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Abstract

Binary relations are one of the standard ways to encode, characterise and reason about graphs. Relation algebras
provide equational axioms for a large fragment of the calculus of binary relations. Although relations are standard
tools in many areas of mathematics and computing, researchers usually fall back to point-wise reasoning when it
comes to arguments about paths in a graph. We present a purely algebraic way to specify different kinds of paths
in relation algebras. We study the relationship between paths with a designated root vertex and paths without such
a vertex. Since we stay in first-order logic this development helps with mechanising proofs. To demonstrate the
applicability of the algebraic framework we verify the correctness of three basic graph algorithms. All results of this
paper are formally verified using the interactive proof assistant Isabelle/HOL.
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1. Introduction

Paths are a fundamental concept in graph theory and its applications. Many textbooks define a path in a directed
graph to be a sequence of vertices such that successive vertices in the sequence are connected by an edge of the
graph; see [25, 15, 3]. A simple path is one whose vertices are distinct; a cycle is one whose first and last vertices are
identical. There are variations in terminology, but definitions of paths are mostly based on sequences.

An alternative approach is to define a path as a subgraph of edges that is connected such that every vertex has at
most one incoming edge and at most one outgoing edge; this is considered, for example, in [58, 18]. The aim of the
present paper is to derive a theory of paths in directed graphs based on this alternative definition and to show how
it can be used to verify the correctness of graph algorithms. Paths according to this definition correspond to simple
paths when considered as sequences of vertices; this paper is not concerned with more general kinds of paths.

The main motivation for using subgraphs instead of sequences is that the former allow us to reason about paths
as special kinds of graphs using the well-established framework of relation algebra. Specifically, the edge set E
of a directed graph is a subset of the Cartesian product A × A, where A is the set of vertices, and therefore E is a
(homogeneous) relation on the set A. Hence both paths and graphs correspond to relations, and relational concepts and
methods can be used to work with them in a unified setting. We are particularly interested in exploiting the algebraic
structure of relations, in order to concisely express properties of graphs and reason about graphs using equational,
calculational proofs. Such proofs can be easily mechanised and formally verified using automated theorem provers
and interactive proof assistants [28, 11, 8, 19, 1, 48].

Relation algebras have been proposed by De Morgan, Peirce, Schröder and Tarski to express a rich fragment of
first-order logic algebraically without using variables and quantifiers [57]; recent textbooks are [26, 36]. Besides for
logical foundations, relational methods have been used for program analysis [17, 22], refinement [60], databases [46],
preference modelling [51, 40], algorithm development [20, 2, 4, 23] and many other applications; for example, see
[55, 56, 54, 50, 41, 39].
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Figure 1: Six disjoint classes of paths

Relations and relation algebras have been used for a wide range of topics in graph theory [52, 6, 49, 9, 21]. By
defining paths as subgraphs, we can reuse the well-developed theory of relation algebras and reason about paths
without resorting to variables and quantifiers.

The present paper studies paths using relation-algebraic means. Its contributions are:

– Equational characterisations of various classes of paths including cycles, finite paths, one-sided and two-sided
infinite paths in Sections 3–5. An overview of the classification is shown in Figure 1 and discussed below.

– Relation-algebraic specifications and correctness proofs of a number of basic graph algorithms that rely on
paths in Section 6.

– Relation-algebraic characterisations of paths with designated roots and their equivalence to paths without roots
in Section 7.

All concepts, theorems and algorithms described in this paper have been implemented in Isabelle/HOL [45]. All
results have been formally verified in this system making heavy use of its integrated automated theorem provers and
SMT solvers [47, 13]. We omit the proofs, which can be found in the theory files under preparation for the Archive of
Formal Proofs and currently available at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

Figure 1 shows the classes of paths discussed in this paper:

À Finite paths, which have both a start vertex and an end vertex, and finitely many edges.

Á One-sided infinite paths that have an end vertex but no start vertex.

Â One-sided infinite paths that have a start vertex but no end vertex.

Ã Two-sided infinite paths, which have neither a start vertex nor an end vertex, but infinitely many edges.

Ä Cycles, which have neither a start vertex nor an end vertex, and at least one but finitely many edges.
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Å The empty path, which has neither a start vertex nor an end vertex, and no edges.

We refer to unions of these disjoint classes by listing the associated labels; for example, [ÀÂ] are the paths that have
a start vertex. The left circle of Figure 1 contains the paths without a start vertex [ÁÃÄÅ] and the right circle those
without an end vertex [ÂÃÄÅ].

