transition of C' does
not abort for the state (s, h, p). The property (iii) guarantees that the next
transition of C' does not change variables protected by resources not owned.

26

In the final condition (iv), we require that the available shared state is pre-
served after every transition and that the posterior transitions respects this
conditions.

In the next theorem, we see that if a program is safe for every number
of transitions and for every state that respects the pre-condition, then the
corresponding specification is valid with respect to the SOS. The theorem is
proved by induction on the number of program’s transitions.

Theorem 1. Let C' € C, let P,Q be assertions, let I be a resource context
and A C Var. If for every (s,h) € S and n > 0 such that s, h = P, we have
that Safe, (C,s, h, (0,0, Res(T')), T, Q, A) is valid, then

I'E={PrC{Q}.

In order to prove the soundness of CSL, by the theorem above, is sufficient
to show that every derivable specification on CSL implies safety, a result we
prove in the next section.

6 Soundness

We sketch here the soundness of CSL with respect to the SOS. First, we
state the main result of this work, the soundness of CSL. Next we present an
intermediate theorem that, together with the Theorem 1, proves the main
result. The intermediate theorem says that every derivable specification in
CSL is safe in the extended operational semantics.

Theorem 2. IfI' F4 {P}C{Q}, then I = {P}C{Q}.

Theorem 2 is an immediate consequence of the next theorem and Theo-
rem 1.

Theorem 3. Let C be a command, let P, () be assertions, let I" be a resource
context and A C Var. IfT' Fa {P}C{Q}, then for every (s,h) € S and
n > 0 such that s,h |= P, we have that Safe,(C,s,h,(0,L,D),T,Q,A) is
valid, where L U D = Res(I').

In the next lines, we present a proof of this theorem by studying the
inference rules of CSL. The proof is carried by induction on the inference
rules and uses auxiliary results about the inference rules.

Proposition 10. Let (s,h) € S, let p € O, let T be a resource context, let
Q be an assertion and A C Var such that FV(Q) C A. If s,h = Q, then
Safe, (skip, s, h, p, T, Q, A) is valid for every n > 0.

27

Proof. Let (s,h) € S, let p € O, let I" be a resource context, let () be an
assertion and A C Var such that FV(Q) C A and s,h = Q.
We prove the result by induction on n. For n = 0, the result is trivial.
Let n = k + 1. The first properties of safety are immediate, because
s, h = @, the command skip does not abort and it does not modify protected
variables.

For the last property, let hg, C', s, h" and p’ be such that s, hg | ® ['(r)
reD

and Wt
skip, (s, h W ha, p) = ', (s', 1, p').

We note that the only possible transition of skip is an environment tran-
sition. Then C" = skip, s(z) = §'(x), for every x € A, and there is hy, such
that A’ = h @ hy, and

s hg E & T(r).

reD’

It is enough to check that Safey(skip, s', h, p', ', Q, A) is valid. But the en-
vironment transition does not modify the variables in the rely-set neither the
local heap. Therefore s', h |= @, by Proposition 1. And Safeg(skip, s, h, p/, T, Q, A)
is valid, by induction. O

In order to check the safety of basic commands rules (BC'), we argue
mostly as in the context of SL. Like in SL, we know that if a state respects
the precondition, then the execution does not abort and the state reached
after the program transition (BCT) respects the post condition.

Proposition 11. Let ¢ be a basic command, let P, be assertions, let T’
be a resource context, let (s,h) € S, let p € O and A C Var such that
FSELPY{Q)} and FV (P, c,Q) C A. If s,h |= P and mod(c) ¢ PV (T'), then
Safe,(c,s,h,p, T, Q, A) is valid, for alln > 0.

Proof. Let ¢ be a basic command, let P, () be assertions, let I' be a resource
context, let (s,h) € S, let p € O and A C Var such that 7 {P}c{Q},
FV(P,c,Q) C A, s,h = P and mod(c) ¢ PV (T).

From F9 {P}c{Q}, we know that [c](s, h) # abort and [c](s, h) = Q.

We prove by induction on n that Safe,(c, s, h,p,I',Q, A) is valid. For
n = 0, the result is trivial.

Let n = k + 1. The first properties of safety are immediate, because
¢ # skip, [c|(s, h) # abort and mod(c) ¢ PV ().

For the last property, let hg, C', s, h" and p’ be such that s, hg | ® ['(r)
reD

and Ar
¢, (s,hWhg,p) — C' (s, 1, p).

We have two possibilities: a transition by the environment or by (BCT).

28

Suppose that it is an environment transition, then C’ = ¢, s(z) = §'(z),
for every x € A D FV(P), and there is hy, such that i’ = h @ hj, and
s' he = ® T(r).
reD’
Moreover, the precondition is preserved, s';h = P. So we can apply the
induction hypothesis to see that Safe, (c,s', h,p',[',@Q, A) is valid.

Suppose that it is a transition by (BCT), then C' = skip, (s',h') =
[c](s,hW hg) and p/ = p. Using the frame property, Proposition 4, we know
that b’ = h" W hg, where [c|(s,h) = (s, ") E Q.

Therefore, by Proposition 10, we have that Safe, (skip, s’, h”, p, ', Q, A) is
valid. This concludes the proof. O

The soundness of the rules (SEQ), (LP), (CONJ), (IF) and (CONS)
are a direct consequence of the inductive process.

