ARCHIVIO ISTITUZIONALE
ONIVERSITA DI BOLOGNA DELLA RICERCA

Alma Mater Studiorum Universita di Bologna
Archivio istituzionale della ricerca

Twenty years of coordination technologies: COORDINATION contribution to the state of art

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

Published Version:

Twenty years of coordination technologies: COORDINATION contribution to the state of art / Giovanni
Ciatto; Giovanna Di Marzo Serugendo; Maxime Louvel; Stefano Mariani; Andrea Omicini; Franco
Zambonelli. - In: THE JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING. - ISSN 2352-
2208. - STAMPA. - 113:(2020), pp.- 100531.1-100531.25. [10.1016/j.jlamp.2020.100531]

Availability:
This version is available at: https://hdl.handle.net/11585/746605 since: 2020-03-22
Published:

DOI: http://doi.org/10.1016/j.jlamp.2020.100531

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

(Article begins on next page)

27 April 2024

http://doi.org/10.1016/j.jlamp.2020.100531
https://hdl.handle.net/11585/746605

This is the final peer-reviewed accepted manuscript of:

Ciatto, G., et al. "Twenty Years of Coordination Technologies: COORDINATION
Contribution to the State of Art." Journal of Logical and Algebraic Methods in
Programming, vol. 113, 2020.

The final published version is available online at:
https.//dx.doi.orq/10.1016/].jlamp.2020.100531

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https.//cris.unibo.it/)

When citing, please refer to the published version.

https://cris.unibo.it/
https://dx.doi.org/10.1016/j.jlamp.2020.100531

Twenty Years of Coordination Technologies:
COORDINATION contribution to the State of Art*

Giovanni Ciatto?, Giovanna Di Marzo Serugendo®, Maxime Louvel®, Stefano
Mariani®*, Andrea Omicini?®, Franco Zambonellid

“ALMA MATER STUDIORUM-Universita di Bologna, Italy
b University of Geneva, Switzerland
¢Bag-Era, France
dUniversita di Modena e Reggio Emilia, Ttaly

Abstract

Complexity of intra- and inter-systems interactions is steadily increasing in mod-
ern application scenarios such as the Internet of Things, therefore coordination
technologies are required to take a crucial step forward towards full maturity.
In this paper we look back at the history of the COORDINATION conference
series with the goal of shedding light on the current status of the coordination
technologies there proposed throughout the years, also in comparison with other
venues and industrial proposals, in an attempt to emphasise success stories as
well as limitations, and possibly reveal a gap between actual technologies, the-
oretical models, and novel application needs.

Keywords: coordination technologies, middleware, survey

1. Scope, goal, and method

Complexity of computational systems, as well as their impact on our every-
day life, is constantly growing along with the increasing complexity of inter-
action—intra- and inter-systems. Accordingly, the role of coordination models
should expectedly grow, too, along with the relevance of coordination technolo-
gies within ICT systems: instead, this is apparently not happening—yet.

*This paper is an extended version of paper “Twenty Years of Coordination Tech-
nologies: State-of-the-Art and Perspectives”, firstly appeared at COORDINATION 2018
(d0i:10.1007/978-3-319-92408-3_3). Sectionand Sectionare brand new, Sectionhas been
expanded w.r.t. the Logic Fragments model and technology, conclusions have been expanded
to include discussion of open challenges.

*Corresponding author

Email addresses: giovanni.ciattoQunibo.it (Giovanni Ciatto),
Giovanna.DiMarzo@unige.ch (Giovanna Di Marzo Serugendo), maxime.louvel@bag-era.fr
(Maxime Louvel), stefano.mariani@unimore.it (Stefano Mariani),
andrea.omicini@unibo.it (Andrea Omicini), franco.zambonelliQunimore.it (Franco
Zambonelli)

Then, it is probably the right time (now, after twenty years of the COOR-
DINATION conference series) to take a step back and reflect on what happened
to coordination models, languages, and (above all) technologies in the last two
decades. That is why in this paper we survey all the technologies that have been
presented and discussed at the COORDINATION conference during the years,
examine their stories and their current status, and try to provide an overall view
of the state of art of coordination technologies as emerging from twenty years
of work by the COORDINATION community. Also, to give a more meaning-
ful and complete context to the survey, and to position it w.r.t. “the outside
world”, we include conferences closely related to COORDINATION, as well as
related technologies proposed in the industry. The main goal is to provide a
sound basis to answer questions such as: are coordination technologies ready
for the industry? If not, what is currently missing? Which archetypal models
lie behind them? Which are the research areas most/least explored? And what
about the target application scenarios?

Although we aim at maximum neutrality by presenting the results of our
survey, we hope that the data and insights here presented may serve as food for
thought, and a fertile ground for further research in coordination technologies.

1.1. Structure & contribution of the paper

Section [2| provides at first an overview of the data about papers published
in the conference throughout the years (Subsection , as collected from the
official SpringerLink website and its companion BookMetrix serviceﬂ with the
aim of emphasising trends concerning (i) the number of papers published in
each volume, (%) the number of citations generated by each volume, (i) the
number of downloads generated by each volume, (iv) the most cited paper of
each volume, and (v) the most downloaded paper of each volume.

Then, the scope of our analysis narrows down to those papers bringing a
technological contribution, in the sense of describing a software artefact offering
an API exploitable by other software to coordinate its components. Accordingly,
Subsection provides an overview of all the technologies presented within
the COORDINATION conference series. For each one, the reference model
implemented, and the web URL where to retrieve the software, if any, are given.

Then, a brief description of all the software for which no working imple-
mentation could be found is reported for the sake of completeness, whereas
technologies still available are thoroughly described in Subsection [2.3] There,
each one was downloaded and tested to clearly depict its health status: (i) date
of last update to the source code (or project web page, if the former is not
available), (i7) whether the software appears to be actively developed, in main-
tenance mode, or discontinued, (i) availability of suitable documentation, (iv)
availability of the source code publicly, (v) whether the build process of the
software artefact is reproducible, and (vi) whether the software artefact, once
built, executes with no errors. For the latter two items, in case of failures, an

Thttp://wuw.bookmetrix.com/

http://www.bookmetrix.com/

explanation of the problem and, if needed, the steps undertaken in the attempt
to overcome it, are provided too. In particular, the latter test is not meant to
measure performance, or, to provide a benchmark for comparisons: its purpose
is to assess whether the technology is usable, that is, executable on nowadays
software platforms and by nowadays programming languages. For instance, an
artefact requiring an obsolete third-party library that hinders smooth deploy-
ment is considered not usable. Accordingly, each technology is tested either by
running provided example code, or by developing a minimal working example
of usage of the API.

Section [3] discusses the data collected so as to deliver insights about: (i) the
evolution of technologies as they are stemming from a few archetypal models
(Figure7 (ii) the relationships between the selected technologies, as a compar-
ison of their features (Figure @, and (%) the main goal and reference scenario
of each technology (Figure . Also, a general discussion is provided, report-
ing about success stories, peculiarities, and opportunities. Then, Section] and
Section [5| relate the survey to, respectively, (i) other reference conferences of-
ten attended by researchers within the COORDINATION community, and (%)
industrial practice, so as to deliver insights about the relevance of COORDI-
NATION results w.r.t. “the outside world”.

Finally, Section [f] concludes the paper by summarising the results of the
survey and providing some perspectives for future research activities concerned
about coordination technologies.

1.2. Method

The scope of this survey is indeed mostly the COORDINATION conference
series. We focus on coordination technologies intended as software implementing
a given coordination model, language, mechanism, or approach with the goal of
providing coordination services to other software applications. In other words,
our focus is on technologies implementing some form of coordination middleware
or API—analysed in Subsection We nevertheless include in our overview
other technologies presented within COORDINATION (Subsection7 such as
simulation frameworks, model-checking tools, and proof-of-concept implemen-
tations of process algebras—which are only described in short, for the sake of
completeness.

Starting from the COORDINATION conference proceedings available online
from SpringerLinkﬂ the survey proceeds as follows:

1. for each conference year, papers describing a coordination-related technol-
ogy were gathered manually into a Google Spreadsheet

2. for each collected paper, we checked whether the paper was actually
proposing some software package—papers failing the test are omitted

3. for each paper passing the test, we verified the health status of the technology—
as described in Subsection [

2http://link.springer.com/conference/coordination

http://link.springer.com/conference/coordination

4. then, for each paper featuring at least a usable distribution (downloadable
and runnable) the corresponding software was downloaded and tested—
i.e., installation & basic usage

The same process is applied to the technologies gathered from the other venues
considered beyond COORDINATION, as listed in Section

2. The survey

Although the focus of this paper are coordination technologies, an overview
of the whole conference proceedings is due to give context to the survey it-
self. Accordingly, Subsection [2.1| summarises and analyses all the data officially
available from Springer—concerning, for instance, citations and downloads of
each volume and paper. Then, Subsection [2.2] accounts for all the coordina-
tion technologies mentioned in COORDINATION papers, regardless of their
actual availability, while Subsection reports about the core of this survey:
the status of the coordination technologies nowadays publicly available.

2.1. Overview

The COORDINATION conference series has been held 20 times since its

first edition in 1996 in Cesena (Italy) until last year surveyed (201éﬂ in Madrid,
Spain) and generated as many conference proceeding volumes, all available on-
line?. Data about the number of published papers, the number of citations and
downloads per year of each volume, as well as the most cited and most down-
load paper have been collected from SpringerLink and its companion service
BookMetrix—and are reported in Table [1|on page |5 (last checked August 23rd,
2019). Highest values for each column are emphasised in bold.
The trend over time of the number of papers, the citations of the volumes,
and their downloads, are plotted in Figure [1| and Figure |2 respectively, along
with their trend line. A few significant trends can be spotted in spite of the
high variability between different editions of the conference. For the number of
published papers, the trend is clearly descending: the first five editions featured
an average of 32 papers, whereas the latest five an average of 14. As far as the
number of citations per year generated by each volume of the proceedings is
concerned, a few oscillations can be observed:

e a first phase (from the 15 edition to the 4'") shows a decreasing number
of citations, from 12.17 down to 3.68 (the all-time-low)

e then, in a second phase (from the 5 to the 10*® edition) the number of
citations increases, up to the all-time-high of 20.55 in 2008

e a third phase where the number of citations per year kept steadily increas-
ing up to 2014 (19) started after a brief fall in 2009 and 2010

3The 20th edition (2018), at which this survey appeared first. The 2019 edition has no
data available from Springer, yet, hence has been left out of the survey.

Edition | No. of papers | Citations/Year | Downloads/Year | MCP | MDP
1996 34 12.17 139.13 54 132
1997 31 10 132.73 39 149
1999 32 8.20 236.00 25 188
2000 27 3.68 217.37 7 177
2002 35 9.18 338.24 14 207
2004 23 13.20 220.67 53 182
2005 19 7.43 311.43 17 261
2006 18 14 362.31 52 353
2007 17 19 367.50 48 367
2008 21 20.55 417.27 32 261
2009 15 14.90 397.00 28 306
2010 12 6.89 562.22 11 726
2011 14 8.38 567.50 14 743
2012 18 11.14 1144.29 15 625
2013 17 15.17 1 396.67 15 763
2014 12 19 794.00 18 380
2015 15 9 1 337.50 12 411
2016 16 16 2 120.00 10 473
2017 14 12 2 260.00 7 362
2018 12 19 2 910.00 7 326
Avg. 20.10 12.44 811.59 23.90 | 369.60

Std. Dev. 7.62 4.7 801.71 16.59 | 200.74

Table 1: Overall data directly available online from Springer regarding the COORDINATION
conference series. To compute citations (downloads) per year, the number of citations (down-
loads) was divided by the number of years the publications is available since. MCP stands for
“Most Cited Paper” whereas MDP stands for “Most Downloaded Paper”.

No. of papers and no. of citations per year
@ Papers @ #cit. per year

1996 1997 1999 2000 2002 2004

2005 2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018

Figure 1: Number of papers in the volume and number of citations per year (computed as
described in text) of the volume.

e finally, the last four editions show no clear trend as they alternate below
and above average figures (average being 12.44)

For the number of downloads per year, two phases can be devised out in Figure[2}

e in the first period, from the 1 edition to the 13*" (2011), the trend is
quite stable, oscillating between 139.13 and 567.5

e in the second one instead, from 2012 up to latest edition, there is a sharp
increase up to the all-time-high of 2 910 in 2018

Finally, Figure [3] and Figure [4] show the most cited paper and the most down-
loaded paper per year, respectively. For the former two main phases can be
devised out: the first one starts with the first edition in 1996 and concludes
with the 12" in 2010, durning which high and low figures (way above and be-
low average) alternate quite frequently, whereas a second one exhibits a more

No. of downloads per year Edition / # dow. peryear

Figure 2: Number of downloads per year (computed as described in text) of the volume.

Most Cited Paper
® N CP M.C.P. Avg M.C.P. Std. Dev

40

TN

1996 1997 1999 2000 2002 2004 2005 2006 2007 2008 2000 2010 201 2012 2013 2014 2015 2016 2017 2018
Figure 3: Most cited paper per year with average values & standard deviation.

Most Downloaded Paper
® MDP. = MDP Avg = = M.D.P.Std. Dev.

600

Figure 4: Most downloaded paper per year with average values & standard deviation.

regular trend where citations are rather low (namely, below average, even when
considering the standard deviation)ﬁ For the latter, instead, three epochs may
be defined: a first one with a slowly increasing number of downloads per year,
from the 15 to the 11*" a second one featuring a sharp increase (from 306 to
726 in just one year) holding still for a few editions (until 2013), finally a third
one following a sharp decrease in 2014 that stabilises the figures around the
average?.

Besides these raw numbers, it is interesting w.r.t. the technological focus of
this survey to check how many of such papers are related to technology. Overall,
in the 20 editions of COORDINATION held, the most cited / downloaded paper
is about technology — in the broadest acceptation of the term — in slightly less
then a half of them: 7 papers amongst the most cited ones, and 8 amongst the
most downloaded ones. By extending the analysis to all the papers published
in the proceedings, instead, out of all the 402 papers published, only 49 (just

4Keep in mind that the most recent the edition, the more time is needed to generate impact.

12.19%) convey a technological contribution—based on authors’ inspection of
the papers. And, such an estimate is somehow optimistic, since we counted
papers just for merely mentioning a technology, with no means to access it—
see Table [2] starting right below. This suggests that although technologies are
seldom proposed at COORDINATION, they are quite impactful nevertheless.

Table 2:

Overview of the coordination technologies presented

at COORDINATION. “Name” denotes the technology, whereas
“Model” makes explicit the model taken as reference for the im-
plementation. The last column points to the web page where the
software is available, if any, and provides for additional notes.

Name Year Model (Closest) Web page & Notes
http://projects.cwi.nl/manifold
Manifold [I] 1996 IWIM [1]
no link to implementation
Sonia [2] 1996 LINDA + access control no implementation found
Laura [3] 1996 service-oriented LINDA no tmplementation found
5 http://cseweb.ucsd.edu/~goguen/courses/230/pl/art.html
MultiBinProlog [4] 1996 n?Log [4]
dead links
_ Navigational http://www.ics.uci.edu/~bic/messengers
MESSENGERS 1996
Programming dead links
LiNnDA +
ACLT 1996 evolved into TuCSoN
programmable tuple spaces
LiNDA +
Blossom [T7] 1997 no implementation found
coordination patterns
Bonita [§] 1997 asynch LINDA no implementation found
Berlinda [9] 1997 LINDA no tmplementation found
SecOS 1999 LINDA no implementation found
http://osl.cs.illinois.edu/software/
Messengers [11] 1999 CmPS + mobility
no mention of “Messengers”
http://www.cs.unibo.it/cianca/wwwpages/macondo/
MJada [13] 1999 OO LINDA
no reference to MJada
STL++ [14] 1999 ECM [14] no implementation found
Clam 1999 IWIM [1] no implementation found
novel
TuCSoN [I6] 1999 http://tucson.unibo.it/,
(many extensions to LINDA)
Truce [17] 1999 novel (protocols + roles) no tmplementation found
CoLasS [18] 1999 nowvel (protocols + roles) no implementation found
OpenSpaces [19] 2000 OO LiNDA no implementation found
Piccola 2000 novel http://scg.unibe.ch/research/piccola
Moses [21] 2000 LGI [21] http://www.moses.rutgers.edu
LINDA + mobility
Scope [22] 2000 no implementation found
+ space federation
http://reo.project.cwi.nl/reo
Pew [23] 2002 IWIM [1] P pre)
evolved into Reo

http://projects.cwi.nl/manifold
http://cseweb.ucsd.edu/~goguen/courses/230/pl/art.html
http://www.ics.uci.edu/~bic/messengers
http://www.cs.unibo.it/cianca/wwwpages/macondo/
http://tucson.unibo.it/
http://scg.unibe.ch/research/piccola
http://www.moses.rutgers.edu
http://reo.project.cwi.nl/reo

Name Year Model (Closest) Web page & Notes
SpaceTub [24] 2002 LiNDA no implementation found
http://music.dsi.unifi.it/xklaim
O’Klaim 2004 Klaim [26]
https://github.com/LorenzoBettini/xKlaim
LINDA + mobility
Limone [27] 2004 http://mobilab.cse.wustl.edu/projects/limone
+ spaces federation
CRIME 2007 LiME [20] http://soft.vub.ac.be/amop/crime/introduction
TripCom 2007 Triple Space Computing [31] http://sourceforge.net/projects/tripcom
CiAN [32] 2008 novel http://mobilab.cse.wustl.edu/Projects/CiAN/Home/Home . shtml
Smrl [33] 2008 PepA [34] http://groups.inf.ed.ac.uk/srmc/download.html
CaSPiS [35] 2008 IMC http://sourceforge.net/projects/imc-fi
LeanProlog [37] 2008 novel http://www.cse.unt.edu/~tarau/research/LeanProlog
https://tinyurl.com/ whwx
JErlang [38] 2010 JoiN-Carcurus [39] y AL
(through Wayback Machine)
Session Java [40] 2011 Session Types [41] http://www.doc.ic.ac.uk/~rhu/sessionj.html
WikiRecPlay /InFeed 2012 BPM no implementation found
Statelets [43] 2012 novel http://sourceforge.net/projects/statelets
1IC [44) 2012 Reo [23] http://github.com/joseproenca/ip-constraints
implementation not available for commercial reasons
LINC 2015 LiNDA
see |http: //bag-era. fr/indez_ en. html# about
RepliKlaim [47] 2015 Klaim [48] http://sysma.imtlucca.it/wp-content/uploads/2015/03
Logic Fragments [49] 2014 SAPERE https://www.unige.ch/cui/cas/publications/projects-output/

2.2. Technologies at a glance

Table [2 provides an overview of the coordination technologies presented
within the COORDINATION conference series throughout the years. Only
those technologies passing test §2 in Section [I.2]are included, that is, those tech-
nologies actually delivering some form of coordination services to applications—
i.e. in the form of a software library with suitable API. For each technology, the
original paper is referenced, the model taken as reference for implementation
indicated, if any, and the URL to the web page hosting the software given—if
any is still reachable. Technologies whose corresponding software is still avail-
able — that is, those passing test §3 in Section — are further discussed in
Subsection those with no working software found are briefly described in
the following, for the sake of completeness.