2. Relation Algebras

In this section we give basic definitions, operations and properties of relations. Their structure is captured ab-
stractly by relation algebras, which let us characterise important properties of relations in a compact way using equa-
tions and inequalities. We explain how to represent edges, vertices and sets of vertices of a graph as relations. To
describe reachability in graphs, we recall first-order axioms for the Kleene star operation. Finally, we discuss tool
support for mechanising the presented concepts.

2.1. Relations

A (concrete) binary relation R on a set A is a subset of the Cartesian product A × A, that is, a set of ordered pairs
of elements of A. Using the language of graph theory, A is the set of vertices of the graph and R is the set of directed
edges. In this context, we also call R a graph. Binary relations can furthermore be understood as Boolean matrices
with rows and columns indexed by A, which corresponds to the adjacency matrix representation of graphs.

Since relations are sets, the union R ∪ S , intersection R ∩ S and complement R of relations R and S can be taken
such that the set of all binary relations on A forms a Boolean algebra. The empty relation O on A is the empty set and
the universal relation L on A is the full Cartesian product A × A. The composition R ; S of two relations R and S is
the set of all pairs (a, c) ∈ A × A such that (a, b) ∈ R and (b, c) ∈ S for some b ∈ A. The converse or transpose RT of a
relation R is the set of all pairs (a, b) with (b, a) ∈ R. The identity relation I on A is the set of all pairs (a, a) with a ∈ A.

The structure (2A×A,∪, ;, , T, I) is called the concrete relation algebra of all binary relations over A. The operations
∩, O and L can be defined in terms of the other operations. To discuss the algebraic structure of relations in a more
abstract way, binary relations are replaced by arbitrary elements of a carrier set B, operations on B are introduced and
they are axiomatised by equations as follows.

An (abstract) relation algebra is a structure (B,∪, ;, , T, I) satisfying the axioms [57, 36]

(R ∪ S ) ∪ T = R ∪ (S ∪ T ) R ∪ S = S ∪ R R = R ∪ S ∪ R ∪ S

(R ; S ) ; T = R ; (S ; T ) (R ∪ S ) ; T = R ; T ∪ S ; T R ; I = R

RTT
= R (R ∪ S )T = RT ∪ S T (R ; S )T = S T ; RT

RT ; R ; S ∪ S = S

The first line contains Huntington’s axioms for Boolean algebras [30, 29]. The join operation is denoted by ∪, based

on which the meet can be defined as R ∩ S = R ∪ S . Since every relation algebra is a Boolean algebra, the set B is
partially ordered by R ⊆ S ⇔ R ∪ S = S with greatest element L = R ∪ R and least element O = R ∩ R. In the
graph model, O is the empty graph and L is the complete graph. The axioms in the second line give properties of
composition ;. It follows that every relation algebra is a semiring with the two operations ∪ and ;. The axioms in
the last two lines specify the operation of converse. We assume that composition has higher precedence than join and
meet and that complement and converse have higher precedence than composition.

It follows that the operations ∪, ∩, ; and T preserve the order ⊆ and the operation reverses the order ⊆. As further
examples, we discuss two properties which follow from the above axioms of relation algebras:

R ⊆ R ; RT ; R (1)

R ∩ I = RT ∩ I (2)

We interpret these properties in the graph model. Inequality (1) holds because any edge (a, b) ∈ R in the graph can be
traversed backwards in RT, since (b, a) ∈ RT, so the edge (a, b) is also contained in the composition R ; RT ; R by going
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forward, backward and forward again from a via b and a to b. Equality (2) contains an intersection with the identity
relation on both sides; it therefore considers only loops in the graph, that is, edges, from a vertex to itself. It states that
such edges are not changed if a graph is transposed, that is, if all its edges are reversed.

Many further properties of relation algebras can be found in textbooks such as [52, 36, 49].