The soundness of the frame rule (FRA) is supported by the following
proposition. It follows from the safety monotonicity and frame property
(Propositions 4 and 5). We note that R is valid after every transition, because
FV(R) is not modified by the command and the rely-set includes it.

Proposition 12. Let C be a reachable command, let I" be a resource context,
let (s,hWhg) €S, let p € O, let Q, R be assertions and A C Var such that
s,hr |E R. If Safe,(C,s,h,p,T,Q,A) is valid and mod(C) N FV(R) = 0,
then Safe, (C,s,hWhg,p,I',Q* R, AU FV(R)) is valid.

Proof. Let C areachable command, I" a resource context, (s,hWhg) € S, p €
O, Q, R assertions and A C Var such that s, hg = R, Safe,(C, s, h,p,I',Q, A)
is valid and mod(C) N FV(R) = .

We just show the inductive step of the proof. Let n =k + 1.

If C' = skip, then s,h = Q and s,hW hg = Q * R.

By Safe,(C,s, h,p,T',Q, A) and Proposition 4, we have that

C, (s,hW hg,p) /> abort,

and
chng(C) N U PV (r)=0.
reLUD

Therefore, the first properties of Safe,(C,s,hWhg, p,I',;Q* R, AU FV(R))
are established.

In order to check the last property. Let hg, C’, §’, b’ and p’ such that
haL(hWhg), s, ha = @DF(T) and

re

AUFV(R),T
—_—

Ca (Suhwh’R&Jthp) Cl7(Sluh/7pl)'

29

This transition can be a program transition or a environment transition.
Suppose that it is a program transition.
By frame property, Proposition 4, there is A” such that h' = h” W hp and

Ca (87 h¢ h’G7 p) —p 0,7 (Sla h”7 pl)

From the validity of Safe,(C,s,h,p,T',Q, A) and the transition above,
we know that there exists hy, C h”, such that Safe,(C’,s', K"\ hy, p/, T, Q, A)
is valid and

s hg E @ T(r).

reD’

From mod(C) N FV(R) = (), we have that mod(C") N FV(R) = () and
S,, hR): R.

By induction, Safep(C’,s', W' \ hy, p/,T,Q « R, AU FV(R)) is valid.
Suppose that it occurs an environment transition.

There exists hy; C b’ such that ¥ = hWhrWhe, s’ hy = ® I'(r), and
reD’

(s,h W hg,p) B (s',h & hg,p),

where A" = AU FV(R) U U,crockeacy PV (). And §',hr = R, because
FV(R) C A'.
Let A” = AU U, epockeaicy PV (r) C A'. Then (s, h, p) & (s',h,p'), and

C,(s,h W hg,p) AL C,(s',hWhg,p).

From the validity of Safe,(C,s,h,p,T',Q, A) and the transition above,
we have that Safe,(C,s' h,p/,T',Q,A) is valid.

By induction, we conclude that Safei(C, s', hwhg, o/, ', QxR, AUFV(R))
is valid. O

Next we study the parallel rule (PAR).

Proposition 13. Let Cy || Cy be a reachable command, let Q1, Qs be asser-
tions, let (s, h),(s,h1),(s,he) € S, let p,p1,p2 € O and Ay, Ay C Var.
Suppose that h = hy W hy, p = (01 U O, L, D), pp = (O1,L U Oy, D),
p2 = (02, LU Oy, D), FV(Q;) C A;, fori = 1,2, and Ay N mod(Cs) =
A2 N mod(Cl) = @

If Safe, (C1, s, h1, p1, T, Q1, A1) and Safe, (Cs, s, ha, p2, T, Qa, As) are valid
, then Safe,, (C1]| Co, 8, h, p, T, Q1 % Qq, Ay U Ay) is valid.

30

As before we prove this result by induction on n. The firsts three proper-
ties of safety are immediate from the safety of C'; and C5, and Propositions
4 and 6.

In order to apply the induction step we use the environment transition.
If the parallel execution transits by a program transition, then there are
three cases. First case, a transition is done by ;. We perform the same
transition on C; (by Propositions 5 and 7) and an environment transition on
(5, that replicates the changes performed by the program transition. This
environment transition exists because the variables modified by the program
C; are different from the rely-set A,. In the second case, a transition is
done by (5, and we do analogous transitions. The third case is the joint of
parallel commands. In this case, we do a reflexive environment transition on
C; and Cs. If the program transits by an environment transition, then we
perform the same environment transition on C; and C5. This environment
transition can be used because the rely-set of C || Cy includes the rely-set of
each command. Therefore we can apply the inductive hypothesis and obtain
the proposition.

Proof. Let C || Cy be a reachable command, let (s, h)(s, hq), (s, he) € S, let
P, p1, p2 € O, let Q1, Qs be assertions and Ay, Ay C Var such that h = hyWho,
P = (01UOQ, L, D), P1 = (01, LUOQ, D), P2 = (OQ, LUOl, D), FV(Ql) Q Al,
FV(QQ) Q A2 and A1 N mod(C'g) = AQ N mod(C’l) = @

We just prove the induction step for n = k + 1.

Suppose that the hypothesis is valid, i.e. Saferi1(Ch,s,hy, p1, T, Q1, A1)
and Safer1(Ca, s, ha, po, ', Qa, Ay) are valid.