The early days. The first few years of COORDINATION (1996-2000) saw a
flourishing of successful technologies: some of the ideas introduced back then
are still alive and healthy. For instance, ACLT [6] adopted first-order logic
terms as LINDA tuples, an intuition shared by the p? Log model and its language,
MultiBinProlog [4]. Also, ACLT allowed agents to dynamically program tuple
spaces via a specification language, enabling definition of computations to be
executed in response to some events generated by interacting processes. Both
features influenced the TuCSoN model and infrastructure [I6], one of the few
technologies to be still maintained nowadays.

http://music.dsi.unifi.it/xklaim
https://github.com/LorenzoBettini/xKlaim
http://mobilab.cse.wustl.edu/projects/limone
http://soft.vub.ac.be/amop/crime/introduction
http://sourceforge.net/projects/tripcom
http://mobilab.cse.wustl.edu/Projects/CiAN/Home/Home.shtml
http://groups.inf.ed.ac.uk/srmc/download.html
http://sourceforge.net/projects/imc-fi
http://www.cse.unt.edu/~tarau/research/LeanProlog
https://tinyurl.com/yyggw4wx
http://www.doc.ic.ac.uk/~rhu/sessionj.html
http://sourceforge.net/projects/statelets
http://github.com/joseproenca/ip-constraints
http://bag-era.fr/index_en.html#about
http://sysma.imtlucca.it/wp-content/uploads/2015/03
https://www.unige.ch/cui/cas/publications/projects-output/

Similarly, the IWIM coordination model and its corresponding language,
MANIFOLD [I], were introduced back in 1996 and survived until present days
by evolving into Reo [23]. ITWIM came by recognising a dichotomy between
ezogenous and endogenous coordination, and exploiting channel composition as
a means to build increasingly complex coordination patterns by incrementally
composing simpler ones.

Finally, Moses [21] was presented to the COORDINATION community as
an infrastructure reifying the Law Governed Interaction (LGI) model. The
technology is still alive and inspectable from its homepage, even if apparently
no longer maintained. Analogously, the Piccola composition language presented
in [20] clearly relies on a coordination technology which reached stability and
robustness, even if it seems to be no longer maintained, too.

Besides these success stories, many other papers at that time proposed a
technology, but either they only mentioned the technology without actually
providing a reference to a publicly available software, or such a reference is no
longer reachable (i.e. the link is dead and no reference to the software has been
found on the web). For instance:

Sonia [2] — a LiNDA-like approach supporting human workflows, therefore
stressing aspects such as understandability of the tuple and template lan-
guages, time-awareness and timeouts, and security by means of access
control

Laura [3] — a language attempting to steer LINDA towards service-orientation,
where tuples can represent (formal descriptions of) service requests, offers,
or results, thus enabling loosely coupled agents to cooperate by means of
Linda-like primitives

MESSENGERS [5] — following the Navigational Programming methodology
[5], where strongly-mobile agents (a.k.a. Messengers) can migrate between
nodes. Here, coordination is seen as “invocation [of distributed computa-
tions] and exchange of data” and it “is managed by groups of Messengers
propagating autonomously through the computational network”

Blossom [7] — a LINDA variant focusing on safety, which is provided by sup-
porting a type system for tuples and templates, and a taxonomy of access
patterns to tuple spaces, aimed at supporting a sort of “least privilege”
principle w.r.t. access rights of client processes

Bonita [8] — another LINDA-like technology (as its successor WCL [51]) fo-
cusing on asynchronous primitives and distribution of tuple spaces, which
can also migrate closer to their users

Berlinda [9] — providing a meta-model, along with a Java implementation, for
instantiating different LINDA-like models

SecOS [10] — a LINDA variant focusing on security and exploring the exploita-
tion of (a)symmetric key encryption

10

Messengers [T1] — not to be confused with [5] despite its name, this focusses
on message exchange by means of migrating actors

MJada [13] — an extension of the Jada language [52], focusing on coordinating
concurrent (possibly distributed) Java agents by means of LINDA-like tuple
spaces with an extended primitive set and object-oriented tuples

Clam [I5] — a coordination language based on the IWIM model [I]

Truce [I7] — a scripting language aimed at describing protocols to which agents
must comply by enacting one or more roles

CoLaS [I8] — a model and its corresponding language providing a framework
where a number of participants can join interaction groups and play one or
more roles within the scope of some coordination protocol. In particular,
CoLaS focuses on the enforcement of coordination rules by validating and
constraining participants behaviour

Much of the efforts are thus devoted at expanding LINDA along different dimen-
sions, especially security.

The millenials. After year 2000, technologies are less present amongst CO-
ORDINATION papers, but not necessarily less important. For instance, Reo
made its first appearance in 2002 [23], its name written in Greek (Pew). Reo
provides an exogenous way of governing interactions between processes in a
concurrent and possibly distributed system. Its strength is due to its sound
semantics, enabling researchers to formally verify system evolution, as well as
to the availability of software tools. The technology is indeed still alive and
actively developed.

Recent implementations are also more easily available on the web. Out of 22
coordination technologies, only 5 were not found on the web during the survey:

OpenSpaces [19] — focussing on the harmonisation of the LINDA model with
the OOP paradigm and, in particular, with the inheritance mechanism

Scope [22] — analogously to Lime, it provides multiple distributed tuple spaces
cooperating by means of local interactions when some process attempts to
access a tuple, thus providing a sort of federated view on the tuple space

SpaceTub [24] — successor of Berlinda, it aims at providing a meta-framework
where other LINDA-like frameworks can be reproduced

WikiRecPlay / InFeed [42] — a pair of tools (browser extensions, no longer
available) aimed at extracting and manipulating information from web
applications to record them and later replay, enabling the definition of
sequences of activities that can be synchronised with each other. The
goal here is to augment social software with coordination capabilities

11

LINC [45] — a coordination environment implementing the basic LINDA prim-
itives (out, in, rd) in a setting in which each tuple space (called bag)
could implement the primitives differently (still preserving semantics), a
convenient opportunity when dealing with physical devices (i.e. in the case
of deployment to IoT scenarios) or legacy systems (i.e. databases). It pro-
vides transactions to alleviate to developers the burden of rolling back
actions in the case of failures, and a chemical-reaction model inspired to
Gamma [53] for enacting reaction rules. Several tools [54] are provided
to help developers debug the rules, and to generate rules from high level
specifications. The LINC software is nevertheless not publicly available
because it is exploited by the Bag-Era company. Accordingly, it is not
further analysed in Subsection but it is included in Section [3] as an
example of industrial exploitation

All other technologies are still publicly available, thus further analysed in next
section.

For instance, the O’Klaim language presented in [25] is a linguistic exten-
sion of Klaim [26] with object-oriented features. Despite the reference paper
describing Klaim has been published on the IEEE Transactions on Software
Engineering in 1998, we were able to trace back a preliminary work on which
appeared in the COORDINATION conference in [55]. Interestingly, the Klaim
language soon evolved in X-Klaim, whose technology is still availableﬂ Fur-
thermore, the X-Klaim technology has been recently renewed by means of the
Xtext language toolkitEI and the project reboot is available on GitHubEI

Similar considerations can be made for Limone [27] and CRIME [28§], which
both stem from the idea of opportunistic federation of transient tuple spaces
introduced by LIME [56], and improve it with additional features such as
lightweightness and orientation to ambient-programming.

Analogously, the CiAN [32] model and middleware, targeting the coordina-
tion of distributed workflows over Mobile Ad-hoc Networks (MANETS), comes
with a mature implementation, although no longer maintained. An extension
to Session Java [57] is proposed in [40] to explicitly tackle synchronisation issues
such as freedom from deadlock via multi-channel session primitives. Whereas
the implementation was discontinued in 2011E|, the source code is still available
from GoogleCode archive. JErlang [3§], an implementation of Erlang extended
with constructs borrowed from the JOIN-CALCULUS [39], appears to be no longer
maintained too although a couple of implementations are still available and (par-
tially) working.

Also RepliKlaim [47] — another variant of KLAIM [26] aimed at optimising
performance and reliability through replication of tuples and tuple spaces — re-
ceived updates until 2015 as far as we know, thus appears to be discontinued.

Shttp://music.dsi.unifi.it/xklaim
Shttps://www.eclipse.org/Xtext/
“https://github.com/LorenzoBettini/xKlaim

8Year of latest commit: https://code.google.com/archive/p/sessionjl

12

http://music.dsi.unifi.it/xklaim
https://www.eclipse.org/Xtext/
https://github.com/LorenzoBettini/xKlaim
https://code.google.com/archive/p/sessionj

Likewise, 2015 is the year when both Statelets [43] and IIC [44] received their
last known update: the former is a programming model and language aimed
at integrating social context, social networks analysis, and semantic relation-
ships amongst shared artefacts into a single and coherent coordination model,
while the latter proposes Interactive Interaction Constraints (IIC) as a novel
framework to ground channel-based interaction (& la Reo) upon constraints sat-
isfaction, interpreting the process of coordinating components as the execution
of a constraints solver.

Next section further describes those technologies that can be actually in-
stalled and used nowadays—step §4 in Section [1.2

2.8. Analysis of selected technologies

Table |3| overviews the working technologies we were able to somewhat suc-
cessfully test, that is, only those technologies listed in Table[2] which successfully
surpassed test §4 described in Section [I.2}—a software artefact exists and is still
working,.

It is worth noting that, w.r.t. Table |2 a few technologies are not included
in this section despite the corresponding software is available from the reference
web page therein referenced. The reason is:

e Smrl requires ancient software to run—that is, an old version of Eclipse
requiring in turn an ancient version of the Java runtime (1.4)

e CaSPiS [35] (or better, JCaSPiS, namely the Java-based implementation
of CaSPiS) was not found anywhere—neither in the author personal pages,
nor in their account profiles on Github, nor in the web pages of the SEN-
SORIA project mentioned in the paper. Nevertheless, the IMC model
and framework allegedly grounding its implementation is still accessibleﬂ
Then we proceeded to download it looking for the CaSPiS code, without
success. It is worth to be mentioned, anyway, that the IMC framework
code appears to be broken, since compilation fails unless a restricted /dep-
recated Java API is usecm, and even in the case of instructing the compiler
to allow for itIE| the attempt to run any part of the software failed without
informative error messages—just generic Java exceptions.

e LeanProlog is not usable as a coordination technology as defined in Sec-
tion [[.2} it is a Prolog engine with low-level mechanisms for handling
multi-threading, and provides no API for general purpose coordination

e Session Java, as explicitly stated in its home page, requires an ancient
version of the Java runtime to run, that is, 1.4

e Statelets is explicitly tagged as being in “pre-alpha”’ development stage,
and, upon inspection, revealed to be only partially developed

9nttps://sourceforge.net/projects/imc-£i/
10A class uses a deprecated API, and another one requires breaking access restrictions.
11See https://goo.gl/pdWCsx.

13

https://sourceforge.net/projects/imc-fi/
https://goo.gl/pdWCsx

‘o[qissod sem aremijos a1} Jo uorpoadsur 19YIng ou snyyy ‘Auedwod eifg-Seq o) Aq p[os suornjos
[eI>ISWWIOD Jo jred SI 31 90UIS INO 94J9] Usaq sey DN 1ey} asiseydure 0} [II0Mm SI 3] "PIINISXD A[[NJSSOIONS U SBY 9IeMIJOS 9} ISYIdYM SOJeOIPUI
Juowrdorde(g,, UWIN[Od ‘[NJssedons a1om (UoIIN[osad seuspuadop pue serreulq ojul uolpe[iduiod 9°1) sdols pIIng I9YoYM S9J0USD pUR d[(R[IRAR ST 9POD
90INOS IoAdULYM PO[[Y ST PINg, UWN[OD ‘PINUIUOISIP A[[eN)oR IO ‘Opowl sdueuldjurews ur A[uo ‘pado[essp A[oAride [[I3s ST 1 I9YJSYM 2OUR)SUI IO]
‘oremi)jos a1} JO snjels oy} s9jousdp YIedH, uwnio) ‘NOLLVNIAHOOD e pejussaid sa130[0utds) UOTJRUIPIOOd JUTHIOM d1[) JO MOIAIBA() € O[qR],

"SHTUITIOD 899€] INOQe UOIYeuLIoful ou sni) ‘A1031s0dal apod o[qefrear AIrqnd ou sI 919y T, ,,

[NJSS000NG | [NJSS000NG a[qe[reAy a[qe[reAy podoeasp APAT)OYy 2102 syuowder o130
[NJSS00oNG | [NJSS900NG a[qe[reAy a[qe[reavu) — o— wirepydeoy

— ported olqeIreAy olqe[ieARUf) PonUIUOOST(] 7002 ououwry
[NJSS00oNG | [NJSS900NG a[qe[reAy a[qe[reAy podojesap A[oA130y 6102 wrers-x
[NJsseoong | nysseoong a[qe[reAy 100 PonuImOISI(T ¥00% RARTY]
[njssooong — a[qe[resvu) a[qe[reavu) PponuIUOodSI(] 900¢ AINTYED
[NJSS00oNG | [NJSS900NG AEHIPTS ON a[qe[reAy PponUIIUOdSI(] 900¢ B[0221J

ATuo eaer : : : :
[NJSso0oNG | [NJSS900NG o[qe[reAy o[qe[reAy PoNUIUOOSI(] 800C NVID
J[qe[rese

[NJSso0oNG | [NJSS900NG o[qe[reAy Aqrenreg ponuIjuoosI(J 6002 wodriy,
[NJsse0ons
A[eBTeg [nJssooong a[qe[reAy a[qe[reAy podojesdp A[oA1IOYy €10g 09y
[1Jsse0ong Porteq olqreIeAY 1004 PONUTIuOOSI(J G10¢ OI1

— Polteg olqeIreAY 1004 PoNUTIuosIq L10¢ Suerr
[nJsse00ng — a[qe[resvu) a[qerresy poureuret/podopasp 2102 SOSOTN

. . Apanpy

[NJSS00oNG | [NJSS900NG a[qe[reAy a[qe[reAy podojesap A[oA130y 2102 NoSON |

| yuowikordoq [prmg [9poo 9omog [worpejmeumoo(| e | orepdu gser | oure N |

14

TuCSoN. Although TuCSoN [16] appeared at COORDINATION in 1999, its
roots date back to the first edition of the conference, as the ACLT model [6].

TuCSoN is a coordination model adopting LINDA as its core but extending it
in several ways, such as by adopting nested tuples (expressed as first-order logic
terms), adding primitives (i.e. bulk [58] and uniform [59]), and replacing tuple
spaces with tuple centres [60] programmable in the ReSpecT language [61]. As
such, the main driving concepts behind the TuCSoN model and technology are
(i) first-order logic tuples and ReSpecT reactions to enable declarative expres-
sion of coordination policies, (7) asynchronous communication and coordination
primitives by default (however, synchronous versions are available, too) to en-
able full decoupling, (iii) programmable tuple spaces to enable full control over
the coordination policies to be followed by the system at hand.

TuCSoN comes with a Java-based implementation providing coordination as
a service [62] in the form of a Java library delivering an API and a middleware
runtime, especially targeting distributed Java processes but open to rational
agents implemented in tuProlog [63]. The TuCSoN middleware is publicly avail-
able from its home pageIEL which provides both the binaries (a ready-to-use Java
jar file) and a link to the source code repository. From there, also documentation
pages are available, in the form of a usage guide and a few tutorials providing
insights into specific features. Finally, a few related sub-projects are therein
described too, such as TuCSoN4JADE [64] and TuCSoN4Jason [65], which are
both Java libraries aimed at integrating TuCSoN with JADE [66] and Jason [67]
agent runtimes, respectively, by wrapping TuCSoN services into a more conve-
nient form which best suites those developers accustomed to programming in
those platforms.

TuCSoN is still actively developed, as witnessed by the recently published
extension to the ReSpecT language and toolchain [68]. Also, it is actively ez-
ploited as the infrastructural backbone for other projects (e.g., the smart home
logic-based platform Home Manager [69]) and industrial applications (e.g., the
Electronic Health Record solution described in [70]). Nevertheless, TuCSoN is
the result of many years of active development by many different people with
many different goals. Thus, despite some success stories, TuCSoN would re-
quire some substantial refactoring and refinement before it can become a truly
commercially-viable product. The TuSoW project recently presented in [T1]
can be considered a notable effort in this direction, as it represent a rebooting
attempt focusing on supporting modern mainstream technologies and platforms.

Moses. Moses [2]] is the technology implementing the Law Governed Interac-
tion (LGI) coordination model [72], which aims at controlling the interaction
of agents interoperating on the Internet. In LGI, each agent interacts with
the system by means of a controller, that is, a component exposing a fixed
set of primitives allowing agents to exchange messages with other agents. The
controller is in charge of intercepting invocations of primitives by interacting

12http://tucson.unibo.it

15

http://tucson.unibo.it

agents to check if they are allowed according to the law currently adopted by
that controller.

Laws are shared declarative specifications dictating how the controller should
react when it intercepts events of interest. Laws are expressed either in a Prolog-
like language or as Java classes. Each controller has its own state which can be
altered by reactions to events and can influence the effect of future reactions.
Non-allowed activities are technically prohibited by the controller which takes
care of aborting the forbidden operation—for instance, by not forwarding a
message to the intended receiver if some conditions are met.

The main concepts around which LGI revolves therefore are (i) message pass-
ing for communication, (i) reactive, declarative control laws for coordination,
(11i) dedicated controllers to enact the coordination policies implemented.

The project home pagﬁ is well-organised and provides a number of re-
sources focussed on Moses/LGI such as reference papers, manuals, tutorials,
JavaDoc, examples. The page also provides an archive with the compiled ver-
sions of the Moses middleware suggesting that the project is actively maintained
and/or developed, and representing another success story born within the CO-
ORDINATION series. We were able to successfully execute the executable:
however, no source code is provided, and some portion of the web page, such as
the JavaDoc, are not updated w.r.t. the current Moses implementation. Finally,
Moses still bounds to deprecated technologies such as Java Applets, which may
hinder its adoption.