2.2. Relational Properties
Compact equational characterisations of special classes of relations can be given in relation algebras. We use the

following properties of functions and orders.
A relation R is univalent if RT ; R ⊆ I and total if I ⊆ R ; RT. A relation R is injective if RT is univalent, surjective

if RT is total and bijective if R is injective and surjective. A relation R is irreflexive if R ⊆ I and symmetric if R = RT.
For concrete relations, the equivalence of these relation-algebraic specifications and the common logical specifi-

cations can be easily derived. For example, R ⊆ A × A is univalent if and only if for each a ∈ A there is at most
one b ∈ A such that (a, b) ∈ R. If R is interpreted as the edge set of a directed graph with vertex set A, this means
that the out-degree of every vertex is at most 1. Similarly, R is total if and only if the out-degree of every vertex is at
least 1. Conversely, injective and surjective state the same requirements for the in-degree of vertices instead of their
out-degree. Irreflexivity specifies that a graph contains no loops. Symmetric relations are sometimes used to represent
undirected graphs by containing both (a, b) and (b, a) if there is an edge between a and b.

A relation R is surjective if and only if L ; R = L. As another consequence of the above properties, we present
the following result about injective and surjective relations. For this, and following results, we assume that variables
range over a given relation algebra.

Lemma 2.1. If P is surjective and R is injective, P ⊆ Q ; R implies R ⊆ QT ; P. These two inequalities are equivalent
if P and R are bijective.

2.3. Vectors, Points and Atoms
We now discuss three particular properties that are useful to represent sets of elements as relations. A relation v is

a vector if v = v ; L. A point is a bijective vector. A relation x is an atom if both x ; L and xT ; L are points; see [52].
In the matrix model, a vector corresponds to a row-constant matrix. That is, v ⊆ A × A is a vector if and only if

for every a ∈ A, the pair (a, b) is in v either for all b ∈ A or for none. Such a relation is used to model the subset
of elements of A that are related by v to all elements of A. In the graph model, this can be used to represent sets of
vertices.

A point is a vector that is additionally injective and surjective. In the graph model, this means that the in-degree
of every vertex is exactly 1, so the adjacency matrix contains exactly one row with 1-entries. This means that a point
represents a set that contains exactly one element. Such singleton sets obviously correspond to elements of A and can
therefore be used to represent individual vertices of graphs.

An atom is a relation consisting of a single pair. Specifically, if R is an atom and (a, b) ∈ R, then R ; L is the point
representing the element a, and similarly RT ; L represents the element b. Hence an atom corresponds to a single edge
in a graph.

The composition R ; L is a vector for any relation R. More generally, the composition R ; v of a relation R and
a vector v is again a vector. It represents the set of vertices from which there are transitions under R into the set
represented by v. In the graph model this amounts to the predecessors of the vertices in the set represented by v.
Similarly, RT ; v is the set of successors of the vertices in the set represented by v.

The following result gives an example of a property of vectors.

Lemma 2.2. For vectors v, w, we have v ; wT = v ∩ wT. In particular R ; L ; S = R ; L ∩ L ; S for all relations R, S .

We will use two further properties of relations, which do not follow from the axioms of relation algebras given in
Section 2.1. The first one is the Tarski rule:

R , O⇔ L ; R ; L = L

It can be interpreted as follows. If R ⊆ A × A is not empty, it contains a pair (a, b) for some a, b ∈ A. Then the vector
R ; L represents a set that contains a; in particular, R ; L contains a point. Hence L ; R ; L is the universal relation since
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points are surjective and composition preserves the order ⊆. The backward implication of the Tarski rule is equivalent
to O , L, which holds if and only if the set of vertices of a graph is not empty.

Using the Tarski rule it can be shown that a relation p is a point if and only if p is a vector, p is injective and
p , O.

The second property of relations we use is the point axiom. It states that for each R , O there are points p and
q such that p ; qT ⊆ R. Again, by the assumption there are a, b ∈ A such that (a, b) ∈ R. Then points p and q can
be chosen so as to represent the vertices a and b, respectively. By Lemma 2.2 we have p ; qT = p ∩ qT, whence this
expression intersects row a and column b of the matrix to yield the entry (a, b). In particular, it follows that p ; qT is
an atom. To summarise, the point axiom states that every non-empty graph contains an edge, which is obvious in the
graph model but an independent property in relation algebras.

2.4. Reflexive Transitive Closure

To describe reachability in graphs we expand relation algebras with an operation for the reflexive transitive closure.
A Kleene relation algebra is a structure (M,∪, ;, , T, ∗, I) such that (M,∪, ;, , T, I) is a relation algebra and the Kleene
star operation ∗ satisfies the following axioms:

I ∪ R ; R∗ ⊆ R∗ S ∪ R ; Q ⊆ Q⇒ R∗ ; S ⊆ Q

I ∪ R∗ ; R ⊆ R∗ S ∪ Q ; R ⊆ Q⇒ S ; R∗ ⊆ Q

Relation algebras with transitive closure have been studied, for example, in [42]; Kleene algebras have been studied
in [14]; the axioms above were proposed in [33].