The first property of Safe, (C || Ca, 5, h, p,I', Q1 % Q2, A1 U Ay) is trivial,
because C || Cy # skip.

Applying the safety monotonicity (Proposition 4) to the hypothesis, we
see that

Cl, (8, hl W hQ, p1> 7L>p abort 02, (8, hl W hg, pg) 7L>p abort.
Using Proposition 6, we obtain that
Ch, (s, h,p) #, abort Cy, (s, h, p) # abort.

Hence, we respect the second property C || Cy, (s, h, p) #, abort.

31

Using the hypothesis, we derive that

chng(C)N PV (r) =(chng(Ch) U chng(Cs)) U PV (r

LoD LoD
=(chng(Cy) N U PV(r)) U (chng(Cqy) N U PV (r
LoD LoD
C(chng(Cy) N U PV (r)) U (chng(Csy) N U PV(r
relLU relLU
O2UD O1UD
0.

And the third condition of Safe,(Cy || Cy, s, h, p,I', Q1% Q2, Ay UA;y) follows.
Now, we check the fourth condition. Let hg, C’, s, ' and p’ such that
s,hg | @ I'(r) and
reD

Cy || Ca, (5,71 & hy 8 gy, p) 22225

Cl7 (S/7 hl’ pl)'

There are four possible transitions.

Suppose that the transition is given by (P1). We have that C" = C7 || Cs
and

Cl, (S, hy W hy W hg,p) —7p C{, (8/, h,,pl).

The validity of Safey1(Ch, s, hi, p1, T, Q1, A1) implies that the command
C does not abort. Using the frame property (Proposition 5) and Proposition
7 we have that Oy C O', hy C h' and

Cl, (S, hl () hg, pl) —p Ci, (S/, 4 \ h2, (O/ \ 02, LU 02, D/))

Define g} := (O"\ O3, L U Oy, D'). From the hypothesis, we know that
there are b and hy, such that h'\ hy = hiWhy, Safer(Cl, s, by, pi, T, Q1, Ay)
is valid and

s hg E @ T(r).
reD’

In order to apply the induction hypothesis and conclude the validity of
Safer(C] || Ca, 8, by W ha, p/, T, Q1 x Qa, Ay U Ay), it remains to check that
Safer(Ca, s, ha, phy, T, Qa, Ag) is valid, where pl, = (Oy, LU (O’ \ Os), D’).

We know that s(z) = §'(z), for every = ¢ chng(Ch).

Note that chng(Cy) C mod(Cy) and Locked(Cy) C Oq, otherwise Cy will
abort by (WA2). Let Ay = A> U U, cppehea(c,) PV (r), using the hypothesis
we have that

32

chng(Cy) N Ay C (mod(Ch) N Az) U (chng(Ch) N U PV (r)) C0.

re0q

Hence s(x) = §'(x), for every x € Aj,.
From Proposition 2, we know that O; U D = (O"\ Oy) U D" and

LUO,UD=LU(O"\Oy)UD"

We have the environment transformation and environment transition

/

A
(Sv h’27 p2) ev\ae (Sla h27 /)/2)7

027 (S h’2 W hG7 p2) —>e 027 (8 h’2 W h’G7p2)
By hypothesis we conclude that Safey(Cy, s, ha, ph, ', Q2, As) is valid.
Therefore Safer(C] || Co, s’) Wha, p/, T, Q1 % Qa, A1 U Ag) is valid.
The transition (P2) is analogous to the transition (P1).
Suppose that the transition is given by (P3). We have C' = skip, C} =
skip, Cy = skip, 8 = s, ' = hW hg and p' = p.
Taking hy, = hg. We know that
s,hg = ® I'(r).

reD

Because Safen<5kip7 S, h'17 P1, F7 Qh Al) and Sa’fen(Skipu S, h27 p2F7 Q27 AQ)
are valid, we have that

S,hlLﬂhQ):Ql *QQ.
From Proposition 10, Safeg(skip, s, hy Wha, p, ', Q1% Q2, A1 U Ay) is valid.
Suppose that the transition is given by (E). Let

A=A UAU U PV(r).
r&Locked(C1 || C2)

We have that C" = Cy || Cy, pf = (01U Oy, L', D), (s,h p) (s h,p'),
and there exists hy, such that b’ = hy W hy W by, and

s’ he = ® T(r).

reD’

We know that s(z) = §'(z), for every x € A" and LUD = L' UOyU D'.
Then we have the following environment transformation

A/
(Sv h'17 pl) e\’&é (Sla h17 pI1>7

33

where py = (01, L' U Oy, D') and A} = A1 U U, cpopeaicny PV (r) € A

By the hypothesis, we conclude that Safey(C1, s, hq, pi, ', Q1, Ay) is valid.

Analogous, we obtain that Safeg(Cs, s, ho, ph, I, Q2, A) is valid, where
py = (Og, L' U4, D).

Therefore Safer(Cy || Ca, s, hiWhs, p/, ', Q1% Q2, A1 UAy) is valid, by the
induction hypothesis. O

The safety of the critical region rule follows from the safety inside the crit-
ical region. Because any environment transition performed before the critical
region does not break the precondition’s validity and when a program enters
a critical region its invariant is valid. Therefore the next result establishes
safety for the critical region rule.