JErlang. JErlang [38] is an extension of the Erlang language for concurrent and
distributed programming featuring joins as the basic synchronisation construct—
as borrowed from the JOIN-CALCULUS [39]. The web page mentioned in the pa-
peIE is only accessible through the Wayback Machindﬂ by searching JErlang
and the authors’ names on the web, a GitHub repository with the same broken
reference popped udﬂ apparently tracking the development history of the JEr-
lang technology. There, however, JErlang is described as an implementation of
Erlang/OTP on the JVM. Also, another apparently very similar technology is
therein referenced: Erjang. Later contact with one of the authors revealed that
those projects are unrelated.

Anyway, JErlang installation and usage instructions are nowhere to be found,
and, when trying to build the project through the provided Maven pom.xml file,
the build fails due to many errors related to obsolete dependencies—which we
were not able to fix. We feel then justified to declare the implementation as
discontinued.

3http://www.moses.rutgers.edu/index.html

Mhttps://www.doc.ic.ac.uk/~susan/jerlang/

15The web archive engine, working URL is: https://web.archive.org/web/
20160405003024/http://www.doc.ic.ac.uk:80/~susan/jerlang/

'®Second link in “See also” section at https://github.com/jerlang/jerlang

16

http://www.moses.rutgers.edu/index.html
https://www.doc.ic.ac.uk/~susan/jerlang/
https://web.archive.org/web/20160405003024/http://www.doc.ic.ac.uk:80/~susan/jerlang/
https://web.archive.org/web/20160405003024/http://www.doc.ic.ac.uk:80/~susan/jerlang/
https://github.com/jerlang/jerlang

IIC. Interactive Interaction Constraints (IIC) [44] is a sort of “spin-off” of Reo
introduced in 2013 [44]. The original approach of implementing Reo connectors
as interaction constraints is extended to allow interaction to take place also
between rounds of constraints satisfaction. This extends the expressive reach
of IIC beyond Reo, and makes the whole process of constraints satisfaction
transactional w.r.t. observable behaviour.

The IIC software is distributed as a Scala library providing an handy syntax
which eases definition of Reo-like connectors. The Scala library source code is
distributed by means of a GitHub repository] '] where the latest commit dates
back to 2015. The library ships with a SBT configuration, allegedly supporting
automatic building. Nevertheless, we were not able to reproduce the compila-
tion process since the provided SBT configuration depends on an ancient SBT
version. Therefore, we consider IIC a no longer maintained but still usable
full-fledged coordination technology.

Reo. Reo was firstly introduced to the COORDINATION community in [23],
its name in Greek letters (Pew). Similarly to the IWIM model, Reo adopts the
paradigm of exogenous coordination of concurrent and possibly distributed soft-
ware components. According to the Reo model, components are the entities to
be coordinated, representing the computations to be performed, while connec-
tors are the abstraction reifying coordination rules. The only assumption Reo
makes about components is that they have a unique name and a well-defined
interface in the form of a set of input ports and output ports. Conversely, con-
nectors are composed by nodes and channels, or other connectors. A number
of coordination schemes can be achieved by combining the different sorts of
nodes and channels accordingly. This allows to formally specify how, when, and
upon which conditions data may flow from the input to the output ports of
components.

Reo is a fundamentally different model w.r.t. the tuple-based ones, as it
fosters an exogenous form of coordination where the policies regulating inter-
action (hence coordination, too) are extracted from the interacting components
and put into connectors. Its foundational abstractions are hence (i) connectors,
composed by nodes and channels connecting I/O ports, and (%) their compo-
sitionality, that is, the ability to preserve intended semantics when connectors
are composed together to create more complex coordination policies.

Diverse research activities originated from Reo throughout the years, mostly
aimed at (i) analysing the formal properties of both Reo connectors and the
computational models behind Reo semantics (such as constraints automata [73]);
and (ii) supporting web services orchestration [74], composition, and verification
[75] by means of code generation and verification tools.

Several technologies are available from the Reo tools homepage{ﬂ collec-
tively branded as the Extensible Coordination Tools (ECT). They consist of

Thttp://github.com/joseproenca/ip-constraints
18http://reo.project.cwi.nl/reo/wiki/Tools

17

http://github.com/joseproenca/ip-constraints
http://reo.project.cwi.nl/reo/wiki/Tools

various Eclipse IDE plugins, such as a graphical designer for Reo connectors,
and a code generator which automatically converts the graphical description into
Java sources in which developers may inject applicative logic. Nevertheless, the
generated code comes with no explicit support for distribution.

According to the home page, ECT are allegedly compatible with any Eclipse
version starting from 3.6; while we were not able to reproduce its installation
in that version (due to a dependency requiring an higher version of Eclipse),
we succeeded in installing it on Eclipse version 2019-06 (the latest available to
date), but the code generator appears buggy and unstable, hindering further
testing, because of several non-informative error messages continuously appear-
ing when trying to use the Reo model designer—which is a required step for
code generation.

The ECT source code is available from a Google Code repository[°}—last
commit dating back to 2013. In [76] a novel implementation is proposed, named
Dreams, implemented in Scala and aimed at closing the gap between Reo and
distributed systems. Nevertheless, its binary distribution seems unavailable and
no documentation is provided describing how to compile or use it, thus we were
not able to further test this novel Dreams framework.

TripCom. TripCom [30] is essentially a departure from the LINDA model where
the tuple space abstraction is brought towards the Semantic Web vision [77]
and web-based semantic interoperability in general. The former is achieved by
employing the Resource Description Framework (RDF) — that is, a represen-
tation of semantic information as a triplet “subject-predicate-object” — as the
tuple representation language, and by considering tuple spaces as RDF triplets
containers. Also, LINDA primitives have been consequently re-thought under a
semantics-oriented perspective—that is, by adopting an ad-hoc templating lan-
guage enabling expression of semantic relationships. The latter is achieved by
making triple spaces accessible on the web as SOAP-based web-services.

The implementation is hosted on a SourceForge repositorym and it is appar-
ently discontinued, provided that the last commit dates back to 2009, and the
home page lacks any sort of presentation or reference to publications or docu-
mentation. Nevertheless, the available source code appears well engineered and
is well documented. It can be easily compiled into a .war file and then deployed
on a Web Server (i.e. Apache Tomcat).

Once deployed, the web service is accessible via HT'TP, making it virtually
interoperable with any programming language and platform, and can be tested
by means of a common web browser. Additionally, the service exposes a WSDL
description of the API needed to use it, which implies that a client library
(aka stub) may be automatically generated using standard tools for service-
oriented architectures. Nevertheless, this WSDL description is the only form of
documentation when it comes to actually interact with the web-service.

Yhttps://code.google.com/archive/p/extensible-coordination-tools/source
2Onttps://sourceforge.net/projects/tripcom

18

https://code.google.com/archive/p/extensible-coordination-tools/source
https://sourceforge.net/projects/tripcom

CiAN. Collaboration in Ad hoc Networks (CiAN) [32] is a Workflow Manage-
ment System (WfMS) enabling users to schedule and execute their custom work-
flow over MANETS. It comes with a reference architecture and a middleware.
The middleware keeps track of the workflow state in a distributed way, and
takes into account routing of tasks’ input/output data, on top of a dynamic
network topology where nodes communication is likely to be opportunistic.

Workflows in CiAN are modelled as directed graphs whose vertices represent
tasks, and edges represent the data-flow from a task to its successors: when
a task is completed, a result value is transferred through its outgoing edges.
Conditions may be specified within task definitions stating, for instance, whether
a task should wait for all its inputs or just for one of them.

Users can encode their workflow descriptions via a XML-based language to
be sent to an initiator singleton node, distributing the workflow to a number of
coordinator nodes in charge of allocating tasks to the available worker nodes.

While the middleware is implemented in Java, tasks logic can be imple-
mented virtually by means of any language since CiAN only assumes the appli-
cation logic to interact with the middleware by means of the SOAP protocol,
which provides great interoperability. Both the middleware’s source code and
its compiled version are distributed through CiAN Websit@ together with de-
tailed documentation and some runnable examples. The source code can be
easily compiled, and both the obtained binaries and those publicly available
can be run smoothly. The code is well documented and engineered. Neverthe-
less, the source code and documentation both date back to 2008: we therefore
consider the project to be mature and usable, but no longer maintained.

Piccola. Piccola [20] is in its essence a composition language. It provides simple
yet powerful abstractions: forms as immutable, prototype-like, key-value ob-
jects; services as functional forms which can be invoked and executed; agents
as concurrent services; and channels as inter-agent communication facilities.
Virtually any interaction mechanism can be built by properly composing these
abstractions, such as shared variables, push and pull streams, message-passing,
publish-subscribe, and so on.

Nevertheless, a limitation is due to the fact that not solely the coordination
mechanisms are to be programmed with the Piccola language, but also the co-
ordinated entities. There is thus no possibility of integration with mainstream
programming languages, which is a severe limitation for adoption. Additionally,
even if Piccola comes with networking capabilities virtually enabling deployment
to a distributed setting, there is no middleware facility available and no opportu-
nity for integration with others is given, which is another factor likely to hinder
Piccola adoption within the scope of distributed programming and coordination.

Piccola home pagﬂis still available and collects a number of useful resources
such as documentation pages and implementation. This comes in two flavours:

2Thttp://mobilab.cse.wustl.edu/Projects/CiAN/Software/Software.shtml
2?http://scg.unibe.ch/research/piccola

19

http://mobilab.cse.wustl.edu/Projects/CiAN/Software/Software.shtml
http://scg.unibe.ch/research/piccola

JPiccola, based on Java, which reached version 3.7, and SPiccola, based on
Smalltalk, which reached version 0.7. Source code is provided for the Java
implementation only, which correctly compiles and executes.

Nevertheless, the project appears to be discontinued, given that the last
commit on the source repository dates back to 2006.

CRIME. CRIME adheres to the Fact Spaces model, a variant of LINDA which
absorbs transient federation of tuple spaces from Lime [56] for implementing
mobile fact spaces: tuple spaces where tuples are logic facts and each tuple space
is indeed a logic theory. Federated fact spaces are therefore seen as distributed
knowledge bases.

In this sense, CRIME has some similarities with TuCSoN, which exploits
first-order logic tuples both as the communication items and as the coordination
laws. In this context, LINDA out and in primitives collapse into logic facts
assertions and retractions, respectively.

Suspensive semantics is not regarded as being essential within the scope of
the Fact Spaces model, since the focus is about programming fact spaces to
react to information insertion/removal (or appearance/disappearance in case of
transient federation). Accordingly, users can register arbitrary logic rules by
means of a Prolog-like syntax. The head of such rules represent propositions
which may be proved true (activated) or unknown (deactivated) given the cur-
rent knowledge base by evaluating the body of the rule. Users can then plug
arbitrary application logic reacting to (de)activation of these rules.

Implementation of CRIME is available on the project home pagﬁ and con-
sists of an archive shipping pre-compiled Java classes with no attached source
code. The software is apparently no longer maintained: the web page has been
updated last in 2010, and the archive dates back to 2006. Nevertheless, the
archive provides a number of example applications which have been tested and
are still correctly working. No support is provided to application deployment
and no documentation has been found describing how to deploy CRIME to an
actual production environment.

KraiM-*x. With notation KLAIM-x we refer to the family of models and tech-
nologies stemming from KLAIM [26] — such as O’Klaim [25] and MoMi [78] —
which nowadays evolved into the X-Klaim/Klava framework [79, [80]. X-Klaim
consists of a domain-specific language and its compiler, which produces Java
code by accepting X-Klaim sources as input. The produced code exploits the
Klava library in turn, that is, the Java library implementing the middleware
corresponding to the KLAIM model.

The overall framework explicitly targets code mobility, thus allowing both
processes and data to migrate across a network. To do so, X-Klaim and Klava
provide a first-class abstraction known as locality. Localities are of two sorts:
either physical, such as network nodes identifiers, or logical, such as symbolic

23http://soft.vub.ac.be/amop/crime/introduction

20

http://soft.vub.ac.be/amop/crime/introduction

references to network nodes having a local semantics. Each locality hosts its
own tuple space, and the processes therein interacting. The LINDA primitives
supported by Klava are always explicitly or implicitly related to the tuple space
hosted on a specific locality. Furthermore, processes are provided with primitives
enabling them to migrate from a locality to another in a strong manner, that
is, along with their execution state.

Summing up, KLAIM is a tuple-based coordination model extending the ex-
pressive reach of LINDA-like models by explictly considering mobile environ-
ments. As such, its most peculiar concept is that of locality and the associated
machinery to handle process-location association in presence of mobility.

Both X-Klaim and Klava are distributed by means of the KLAIM Project
home pagﬂ providing well detailed documentation. For what concerns X-
Klaim, its C++ source code (dating back to 2004, date of the last edit, visible
right below the title) is publicly available along with a self-configuring script
meant to ease compilation. Nevertheless, we were not able to reproduce the
compilation process on modern Linux distributions, seemingly due to some
missing (and undocumented) dependency. No clues about how to fix the self-
configuration process when it fails is provided, neither we were able to find
some sort of documentation explicitly enumerating the compilation dependen-
cies. However, for the sake of completeness, it is worth to be mentioned that
X-Klaim has been recently reboote as an Xtext/Ecplise-based technology,
which is currently actively maintained and successfully deployable. There, the
X-Klaim compiler has been actually replaced by a code generation utility lever-
aging on the Xtext toolkiﬂ which also brings a number of Eclipse-related
utilities.

Conversely, the Klava library — actually implementing the coordination mid-
dleware — is distributed as a single .jar file containing both Java sources and
the binaries. The . jar file dates back to 2004 likewise for X-Klaim, so it is ap-
parently no longer developed, but further testing showed how the Klava library
is still functioning, since it is self-contained and targets Java versions 1.44.

Limone. Limone [27] is a model and middleware meant to improve scalabil-
ity and security in Lime [56] through access control, and explicitly targeting
distributed mobile systems and, in particular, agents roaming across ad-hoc
networks built on top of opportunistically interconnected mobile devices.

Once two or more devices enter within their respective communication range
and thus establish a connection, the agents running on top of them are (poten-
tially) enabled to interact by means of transient sharing of their own tuple
spaces. But, for some agents to be actually able to communicate, Limone states
they should specify their engagement policies. An agent A’s engagement policy
determines which agents are allowed to interact with it and to which extent,

24nttp://music.dsi.unifi.it/klaim.html
25https://github.com/LorenzoBettini/xKlaim
26nttps://wuw.eclipse.org/Xtext/

21

http://music.dsi.unifi.it/klaim.html
https://github.com/LorenzoBettini/xKlaim
https://www.eclipse.org/Xtext/

that is, which primitives are allowed to be invoked. Agents satisfying the pol-
icy are registered within A’s acquaintance list. So, each agent only has to care
about its acquaintance list, thus reducing the bandwidth requirements for the
middleware.

A reactive programming mechanism completes the picture, enabling agents
to inform their peer about their interest in tuples matching a given template,
in order to be informed when such tuples becomes available.

The Limone technology is distributed by means of the project web pagﬂ in
the form of a compressed archive containing the Java source code (dated back
in 2004) and a Makefile for automatic build. Nevertheless, the code strictly
requires to be compiled against a Java version prior to 1.5, and modern Java
compilers do not support such an ancient versior@. For these reasons, we could
not proceed to further test the technology and we consider it to be no longer
maintained nor actually usable.

RepliKlaim. RepliKlaim [47] is a variant of Klaim [26] introducing first-class ab-
stractions and mechanisms to deal with data locality and consistency, so as to
give programmers the ability to explicitly account for and tackle these aspects
when developing parallel computing applications. Specifically, the idea is to
let the programmer specify and coordinate replication of data, and operate on
replicas with a configurable level of consistency. This enables the programmer
to adapt data distribution and locality to the needs of the application at hand,
especially with the goal of improving performance in terms of concurrency level
and data access speed—in spite of latencies due to distribution.

Most of the abstractions and mechanisms, as well as syntax elements and
semantics, of RepliKlaim are exactly as in Klaim, such as data repositories, pro-
cesses, locations, and many actions. When due, actions are extended to ex-
plicitly deal with replication aspects, such as in the case of an out primitive
putting multiple copies of the same tuple in multiple localities, or an in prim-
itive removing all replicas from all locations at once. Also, various degrees of
consistency among replicas in the same or different locations are achieved de-
pending on whether primitives are synchronous (namely, atomically executed)
or asynchronous.

There exists a prototype implementation of RepliKlaim on top of Klava, the
Java implementation of Klaim, available for direct download from a URI@ given
in its companion paper [47]. From there, a .rar archive is provided, containing
a version of Klava and the source files implementing RepliKlaim, which can be
easily compiled and run successfully.

Nevertheless, as stated in the paper describing RepliKlaim, its implementa-
tion currently relies on encoding its model in the standard Klaim model, thus,
on the practical side the code provided only features examples about how to

2"http://mobilab.cse.wustl.edu/projects/limone

28 As stated here: https://docs.oracle.com/javase/9/tools/javac.htm#JSWOR627

29nttp://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.
rar

22

http://mobilab.cse.wustl.edu/projects/limone
https://docs.oracle.com/javase/9/tools/javac.htm#JSWOR627
http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.rar
http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.rar

translate RepliKlaim primitives into Klava. No higher-level API directly provid-
ing to developers the replica-oriented operations of RepliKlaim is provided. In
other words, there exists no RepliKlaim Java library which can be imported to
other Java projects in order to exploit its provided coordination services.

Logic Fragments. Logic Fragments, also called Logic-Based Chemical Coordi-
nation Model (LFCM) [81] is a chemical-based and programmable coordination
model inspired to SAPERE [50, 82], itself a coordination model for multi-agent
pervasive systems inspired to natural chemical reactions. SAPERE is based on
four main concepts: Live Semantic Annotations (LSAs), LSA Tuple Space,
agents and eco-laws. LSAs are tuples of types (name,value) used to store
applications data. LSAs belonging to a computing node are stored in a shared
container named LSA Tuple Space. Each LSA is associated with an agent,
such as sensors, services, or general applications that want to interact with the
LSA space—e.g. injecting or retrieving LSAs from the LSA space. Inside the
shared container, tuples react in a virtual chemical way by using a predefined
set of coordination rules named eco-laws, which can (i) instantiate relationships
among LSAs (Bonding eco-law), (ii) aggregate them (Aggregate eco-law), (iii)
delete them (Decay eco-law), and (i) spread them across remote LSA Tuples
Spaces (Spreading eco-law). When a tuple is modified by an eco-law, its rela-
tive agent is notified. The implementation of the SAPERE middleware allowed
developing several kinds of real distributed self-adaptive and self-organising ap-
plications [50].