The operation ∗ models reflexive transitive closure, from which the transitive closure is easily obtained by R+ =

R ; R∗. Hence an edge (a, b) is in R∗ if and only if there is a path from vertex a to vertex b in the graph R, and a similar
statement holds for R+ and non-empty paths. A relation R is acyclic if R+ is irreflexive, that is, there is no non-empty
path from a vertex to itself.

For example, we obtain the following consequences:

R∗ ∪ S ∗ = R+ ∪ S ∗

RT∗ = R∗T

In the remainder of this paper we work in Kleene relation algebras that satisfy the Tarski rule and the point axiom.
We note, however, that many of the following results do not require the Tarski rule and/or the point axiom but hold in
more general structures, as can be seen in our Isabelle/HOL implementation.

2.5. Formalisation and Mechanisation

As shown above, relation algebras facilitate compact equational specifications of relational properties and support
first-order axioms for reachability, which is a key notion for dealing with paths. All relation-algebraic statements
can be expressed in logic, but doing so would introduce complex formulas with nested quantifiers. For example,
a relation R ⊆ A × A is surjective if and only if ∀y ∈ A : ∃x ∈ A : (x, y) ∈ R and R is injective if and only if
∀y ∈ A : ∀x ∈ A : ∀w ∈ A : (x, y) ∈ R ∧ (w, y) ∈ R ⇒ x = w In relation algebras, these properties are expressed as
I ⊆ RT ; R and R ; RT ⊆ I, respectively. Like here, relation algebras often yield simpler, more modular and more concise
specifications and proofs. This is one reason why we formalise our work using relation algebras rather than logic.

Due to their compact quantifier-free form, statements given in relation algebras can be more easily tackled by
automated and interactive theorem provers. Off-the-shelf automated theorem provers such as E [53] and Prover9
[37] are performing well when proving statements containing relational expressions [28, 16]. There are also special-
purpose first-order proof systems for relation algebras; for example, see [35, 34]. These systems, however, usually
fail when proving complex properties of relation algebras since the search space becomes too large.

To overcome this deficiency, interactive proof assistants such as Coq [12] and Isabelle/HOL [45] can be used.
Both systems have been successfully used in the context of relation algebras [48, 1]. Key differences are that Coq
has a more expressive type system whereas Isabelle/HOL has better automation support. In particular, the Sledge-
hammer tool [38, 47] integrates first-order automatic theorem provers and SMT solvers to discharge goals arising in
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interactive Isabelle/HOL proofs. Since our work does not require an elaborate type system but greatly benefits from
automation we have implemented all results of this paper in Isabelle/HOL. Proofs are omitted and can be found in the
accompanying Isabelle theories. To improve readability, most of our proofs are written in Isabelle/Isar (Intelligible
Semi-Automated Reasoning) [59].

3. Paths

In this section we start our endeavour to characterise classes of paths. One of the preconditions of a path between
two points is that the points are connected.

Definition 3.1. A relation R is connected if R ; L ; R ⊆ R∗ ∪ RT∗.

The expression R ; L ; R is equivalent to R ; L∩ L ; R by Lemma 2.2 and describes all pairs (a, b) such that vertex a
has an outgoing edge in R and vertex b has an incoming edge in R. The inequality requires that there must be a path
from a to b in R or a path from b to a in R. Hence the definition states that any vertex with a successor in R must be
connected by a path to any vertex with a predecessor in R either by going forwards (R∗) or backwards (RT∗).

Connected relations do not characterise paths since they allow, for instance, the following graphs:

We additionally have to prevent paths from forking into several successors and from merging several predecessors.

Definition 3.2. A relation R is a path if R is injective, univalent and connected.

Paths in this sense encompass all classes shown in Figure 1 [ÀÁÂÃÄÅ], and nothing else. In particular, a path
can be finite, one-sided infinite, two-sided infinite, a cycle or even the empty relation. In the remainder of the paper
we will look at each class separately.

Theorem 3.3. R is connected if and only if RT is connected. R is a path if and only if RT is a path.

The following theorem shows equivalent formalisations of connectivity. Statement (1) is the property given in
Definition 3.1.