Proposition 14. Let C' be a reachable command, let (s,h) € S, let I be a

resource context, let p = (O, L, D) € O, let Q, R be assertions and A C Var.

Suppose that r € O, I" =T, r(X) : R is a resource context and FV(Q) C A.
If Safe, (C,s,h,p\ {r},T,Q* R, AU X) is valid, then

Safe, (withinr do C, s, h, p,T", Q, A) is valid.

Proof. Let C' be a reachable command, let (s,h) € S, let T be a resource
context, let p = (O, L, D) € O, let Q, R be assertions and A C Var such that
re O, I"=T,r(X) : R is a resource context, Safe,(C,s,h,p\ {r},T,Q *
R, AU X) is valid and FV(Q) C A.

We prove by induction on n that Safe,(within rdo C,s,h,p,I",Q, A) is
valid. For n =0, it is trivial.

Let n = k + 1. The first property is immediate, because within r do C' #
skip.

From Safe,(C,s,h,p\ {r},T,Q* R, AU X) be valid, we know that

Ca (87 hv p\ {T}) 7L)p abort.
Together with » € O, we have the second property
within 7 do C, (s, h, p) />, abort.

From Safe,(C, s, h,p\{r},T,Q+ R, AUX) be valid and r € O, we know
that within r» do C' does not change variable protected by resource in L U D.
Then, the third condition is respected.

Let hg, C', §', b/ and p' such that s, hg = ® I'(7) and

FeD
within » do C| (s, h W hq, p) ALl (s 1 p).

34

There are three possible transition: (W1), (W2) or (E).
Suppose that it is (W1). We have ¢’ = within 7 do C', r € O N O’ and

C, (s, W ha, p\ {r}) =, C, (', B, 0\ {r}).
From Safe,(C,s,h,p\{r},T,Q* R, AU X), we know that there are h,
R such that b’ = b, W hy, Safep(C,s' b, p\ {r},T,Q R, AU X) is valid
and
s’ he = ® T(7).

FeD!
From r € O, we conclude that s', h, = & I7(7).
reD’

From Safey(C, s by, P \{r},T,Q * R, AU X) and the induction hypoth-
esis, we obtain that Safey(within r do C,s', b}, o/, TV, Q, A) is valid.

Suppose that the transition is given by (2).

We have that C" = skip, C' = skip, s = ¢/, b’ = hW hg, O' = O\ {r},
L' =L and D' = DU{r}. From Safe,(skip,s,h,p,I', @ * R, AUX), we have
that

s,h = Q x R.
Then there exists hg C h such that s,hr = R and s,h \ hg = Q. Then

S,thhR): ® FI<7A“)
reD’

By Proposition 10, FV(Q) C A and s,h \ hg = @, we conclude that
Safer(skip, s, h\ hg, o', ", Q, A) is valid.
Suppose that the transition is given by (F). Let
A=AupPvinu |J PV,
7€ Locked(C')

We have C" = within r do C, (s, h, p) & (s', h,p') and there exists hy, C
R’ such that h' = h @ hy, and

s hg E @ V(7).
FeD
From r € ONO’', we get that s, h;; = ® I'(7) and s,h¢g = ® (7).
reD PeD
Note that A" = AUXUU;cppereao) PV (7) and the environment transition

C, (s, hWha, p\ {r}) 255, €, (s, hw iy, p\ {r)).
From the validity of Safe,(C,s, h,p\{r},I',Q* R, AU X), we have that
Safer(C s h,p \{r},,Q+ R, AU X) is valid.
Therefore, by induction, Safex(withinrdo C,s' h,p/, IV, Q,A) is valid.
U

35

In the proposition below, we give properties for the local resource when
the resource is available or locked, similar to [16, Lemma 4.3] in DCSL. The
soundness of the local resource rule follows from the second property of the
proposition.

Proposition 15. Let C' be a reachable command, let (s,h) € S, let I be a
resource context, p = (0O, L, D) € O, let Q, R be assertions and A, X C Var.
Suppose that r ¢ p, I' =T ,r(X) : R is a resource context and FV(Q) C A.
We have the following statements:

e Suppose that r € Locked(C'). If Safe, (C,s,h,(OU{r}, L, D),1",Q, A)
is valid, then Safe, (resource r in C,s,h,p,T',Q* R, AU X) is valid.

e Suppose that r ¢ Locked(C') and that there exists hg such that hpLh
and s,hgr = R. If Safe, (C, s, h,(O,L,DU{r}),T",Q, A) is valid, then
Safe, (resourcer in C,;s,h W hgr,p,[',Q*x R, AU X) is valid.

This proposition is proved by induction on both properties in the following
way: first we prove that both properties are true when n = 0; then we assume
that both properties are true for n > 0 and prove that each property is true
for n + 1.

The program transitions inside the local resource have an equivalent pro-
gram transition for the command C', except for the transition (R0). In those
cases we apply one of the inductive step depending on resource’s ownership.
For the case (R0), we note that the execution inside the local resource had
terminated and the invariant R is respected. If the local resource transits by
an environment transition, then there is an equivalent environment transition

in C.