Logic Fragments extends SAPERE and defines a coordination model based on
logic inference [83]. Logic Fragments are combinations of logic programs defin-
ing interactions among agents distributed over the nodes of the system. Logic
Fragments allows agents to inject logic fragments, a new type of LSA, into
the shared space. An additional eco-law (the Logic fragment eco-law) inter-
prets those fragments based on the current tuples in the tuple space (including
neighbouring ones). Those fragments actually define on-the-fly ad-hoc chemical
reactions that apply on matching data tuples present in the system, removing
tuples and producing new tuples, possibly producing also new logic fragments.
The model is defined independently of any specific logic, an actual instantiation
and implementation of the model can use its own logic(s). The corresponding
middleware for two-valued logic is publicly available as open source projec

Logic Fragments supports various types of logics, ranging from classical up to
many-valued paraconsistent ones. The logical formalisation makes it possible to
express coordination in a rigorous and predictable way, both at design-time and
run-time, as well as injection of new eco-laws under the form of logic formulae.

Extensions of both SAPERE and Logic Fragments as prototyping platforms
for large-scale experiments are available. TheOne-SAPERE is a prototyping
tool [84] that integrates the SAPERE middleware within The Opportunistic Net-
work Environment (The One) simulator [85], allowing to prototype and validate

30nttps://bitbucket.org/houssembenmahfoudh/theonesapere/src

23

https://bitbucket.org/houssembenmahfoudh/theonesapere/src

applications with realistic scenarios before deploying them. Indeed, it allows on
the one hand to simulate a large number of computational nodes movements and
their communications, placing them in various configurations allowing stochas-
tic evaluation of parameters. On the other hand, each node is equipped with
the actual SAPERE middleware (actual code), allowing to execute from within
the simulation actual spatial system services (gradient, spreading, evaporation,
etc.), thus providing actual results relating to spatial system services behaviour.
Following the above idea, TheOne-LFCM [83] is a prototyping platform where
the actual Logic Fragment middleware runs in each simulated node.

Codes for various SAPERE variants, Logic Fragments and the two prototyp-
ing platforms can be retrieved from open source repositories all reachable from
https://www.unige.ch/cui/cas/publications/projects-output/. They all
have some documentation available, either in the form of publications, readme
files, or “hands-on” tutorials, and, Logic Fragments specifically, does success-
fully compile and run.

3. Insights

In this section we aim at providing further insights about the technologies
described in Subsection especially to understand (i) whether they stem from
a common archetypal coordination framework (Figure , (ii) their relationships
in terms of the features they provide (Figure @, and (4ii) which goal mostly
motivated their development and which application scenario they mostly target

(Figure [7)).

A family tree. Figure [5| depicts a sort of “family tree” of the selected coordi-
nation technologies, emphasising how they stem from a few archetypal coor-
dination models/languages, and how they are built on top of each other. Tt

Klaim refer-
ence (maybe
report Klaim
instead of
Klava into

| ACLT || LINC | | Klava | | Lime | Moses Manifold

the picture?)

-~

|Piccola| |CiAN|

| Limone || CRIME | Clam
TuCSoN 11C
[TuCSoN |

Figure 5: Lines of evolution of selected technologies (below the dashed line), as stemming
from a few archetypal coordination model (above the dashed line).

24

https://www.unige.ch/cui/cas/publications/projects-output/

makes thus apparent how most of the technologies still available stem from two
archetypal models: LINDA [46] and IWIM [I]. Nevertheless, whereas in the case
of LINDA many heterogeneous extensions have been proposed throughout the
years, focussing on different features and thus diverging from LINDA in many di-
verse ways, the evolution of the IWIM model appears much more homogeneous,
featuring descendants which “linearly” extend their ancestors’ features. Sum-
ming up, from LINDA stem the TuCSoN family, the Klaim [26] family (including
Klava and RepliKlaim), the LIME [86] family (with Limone and CRIME), besides
the lone runners LINC and TripCom, whereas from the IWIM root stems the
Reo family—completed by Manifold, Clam, and the latest extension IIC.

Apart from these two big family trees, we have the LGI model, along with
its implementation, Moses, and a small group of “lone runners” with unique
features: Piccola, CiAN, and JErlang. While the former inspired some features
of technologies stemming from other models — for instance, its programmable
laws inspired essentially any other technology or model having reactive rules of
some sort, such as LINC —, the latter remained mostly confined to itself.

It is interesting to notice how “the IWIM family” and “the LINDA family”
remained well-isolated one from each other over all these years. Whereas this
can be easily attributed to the fundamental difference in the approach to coordi-
nation they have (data-driven vs. control-driven, as also emphasised in Figure |§|
on page it seems odd that nobody tried to somewhat integrate these two
extremely successful coordination models, in an attempt to improve the state of
art by cherry-picking a few features from both to create a novel, hybrid coordi-
nation model [87], with “the best of two worlds”. To some extent, the TuCSoN
model, along with its coordination language, ReSpecT, pursues this path: Re-
SpecT in fact can be regarded as a data-driven model because coordination is
based on availability of tuples, as in LINDA, but, at the same time, coordina-
tion policies are enforced by declarative specifications which control the way in
which the coordination medium behaves, thus, ultimately, how the coordinated
components interact—as typical for control-driven models like IWIM.

The path toward integration could be the key in further perfecting and
improving coordination models and languages, by complementing data-driven
models elegance and flexibility with control-driven models fine-grained control
and predictability.

Families marriage. Figure [0] enriches the family tree just described with rela-
tionships indicating differences (plus and minus signs on labels) and similarities
(dashed lines) in features provided—mnotice that w.r.t. Figure [5| Piccola, CiAN,
and JErlang have been removed because they are so unique that no clear re-
lationship may be found with other technologies. As already mentioned for
Figure [LINDA has been taken as the common ground for many technologies
which are instead very heterogeneous in the aim pursued: if ACLT, TuCSoN,
and LINC have a LINDA core enriched with many other features (such as pro-
grammability, transactionality, and novel primitives), the Klaim family and the
LIME one diverge more, by changing the way in which primitives behave (as in
the case of localities in Klaim), or the way in which the interacting processes see

25

+programmability +RDF

“+inference,

. LGI ITWIM
. +mobility
ansactions +ocalities

s .o. Tfederation

“+tr
+1‘lllCS +I1]Oblllt) .- l-l-l-l-¥Il-l-l-l-l-l-l-l-l-l-l -
ACLT Moses Manifold
1' S +asynch
Y
LINC ,I AN +scalability
1 N
~+access control /I Freplicas N me\ssages
+primitives ! / mOblhtX
programmability ,' ’ ,/ T
- -localities // e
[. . ,
Rethlalm / s-mobility ¢ L
4 - 7
7’
! access control ¢ e ~+in-round
1 ’ inference programmability interaction
Y

-

|
TuCSoN | - -7 .))
o Sy - data-driven vs. control-driven

CIldOgCHCOIIS VS. exogeneous

Figure 6: Main differences (plus and minus signs) and similarities (dashed lines) amongst
selected technologies. Arrows indicate what it takes (plus, add something; minus, remove
something) to go from one technology (the source) to another (the destination).

each others’ tuple spaces (as for LIME transient federation).

Nevertheless, technologies which may appear as being far apart from each
other have interesting similarities, as in the case of the interaction rules of LGI,
thus Moses, which strongly resemble ACLT and TuCSoN reactions, or the fact
that both the Reo family and Moses are based on message passing. Or, the
fact that both CRIME and TuCSoN rely on logic tuples so as to leverage on the
inference capabilities of interacting agents, while Reo and both LIME and Klaim
take into account mobility of processes and coordination abstractions (tuple
spaces vs. channels) as a first-class citizen.

It is worth emphasising here that Figure [6] highlights the features to which
more attention has been devoted throughout the years: programmability, ac-
cess control, and mobility. These features, possibly extended with scalability
and inference capabilities, are crucial for widening applicability of coordina-
tion technologies to real-world scenarios. For instance, the Internet of Things
(IoT) [88] — along with its variants Web of Things [89] and Internet of Intelli-
gent Things [90] — is a very good fit for testing coordination technologies, and
requires precisely the aforementioned features.

Goals & preferred scenarios. Finally, Figure [7] relates the selected technologies
with the main aim pursued which motivates their extension in a particular
direction, along with the applications scenario they best target.

26

From the description of the selected technologies we gathered, two are the
main goals motivating their evolution: (i) providing flexibility so as to deal with
the majority of heterogeneous application scenarios possible, and (7i) focussing
on first-class abstractions for better supporting space-awareness of both the
coordination abstractions and the interacting processes.

In fact, TuCSoN / ACLT, LINC, and Moses all provide means to somewhat
program the coordinative behaviour of the coordination medium, thus aim at
making it configurable, adaptable, malleable, even at run-time, and/or provide
additional coordination primitives to expand the expressive reach of the coor-
dination technology. The Klaim family, the Reo family, and the Lime family
instead, are geared toward some forms of space-awareness, be it by promoting
mobility or by providing location-sensitive primitives. Reo, for instance, has an
explicit notion of location (as the logical or physical place where a component
executes) that is also explicitly managed but language primitives, such as _move
which enables relocation of channel ends to a different location.

Besides these, two more main goals can be devised, peculiar to specific tech-
nologies: (%) supporting humans-in-the-loop, in the case of CiAN, and (iv)
provide a semantic representation of data items, in the case of TripCom.

About the application scenarios explicitly declared as of particular inter-
est for the technology, the most prominent one is service composition, which
is especially interesting for Piccola, JErlang, the Reo family, the Klaim family,
and TripCom—besides being naturally applicable to all other technologies too.
Then, whereas technologies such as LINC and the Lime family are mainly tai-

| Flexibility L _ I_I:Iumans—in—the—loop | | Space-awareness |
T~ <~ <= == _ 7

S ~< = 7T
’ " ~ ~< - ’ \ e \

AY \

e

y NN S Ssa T= ;i: |4 A Y
[ACLT || LINC || Moses| >+ [Manifold| xl Klava| |[Lime || TripCom
V U

k Y R\
Piccola| [CiAN]
Y
Grm
TuCSoN | Reo] Limone/{/ CRIME
X

N

General purpose fMS ToT Service composition

Figure 7: Selected technologies per main goal pursued (top, dashed arrows) and preferred
application scenario (bottom, solid arrows).

27

lored to the IoT landscape, being meant to cope with the requirements posed by
small, possibly portable, possibly embedded devices with low resources, Work-
flow Management (WEMS) is peculiar to CiAN, while also considered by TuCSoN
[91]. Besides these application scenarios, there are many technologies without
a specific focus, although they have been applied to many different ones, such
as TuCSoN itself, LINC, Moses, and TripCom: these have been associated with
the generic “General purpose” scenario.

The goals and application scenarios just highlighted strengthen our previous
consideration that the IoT could be the “killer-app” for coordination technolo-
gies. In fact, flexibility (there including programmability and configurability),
space-awareness (there including mobility and location-awareness), and seman-
tics (there including interoperability of data representation formats) are all nec-
essary ingredients for any non-trivial IoT deployment: the former helps in deal-
ing with uncertainty and unpredictability typical of the IoT scenarios, the latter
is required for building open IoT systems, and some form of space-awareness is
a common feature of many IoT deployments, from retail to industry 4.0. Also,
the fact that service composition has been already thoroughly explored within
COORDINATION is a great advantage and the perfect starting point for tack-
ling IoT challenges: both the IoT and the Web of Things vision foster a world
where connected objects provide and consume services, which can be composed
in increasingly high-level ones.

Along this line, many recent contributions started to recognise the need to
adopt coordination models and languages as a means to effectively orchestrate
the increasingly complex network of interactions amongst IoT components in
distributed deployments—as encouraged by the movement from a CLoud-centric
IoT to an Edge-based IoT: in [92] event-condition-action rules are used in a
publish-subscribe setting to coordination services based on the events they gen-
erate; in [93] FIPA protocols are offered as ready to use coordination means,
alongside with a topic-based blackboard mode (to achieve reference uncoupling)
as well as event-drive coordination w.r.t. the cyberphysical part of the IoT sys-
tem; in [94] the dataflow programming model is instead used the coordination
model governing interactions between components in a Fog computing deploy-
ment.

4. Coordination technologies outside COORDINATION

In this section we want to position COORDINATION w.r.t. other related
conferences while still retaining focus on technologies. Term “related” reflects
the following inclusion criteria: we selected those conferences and workshops
where the set of most active authors has a reasonable intersection with the most
active authors of COORDINATION. Such sets have been identified thanks to
the dblp portaﬂ As a result, four communities have been identified, thus con-

3Ihttps://dblp.uni-trier.de/, search for “COORDINATION” than inspect the bar on
the right, where authors and venues lie.

28

https://dblp.uni-trier.de/

sidered: SAC, SASO, FOCLASA, and ISOLA. We then filtered out papers which
do not explicitly contain word “coordination” either in the title or abstract, and
finally manually inspected the remaining ones looking for technologies explicitly
dealing with coordination.

The Symposium on Applied Computing (SAC), for instance, has a strong
relationship with COORDINATION, as it hosted a specific track dedicated to
“Coordination Models, Languages, and Applications” until its 30*" edition, in
2015. Then, it converged into the “Programming Languages” track. The in-
ternational conference on Self-Adaptive and Self-Organising Systems (SASO)
has often seen participation of several well known authors from the COORDI-
NATION community, mostly because self-organisation is often built on top of
handling interactions among components. Nevertheless, technological contribu-
tions are rare as many works in SASO are mostly concerned with simulation of
emergent and adaptive behaviours resulting from rather simple, but numerous,
interactions, rather than with designing coordination middleware. Finally, both
the international workshop on Foundations of Coordination Languages and Self-
Adaptative Systems (FOCLASA) and the International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation (ISOLA)
turned out to be strongly intertwined with the COORDINATION community,
although the focus of both is much more on the theoretical and formal side of
coordination theories, languages, and models, hence technological contribution
are almost absent here.

In the following, we analyse each venue separately, briefly reporting on the
technological contributions found, and emphasising relationships with COOR-
DINATION whenever possible.

SAC. Many SAC papers have direct relationships with works presented at CO-
ORDINATION, hence already described in Section [2| For instance:

e the ReSpecT language for programming ACLT tuple centres is introduced
and proved Turing-complete [95]. ACLT will later become TuCSoN, and
ReSpecT would become its coordination language

e the TuCSoN model and technology is introduced [06], and its relationship
with the tuple centre notion and ReSpecT are discussed

o MARS-X is presented as a programmable coordination architecture for In-
ternet applications based on mobile agents [97]. MARS-X extends MARS
[98] by letting agents coordinate through programmable XML dataspaces,
accessed by agents in a Linda-like fashion. The programmable nature of
MARS dataspaces and the focus on Internet applications are inspired by
TuCSoN and ReSpecT, presented just one year before

e the DICE framework architecture is described and a report on its imple-
mentation is given [99]. DICE (Distributed Constraint Environment) is
a framework for the construction of distributed constraint solvers from
software components. The framework is implemented using the Mani-
fold coordination language, and delivers coordination services to these

29

components. The coordination services implement existing protocols for
constraint propagation, termination detection, and splitting of constraint
satisfaction problems

e in [T00], the authors show how a variety of distributed tuple structures for
field-based coordination can be easily programmed in the TOTA [I01] mid-
dleware. Several examples clarify the approach, and performance measures
are discussed to evaluate its effectiveness. TOTA inspired the whole re-
search theme of field-based coordination, as well as the SAPERE approach,
hence Logic Fragments in turn

e in [102], the authors discuss a framework for self-organising coordination:
coordination media spread over the network are in charge of managing in-
teractions with each other and with agents solely according to local crite-
ria, making global properties of the resulting system appear by emergence.
The authors strongly leverage on the TuCSoN/ReSpecT coordination in-
frastructure, used as a general purpose coordination platform for enacting
self-organising coordination. The examples of chemical-like coordination
here reported are precursors of the whole biochemical coordination re-
search theme culminating in SAPERE

e in [I03], the authors introduce a semantic-oriented extension of the tuple
space model based on OWIP?| and Description Logics. An incarnation of
this model is proposed using the TuCSoN/ReSpecT coordination model
and infrastructure

e in [104], a logic based language for programming coordination artefacts is
presented. The language is based on reactive rules to define coordination
laws and policies. A prototype built on top of CArtAgO [105], and rely-
ing on the tuProlog Prolog engine [63] is also presented, where different
coordination paradigms realised upon the language are shown. The work
relates to the theme of chemical-like coordination above described, and
is heavy influenced by the work on TuCSoN and ReSpecT by the same
research group

e in [I06], the authors introduce the concept of a pervasive ecosystem (at the
basis of the SAPERE approach, too), and present a coordination approach
grounded upon it, which revolves around (i) the notion of a distributed
and dynamic space of “live semantic annotations” (wrapping data, knowl-
edge, and activities of humans, devices, and services) and (i) a set of
chemical-resembling coordination rules that are applied to such annota-
tions semantically (both concepts closely resembling SAPERE). As an
application example, a simulated scenario of crowd steering in an exhi-
bition centre is presented, leveraging on the Alchemist simulator [TI07].
A number of contributions which have been proposed in the next years

32https://www.u3.org/TR/owl-ref

30

https://www.w3.org/TR/owl-ref

leverage on the Alchemist simulator as well — such as [108] [T09] —, proving
it as a solid solution for simulating coordination mechanisms

e the Dreams framework is introduced aimed at further integrating Reo
with distributed systems [I10]. In fact, in Reo, data is exchanged via syn-
chronous atomic actions, whereas distributed systems are typically asyn-
chronous and assume that messages can be delayed or get lost—as Dreams
does

e in [IT1], the authors present a Peer to Peer (P2P) agent coordination
framework for the exchange of Electronic Health Records between health
organisations that comply with the existing interoperability standards as
proposed by the Integrating Healthcare Enterprise. To model the inter-
actions among communities, the framework uses a tuple centre and se-
mantic web technologies, both implemented on an extension of the TuC-
SoN/ReSpecT infrastructure

e IMCREOtools is presented as a toolkit supporting Interactive Markov
chains (IMC) [112], where IMC is a stochastic compositional model of
concurrency which the authors argue may be effectively used to serve as
a compositional semantic model for Stochastic Reo [113]

The above list already suffices in defining SAC as a premiere venue for research
in coordination models and languages, second to COORDINATION itself only.
As for COORDINATION, some technologies are either discontinued or no longer
accessible, such as MARS, DICE, and TOTA, or became part of other technolo-
gies still available nowadays, such as for ACLT, all the Reo different tools, and
the whole chemical-inspired coordination research thread.