Theorem 3.4. For a univalent and injective relation R, the following properties are equivalent:

(1) R ; L ; R ⊆ R∗ ∪ RT∗

(2) R ; L ; RT ⊆ R∗ ∪ RT∗

(3) RT ; L ; R ⊆ R∗ ∪ RT∗

(4) RT ; L ; RT ⊆ R∗ ∪ RT∗

(5) R+ ; L ; R+ ⊆ R∗ ∪ RT∗

(6) R+ ; L ; RT+
⊆ R∗ ∪ RT∗

(7) RT+ ; L ; R+ ⊆ R∗ ∪ RT∗

(8) RT+ ; L ; RT+
⊆ R∗ ∪ RT∗

4. Start Points and End Points

Many paths have special vertices, namely a start point (root) and an end point (sink). A start point is a vertex
without predecessor, and an end point is a vertex without successor. This is captured by the following definition.

Definition 4.1. The start points of a relation R are given by start(R) = R ; L ∩ RT ; L and its end points are given by
end(R) = RT ; L ∩ R ; L.
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As above, R ; L describes all vertices having a successor, and RT ; L those vertices with a predecessor. Hence,
R ; L ∩ RT ; L characterises the vertices with at least one successor and no predecessors, which are just the start points
of a path.

Immediate consequences are start(R) = end(RT) and R ; start(R) = RT ; end(R) = O. Of course, not every path
has such distinguished elements. In Figure 1, the classes [ÀÂ] comprise the paths with start points. Similarly, classes
[ÀÁ] are the paths with end points. A cycle or a two-sided infinite path has neither start points nor end points, in
which case start(R) = end(R) = O. The following result shows that every path has at most one start point and at most
one end point.

Theorem 4.2. Let R be a path. Then start(R) and end(R) are injective.

It follows that start points and end points are almost points in the relation-algebraic sense. The only exception is
the empty relation as the following result states.

Corollary 4.3. Let R be a path. Then start(R) = O or start(R) is a point and, similarly, end(R) = O or end(R) is a
point.

The following consequences characterise the existence of start and end points by (in)equalities. We also give the
corresponding classes in Figure 1.

Corollary 4.4. Let R be a path. Then

(1) start(R) , O if and only if L = L ; R ; R ; L [ÀÂ].
(2) start(R) = O if and only if R ; L ⊆ RT ; L [ÁÃÄÅ].
(3) end(R) , O if and only if L = L ; R ; R ; L [ÀÁ].
(4) end(R) = O if and only if RT ; L ⊆ R ; L [ÂÃÄÅ].
(5) start(R) , O and end(R) , O if and only if L = L ; R ; R ; L ∩ L ; R ; R ; L [À].
(6) start(R) = end(R) = O if and only if R ; L = RT ; L [ÃÄÅ].

It follows that a path has a start point if and only if the converse path has an end point.
The simplest kind of path that has both a start point and an end point is a single edge. It can be constructed from

two (relational) points as shown by the following result.

Lemma 4.5. Let p and q be points. Then p ; qT is a path. If p , q, then start(p ; qT) = p and end(p ; qT) = q.

The start point of the constructed edge is the vertex represented by the point p; its end point is the one represented
by q. If p and q coincide, start(p ; qT) = end(p ; qT) = O since the result is a loop.

A path with no start point and no end point [ÃÄÅ] need not be infinite; it can also be the empty relation or a
cycle. We will elaborate on this distinction in Section 5.

Sometimes we wish to include the empty relation in our reasoning. If a path has either a start point or is empty,
we call it backward terminating [ÀÂÅ]. Symmetrically, we call a path forward terminating if it has end points or
is empty [ÀÁÅ]. If a path is both forward terminating and backward terminating, we call it terminating [ÀÅ]. The
following result shows how to express each of these properties as an inequality.

Theorem 4.6. Let R be a path. Then the following properties are equivalent and each characterises backward termi-
nation.

(1) L = L ; R ; R ; L or R = O
(2) R ⊆ L ; R ; R ; L
(3) R ⊆ L ; R ; R∗

(4) R ⊆ RT∗ ; RT ; L

Moreover, each of the following properties is equivalent to forward termination.

(5) L = L ; R ; R ; L or R = O
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(6) R ⊆ L ; R ; R ; L
(7) R ⊆ R∗ ; R ; L
(8) R ⊆ L ; RT ; RT∗

Finally, each of the following properties is equivalent to termination.