Proof. Let C' be a reachable command, let (s,h) € S, let I be a resource

context, p = (O,L,D) € O, let Q, R be assertions and A, X C Var such

that r ¢ p, I' = T',r(X) : R is a resource context and FV(Q) C A.
Consider the next statements:

P(n) 1If r € Locked(C) and Safe,(C, s, h,(OU{r}, L, D), 1" Q,A)
is valid, then Safe,(resource rin C, s, h,p,I',;Q « R,AU X) is
valid.

Qn) If r ¢ Locked(C), Safe,(C,s,h,(O,L,D U {r}),I.Q,A)
is valid and there exist hrlh such that s,hgr = R, then
Safen(resource rin C,s,hwW hg,p,I',Q * R, AU X) is valid.

We prove the result in three steps. First, we note that P(0) and Q(0) are
true. Next, we see that P(n) A Q(n) = Q(n + 1), for every n > 0. Last, we
show that P(n) A Q(n) = P(n+ 1), for every n > 0.

36

Next, we suppose that P(n) A Q(n) is valid and show that Q(n + 1) is
valid.

Suppose that Safe,1(C, s, h, (O, L, DU{r}),I",Q, A)isvalid, s, hg = R,
hrLh and r ¢ Locked(C).

The first property of Safe,(resource r in C, s, hhg, p, ', Qx R, AUX)
is immediate, because resource r in C' # skip.

From Safe,.1(C,s,h,(O,L,D U {r}),I",Q,A) and Proposition 4, we
have

C,(s,hW hg, (O,L,DU{r})) /4, abort.

Note that r ¢ p U Locked(C'). Hence resource rin C,(s,h & hg,p) #p
abort. And the second property is valid.
From Safe,1(C, s, h, (O, L,DU{r}),1",Q, A), we know that

chng(resource rin C') N U PV (7) C chng(C) N U PV (1) = 0.

FeELUD rELUDU{r}

Hence, the third property is respected.
Let hg, C', §', ' and p’ such that s, hg = ® I'(7) and

reD

resource 7 in C, (s,h W hg W hg, p) AXL, C' (s p).

Next, we study the possible transitions: (R0), (R2) or (E).
Suppose that the transition is given by (R0). We have that C' = C" = skip,
s'=s, W =hWhrWhg and p' = p. Consider hy; = hg. Then h, C ' and

s,hg |E ® I(7).
reD
From Safe,.1(skip, s, h, (O, L, DU{r}), 1", Q, A), we have that s,h = Q.
And s,h hp = Q * R.
Hence Safe,(skip,s,hWhg,I',Q* R, AU X) is valid, by Proposition 10.
Suppose that it is (R2). We have that ¢’ = resource r in C' and

C,(s,htd hg W hg, (O, L,DU{r})) —, C, (s, 1, p"),

where p' = p” \ {r}. Note that s, hgwWhg = & T'(7).

reDU{r}
From Safe,1(C,s,h, (O, L, DU{r}),I",Q, A) and the transition above,
we know that there is hf, such that hy, C b/, Safe,(C,s', '\ hg, p". 17,Q, A)
is valid and

S L E @ T(F).

r"eDlI

37

In order to prove that Safe, (resource 7 in C, s, W'\ he, p/,T,Q*xR, AUX)
is valid, we need to apply the hypothesis P(n) or Q(n), respectively, if r € O”
or r € D". Note that r ¢ L”, by Proposition 2.

We observe that r € O” if and only if the resource r was acquired in the
transition above.

If r € 0", then r € Locked(C). From Safe,(C,s h \ he, p", 17, QL A)
and P(n), we have Safe,(resource r in C,s' W \ hg o, T,Q %« RyAU X)) s
valid.

If r € D", then r ¢ Locked(C'). We remark that

" hy I'(7) =R r'r)|.
Szl o U6 =R 5 10))

Then there exists h; C hg such that s', by = R. Therefore, by Q(n),
Safey,(resource rin C,s', b \ hiy Whiy, p/, T, Q % R, AU X) is valid.
Suppose that the transition is given by (F). Let

A=AUXU U PV (7).

7€ Locked(resource r in C)

We have C' = resource 7 in C, (s,h W hg, p) A (s’ h W hg, p') and there
exists hy; C A such that ' = hw hp W h, and

S b ® D).

reD’

Let A" = AU Uscpoeheacy PV (7). From r ¢ Locked(C), we have that
Locked(C) = Locked(resource r in C') and A” C A’. Therefore

(s,h, (0, L, DU{r})) & (', h, (O, L', D' U {r})).

From FV(R) C X C A’ and Proposition 1, we have that ¢, hgp = R.
Moreover, we know that

s,heWhplE ® T'(F), s ShaWhrlE & T'(7).

reDU{r} reD'U{r}
Then, we have the following environment transition
C. (s, hwhpWhe, (0, L, DU{r})) 25, €, (s hwhpWhiy, (O, L', D'U{r})).
From Safe, 1(C,s, h, (O, L, DU{r}),I",Q, A) and the environment tran-

sition above, it follows that Safe,(C, s’ h, (O, L', D'"U{r}),I",Q, A) is valid.
By Q(n), we have Safe,(resource rin C, s’ hWhg,p/,I',Q « R, AU X).

38

To finish, we prove that P(n) A Q(n) implies P(n + 1).