Besides the above technologies strictly related to COORDINATION prod-
ucts, the Coordination Models and Languages track of SAC generated many
other technologies throughout the years. In [114], the Tuple Channel abstrac-
tion is injected in C, Haskell, and Smalltalk, chosen as examples of three dif-
ferent programming paradigms — imperative, declarative, and object oriented,
respectively — to show the versatility of tuple-based coordination as well as its
orthogonality w.r.t. the programming paradigm. In [I15], a coordination model
is presented aimed at deriving efficient implementations on top of MPIE for
C using mixed task and data parallelism. The model provides a specification
language in which the programmer defines the available degree of parallelism
and a coordination language to define how the potential parallelism is exploited
for a specific implementation. The transformation of a specification program
into a coordination program is performed in well-defined steps, therefore can
be automated, with the benefit of a correct output program by construction.
In [I16], the notion of XML Space is introduced as a tuple space where tu-
ples are XML documents and templates are query languages addressing XML,

33https://computing.1lnl.gov/tutorials/mpi/

31

https://computing.llnl.gov/tutorials/mpi/

such as XPath or XQL. The authors then survey three implementations sup-
porting XML Spaces, namely, the aforementioned MARS-X [97], WebSpaces
[117], and XMIDDLE [I18]. In [I19], a model enabling multi-paradigm coordi-
nation between distributed and mobile software agents is presented, along with
a reference software architecture, ACTIWARE, for which a Java-based prototype
implementation is also described. In [120], the authors present a coordination
model which combines logic-based reasoning with a reliable semantic subscrip-
tion mechanism. They discuss its practical applicability based on execution of
performance benchmarks of a prototype implementation called SNES. In [121],
the authors propose a framework aimed at supporting development of urban-
wide applications, leveraging the AmbientTalk |f| language and toolkit and the
TOTAM tuple space implementation [122]. In [123], the SmallSpaces tuple
space implementation is described: it focuses on providing rights management
to control access to tuples within the scope of applications where all the different
flows of data need to be kept separate for confidentiality reasons.

Besides the relevance of coordination models in general, and especially the
interest in the concept of tuple-based coordination, an aspect worth emphasising
is the constant presence of proposals for coordination technologies throughout
the years, along with the application to different business domains. This clearly
indicates that research in coordination models and languages is considered a
staple across application domains.

SASO. Inthe SASO series there is not a dedicated track on coordination models
and languages, hence we can expect few contributions fostering new coordination
models, languages, or technologies. Indeed, SASO is much more concerned
with the two deeply related aspects of self-organisation (by emergence) and
adaptation, hence many works are about simulation of systems or languages
guaranteeing some global properties by construction, or again focus on the so-
called “local-to-global” issue [124]. Nevertheless, being self-organising systems
often architected as distributed systems in which a multitude of components
interact, coordination is of paramount importance. This is well exemplified by
the following contributions:

e an architecture and actual system for self-organising coordination of an
ensemble of ground and air robots [125] is built upon the JADEX plat-
form [126] for BDI agent development [I127]. The proposed architecture
features a blackboard agent which actually plays the role of a tuple space
collecting task assignments and dispatching those assignments to either
an Individual Coordination Agent, in case the task does not require co-
operation amongst agents, or a Swarm Coordination Agent (SCA) in case
no agent is able to solve the task individually. The blackboard agent also
coordinates cooperating agents when due, as instructed by the SCA. No
explicit and dedicated coordination technology is used nor proposed here,

34http:/ /soft.vub.ac.be/amop/

32

but the blackboard agent clearly witness the need for one—and the naive
attempt to provide it

e in [I28] it is presented and evaluated an architecture and prototype for
the coordination of multiple autonomic managers responsible for running
the MAPE-K loop in charge of optimising Cloud resources usage. There,
a message broker enables interaction and knowledge sharing amongst de-
centralised autonomic managers. A detailed event-based protocol is de-
scribed, so as to make explicit the coordination actions corresponding to
the admissible interactions. Again, no explicit coordination model nor
technology is exploited, however, the unambiguous description of the pro-
tocol is itself a (implicit) coordination model dictating how to govern
dependencies amongst the distributed autonomic managers

e in [129] the Molecules of Knowledge coordination model for the self-
organisation of information items in a distributed network is presented
in the form of a prototype implemented on top of TuCSoN and ReSpecT,
as applied to the application domain of citizen journalism. The model was
conceived within the same European project behind the SAPERE model,
hence it shares many characteristics with the whole field of biochemical co-
ordination, complemented with an original application of principles stem-
ming from observation-based coordination (e.g. stigmergy) [130, 131]—in
particular, from behavioural implicit communication theory [132]

A few other contributions, in particular [I33] [134] [I35], are all either prepara-
tory to SAPERE or a byproduct of it, hence share the same distinguishing
characteristics described while also describing, for instance, Logic Fragments
(Subsection . Summing up, we can say that SASO, besides being a venue
where new coordination models and languages are proposed, perhaps specifi-
cally geared toward self-organisation and adaptation, it is also a community
which “stress-tests” existing coordination models and languages in highly de-
centralised and dynamic scenarios, as those fostering emergent phenomena typ-
ically here. It could be interesting, thus, to continue monitoring SASO produc-
tion of coordination-related papers, especially technological ones, as a means
to asses to which extent coordination impacts research on self-organisation and
self-adaptation—until now, the impact has been pretty high, as exemplified by
the exemplary papers overviewed above.

FOCLASA & ISOLA. The latest two conferences we found a reasonable overlap
with in the pool of COORDINATION authors are FOCLASA and ISOLA. We
group them together for two reasons: first, they both have a more theoretical
focus, often emphasising aspects such as minimality and expressiveness reach
of core calculi (for the former) and formal, automated verifiability of programs’
correctness (for the latter); second, for such a motivation technological contri-
butions in the sense of actual coordination middleware or libraries are rare—on
the contrary, simulation and model checking frameworks do abound.

The few works worth describing as they preserve the spirit of our survey are:

33

e in [T36] the authors present an extension to the jRESP Java-based runtime
environment for running distributed programs written in the SCEL lan-
guage [I37], augmented with the notion of policy as stemming from the
FACPL model for access control [I38]. jRESP has a web page{ﬂ and asso-
ciated source code repositoryﬁ still reachable although discontinued (last
access in 2016). In jJRESP, the means for sharing data amongst interacting
agents is actually a tuple space, with addressing and discovery mechanisms
similar to those employed in the Klaim family of models—SCEL was in
fact largely developed by the same research group

e in [I39] an implementation in the Go language of the concept of attribute-
based interaction is presented. The implementation is actually agnostic
to the underlying mediation infrastructure, in fact, the authors evaluate
their Go API with three different infrastructures for investigating the best
efficiency trade-off. Regardless of the infrastructure, the kind of attribute-
based interaction fostered in the paper is based on message passing where
communications are dispatched in a sort of publish-subscribe paradigm
where subscriptions change automatically and dynamically based on envi-
ronmental properties and current context of interacting components. The
authors also developed an Eclipse plugin for assisting programmers. All
the software is available starting from the project Webpagﬂ

5. Coordination technologies in Industry

Based on the information gathered in the survey, there is only one coordi-
nation technology among those described in Section [2| which is actively used in
industrial practice: LINC, as part of the Bag-Era company suite of solutions for
orchestrating IoT services and handle consistency along data chains. Bag-Era
is a young startup company (created mid-2016), founded by several researchers
who used to work with coordination languages for some time (20 years for the
eldest), that provides coordination solutions to improve industrial processes.
Apart from this exception, the surveyed papers and the technologies web pages
give no reason to believe some of them are actually used in industrial products.

Nevertheless, if we consider not the actual COORDINATION technologies
(the software) but the goals, abstractions, and mechanisms behind them (such
as ordering actions or orchestrating data flows, tuple spaces or message channels,
suspensive semantics or reactive notification), then we find many more coordi-
nation technologies embedded in modern software products in the field of, for
instance, service-oriented computing—mostly as enabler of service orchestra-
tion. In particular, despite the heterogeneity of implementations, architectures,
intended purpose and intended value added of the specific software product, a
“coordination core” can be found in two categories of products:

3%nttp://jresp.sourceforge.net/
36https://sourceforge.net/projects/jresp/?source=navbar
3"https://giulio-garbi.github.io/goat/

34

http://jresp.sourceforge.net/
https://sourceforge.net/projects/jresp/?source=navbar
https://giulio-garbi.github.io/goat/

e in-memory data grids (IMDG), that is, in-memory, usually distributed
data storage layers enabling distributed applications to quickly, reliably,
and consistently access shared data and communicate without the need to
rely on direct message passing—ultimately enabling decoupling in space,
time, and reference

e Internet of Things (IoT) platforms, ranging from full-fledged software
suites providing basic interoperability and discovery services as well as
application programming API, to more specific solutions targeting a sin-
gle or a narrow spectrum of requirements and desiderata

In the following we mention a few technologies for each category, with the goal
of clarifying the relationship with the concepts and mechanisms proposed in the
various COORDINATION papers surveyed.

IMDG. Amongst in-memory data grids solutions, Gz’gaSpaces{ﬁ shines as it ex-
plicitly relies on an implementation of the JavaSpaces specification [140], one
of the earliest implementation of the tuple space concept along with the LINDA
model. GigaSpaces is actually a full-fledged application server which leverages a
space-based architecture to enable low-latency and reliable communication be-
tween so-called Processing Units (a way to partition applications independent
components, similarly to microservices). The core of the API is hence meant to
provide access to the shared tuple space, upon which many high level middle-
ware functionalities are realised, such a messaging, caching, parallel processing,
reactive programming, publish-subscribe communication.

Another software explicitly mentioning tuples populating shared data spaces
is TIBCO ActiveSpaceﬂ there, however, the notion of space is a bit different
from a traditional tuple space, as spaces are dynamically composed of all the
tuples of the same kind, like a sort of cache memory—which is configurable. Ac-
tive spaces distribute and synchronise data across the network and proactively
notifies applications of changes, thus can be used as a coordination mechanism
for building distributed systems. Likewise GigaSpaces the core API provides ac-
tions to put, read, and withdraw tuples, as well as transaction-related operations
and a way to subscribe to notifications of tuple changes.

Both GigaSpaces and ActiveSpaces borrow many concepts from tuple-based
coordination, hence from the archetypal LINDA model. Then, enrich the basic
model with many handy features critical for a mature, industry-ready product,
such as transactions, access control, replication. It is worth emphasising that
such features also appear in Figure[6] as they have been considered in the many
technologies building on LINDA, such as LINC and TuCSoN.

IoT platforms. In the case of IoT platforms, we found no explicit mentioning of
tuple spaces or shared data spaces in general, as was in the case of GigaSpaces

38nhttps://wuw.gigaspaces.com/
3%nttps://www.tibco.com/it/products/tibco-activespaces

35

https://www.gigaspaces.com/
https://www.tibco.com/it/products/tibco-activespaces

and ActiveSpaces IMDG. However, many software products provide function-
alities aligned with the purpose of coordination technologies, as tailored to the
peculiarities of the IoT application domain. For instance, many IoT platforms
deal with the issues of data exchange between heterogeneous, possibly mobile
devices scattered across a network, and of triggering appropriate actions based
on such data, in the right sequence, on the right device—essentially, a coordi-
nation problem.

All the big players in the market, such as Amazon, Google, Microsoft, and
IBM provide cloud solutions and are currently striving to extend their reach
towards the Edge of the network [I41]. AWS IoT, Google Cloud IoT, MS Azure
IoT, and IBM Watson IoT @ all provide their own way of (i) configuring vir-
tual representation of physical devices (e.g. AWS IoT “shadow” objects) to be
managed by the platform, (i) exploiting publish/subscribe blackboards for com-
munication, (i) exploiting event notification services for reactive computation,
and (iv) program rules (e.g. Google Cloud IoT “functions”) to connect events,
data streams, and device status updates to various kinds of actions (either on
physical devices or on other Cloud services), even in a graphical way requir-
ing little programming background (as in the case of MS Azure IoT “telemetry
rules”).

Given the above, we can easily devise out a conceptual mapping where virtual
devices are interacting agents or processes, blackboards are realised on top of
tuple spaces or suitably composed channels, and rules are dataflow pipelines as
in Reo or reactions as in TuCSoN and LINC. The concepts and the intended
purpose are the same, albeit the implementation emphasises different aspects
for obvious reasons, as stemming from the target audience intended for the
technology—other researchers or industrial practitioners.

Indeed, the idea of tuples spaces becomes more and more relevant with the
rise of novel computing paradigms and technologies, such as edge computing
[141], the Internet of Things, local clouds, and so on. There, data and inter-
process / system communication is becoming more and more relevant, and the
focus is not only on enabling sharing of data with seamless interoperability while
still maintaining loosely coupled components, but also on ensuring correctness of
the overall system behaviour, which often critically depends on the correctness
of component interactions. In this respect, technologies built out of well-defined
coordination models can deliver a lot of value in terms of “correctness by design”
and opportunity for formal verification.

Insights. In conclusion, coordination technologies as intended within the CO-
ORDINATION community are not in the industry, yet, even though they answer
to several of the key challenges faced today, which will become even more rel-
evant in the near future. We can only make informed guesses on the reasons
behind the lack of adoption, and on the possible improvements to be pursued by

4Onttps://aws.amazon.com/it/iot/, https://cloud.google.com/solutions/iot/7hl=it)
https://azure.microsoft.com/it-it/overview/iot/ https://www.ibm.com/it-it/
internet-of-things

36

https://aws.amazon.com/it/iot/
https://cloud.google.com/solutions/iot/?hl=it
https://azure.microsoft.com/it-it/overview/iot/
https://www.ibm.com/it-it/internet-of-things
https://www.ibm.com/it-it/internet-of-things

the COORDINATION community to make an impact in the industry. Possibly
the most apparent one is the gap in technological tools supporting development
and deployment of coordination mechanisms, protocols, and policies: although
the technologies are there, both the languages and the middleware, often there
are no tools supporting integration with mainstream programming languages
and platforms, as well as there are no tools for monitoring system operation or
ease deployment to production.

Conversely, the industry needs to rely on actual tools to develop, validate, de-
ploy, monitor, and update their systems, while minimising disruption on already
operating deployments. Even if coordination languages are promising in terms
of modelling and verification capacities they will not be used by industrial prac-
titioneers without the required tools. Integrated Development Environments,
for instance, are mandatory, as well as specific monitoring and debugging tools
tailored to the peculiarities of coordination activities. Achieving better support
in this facets would undoubtedly boost adoption of coordination technologies as
“core” components of future commercial products dedicated to service orches-
tration, composition, as well as data exchange and sharing.

6. Conclusion

The main aim of this paper was to provide insights about the state of art
of coordination technologies after twenty years of the COORDINATION con-
ference series, and to stimulate informed discussion about future perspectives,
as well as nurture a fertile ground for further research activity. Overall, apart
from some notable success stories — i.e. the commercial success of LINC along
with the active development of TuCSoN, Reo, X-Klaim, and Logic Fragments —
most coordination technologies have gone through a rapid and effective devel-
opment at the time they were presented, then lacked further improvements or
even maintenance of their usability, thus never reached a wider audience—i.e.
outside the COORDINATION community or in the industry.

Obviously, something also happens outside the COORDINATION bound-
aries, as overviewed in Section for instance, coordination technologies are
surveyed in [142], whereas [143] focuses on tuple-based technologies, however, a
great deal of the technological developments reported in this survey happened
after those papers were published, in 2001 [144]. Also, although the insights de-
livered in this paper are necessarily limited in scope as restricted to a sample of
coordination-related conferences, they represent a great deal of what happened
in the research area of coordination models, languages, and technologies, as
those concepts and mechanisms presented elsewhere have often times been later
presented at COORDINATION suitably expanded, generalised, or specialised
to best match coordination problems and needs.

As regards the industry sector, it has shown some initial penetration of coor-
dination concepts, and steadily increasing attention to the issue of, e.g., service
orchestration, hence interaction between systems components. Nevertheless,
actual usage of coordination technologies born within the academia is rather
limited. This is mostly due to the inherent diversity in goals pursued: although

37

there exist academic products which are rather complete and usable, they are
rarely geared towards industrial deployment, for instance as concerns ease of de-
ployment, interoperability, security and privacy, and streamlined development
process.

Although we acknowledge that researchers are usually mostly concerned with
providing scientifically-relevant models rather than production-ready software,
we also believe that backing up models and languages with more then proof-of-
concept software is crucial to promote wider adoption of both the technology
itself and the models, which in turn may provide invaluable feedback to re-
searchers for further developing and tuning models.

In summary, the COORDINATION conference is quite healthy and ex-
tremely relevant: although the number of published papers is decreasing, ci-
tations and downloads keep growing, contributions conveying technological ad-
vancements represent almost a half of all the contributions, and similar confer-
ences seem to look favourably at its results. The next decade will probably tell
us more about the actual role of coordination technologies in the development
of forthcoming application scenarios: the IoT, for instance, was right at the
start of the descending slope in the “peak of inflated expectations” according to
Gartner’s hype cycle for 2018, and expected to reach the plateau in 2 to 5 years.
This means the time is ripe for pushing forward the development of coordination
technologies, so as to have them ready when the IoT will be mature enough to
actually benefit from their added value.

Mobile phones, laptops, tablets, even autonomous cars locally connected
to each other to form huge computing and storage infrastructures, although
currently under-exploited, are the kind of infrastructures paving the way for
a new category of services based on data propagation among devices, e.g. car
traffic control services through vehicle-to-vehicle communication, information
dissemination in a crowd to better steer the crowd towards points of interest or
emergency exits, and alternative communication infrastructures in case of envi-
ronmental disasters. Such services are time-related, as they may last just for a
very short time for a specific purpose of exploiting current contextual data, as
well as space-related, as they have a meaning because the data they rely on (or
the data they spread) is spatially distributed over a geographic area. Coordi-
nation models and their correspondent technologies are particularly well suited
for these kinds of IoT applications, supporting highly adaptive services able to
cope with the dynamism implied by the underlying mobile and changing com-
puting infrastructures, the spatiality of the considered data, and time-related
issues [145].

Not too far from the IoT landscape, Digital Twins [146], for instance, is a
recent trend aiming at “providing a digital replica of real-world devices, pro-
cesses or even persons” [I47]. A digital twin, provided of the specification of its
original counterpart, evolves throughout the lifecycle of the latter, and is mainly
used in industry for keeping track of current status or overview of devices or
processes, for running simulations, or exploring scenarios (“what-if” analysis).
Interest for digital twins is growing, and from initial industry applications the
research activity is moving towards personalised medicine, transport infrastruc-

38

ture and maintenance, monitoring and prediction of cyber-physical systems, and
managing data arising from IoT deployments. Globally, a digital twin can be
considered as software agent with a model of its physical self, and its environ-
ment, plus additional data. Coordination technologies naturally work well with
such a notion of agent, thus it is reasonable to expect that coordination tech-
nologies will further facilitate the development of dynamic, adaptive, collective,
and Al-enhanced applications involving the use of digital twins.

References

References

[1]

2]

[10]

F. Arbab, The IWIM model for coordination of concurrent activities, in:
Ciancarini and Hankin [I54], pp. 34-56. doi:10.1007/3-540-61052-9.