(9) L = L ; R ; R ; L ∩ L ; R ; R ; L or R = O
(10) R ⊆ L ; R ; R ; L ∩ L ; R ; R ; L
(11) R ⊆ L ; R ; R∗ ∩ R∗ ; R ; L
(12) R ⊆ RT∗ ; RT ; L ∩ L ; RT ; RT∗

It follows that a path is backward terminating if and only if its converse is forward terminating. Moreover a path
is terminating if and only if its converse is terminating.

If the end point of a path R and the start point of a path S coincide, the paths can be concatenated. It has to be
guaranteed, however, that the two paths do not cross each other. The condition used in the following result allows
that the start point of R and the end point of S coincide, if they exist, but requires all other vertices of R and S to be
distinct.

Theorem 4.7. Let R be a forward terminating path and let S be a backward terminating path with end(R) = start(S )
and R;L∩(RT ;L∪S ;L)∩S T ;L = O. Then R∪S is a path. Moreover, start(R∪S ) ⊆ start(R) and end(R∪S ) ⊆ end(S ).

If additionally start(R) = end(S ) are non-empty and hence points, path concatenation creates a cycle. As a
consequence we only obtain inequalities in the second part of the previous theorem. By strengthening its assumption
to R ; L ∩ S T ; L = O we can exclude the creation of a cycle. This means that R and S only meet at the end point of R
and the start point of S .

Lemma 4.8. The strengthened assumption R ; L ∩ S T ; L = O is equivalent to the conjunction of the assumption
R ; L ∩ (RT ; L ∪ S ; L) ∩ S T ; L = O of Theorem 4.7 and start(R) ∩ end(S ) = O.

Under this assumption, it is possible to determine the start and end points of the composed path R ∪ S according
to the following result.

Theorem 4.9. Let R be a forward terminating path and let S be a backward terminating path such that end(R) =

start(S ) and R ; L ∩ S T ; L = O. Then start(R ∪ S ) = start(R) and end(R ∪ S ) = end(S ).

Rather than looking at path concatenation, one can also consider path restriction. Given a path R and an arbitrary
point p, we construct a path with start point p by following the edges of R.

Theorem 4.10. Let p be a point and let R be a path. Then RT∗ ; p∩R is a path. Moreover, start(RT∗ ; p∩R) ⊆ p, and
end(RT∗ ; p ∩ R) ⊆ end(R).

The second statement shows that either p is the start point of the path, or there is no start point at all, which means
that the new path is a cycle or empty. The expression RT∗ ; p represents the set of predecessors of the point p under
the relation RT∗, which are the successors of p under R∗, which is the set of vertices reachable from p by a path in R.
Intersecting with R keeps the edges of R that start in such a vertex.

The additional assumption p ⊆ R ; L assures that the point lies on the path R and has at least one successor. In that
case start(RT∗ ; p ∩ R) = p, and end(RT∗ ; p ∩ R) = end(R).

5. Cycles

By Corollary 4.4 a path R has no start point and no end point if and only if R ; L = RT ; L. In this section we
distinguish three kinds of paths satisfying this property: the empty path, cycles and two-sided infinite paths. A cycle
is obtained by assuming a strong connectivity requirement, given in the following definition.
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Definition 5.1. A path R is a cycle if R∗ = RT∗.

Cycles in this sense encompass classes [ÄÅ] of Figure 1. An immediate consequence is that a relation is a cycle
if and only if its converse is a cycle.

The additional property R∗ = RT∗ specifies that if a vertex b is reachable from a vertex a in R, also a is reachable
from b in R. In this case, a and b belong to the same strongly connected component of R. The following result gives
equivalent ways to express this property and some consequences. For example, R ⊆ RT+ states that for every edge
(a, b) ∈ R vertex b is reachable from vertex a by a non-empty path backwards in R.

Theorem 5.2. The following properties are equivalent:

(1) R∗ = RT∗

(2) R+ = RT+
(3) RT ⊆ R∗

(4) RT ⊆ R+

(5) R ⊆ RT∗

(6) R ⊆ RT+
(7) R∗ ; RT ⊆ R+

(8) RT ; R∗ ⊆ R+

Each of them implies the following properties:

(9) R ; L = RT ; L
(10) R ; RT ⊆ R+

(11) RT ; R ⊆ R+

(12) R ; RT ; R∗ ⊆ R+

(13) R∗ ; RT ; R ⊆ R+

(14) R∗ ; R ; RT ⊆ R+

(15) RT ; R ; R∗ ⊆ R+

If R is univalent, each of (10), (12) and (14) is equivalent to property (1). If R is injective, each of (11), (13) and (15)
is equivalent to property (1).