Suppose that r € Locked(C') and Safe,1(C,s, h,(OU{r}, L, D), 1", Q, A)
is valid. Analogous to the previous case, we prove the first three properties
of Safe,1(resource rin C, s, h,(O,L,D),T,Q* R, AU X).

Let hg, C', §', b/ and p' such that s, he = A®DF('F) and

re

resource r in C, (s, h W hg, p) AL (s 1 p).

There are two possible transitions: (R1) or (E). .
Suppose that the transition is (R1). We have C’ = resource r in C' and

C,(s,hWhg, (OU{r},L,D)) =, C, (s 1, p",

where p' = p” \ {r}. Note that ® ['(#) = & I"(7).
FED feD
From the validity of Safe,1(C,s,h,(OU{r},L,D),I",Q,A) and the
transition above, there is hy, such that hy, C b/, Safe,(C, s, M\hg, p", 1", Q, A)
is valid and

s ho E @ T'(7).
feD//
As before, we study two cases: 7 € O” or r € D”. In this case, we observe
that r € D" if and only if the resource r was released in the transition above.

If r € O", then r € Locked(C) and s’ h; = ® I'(7).
reD!
By P(n), we obtain Safe,(resource rin C, s, h' \ hiy, p/, T, Q x R, AU X).

If r € D", then r ¢ Locked(C) and &® I"(r) = Rx & I'(#). Moreover
D"

reD!
there exists h C hg such that s, by = R.
By Q(n), we have Safe,(resource rin C, s', W'\ hi;Wh’g, p/, T, Qx R, AUX).
Suppose that the transition is given by (FE). Let

A'=AUXU U PV (#).

7€ Locked(resource r in C')

We have that C' = resource rin C, (s,h W hg, p) A (s',h W hg,p') and
there exists hy; C ' such that A’ = h W hg W hy; and

s’ he = ® T(7).

reD’

From Locked(resource rin C') U {r} = Locked(C') and PV (r) = X,

A=Au) PV@H).

7€ Locked(C)

39

We have the environment transformation
(s,h, (OU{r},L,D)) < (s',h, (O' U {r}, I/, D')).
And the environment transition
C, (s,h W he, (OU {r}, L, D)) 255, O, (s', h & s, (O' U {r}, L', D')).

From Safe,1(C,s, h,(OU{r}, L, D),I",Q, A) and the environment tran-
sition above, it follows that Safe,(C, s, h, (O'U{r}, L', D"),T",Q, A) is valid.
By P(n), Safe,(resource rin C,s' h,p/,I',Q +* R, AU X) is valid. O

The soundness of the renaming rule follows from the next proposition
which is a consequence of Proposition 8.

Proposition 16. Let C' be a reachable command, (s, h, (O, L, D)) be a state,
A C Var, I' a well-formed resource context and r,r" resource names such
that ' ¢ Res(C), r' ¢ Res(I') and OU LU D = Res(I').

If Safe,(C[r'[r], s, h, p[r'/r],T[r" /7], Q, A) is valid, then

Safe,(C,s, h,p,I',Q,A) is valid.

Proof. We prove the proposition by induction on n. Let C be a reachable
command, (s,h, (O, L, D) be a state, A C Var, I' a well-formed resource
context and r, 7" € Res such that " ¢ Res(C), " ¢ Res(I'), OULUD =
Res(I') and Safe,(C[r'/r],s, h, p[r'/r],T[r' /7], Q, A) is valid.

First, note that r ¢ p, because 1’ ¢ Res(I') and O U LU D = Res(I').

For n =0, it is trivially true. Let n =k + 1.

Because Safe,(C[r'/r],s, h,plr'/r],T[r'/r],Q, A) is valid. If C' = skip,
then C[r'/r] = skip and s,h = Q, .

So the property (i) of Safe,(C,s,h,p,T',Q, A) is verified.

From Safe,(C[r'/r],s, h, p[r'/r],T[r"/r],Q, A) and Proposition 8,

Clr'/r], (s, h, plr'/r]) #+, abort.

Hence, we have the property (ii) of Safe,(C,s,h,p,I',Q, A).
From Safe,(C[r'/r],s, h, p[r' /], T[r"/r],Q, A) be valid, we have

chng(C) N U PV(#) = chng(Clr'/r]) N U PV (r)=10.

FeELUD re(LUD)[r’ /7]

Then the property (7i7) of Safe,(C,s, h,p,I',Q, A) is respected.

40

Let hg, C', §', ' and p’ such that hgLh, s,hg = ® ['(7) and

reD
AL~ g
C, (s,hW hg,p) = C', (s, 1, p).

Note that C" is a reachable command. By Proposition 8, we have that

CI /7], (s, bW ha, plr! Ir]) 222 0], (s, 1, 9 [7).

Moreover, we know that

s,he =B @ T /r](r).
FeDIr! /r]
By Safe,(C[r'/r],s, h, p[r'/r],T[r' /7], Q, A) and the transition above, there
exists hy, such that hy, C A/, Safep(C'[r'/r],s' W'\ hg, p'[r' /7], L[/7], Q, A)
is valid and

s hgE - ® T/r](7).

FED![r! 7]
It is easy to see that s, hy, = fgl%lf(f).

By induction hypothesis, Safe,(C’,s',h' \ hg, o/, ', Q, A) is valid. O

To prove the soundness of the rule for auxiliary variables, we have the
following result.