M. Banville, Sonia: An adaptation of Linda for coordination of activities
in organizations, in: Ciancarini and Hankin [154], pp. 57-74. |doi:10.
1007/3-540-61052-9.

R. Tolksdorf, Coordinating services in open distributed systems with
Laura, in: Ciancarini and Hankin [I54], pp. 386—402. |doi:10.1007/
3-540-61052-9.

K. De Bosschere, J.-M. Jacquet, y2Log: Towards remote coordination, in:
Ciancarini and Hankin [I54], pp. 142-159. doi:10.1007/3-540-61052-9\

M. Fukuda, L. F. Bic, M. B. Dillencourt, F. Merchant, Intra- and inter-
object coordination with MESSENGERS, in: Ciancarini and Hankin
[154], pp. 179-196. |doi:10.1007/3-540-61052-9.

E. Denti, A. Natali, A. Omicini, M. Venuti, An extensible framework for
the development of coordinated applications, in: Ciancarini and Hankin
[154], pp- 305-320. doi:10.1007/3-540-61052-9.

R. van der Goot, J. Schaeffer, G. V. Wilson, Safer tuple spaces, in: Garlan
and Le Métayer [148], pp. 289-301. doi:10.1007/3-540-63383-9.

A. I. T. Rowstron, Using asynchronous tuple-space access primitives
(bonita primitives) for process co-ordination, in: Garlan and Le Métayer
[148], pp. 426-429. |doi:10.1007/3-540-63383-9_98.

R. Tolksdorf, Berlinda: An object-oriented platform for implementing co-
ordination languages in Java, in: Garlan and Le Métayer [148], pp. 430—
433. |doi:10.1007/3-540-63383-9_99.

C. Bryce, M. Oriola, J. Vitck, A coordination model for agents based on
secure spaces, in: Ciancarini and Wolf [I55], pp. 4-20. |doi:10.1007/
3-540-48919-3.

39

http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-63383-9
http://dx.doi.org/10.1007/3-540-63383-9_98
http://dx.doi.org/10.1007/3-540-63383-9_99
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-48919-3

[11]

[12]

[18]

[19]

[20]

[21]

[22]

[23]

C. Varela, G. Agha, A hierarchical model for coordination of concurrent
activities, in: Ciancarini and Wolf [I55], pp. 166-182. |doi:10.1007/
3-540-48919-3_13|

S. Jagannathan, Communication-passing style for coordination lan-
guages, in: Garlan and Le Métayer [148], pp. 131-149. doi:10.1007/
3-540-63383-9.

D. Rossi, F. Vitali, Internet-based coordination environments and
document-based applications: a case study, in: Ciancarini and Wolf [T55],
pp- 259-274. doi:10.1007/3-540-48919-3.

M. Schumacher, F. Chantemargue, B. Hirsbrunner, The STL++ coor-
dination language: A base for implementing distributed multi-agent ap-
plications, in: Ciancarini and Wolf [I55], pp. 399-414. |doi:10.1007/
3-540-48919-3.

N. Sample, D. Beringer, L. Melloul, G. Wiederhold, CLAM: Composition
language for autonomous megamodules, in: Ciancarini and Wolf [155], pp.
291-306. doi:10.1007/3-540-48919-3.

M. Cremonini, A. Omicini, F. Zambonelli, Coordination in context: Au-
thentication, authorisation and topology in mobile agent applications, in:
Ciancarini and Wolf [I55], pp. 416-416. doi:10.1007/3-540-48919-3.

W. C. Jamison, D. Lea, TRUCE: Agent coordination through concurrent
interpretation of role-based protocols, in: Ciancarini and Wolf [I55], pp.
384-398. doi:10.1007/3-540-48919-3.

J. C. Cruz, S. Ducasse, A group based approach for coordinating ac-
tive objects, in: Ciancarini and Wolf [155], pp. 355-370. |doi:10.1007/
3-540-48919-3.

S. Ducasse, T. Hofmann, O. Nierstrasz, Openspaces: An object-oriented
framework for reconfigurable coordination spaces, in: Porto and Roman
[156], pp. 1-18.

F. Achermann, S. Kneubuehl, O. Nierstrasz, Scripting coordination styles,
in: Porto and Roman [I56], pp. 19-35.

X. Ao, N. Minsky, T. D. Nguyen, V. Ungureanu, Law-Governed Internet
communities, in: Porto and Roman [156], pp. 133-147.

I. Merrick, A. Wood, Scoped coordination in open distributed systems, in:
Porto and Roman [156], pp. 311-316.

F. Arbab, F. Mavaddat, Coordination through channel composition, in:
Arbab and Talcott [I53], pp. 22-39. |[doi:10.1007/3-540-46000-4.

40

http://dx.doi.org/10.1007/3-540-48919-3_13
http://dx.doi.org/10.1007/3-540-48919-3_13
http://dx.doi.org/10.1007/3-540-63383-9
http://dx.doi.org/10.1007/3-540-63383-9
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-46000-4

[24]

[27]

[28]

[35]

R. Tolksdorf, G. Rojec-Goldmann, The SPACETUB models and framework,
in: Arbab and Talcott [I53], pp. 348-363. doi:10.1007/3-540-46000-4_
32,

L. Bettini, V. Bono, B. Venneri, O’Klaim: A coordination language with
mobile mixins, in: De Nicola et al. [I57], pp. 20-37.|doi:10.1007/b95570.

R. De Nicola, G. L. Ferrari, R. Pugliese, Klaim: a kernel language for
agents interaction and mobility, IEEE Transactions on Software Engi-
neering 24 (5) (1998) 315-330. |doi:10.1109/32.685256|

C.-L. Fok, G.-C. Roman, G. Hackmann, A lightweight coordination mid-
dleware for mobile computing, in: De Nicola et al. [I57], pp. 135-151.
doi:10.1007/b95570.

S. Mostinckx, C. Scholliers, E. Philips, C. Herzeel, W. De Meuter, Fact
Spaces: Coordination in the face of disconnection, in: Murphy and Vitek
[158], pp. 268-285.

J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’'Hondt, W. De Meuter,
Ambient-oriented programming, in: Companion to the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 05, ACM, New York, NY, USA,
2005, pp. 31-40. doi:10.1145/1094855.1094867.

E. Simperl, R. Krummenacher, L. Nixon, A coordination model for
triplespace computing, in: Murphy and Vitek [158], pp. 1-18.

D. Fensel, Triple-space computing: Semantic web services based on per-
sistent publication of information, in: F. A. Aagesen, C. Anutariya,
V. Wuwongse (Eds.), Intelligence in Communication Systems, Vol. 3283
of LNCS, Springer, 2004, pp. 43-53.

R. Sen, G.-C. Roman, C. Gill, CiAN: A workflow engine for
MANETS, in: Lea and Zavattaro [I51], pp. 280-295. |doi:10.1007/
978-3-540-68265-3_18.

J. Abreu, J. L. Fiadeiro, A coordination model for service-oriented
interactions, in: Lea and Zavattaro [I5I], pp. 1-16. |doi:10.1007/
978-3-540-68265-3.

S. Gilmore, J. Hillston, The PEPA workbench: A tool to support a
process algebra-based approach to performance modelling, in: G. Har-
ing, G. Kotsis (Eds.), Computer Performance Evaluation Modelling Tech-
niques and Tools, Vol. 794 of LNCS, Springer, 1994, pp. 353—-368. doi:
10.1007/3-540-58021-2_20.

L. Bettini, R. De Nicola, M. Loreti, Implementing session centered
calculi, in: Lea and Zavattaro [I51I], pp. 17-32. |doi:10.1007/
978-3-540-68265-3.

41

http://dx.doi.org/10.1007/3-540-46000-4_32
http://dx.doi.org/10.1007/3-540-46000-4_32
http://dx.doi.org/10.1007/b95570
http://dx.doi.org/10.1109/32.685256
http://dx.doi.org/10.1007/b95570
http://dx.doi.org/10.1145/1094855.1094867
http://dx.doi.org/10.1007/978-3-540-68265-3_18
http://dx.doi.org/10.1007/978-3-540-68265-3_18
http://dx.doi.org/10.1007/978-3-540-68265-3
http://dx.doi.org/10.1007/978-3-540-68265-3
http://dx.doi.org/10.1007/3-540-58021-2_20
http://dx.doi.org/10.1007/3-540-58021-2_20
http://dx.doi.org/10.1007/978-3-540-68265-3
http://dx.doi.org/10.1007/978-3-540-68265-3

[36]

[42]

[43]

[44]

[45]

[46]

L. Bettini, R. De Nicola, D. Falassi, M. Lacoste, L. Lopes, L. Oliveira,
H. Paulino, V. T. Vasconcelos, A software framework for rapid prototyping
of run-time systems for mobile calculi, in: C. Priami, P. Quaglia (Eds.),
Global Computing, Springer, 2005, pp. 179-207.

P. Tarau, Coordination and concurrency in multi-engine Prolog,
in: De Meuter and Roman [I49], pp. 157-171. doi:10.1007/
978-3-642-21464-6.

H. Plociniczak, S. Eisenbach, JErlang: Erlang with Joins, in: D. Clarke,
G. Agha (Eds.), Coordination Models and Languages, Vol. 6116 of LNCS,
Springer, 2010, pp. 61-75.

C. Fournet, G. Gonthier, The reflexive CHAM and the Join-calculus, in:
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ACM, 1996, pp. 372-385. |doi:10.1145/237721.237805|

N. Ng, N. Yoshida, O. Pernet, R. Hu, Y. Kryftis, Safe parallel program-
ming with Session Java, in: De Meuter and Roman [149], pp. 110-126.
doi:10.1007/978-3-642-21464-6.

K. Honda, V. T. Vasconcelos, M. Kubo, Language primitives and type
discipline for structured communication-based programming, in: C. Han-
kin (Ed.), Programming Languages and Systems, Vol. 1381 of LNCS,
Springer, 1998, pp. 122-138. doi:10.1007/BFb0053567.

D. Rossi, A social software-based coordination platform, in: Sirjani [I50],
pp- 17-28. doi:10.1007/978-3-642-30829-1_2.

V. Liptchinsky, R. Khazankin, H.-L. Truong, S. Dustdar, Statelets: Co-
ordination of social collaboration processes, in: Sirjani [150], pp. 1-16.
doi:10.1007/978-3-642-30829-1_1.

J. Proencga, D. Clarke, Interactive interaction constraints, in:
R. De Nicola, C. Julien (Eds.), Coordination Models and Languages, Vol.
7890 of LNCS, Springer, 2013, pp. 211-225.

M. Louvel, F. Pacull, LINC: A compact yet powerful coordination en-
vironment, in: E. Kiihn, R. Pugliese (Eds.), Coordination Models and
Languages, Vol. 8459 of LNCS, Springer, 2014, pp. 83-98.

D. Gelernter, Generative communication in Linda, ACM Transactions on
Programming Languages and Systems (TOPLAS) 7 (1) (1985) 80-112.
doi:10.1145/2363.2433.

M. Andri¢, R. De Nicola, A. L. Lafuente, Replica-based high-performance
tuple space computing, in: Holvoet and Viroli [152], pp. 3-18. |doi:
10.1007/978-3-319-19282-6.

42

http://dx.doi.org/10.1007/978-3-642-21464-6
http://dx.doi.org/10.1007/978-3-642-21464-6
http://dx.doi.org/10.1145/237721.237805
http://dx.doi.org/10.1007/978-3-642-21464-6
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-642-30829-1_2
http://dx.doi.org/10.1007/978-3-642-30829-1_1
http://dx.doi.org/10.1145/2363.2433
http://dx.doi.org/10.1007/978-3-319-19282-6
http://dx.doi.org/10.1007/978-3-319-19282-6

[48]

[57]

[58]

L. Bettini, M. Loreti, R. Pugliese, An infrastructure language for open
nets, in: 2002 ACM Symposium on Applied Computing (SAC 2002),
ACM, New York, NY, USA, 2002, pp. 373-377. doi:10.1145/508791.
508862.

F. L. De Angelis, G. Di Marzo Serugendo, Logic Fragments: A coordi-
nation model based on logic inference, in: Holvoet and Viroli [152], pp.
35-48. |d0i:10.1007/978-3-319-19282-6.

F. Zambonelli, A. Omicini, et al., Developing pervasive multi-agent sys-
tems with nature-inspired coordination, Pervasive and Mobile Computing
17 (2015) 236-252. doi:10.1016/3.pmcj.2014.12.002!

A. I. T. Rowstron, WCL: A co-ordination language for geographically
distributed agents, World Wide Web 1 (3) (1998) 167-179. doi:10.1023/
A:1019263731139.

P. Ciancarini, D. Rossi, Jada: Coordination and communication for Java
agents, in: J. Vitek, C. Tschudin (Eds.), Mobile Object Systems Towards
the Programmable Internet, Vol. 1222 of LNCS, Springer, 1997, pp. 213—
226.

J.-P. Banatre, P. Fradet, D. Le Métayer, Gamma and the chemical reaction
model: Fifteen years after, in: C. S. Calude, G. Paun, G. Rozenberg,
A. Salomaa (Eds.), Multiset Processing, Vol. 2235 of LNCS, Springer,
2001, pp. 17-44.

M. Louvel, F. Pacull, E. Rutten, A. N. Sylla, Development tools
for rule-based coordination programming in LINC, in: J.-M. Jacquet,
M. Massink (Eds.), Coordination Models and Languages, Vol. 10319 of
LNCS, Springer, 2017, pp. 78-96. doi:10.1007/978-3-319-59746-1,

R. De Nicola, G. Ferrari, R. Pugliese, Coordinating mobile agents via
blackboards and access rights, in: D. Garlan, D. Le Métayer (Eds.), Coor-
dination Languages and Models, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1997, pp. 220-237.

A. L. Murphy, G. P. Picco, G.-C. Roman, LIME: A coordination model
and middleware supporting mobility of hosts and agents, ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 15 (3) (2006)
279-328.|d0i:10.1145/1151695.1151698.

R. Hu, N. Yoshida, K. Honda, Session-based distributed programming
in Java, in: J. Vitek (Ed.), ECOOP 2008 — Object-Oriented Program-
ming, Vol. 5142 of LNCS, Springer, 2008, pp. 516-541. doi:10.1007/
978-3-540-70592-5_22.

A. 1. T. Rowstron, Bulk primitives in Linda run-time systems, Ph.D.
thesis, The University of York (1996).

43

http://dx.doi.org/10.1145/508791.508862
http://dx.doi.org/10.1145/508791.508862
http://dx.doi.org/10.1007/978-3-319-19282-6
http://dx.doi.org/10.1016/j.pmcj.2014.12.002
http://dx.doi.org/10.1023/A:1019263731139
http://dx.doi.org/10.1023/A:1019263731139
http://dx.doi.org/10.1007/978-3-319-59746-1
http://dx.doi.org/10.1145/1151695.1151698
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22

[59]

[65]

[66]

S. Mariani, A. Omicini, Coordination mechanisms for the modelling and
simulation of stochastic systems: The case of uniform primitives, SCS
M&S Magazine IV (3) (2014) 6-25.

A. Omicini, E. Denti, From tuple spaces to tuple centres, Science
of Computer Programming 41 (3) (2001) 277-294. |doi:10.1016/
S0167-6423(01)00011-9.

A. Omicini, Formal ReSpecT in the A&A perspective, Electronic Notes
in Theoretical Computer Science 175 (2) (2007) 97-117. doi:10.1016/j.
entcs.2007.03.006.

M. Viroli, A. Omicini, Coordination as a service, Fundamenta Informati-
cae 73 (4) (2006) 507-534.

E. Denti, A. Omicini, A. Ricci, tuProlog: A light-weight Prolog for Inter-
net applications and infrastructures, in: I. Ramakrishnan (Ed.), Practical
Aspects of Declarative Languages, Vol. 1990 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2001, pp. 184-198, 3rd International
Symposium (PADL 2001), Las Vegas, NV, USA, 11-12 Mar. 2001. Pro-
ceedings. doi:10.1007/3-540-45241-9_13,

URL http://1link.springer.com/10.1007/3-540-45241-9_13

S. Mariani, A. Omicini, L. Sangiorgi, Models of autonomy and coor-
dination: Integrating subjective & objective approaches in agent de-
velopment frameworks, in: L. Braubach, D. Camacho, S. Venticinque,
C. Badica (Eds.), Intelligent Distributed Computing VIII, Vol. 570 of
SCI, Springer International Publishing, 2015, pp. 69-79. |doi:10.1007/
978-3-319-10422-5_9.

S. Mariani, A. Omicini, Multi-paradigm coordination for MAS: Inte-
grating heterogeneous coordination approaches in MAS technologies, in:
C. Santoro, F. Messina, M. De Benedetti (Eds.), WOA 2016 — 17th Work-
shop “From Objects to Agents”, Vol. 1664 of CEUR-WS.org, Sun SITE
Central Europe, 2016, pp. 91-99.

F. L. Bellifemine, A. Poggi, G. Rimassa, JADE-a FIPA-compliant agent
framework, in: 4th International Conference and Exhibition on the Practi-
cal Application of Intelligent Agents and Multi-Agent Technology (PAAM-
99), 1999, pp. 97-108.

R. H. Bordini, J. F. Hiibner, M. J. Wooldridge, Programming Multi-Agent
Systems in AgentSpeak using Jason, John Wiley & Sons, Ltd, 2007.

G. Ciatto, S. Mariani, A. Omicini, |ReSpecTX: Programming interaction
made easy, Computer Science and Information Systems 15 (3) (2018)
655-682, Special Section: Contemporary Topics in Intelligent Distributed
Computing. [doi:10.2298/CSIS180111031Cl

URL http://www.comsis.org/archive.php?show=ppridc-7418

44

http://dx.doi.org/10.1016/S0167-6423(01)00011-9
http://dx.doi.org/10.1016/S0167-6423(01)00011-9
http://dx.doi.org/10.1016/j.entcs.2007.03.006
http://dx.doi.org/10.1016/j.entcs.2007.03.006
http://link.springer.com/10.1007/3-540-45241-9_13
http://link.springer.com/10.1007/3-540-45241-9_13
http://dx.doi.org/10.1007/3-540-45241-9_13
http://link.springer.com/10.1007/3-540-45241-9_13
http://dx.doi.org/10.1007/978-3-319-10422-5_9
http://dx.doi.org/10.1007/978-3-319-10422-5_9
http://www.comsis.org/archive.php?show=ppridc-7418
http://www.comsis.org/archive.php?show=ppridc-7418
http://dx.doi.org/10.2298/CSIS180111031C
http://www.comsis.org/archive.php?show=ppridc-7418

[69]

[70]

[71]

[72]

R. Calegari, E. Denti, Building Smart Spaces on the Home Manager plat-
form, ALP Newsletter.

A. Dubovitskaya, V. Urovi, I. Barba, K. Aberer, M. I. Schumacher, A mul-
tiagent system for dynamic data aggregation in medical research, BioMed
Research International 2016. doi:10.1155/2016/9027457.