Theorem 5.2 remains valid if any of the inequalities in (7), (8), (12)–(15) are replaced with equalities.
As witnessed by the identity relation I, the property R∗ = RT∗ alone does not imply that the relation R contains

just one strongly connected component. This results from the combination with the connectivity requirement given in
Definition 3.1. The following result expresses the combination of these two properties as a single (in)equality.

Theorem 5.3. The following properties are equivalent:

(1) R is connected and R∗ = RT∗

(2) RT ; L ; RT ⊆ R∗

(3) RT ; L ; RT ⊆ R+

(4) RT ; L ; RT = R+

(5) RT ; L ; R = R+

(6) R ; L ; RT = R+

They imply each of the following properties:

(7) RT ; L ; R ⊆ R+

(8) R ; L ; RT ⊆ R+

(9) R ; L ; R ⊆ R ; R+

(10) R ; L ; R ⊆ R+

If R is injective, property (7) is equivalent to property (1). If R is univalent, property (8) is equivalent to property (1).
If R is both injective and univalent, property (9) is equivalent to property (1).

Furthermore, property (9) of Theorem 5.3 is equivalent to the corresponding equality R ;L ;R = R ;R+ and property
(10) is equivalent to the corresponding equality R ; L ; R = R+.

In [49], a relation R is called a simple circuit if it is univalent, injective and satisfies property (6) of the previous
theorem and the condition R ; R ⊆ I. By the previous theorem, this is equivalent to R being a cycle except for the
additional condition that R ; R is irreflexive. The latter states that no two vertices are mutually connected by an edge;
this excludes cycles of length 2. The condition also implies that R is irreflexive, which excludes cycles of length 1, that
is, loops. When undirected graphs are represented as symmetric relations, cycles of length 2 cannot be distinguished
from edges and loops are typically not considered (simple graphs). For directed graphs, however, we wish to include
cycles of length 1 or 2 in our reasoning, so we do not require the additional condition.

Note that properties (3), (7), (8) and (10) of Theorem 5.3 have identical right-hand sides and similar left-hand
sides. Despite this, property (10) is weaker than the others in the following sense, which is illustrated in Figure 2.
It shows, for each of the four properties, a pair of edges of R as solid lines. We know that these edges exist by
considering the left-hand sides of the four properties; the edges may be identical or have the same source vertex or
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(a)

R ; L ; R ⊆ R+

(b)

RT ; L ; R ⊆ R+

(c)

R ; L ; RT ⊆ R+

(d)

RT ; L ; RT ⊆ R+

Figure 2: R is strongly connected in (b)–(d), but not strongly connected in (a)

target vertex. Dashed lines indicate non-empty paths whose existence follows by applying the respective property to
these edges. We know that these paths are not empty because the right-hand side of each property is R+. From this,
the existence of (possibly empty) paths indicated by dotted lines follows if R is univalent (c) or injective (b) or both
(a). The existing paths in (b)–(d) allow us to show that the two edges are in the same strongly connected component
of R thereby creating a cycle. This does not work in (a) even if R is both injective and univalent. However, with the
stronger assumption R ; L ; R ⊆ R ; R+, which is property (9) of the previous theorem, the dashed paths in (a) would
have length 2 or more. Hence the dotted paths in (a) would be non-empty (and therefore the two edges would be
different), so the argument of (b) or (c) could be applied to show that the edges belong to a cycle.

Sometimes we wish to include cycles in reasoning about paths with start or end points. A path is backward finite
if it is a cycle or backward terminating [ÀÂÄÅ]. A path is forward finite if it is a cycle or forward terminating
[ÀÁÄÅ]. A path is finite if it is a cycle or terminating [ÀÄÅ]. The following result shows how to express each of
these properties as an inequality.

Theorem 5.4. Let R be a relation. Then the following properties are equivalent and, if R is a path, characterise
backward finiteness.

(1) R∗ = RT∗ or R ⊆ L ; R ; R ; L
(2) R ⊆ L ; R ; R ; L ∪ RT∗

Moreover, the following properties are equivalent and, if R is a path, characterise forward finiteness.

(3) R∗ = RT∗ or R ⊆ L ; R ; R ; L
(4) R ⊆ L ; R ; R ; L ∪ RT∗

Finally, the following properties are equivalent and, if R is a path, characterise finiteness.