Proposition 17. Let C be a reachable command, (s,h),(s',h) € S, p € O,
Q an assertion, A, X C Var, I' a resource context and | € Ny such that X is
a set of auziliary variables for C', | is the number of assignments to auziliary
variables in C, FV(Q) C A and X N (PV(T) U FV(Q)) = 0.

If Safe,(Cys,hyp,T,Q, AU X) is valid and s(x) = s'(x), for every
x & X, then Safe,(C\ X,s' h,p,T',Q,A) is valid.

Proof. Let C' be a reachable command, (s,h),(s';h) € S, p € O, @ an
assertion, A, X C Var, I' a resource context and [€ Ny such that X is a
set of auxiliary variables for C', [is the number of assignments to auxiliary
variables in C, FV(Q) C A, X N (PV(I)UFV(Q)) =0, s'(x) = s(z), for
every x ¢ X and Safe,(C,s, h,p,I',Q, AU X) is valid.

The proof is done by induction on n. If n = 0, the conclusion is valid.

Let n =k + 1.

Suppose that C'\ X = skip. Then C' = skip or C' = x:=e, where x € X.

First, we assume C = skip. From Safe,(skip, s, h,p,I',;Q, AU X), we
have s,h = Q. If s(y) = §'(y), for every y € FV(Q) C Var \ X, then

s hE Q.

41

Now, we assume C' = x:=e, x € X. Consider the transition given by
(BCT)
C, (s, h, p) —p skip, (s", h, p),

where s(y) = s”(y), for every y ¢ X.

Then Safe, ;_1(skip, s”, h, p, T, Q, AUX) is valid and n+{—1 > 0. Hence
s h = Q and s, h = Q.

The above leads to the first property of Safe,(C\ X,s, h,p,I',Q, A).

From Safe,.,(C,s,h,p,I',Q, AU X), we know that the execution of C'
does not abort, for (s, h,p). The command C'\ X substitutes assignments
by skip, so the execution of C'\ X does not abort, for (s, h, p). Changing the
value of auxiliary variables X does not introduce aborts in the execution of
C'\ X. Hence

C\ X, (s, h,p) #, abort.

The second property of Safe,(C\ X, s, h,p,I',Q, A) is verified.
Note that chng(C\ X) = chng(C)\ X. From Safe,(C,s, h,p,T',Q, AU
X),
chng(C\X)n | PV(r) Cchng(C)n | PV(r)=0.
re LUD reLUD
This establishes the third property of Safen(C \ X,s h,p,Q,A).
Let he, C, &, h and p such that hgLh, s he = @DT(r) and

AT A

C\ X, (s, hWhg,p) == C,(3,h, p).

Suppose that it is a program transition. A A
We observe that there exists C’, 8" and j such that C"\ X = C, §'(z) =
s(x), for every x ¢ X, 7 =1(C) — I(C") and

~

C,(s,hWha,p) =31 C" (8, h, p).

From SafenH(C’ s, h,p,T',Q, AU X), we know that there is hj, C h such
that Safenyi_;_1(C", 8, h\ hiy, p,T,Q, AU X) is valid and &, hl, |= ® I'(r).

reD
Then §, hy, = ®AF(7’), because §'(z) = §(z), for every x € PV(I') C Var)\ X.
reD
Note that j is the number of assignments to auxiliary variables in .
By the induction hypothesis, we conclude Safek(C"\X 3, h\hG, 0, 0,Q,A).

Last, suppose that it is an environment transition. Let

A =AU U PV(r).

reLocked(C\X)

42

We have C' = C \ X, (¢, h,p) & (S, h,p), and there exists hy, C h such
that b = h hl, and
§,hg = @ T(r).
reD
Note that Locked(C') = Locked(C'\ X). And consider the storage § such
that §'(z) = §(z), if x ¢ X, and §'(x) = s(x), if x € X and

A"=Auxu) PV
re&Locked(C')
We have the following environment transformation (s, h, p) & (8, h,p),
and the environment transition

C, (s, h,p)

A C (3 hy).
By the previous transition, we obtain Safey(C,§ h,p,',Q, AU X).
Note that §'(x) = §(z), for every x ¢ X. Therefore by the induction
hypothesis, we have that Safe,(C\ X, s, h,p,T",Q, A) is valid. !

The last proposition exhausts the inferences rules of CSL, completing the
proof of Theorem 3.

7 Conclusion

This work presents a proof of correctness of CSL based on SOS, the first we
are aware of. We build on two previous proofs, one for the full logic, using a
denotational semantics based on traces, and another for a fragment of CSL,
the DCSL. An immediate extension to this work is its formalization in a
theorem prover.

A proof based on SOS is important, as this form of semantics closer
mimics the execution of an imperative program. Therefore, it paves the way
to the development of more expressive proving tools that are able to deal
with truly concurrent programs manipulating shared resources. Our work
may also provide insight on how to develop provably correct compilers able
of detecting data-races.

Our aim was lifting the (severe) restriction of forcing concurrent threads
to manipulate only disjoint sets of variables, since it does not allow proving
correct many interesting and useful programs. To attain this goal, we re-used
the notion of “rely-set” , a notion crucial to obtain the soundness result of
CSL with respect to the denotational semantics. The adaptation was not
trivial and required developing several auxiliary notions, but established a
proof technique that may now be used in other contexts.