G. Ciatto, L. Rizzato, A. Omicini, S. Mariani, Tusow: Tuple spaces for
edge computing, in: The 28th International Conference on Computer
Communications and Networks (ICCCN 2019), Valencia, Spain, 2019.

N. H. Minsky, J. Leichter, Law-Governed Linda as a coordination model,
in: P. Ciancarini, O. Nierstrasz, A. Yonezawa (Eds.), Object-Based Mod-
els and Languages for Concurrent Systems, Vol. 924 of LNCS, Springer,
1994, pp. 125-146. [doi: 10.1007/3-540-59450-7_8.

C. Baier, M. Sirjani, F. Arbab, J. Rutten, Modeling component connectors
in reo by constraint automata, Science of Computer Programming 61 (2)
(2006) 75-113. |[doi:10.1016/j.scico.2005.10.008.

S.-S. T. Q. Jongmans, F. Santini, M. Sargolzaei, F. Arbab, H. Afsar-
manesh, Orchestrating web services using Reo: from circuits and behav-
iors to automatically generated code, Service Oriented Computing and
Applications 8 (4) (2014) 277-297. [doi:10.1007/s11761-013-0147-1.

N. Kokash, C. Krause, E. de Vink, Reo + mCRL2: A framework for
model-checking dataflow in service compositions, Formal Aspects of Com-
puting 24 (2) (2012) 187-216. |[doi:10.1007/s00165-011-0191-6!

J. Proencga, D. Clarke, E. de Vink, F. Arbab, Dreams: A framework for
distributed synchronous coordination, in: 27th Annual ACM Symposium
on Applied Computing (SAC 2012), ACM, New York, NY, USA, 2012,
pp- 1510-1515. doi:10.1145/2245276.2232017.

J. A. Hendler, Agents and the Semantic Web, IEEE Intelligent Systems
16 (2) (2001) 30-37. |doi:10.1109/5254.920597.

L. Bettini, V. Bono, B. Venneri, Coordinating mobile object-oriented code,
in: Arbab and Talcott [I53], pp. 56-71. |doi:10.1007/3-540-46000-4!

L. Bettini, R. de Nicola, R. Pugliese, G. L. Ferrari, Interactive mobile
agents in x-klaim, in: Proceedings Seventh IEEE International Work-
shop on Enabling Technologies: Infrastucture for Collaborative Enter-
prises (WET ICE '98) (Cat. No.98TB100253), 1998, pp. 110-115. |doi:
10.1109/ENABL. 1998.725680.

L. Bettini, R. De Nicola, R. Pugliese, Klava: a java package for dis-
tributed and mobile applications, Software: Practice and Experience
32 (14) (2002) 1365-1394. larXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1002/spe.486,|doi:10.1002/spe.486.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.486

45

http://dx.doi.org/10.1155/2016/9027457
http://dx.doi.org/10.1007/3-540-59450-7_8
http://dx.doi.org/10.1016/j.scico.2005.10.008
http://dx.doi.org/10.1007/s11761-013-0147-1
http://dx.doi.org/10.1007/s00165-011-0191-6
http://dx.doi.org/10.1145/2245276.2232017
http://dx.doi.org/10.1109/5254.920597
http://dx.doi.org/10.1007/3-540-46000-4
http://dx.doi.org/10.1109/ENABL.1998.725680
http://dx.doi.org/10.1109/ENABL.1998.725680
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.486
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.486
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.486
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.486
http://dx.doi.org/10.1002/spe.486
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.486

[81]

[83]

F. L. De Angelis, G. Di Marzo Serugendo, Logic fragments: A coordi-
nation model based on logic inference, in: T. Holvoet, M. Viroli (Eds.),
Coordination Models and Languages, Springer International Publishing,
Cham, 2015, pp. 35-48.

G. Castelli, M. Mamei, A. Rosi, F. Zambonelli, Pervasive middleware
goes social: The sapere approach, in: Proceedings of the 2011 Fifth
IEEE Conference on Self-Adaptive and Self-Organizing Systems Work-
shops, SASOW ’11, 2010, pp. 9-14.

F. De Angelis, A logic-based coordination middleware for self-organising
systems: distributed reasoning based on many-valued logics, Ph.D. thesis,
University of Geneva, School of Social Sciences - Information Systems
(2017).

J. L. Fernandez-Marquez, F. D. Angelis, G. D. M. Serugendo, G. Steven-
son, G. Castelli, The one-sapere simulator: A prototyping tool for
engineering self-organisation in pervasive environments., in: SASO, IEEE
Computer Society, 2014, pp. 201-202.

URL http://dblp.uni-trier.de/db/conf/saso/sas02014.html#
Fernandez-MarquezASSC14

A. Kerénen, J. Ott, T. Kéarkkéinen, The ONE simulator for DTN proto-
col evaluation, in: SIMUTools ’09: Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, ICST, New York, NY,
USA, 2009, pp. 55:1-10. |doi:10.4108/ICST.SIMUTOOLS2009 . 5674

G. P. Picco, A. L. Murphy, G. C. Roman, LIME: Linda meets mobility,
in: 1999 International Conference on Software Engineering (ICSE 1999),
1999, pp. 368-377. |doi:10.1145/302405.302659.

A. Omicini, Hybrid coordination models for handling information ex-
change among Internet agents, in: A. Bonarini, M. Colombetti, P. L.
Lanzi (Eds.), Workshop “Agenti intelligenti e Internet: teorie, strumenti
e applicazioni”, 7Tth AT*TA Convention (AT*IA 2000), Milano, Italy, 2000,

pp. 1-4.

L. Atzori, A. Tera, G. Morabito, The Internet of Things: A survey, Com-
puter Networks 54 (15) (2010) 2787-2805. doi:10.1016/j.comnet.2010.
05.010L

J. Heuer, J. Hund, O. Pfaff, Toward the Web of Things: Applying Web
technologies to the physical world, Computer 48 (5) (2015) 34-42. doi:
10.1109/MC.2015.152.

A. Arsénio, H. Serra, R. Francisco, F. Nabais, J. Andrade, E. Serrano, In-
ternet of Intelligent Things: Bringing artificial intelligence into things and
communication networks, in: F. Xhafa, N. Bessis (Eds.), Inter-cooperative
Collective Intelligence: Techniques and Applications, Vol. 495 of SCI,
Springer, 2014, pp. 1-37. doi:10.1007/978-3-642-35016-0_1.

46

http://dblp.uni-trier.de/db/conf/saso/saso2014.html#Fernandez-MarquezASSC14
http://dblp.uni-trier.de/db/conf/saso/saso2014.html#Fernandez-MarquezASSC14
http://dblp.uni-trier.de/db/conf/saso/saso2014.html#Fernandez-MarquezASSC14
http://dblp.uni-trier.de/db/conf/saso/saso2014.html#Fernandez-MarquezASSC14
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5674
http://dx.doi.org/10.1145/302405.302659
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/MC.2015.152
http://dx.doi.org/10.1109/MC.2015.152
http://dx.doi.org/10.1007/978-3-642-35016-0_1

[91]

[92]

[93]

[95]

[96]

[97]

A. Ricci, A. Omicini, E. Denti, Virtual enterprises and workflow man-
agement as agent coordination issues, International Journal of Coop-
erative Information Systems 11 (3/4) (2002) 355-379. |doi:10.1142/
S50218843002000637.

B. Cheng, D. Zhu, S. Zhao, J. Chen, Situation-aware iot service coordina-
tion using the event-driven soa paradigm, IEEE Transactions on Network
and Service Management 13 (2) (2016) 349-361. |doi:10.1109/TNSM.
2016.2541171.

G. Fortino, A. Guerrieri, W. Russo, C. Savaglio, Integration of agent-based
and cloud computing for the smart objects-oriented iot, in: Proceedings
of the 2014 IEEE 18th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), 2014, pp. 493-498.|doi:10.1109/
CSCWD.2014.6846894.

N. K. Giang, M. Blackstock, R. Lea, V. C. M. Leung, Developing iot
applications in the fog: A distributed dataflow approach, in: 2015 5th
International Conference on the Internet of Things (I0T), 2015, pp. 155—
162. |doi:10.1109/I0T.2015.7356560.

E. Denti, A. Natali, A. Omicini, On the expressive power of a language
for programming coordination medial, in: Proceedings of the 1998 ACM
Symposium on Applied Computing, SAC "98, ACM, New York, NY, USA,
1998, pp. 169-177. |doi:10.1145/330560.330665.

URL http://doi.acm.org/10.1145/330560.330665

A. Omicini, F. Zambonelli, [Tuple centres for the coordination of inter-
net agents, in: Proceedings of the 1999 ACM Symposium on Applied
Computing, SAC ’99, ACM, New York, NY, USA, 1999, pp. 183-190.
doi:10.1145/298151.298231.

URL http://doi.acm.org/10.1145/298151.298231

G. Cabri, L. Leonardi, F. Zambonelli, Xml dataspaces for mobile agent
coordination), in: Proceedings of the 2000 ACM Symposium on Applied
Computing - Volume 1, SAC ’00, ACM, New York, NY, USA, 2000, pp.
181-188. |doi:10.1145/335603.335738.

URL http://doi.acm.org/10.1145/335603.335738

G. Cabri, L. Leonardi, F. Zambonelli, Reactive tuple spaces for mobile
agent coordination, in: K. Rothermel, F. Hohl (Eds.), Mobile Agents,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 237—248.

P. Zoeteweij, Coordination-based distributed constraint solving in dice,
in: Proceedings of the 2003 ACM Symposium on Applied Computing,
SAC ’03, ACM, New York, NY, USA, 2003, pp. 360-366. |[doi:10.1145/
952532.952605.

URL http://doi.acm.org/10.1145/952532.952605

47

http://dx.doi.org/10.1142/S0218843002000637
http://dx.doi.org/10.1142/S0218843002000637
http://dx.doi.org/10.1109/TNSM.2016.2541171
http://dx.doi.org/10.1109/TNSM.2016.2541171
http://dx.doi.org/10.1109/CSCWD.2014.6846894
http://dx.doi.org/10.1109/CSCWD.2014.6846894
http://dx.doi.org/10.1109/IOT.2015.7356560
http://doi.acm.org/10.1145/330560.330665
http://doi.acm.org/10.1145/330560.330665
http://dx.doi.org/10.1145/330560.330665
http://doi.acm.org/10.1145/330560.330665
http://doi.acm.org/10.1145/298151.298231
http://doi.acm.org/10.1145/298151.298231
http://dx.doi.org/10.1145/298151.298231
http://doi.acm.org/10.1145/298151.298231
http://doi.acm.org/10.1145/335603.335738
http://doi.acm.org/10.1145/335603.335738
http://dx.doi.org/10.1145/335603.335738
http://doi.acm.org/10.1145/335603.335738
http://doi.acm.org/10.1145/952532.952605
http://dx.doi.org/10.1145/952532.952605
http://dx.doi.org/10.1145/952532.952605
http://doi.acm.org/10.1145/952532.952605

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

M. Mamei, F. Zambonelli, Self-maintained distributed tuples for field-
based coordination in dynamic networks, in: Proceedings of the 2004
ACM Symposium on Applied Computing, SAC ’04, ACM, New York,
NY, USA, 2004, pp. 479-486. [doi:10.1145/967900.968000.

URL http://doi.acm.org/10.1145/967900.968000

M. Mamei, F. Zambonelli, L. Leonardi, Tuples on the air: A middleware
for context-aware computing in dynamic networks, in: 23rd International
Conference on Distributed Computing Systems Workshops, 2003. Pro-
ceedings., IEEE, 2003, pp. 342-347.

M. Viroli, M. Casadei, A. Omicini, |A framework for modelling and im-
plementing self-organising coordination) in: Proceedings of the 2009 ACM
Symposium on Applied Computing, SAC 09, ACM, New York, NY, USA,
2009, pp. 1353-1360. |doi:10.1145/1529282. 1529585

URL http://doi.acm.org/10.1145/1529282.1529585

E. Nardini, M. Viroli, E. Panzavolta, Coordination in open and dynamic
environments with tucson semantic tuple centres, in: Proceedings of the
2010 ACM Symposium on Applied Computing, SAC 10, ACM, New York,
NY, USA, 2010, pp. 2037-2044. [doi:10.1145/1774088.1774515|

URL http://doi.acm.org/10.1145/1774088.1774515

M. Sbaraglia, M. Casadei, M. Viroli, Programming coordination laws of
artifacts in cartago, in: Proceedings of the 2011 ACM Symposium on
Applied Computing, SAC ’11, ACM, New York, NY, USA, 2011, pp. 885—
886. |doi:10.1145/1982185.1982378.

URL http://doi.acm.org/10.1145/1982185.1982378

A. Ricci, M. Piunti, M. Viroli, A. Omicini, Environment programming
in CArtAgO, in: R. P. Bordini, M. Dastani, J. Dix, A. El Fal-
lah Seghrouchni (Eds.), Multi-Agent Programming II: Languages,
Platforms and Applications, Multiagent Systems, Artificial Societies,
and Simulated Organizations, Springer, 2009, Ch. 8, pp. 259-288.
doi:10.1007/978-0-387-89299-3_8.

URL http://link.springer.com/chapter/10.1007/
978-0-387-89299-3_8

M. Viroli, D. Pianini, S. Montagna, G. Stevenson, [Pervasive ecosystems:
A coordination model based on semantic chemistry, in: Proceedings of the
27th Annual ACM Symposium on Applied Computing, SAC ’12, ACM,
New York, NY, USA, 2012, pp. 295-302./doi:10.1145/2245276 . 2245336|
URL http://doi.acm.org/10.1145/2245276.2245336

D. Pianini, S. Montagna, M. Viroli, A chemical inspired simulation frame-
work for pervasive services ecosystems, in: M. Ganzha, L. Maciaszek,
M. Paprzycki (Eds.), Proceedings of the Federated Conference on Com-
puter Science and Information Systems (FedCSIS 2011), IEEE Computer
Society Press, Szczecin, Poland, 2011, pp. 667-674.

48

http://doi.acm.org/10.1145/967900.968000
http://doi.acm.org/10.1145/967900.968000
http://dx.doi.org/10.1145/967900.968000
http://doi.acm.org/10.1145/967900.968000
http://doi.acm.org/10.1145/1529282.1529585
http://doi.acm.org/10.1145/1529282.1529585
http://dx.doi.org/10.1145/1529282.1529585
http://doi.acm.org/10.1145/1529282.1529585
http://doi.acm.org/10.1145/1774088.1774515
http://doi.acm.org/10.1145/1774088.1774515
http://dx.doi.org/10.1145/1774088.1774515
http://doi.acm.org/10.1145/1774088.1774515
http://doi.acm.org/10.1145/1982185.1982378
http://doi.acm.org/10.1145/1982185.1982378
http://dx.doi.org/10.1145/1982185.1982378
http://doi.acm.org/10.1145/1982185.1982378
http://link.springer.com/chapter/10.1007/978-0-387-89299-3_8
http://link.springer.com/chapter/10.1007/978-0-387-89299-3_8
http://dx.doi.org/10.1007/978-0-387-89299-3_8
http://link.springer.com/chapter/10.1007/978-0-387-89299-3_8
http://link.springer.com/chapter/10.1007/978-0-387-89299-3_8
http://doi.acm.org/10.1145/2245276.2245336
http://doi.acm.org/10.1145/2245276.2245336
http://dx.doi.org/10.1145/2245276.2245336
http://doi.acm.org/10.1145/2245276.2245336

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

G. Stevenson, J. Ye, S. Dobson, D. Pianini, S. Montagna, M. Vi-
roli, |Combining self-organisation, context-awareness and semantic rea-
soning: The case of resource discovery in opportunistic networks, in:
Proceedings of the 28th Annual ACM Symposium on Applied Com-
puting, SAC ’13, ACM, New York, NY, USA, 2013, pp. 1369-1376.
doi:10.1145/2480362.2480619.

URL http://doi.acm.org/10.1145/2480362.2480619

D. Pianini, M. Viroli, J. Beal, Protelis: Practical aggregate program-
ming), in: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC 15, ACM, New York, NY, USA, 2015, pp. 1846-1853.
doi:10.1145/2695664.2695913.

URL http://doi.acm.org/10.1145/2695664.2695913

J. Proenga, D. Clarke, E. de Vink, F. Arbab, Dreams: A framework for
distributed synchronous coordination, in: Proceedings of the 27th Annual
ACM Symposium on Applied Computing, SAC "12, ACM, New York, NY,
USA, 2012, pp. 1510-1515. |[doi:10.1145/2245276.2232017.

URL http://doi.acm.org/10.1145/2245276.2232017

V. Urovi, A. C. Olivieri, S. Bromuri, N. Fornara, M. I. Schumacher, A
peer to peer agent coordination framework for ihe based cross-community
health record exchange, in: Proceedings of the 28th Annual ACM Sympo-
sium on Applied Computing, SAC "13, ACM, New York, NY, USA, 2013,
pp- 1355-1362. doi:10.1145/2480362.2480617.

URL http://doi.acm.org/10.1145/2480362.2480617

N. Oliveira, A. Silva, L. S. Barbosa, Quantitative analysis of reo-based
service coordination) in: Proceedings of the 29th Annual ACM Symposium
on Applied Computing, SAC ’14, ACM, New York, NY, USA, 2014, pp.
1247-1254. |doi:10.1145/2554850.2555025.

URL http://doi.acm.org/10.1145/2554850.2555025

C. Baier, V. Wolf, Stochastic reasoning about channel-based component
connectors, in: P. Ciancarini, H. Wiklicky (Eds.), Coordination Models
and Languages, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp.
1-15.

M. Diaz, B. Rubio, J. M. Troya, Multilingual and multiparadigm inte-
gration of a tuple channel-based coordination model, in: Proceedings of
the 1998 ACM Symposium on Applied Computing, SAC ’98, ACM, New
York, NY, USA, 1998, pp. 194-196. [doi : 10. 1145/330560. 330668,

URL http://doi.acm.org/10.1145/330560.330668

T. Rauber, G. Riinger, A coordination language for mixed task and and
data parallel programs, in: Proceedings of the 1999 ACM Symposium on
Applied Computing, SAC 99, ACM, New York, NY, USA, 1999, pp. 146—
155. /doi:10.1145/298151.298224.

URL http://doi.acm.org/10.1145/298151.298224

49

http://doi.acm.org/10.1145/2480362.2480619
http://doi.acm.org/10.1145/2480362.2480619
http://dx.doi.org/10.1145/2480362.2480619
http://doi.acm.org/10.1145/2480362.2480619
http://doi.acm.org/10.1145/2695664.2695913
http://doi.acm.org/10.1145/2695664.2695913
http://dx.doi.org/10.1145/2695664.2695913
http://doi.acm.org/10.1145/2695664.2695913
http://doi.acm.org/10.1145/2245276.2232017
http://doi.acm.org/10.1145/2245276.2232017
http://dx.doi.org/10.1145/2245276.2232017
http://doi.acm.org/10.1145/2245276.2232017
http://doi.acm.org/10.1145/2480362.2480617
http://doi.acm.org/10.1145/2480362.2480617
http://doi.acm.org/10.1145/2480362.2480617
http://dx.doi.org/10.1145/2480362.2480617
http://doi.acm.org/10.1145/2480362.2480617
http://doi.acm.org/10.1145/2554850.2555025
http://doi.acm.org/10.1145/2554850.2555025
http://dx.doi.org/10.1145/2554850.2555025
http://doi.acm.org/10.1145/2554850.2555025
http://doi.acm.org/10.1145/330560.330668
http://doi.acm.org/10.1145/330560.330668
http://dx.doi.org/10.1145/330560.330668
http://doi.acm.org/10.1145/330560.330668
http://doi.acm.org/10.1145/298151.298224
http://doi.acm.org/10.1145/298151.298224
http://dx.doi.org/10.1145/298151.298224
http://doi.acm.org/10.1145/298151.298224

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

P. Ciancarini, R. Tolksdorf, F. Zambonelli, Coordination middleware for
xml-centric applications, in: Proceedings of the 2002 ACM Symposium
on Applied Computing, SAC ’02, ACM, New York, NY, USA, 2002, pp.
336-343. doi:10.1145/508791.508857.

URL http://doi.acm.org/10.1145/508791.508857

R. Tolksdorf, |Coordination technology for workflows on the web:
Workspaces, in: Proceedings of the 4th International Conference on Coor-
dination Languages and Models, COORDINATION ’00, Springer-Verlag,
Berlin, Heidelberg, 2000, pp. 36-50.

URL http://dl.acm.org/citation.cfm?id=647016.713307

C. Mascolo, L. Capra, S. Zachariadis, W. Emmerich, Xmiddle: A data-
sharing middleware for mobile computing, Wirel. Pers. Commun. 21 (1)
(2002) 77-103. doi:10.1023/A:1015584805733.

URL https://doi.org/10.1023/A:1015584805733

G. Fortino, W. Russo, Multi-coordination of mobile agents: A model and
a component-based architecture, in: Proceedings of the 2005 ACM Sym-
posium on Applied Computing, SAC 05, ACM, New York, NY, USA,
2005, pp. 443-450. doi:10.1145/1066677.1066779.

URL http://doi.acm.org/10.1145/1066677.1066779

M. Murth, E. Kiihn, Knowledge-based coordination with a reliable seman-
tic subscription mechanism, in: Proceedings of the 2009 ACM Symposium
on Applied Computing, SAC ’09, ACM, New York, NY, USA, 2009, pp.
1374-1380. |[doi:10.1145/1529282.1529588.

URL http://doi.acm.org/10.1145/1529282.1529588

D. Harnie, T. D’Hondt, E. G. Boix, W. De Meuter, |Programming urban-
area applications, in: Proceedings of the 27th Annual ACM Symposium
on Applied Computing, SAC ’12, ACM, New York, NY, USA, 2012, pp.
1516-1521. doi:10.1145/2245276.2232018.

URL http://doi.acm.org/10.1145/2245276.2232018

C. Scholliers, E. G. Boix, W. De Meuter, TOTAM: Scoped tuples for the
ambient, Electronic Communications of the EASST 19, proceedings of the
Second International DisCoTec Workshop on Context-Aware Adaptation
Mechanisms for Pervasive and Ubiquitous Services (CAMPUS 2009).

A. Fongen, Data-centric authorization and integrity control in a linda tu-
plespace, in: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC ’15, ACM, New York, NY, USA, 2015, pp. 1827-1833.
doi:10.1145/2695664.2695681.

URL http://doi.acm.org/10.1145/2695664.2695681

On the “Local-to-Global” Issue in Self-Organisation: Chemical Reactions
with Custom Kinetic Rates, Eighth IEEE International Conference
on Self-Adaptive and Self-Organizing Systems Workshops, SASOW

50

http://doi.acm.org/10.1145/508791.508857
http://doi.acm.org/10.1145/508791.508857
http://dx.doi.org/10.1145/508791.508857
http://doi.acm.org/10.1145/508791.508857
http://dl.acm.org/citation.cfm?id=647016.713307
http://dl.acm.org/citation.cfm?id=647016.713307
http://dl.acm.org/citation.cfm?id=647016.713307
https://doi.org/10.1023/A:1015584805733
https://doi.org/10.1023/A:1015584805733
http://dx.doi.org/10.1023/A:1015584805733
https://doi.org/10.1023/A:1015584805733
http://doi.acm.org/10.1145/1066677.1066779
http://doi.acm.org/10.1145/1066677.1066779
http://dx.doi.org/10.1145/1066677.1066779
http://doi.acm.org/10.1145/1066677.1066779
http://doi.acm.org/10.1145/1529282.1529588
http://doi.acm.org/10.1145/1529282.1529588
http://dx.doi.org/10.1145/1529282.1529588
http://doi.acm.org/10.1145/1529282.1529588
http://doi.acm.org/10.1145/2245276.2232018
http://doi.acm.org/10.1145/2245276.2232018
http://dx.doi.org/10.1145/2245276.2232018
http://doi.acm.org/10.1145/2245276.2232018
http://doi.acm.org/10.1145/2695664.2695681
http://doi.acm.org/10.1145/2695664.2695681
http://dx.doi.org/10.1145/2695664.2695681
http://doi.acm.org/10.1145/2695664.2695681
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7056354
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7056354

[125]

[126]

[127]

[128]

[129]

[130]

[131]

2014, IEEE CS, London, UK, 2014, best student paper award.
doi:10.1109/SAS0OW.2014.14.

URL http://ieeexplore.ieee.org/xpl/articleDetails. jsp?
arnumber=7056354

0. Kosak, C. Wanninger, A. Angerer, A. Hoffmann, A. Schierl, H. See-
bach, Decentralized coordination of heterogeneous ensembles using jadex,
in: 2016 IEEE 1st International Workshops on Foundations and Applica-
tions of Self* Systems (FAS*W), 2016, pp. 271-272. /doi:10.1109/FAS-W.
2016.65.

A. Pokahr, L. Braubach, W. Lamersdorf, Jadex: A bdi reasoning en-
gine, in: R. H. Bordini, M. Dastani, J. Dix, A. El Fallah Seghrouchni
(Eds.), Multi-Agent Programming: Languages, Platforms and Applica-
tions, Springer US, Boston, MA, 2005, pp. 149-174. doi:10.1007/
0-387-26350-0_6.

URL https://doi.org/10.1007/0-387-26350-0_6

M. Georgeff, B. Pell, M. Pollack, M. Tambe, M. Wooldridge, The belief-
desire-intention model of agency, in: J. P. Miiller, A. S. Rao, M. P. Singh
(Eds.), Intelligent Agents V: Agents Theories, Architectures, and Lan-
guages, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 1-10.

F. A. d. Oliveira, T. Ledoux, R. Sharrock, A framework for the coordi-
nation of multiple autonomic managers in cloud environments, in: 2013
IEEE 7th International Conference on Self-Adaptive and Self-Organizing
Systems, 2013, pp. 179-188. |[doi:10.1109/SAS0.2013.27.

S. Mariani, A. Omicini, Self-organising news management: the molecules
of knowledge approach, in: 2012 IEEE Sixth International Conference on
Self-Adaptive and Self-Organizing Systems Workshops, 2012, pp. 235-240.
doi:10.1109/SAS0OW.2012.48.

S. Mariani, A. Omicini, Anticipatory coordination in socio-technical
knowledge-intensive environments: Behavioural implicit communication
in MoK in: M. Gavanelli, E. Lamma, F. Riguzzi (Eds.), AT*IA 2015,
Advances in Artificial Intelligence, Vol. 9336 of Lecture Notes in Com-
puter Science, Springer International Publishing, 2015, Ch. 8, pp. 102-
115, xIVth International Conference of the Italian Association for Ar-
tificial Intelligence, Ferrara, Italy, September 23-25, 2015, Proceedings.
doi:10.1007/978-3-319-24309-2_8.

URL http://1ink.springer.com/10.1007/978-3-319-24309-2_8

S. Mariani, Coordination of Complex Sociotechnical Systems: Self-
organisation of Knowledge in MoK) 1st Edition, Artificial Intelligence:
Foundations, Theory, and Algorithms, Springer International Publishing,
2016. doi:10.1007/978-3-319-47109-9.

URL http://link.springer.com/10.1007/978-3-319-47109-9

o1

http://dx.doi.org/10.1109/SASOW.2014.14
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7056354
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7056354
http://dx.doi.org/10.1109/FAS-W.2016.65
http://dx.doi.org/10.1109/FAS-W.2016.65
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/0-387-26350-0_6
http://dx.doi.org/10.1007/0-387-26350-0_6
http://dx.doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/0-387-26350-0_6
http://dx.doi.org/10.1109/SASO.2013.27
http://dx.doi.org/10.1109/SASOW.2012.48
http://link.springer.com/10.1007/978-3-319-24309-2_8
http://link.springer.com/10.1007/978-3-319-24309-2_8
http://link.springer.com/10.1007/978-3-319-24309-2_8
http://dx.doi.org/10.1007/978-3-319-24309-2_8
http://link.springer.com/10.1007/978-3-319-24309-2_8
http://link.springer.com/10.1007/978-3-319-47109-9
http://link.springer.com/10.1007/978-3-319-47109-9
http://dx.doi.org/10.1007/978-3-319-47109-9
http://link.springer.com/10.1007/978-3-319-47109-9

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

C. Castelfranchi, G. Pezzulo, L. Tummolini, Behavioral implicit commu-
nication (bic): Communicating with smart environments, International
Journal of Ambient Computing and Intelligence (IJACI) 2 (1) (2010)
1-12.

URL https://EconPapers.repec.org/RePEc:igg: jaciO0:v:2:y:
2010:1:1:p:1-12

M. Viroli, E. Nardini, G. Castelli, M. Mamei, F. Zambonelli, Towards a
coordination approach to adaptive pervasive service ecosystems, in: 2011
IEEE Fifth International Conference on Self-Adaptive and Self-Organizing
Systems, 2011, pp. 223-224. |[doi:10.1109/SAS0.2011.42.

M. Viroli, E. Nardini, G. Castelli, M. Mamei, F. Zambonelli, A coordi-
nation approach to adaptive pervasive service ecosystems, in: 2011 Fifth
IEEE Conference on Self-Adaptive and Self-Organizing Systems Work-
shops, 2011, pp. 114-119. doi:10.1109/SAS0OW.2011.19.

M. Viroli, M. Casadei, S. Montagna, F. Zambonelli, Spatial coordina-
tion of pervasive systems through chemical-inspired tuple spaces, in:
2010 Fourth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshop, 2010, pp. 212-217. |[doi:10.1109/SASOW.
2010.75.

M. Loreti, A. Margheri, R. Pugliese, F. Tiezzi, On programming and
policing autonomic computing systems, in: T. Margaria, B. Steffen (Eds.),
Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014, pp. 164-183.

R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi, |A formal approach to
autonomic systems programming: The scel language, ACM Trans. Auton.
Adapt. Syst. 9 (2) (2014) 7:1-7:29. doi:10.1145/2619998.

URL http://doi.acm.org/10.1145/2619998

M. Masi, R. Pugliese, F. Tiezzi, Formalisation and implementation of the
xacml access control mechanism, in: G. Barthe, B. Livshits, R. Scan-
dariato (Eds.), Engineering Secure Software and Systems, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012, pp. 60-74.

Y. Abd Alrahman, R. De Nicola, G. Garbi, Goat: Attribute-based in-
teraction in google go, in: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods, Verification and Validation. Distributed
Systems, Springer International Publishing, Cham, 2018, pp. 288-303.

E. Freeman, S. Hupfer, K. Arnold, JavaSpaces principles, patterns, and
practice, Addison-Wesley Professional, 1999.

W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and
challenges, IEEE Internet of Things Journal 3 (5) (2016) 637—646. |doi:
10.1109/JI0T.2016.2579198.

92

https://EconPapers.repec.org/RePEc:igg:jaci00:v:2:y:2010:i:1:p:1-12
https://EconPapers.repec.org/RePEc:igg:jaci00:v:2:y:2010:i:1:p:1-12
https://EconPapers.repec.org/RePEc:igg:jaci00:v:2:y:2010:i:1:p:1-12
https://EconPapers.repec.org/RePEc:igg:jaci00:v:2:y:2010:i:1:p:1-12
http://dx.doi.org/10.1109/SASO.2011.42
http://dx.doi.org/10.1109/SASOW.2011.19
http://dx.doi.org/10.1109/SASOW.2010.75
http://dx.doi.org/10.1109/SASOW.2010.75
http://doi.acm.org/10.1145/2619998
http://doi.acm.org/10.1145/2619998
http://dx.doi.org/10.1145/2619998
http://doi.acm.org/10.1145/2619998
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

G. A. Papadopoulos, Models and technologies for the coordination of In-
ternet agents: A survey, in: Omicini et al. [144], Ch. 2, pp. 25-56.

D. Rossi, G. Cabri, E. Denti, Tuple-based technologies for coordination,
in: Omicini et al. [I44], Ch. 4, pp. 83-109.

A. Omicini, F. Zambonelli, M. Klusch, R. Tolksdorf (Eds.), Coordination
of Internet Agents: Models, Technologies, and Applications, Springer,
2001.

G. Di Marzo Serugendo, N. Abdennadher, H. Ben Mahfoudh, F. L. De An-
gelis, R. Tomaylla, Spatial edge services, Global IoT Summit.

Digital twins - rise of the digital twin in industrial iot and industry 4.0.
URL https://www.i-scoop.eu/internet-of-things-guide/
industrial-internet-things-iiot-saving-costs-innovation/
digital-twins/

E. Weippl, B. Sanderse, Digital twins - introduction to the special theme,
ERCIM News 115 (2018) 6-7.

P. Ciancarini, C. Hankin (Eds.), Coordination Languages and Models. 1st
International Conference, COORDINATION ’96 Cesena, Italy, April 15—
17, 1996 Proceedings, Vol. 1061 of LNCS, Springer, 1996. |doi:10.1007/
3-540-61052-9.

D. Garlan, D. Le Métayer (Eds.), Coordination Languages and Models.
2nd International Conference COORDINATION ’97 Berlin, Germany,
September 1-3, 1997 Proceedings, Vol. 1282 of LNCS, Springer, 1997.
doi:10.1007/3-540-63383-9.

P. Ciancarini, A. L. Wolf (Eds.), Coordination Languages and Models. 3rd
International Conference COORDINATION’99 Amsterdam, The Nether-
lands, April 2628, 1999 Proceedings, Vol. 1594 of LNCS, Springer, 1999.
doi:10.1007/3-540-48919-3.

A. Porto, G.-C. Roman (Eds.), Coordination Languages and Models.
4th International Conference, COORDINATION 2000 Limassol, Cyprus,
September 11-13, 2000 Proceedings, Vol. 1906 of LNCS, Springer, 2000.

F. Arbab, C. Talcott (Eds.), Coordination Models and Languages. 5th
International Conference, COORDINATION 2002 York, UK, April 8-11,
2002 Proceedings, Vol. 2315 of LNCS, Springer, 2002. doi:10.1007/
3-540-46000-4.

R. De Nicola, G.-L. Ferrari, G. Meredith (Eds.), Coordination Models and
Languages. 6th International Conference, COORDINATION 2004 Pisa
Italy, February 24-27, 2004 Proceedings, Vol. 2949 of LNCS, Springer,
2004. doi:10.1007/b95570.

93

https://www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-innovation/digital-twins/
https://www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-innovation/digital-twins/
https://www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-innovation/digital-twins/
https://www.i-scoop.eu/internet-of-things-guide/industrial-internet-things-iiot-saving-costs-innovation/digital-twins/
http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-61052-9
http://dx.doi.org/10.1007/3-540-63383-9
http://dx.doi.org/10.1007/3-540-48919-3
http://dx.doi.org/10.1007/3-540-46000-4
http://dx.doi.org/10.1007/3-540-46000-4
http://dx.doi.org/10.1007/b95570

[154]

[155]

[156]

[157]

[158]

A. L. Murphy, J. Vitek (Eds.), Coordination Models and Languages. 9th
International Conference, COORDINATION 2007, Paphos, Cyprus, June
6-8, 2007. Proceedings, Vol. 4467 of LNCS, Springer, 2007.

D. Lea, G. Zavattaro (Eds.), Coordination Models and Languages. 10th
International Conference, COORDINATION 2008, Oslo, Norway, June 4-
6, 2008. Proceedings, Vol. 5052 of LNCS, Springer, 2008. doi:10.1007/
978-3-540-68265-3.

W. De Meuter, G.-C. Roman (Eds.), Coordination Models and Languages.
13th International Conference, COORDINATION 2011, Reykjavik, Ice-
land, June 6-9, 2011. Proceedings, Vol. 6721 of LNCS, Springer, 2011.
doi:10.1007/978-3-642-21464-6.

M. Sirjani (Ed.), Coordination Models and Languages. 14th Interna-
tional Conference, COORDINATION 2012, Stockholm, Sweden, June
14-15, 2012. Proceedings, Vol. 7274 of LNCS, Springer, 2012. doi:
10.1007/978-3-642-30829-1.

T. Holvoet, M. Viroli (Eds.), Coordination Models and Languages. 17th
International Conference, COORDINATION 2015, Grenoble, France,
June 2-4, 2015, Proceedings, Vol. 9037 of LNCS, Springer, 2015. |doi:
10.1007/978-3-319-19282-6.

o4

http://dx.doi.org/10.1007/978-3-540-68265-3
http://dx.doi.org/10.1007/978-3-540-68265-3
http://dx.doi.org/10.1007/978-3-642-21464-6
http://dx.doi.org/10.1007/978-3-642-30829-1
http://dx.doi.org/10.1007/978-3-642-30829-1
http://dx.doi.org/10.1007/978-3-319-19282-6
http://dx.doi.org/10.1007/978-3-319-19282-6

	Copertina_postprint_IRIS_UNIBO(2)
	Twenty Years of Coordination Technologies COORDINATION Contribution to the State of Art (postprint)
	Scope, goal, and method
	Structure & contribution of the paper
	Method

	The survey
	Overview
	Technologies at a glance
	Analysis of selected technologies

	Insights
	Coordination technologies outside COORDINATION
	Coordination technologies in Industry
	Conclusion