43

References

1]

2l

[5]

17l

8]

[10]

[11]

[12]

M. Ben-Ari. Principles of concurrent and distributed program-
ming(Second Edition). Addison-Wesley, 2006.

J. Boyland. Checking interference with fractional permissions. In
SAS, volume 2694 of Lecture Notes in Computer Science, pages 55—72.
Springer, 2003.

S. Brookes. A semantics for concurrent separation logic. Theoretical
Computer Science, 375(1-3):227-270, 2007.

S. Brookes. A revisionist history of concurrent separation logic. ENTCS,
276:5-28, 2011.

C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. W. O’Hearn, 1. Papakonstantinou, J. Purbrick, and D. Rodriguez.
Moving fast with software verification. In NASA Formal Methods - 7th
International Symposium, NFM 2015, Pasadena, CA, USA, April 27-
29, 2015, Proceedings, pages 3—11, 2015.

C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576-580, 1969.

P. W. O’Hearn. Resources, concurrency, and local reasoning. Theoretical
Computer Science, 375(1-3):271-307, 2007.

P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In CSL, volume 2142 of Lecture
Notes in Computer Science, pages 1-19. Springer, 2001.

S. S. Owicki. A consistent and complete deductive system for the veri-
fication of parallel programs. In STOC, pages 73-86. ACM, 1976.

S. S. Owicki and D. Gries. Verifying properties of parallel programs:
An axiomatic approach. Communications of the ACM, 19(5):279-285,
1976.

G. D. Plotkin. A structural approach to operational semantics. Journal
of Logic and Algebraic Programming, 60—61:17-139, 2004.

U. S. Reddy and J. C. Reynolds. Syntactic control of interference for
separation logic. In POPL, pages 323-336. ACM, 2012.

44

[13] J. C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In LICS, pages 55-74. IEEE Computer Society, 2002.

[14] P. Soares, A. Ravara, and S. Melo de Sousa. An operational semantics
for concurrent separation logic. Technical Report RR-DCC-2014-11, De-
partment of Computer Science, Faculty of Science, University of Porto,
2014.

[15] P. Soares, A. Ravara, and S. Melo de Sousa. Revisiting concurrent
separation logic and operational semantics. In PDP, pages 484-491.
IEEE, 2015.

[16] V. Vafeiadis. Concurrent separation logic and operational semantics.
ENTCS, 276:335-351, 2011.

[17] V. Vafeiadis and M. J. Parkinson. A marriage of rely /guarantee and sep-
aration logic. In CONCUR, volume 4703 of Lecture Notes in Computer
Science, pages 256-271. Springer, 2007.

Appendix

Proof of Proposition 4. Let C' € C, (s,h) € S, and p € O. Suppose hp is a
heap such that hLhp and

C,(s,hW hp, p) —, abort.

We'll prove that C, (s, h, p) —, abort by induction on the relation, —,.

Suppose that the transition to abort is given by (RA), (W A) or (W A2).
Then the transitions does not depended on the heap and C, (s, h, p) —, abort.

Suppose that it is given by (BC'A). Then there is a faulty memory access
of h W hp and, consequently, of h. Hence C, (s, h, p) —, abort.

Suppose that it is given by (SA). Then C = C;;Cy and Cy,(s,h W
hg, p) —, abort.

By induction, we know that Ci, (s, h, p) —, abort. Hence C, (s, h, p) =,
abort.

The remaining cases are similar to the previous case. O

Proof of Proposition 5. Let C,C" € C, (s,h),(s',h) € S, p,p' € O and hp
such that hlhp, C, (s, h,p") #, abort and

C,(s,hWhp,p)—,C" (s 0 p).

45

We prove by induction on the program rules that hp is a subheap of A’/
and C, (s, h, p) =, C", (5", k' \ hp, p').

Suppose that the transition is given by (BCT). Because the Separation
Logic respects the frame property, we know that hp is a subheap of A" and

C,(s,h,p) =, C', (s, W\ hi, p).

Suppose that the transition is given by (S1), (LP), (IF1), (IF2), (R0),
(P3), (W0) or (W2). Then the transition neither depends nor changes the
heap function. So we obtain that A’ and

C,(s,h,p) =, C" (S0 \ hp, p).

Suppose that the transition is given by (52). Then C' = C; Cy and
¢’ = C1; Cy such that

Ch, (s,hWhp, p) —, C1, (s, 1, p').
If Cy, (s, h, p) — abort, then C, (s, h, p) — abort. Hence
C4, (s, h, p) # abort.
From the induction hypothesis, we conclude that hr C h' and
C1, (5, hy) = Cy (5 10\ i,).

Therefore

C,(s,h,p) =, C' (s, W\ hi, p).

The cases (P1), (P2), (R1), (R2) and (W1) are similar to the previous
case. U

46

	1 Introduction
	2 Concurrent Separation Logic
	2.1 Assertion Language
	2.2 Programming Language
	2.3 Inference rules

	3 Motivating examples
	3.1 Semaphore
	3.2 Concurrent stack

	4 Operational Semantics
	4.1 Program transition
	4.2 Properties of program transitions

	5 Validity
	5.1 Environment transition
	5.2 Safety

	6 Soundness
	7 Conclusion