(5) R∗ = RT∗ or R ⊆ L ; R ; R ; L ∩ L ; R ; R ; L
(6) R ⊆ (L ; R ; R ; L ∩ L ; R ; R ; L) ∪ RT∗

It follows that a path is backward finite if and only if its converse is forward finite. Moreover a path is finite if and
only if its converse is finite.

We conclude this section with a number of useful facts about cycles. The first result shows that any terminating
path can be extended to a cycle by connecting its end point with its start point.

Theorem 5.5. Let R be a terminating path. Then R ∪ end(R) ; start(R)T is a cycle.

Conversely, the next result shows that any non-empty cycle becomes a terminating path if an edge is removed.

Theorem 5.6. Let R be a cycle and let s, e be points with e ; sT ⊆ R. Then R ∩ e ; sT is a terminating path with
start(R ∩ e ; sT) ⊆ s and end(R ∩ e ; sT) ⊆ e. If s , e, the last two inequalities can be strengthened to equalities.

The final result of this section shows how to join two paths with suitable start and end points to a cycle. It uses the
assumption of Theorem 4.7 to require that the two paths do not overlap.

Theorem 5.7. Let R, S be terminating paths with start(R) = end(S ) and start(S ) = end(R). Then R ∪ S is a cycle if
R ; L ∩ (RT ; L ∪ S ; L) ∩ S T ; L = O.
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6. Application: Verifying the Correctness of Graph Algorithms

Using the relation-algebraic characterisations of different kinds of paths derived in the previous sections, we now
verify the correctness of three basic graph algorithms. Previous work has shown that relation-algebraic reasoning can
be applied for program transformation and verification in general and in the context of graph algorithms; for example,
see [20, 2, 4, 11, 8, 23]. The aim of this section is to show that our theory of paths integrates well with such arguments.

Our correctness proofs use the well-known assertion-based program verification technique based on Hoare logic
[27]. The algorithms are expressed as while-programs with variables whose values are elements of a relation algebra.
Correctness of the algorithms is stated by preconditions and postconditions, which are relation-algebraic formulas.
The first task in proving the correctness of a while-program is to provide for each while-loop an invariant that holds
throughout the execution of the loop; invariants are again relation-algebraic formulas. We then need to prove that each
loop invariant

(1) is established from the precondition before the while-loop,
(2) is maintained by each iteration of the while-loop, and
(3) implies the required postcondition after the while-loop.

This proves partial correctness of the program: if it starts in a state satisfying the precondition and terminates, the
postcondition will hold in the final state.

For all our examples, we briefly describe the algorithm itself, and present the pre- and postconditions as well as
the loop invariants. The verification conditions listed above are automatically generated from this information by
Isabelle/HOL’s Hoare logic library [43, 44]. The proofs of these obligations use relation-algebraic reasoning similar
to the proofs of other results in this paper; they can be found in the Isabelle/HOL theory files.

We have also proved termination of the algorithms using a total-correctness Hoare logic library discussed in [24].
To this end, each while-loop has to be annotated with a variant or bound function; see the Isabelle/HOL theories for
details. We only discuss partial correctness below; the termination proofs use the additional assumption that graphs
have finitely many vertices.

6.1. Construction of a Path

Our first example is a Greedy algorithm that constructs a path from a vertex x to a different vertex y of a directed
acyclic graph D. We assume that a path between these vertices exists and, moreover, conditions that ensure the
Greedy algorithm will find one without searching. See [6, 7] for relational implementations of depth-first search and
breadth-first search.

We use the predicate point(p) to specify that the relation p is a point in the relation-algebraic sense as defined in
Section 2.3.

The algorithm maintains a relation W, which is the path that is constructed backwards from y towards x. As soon
as W forms a path from x to y the algorithm terminates with result W (Line 10 in Algorithm 1). The algorithm works
as follows: first, it chooses a predecessor p of y (Line 2) and initialises W to be the edge from p to y, which is a path
(Line 3). As long as the start point q of W is different from x (Line 5), the algorithm chooses a predecessor p of q
(Line 6) and extends the relation W by the edge from p to q (Line 7).

For the selection of predecessors we use an operation choosePoint(v) that (deterministically) chooses a point
contained in a non-empty vector v. The existence of such a point follows from the point axiom. To reason about the
operation choosePoint, we assume it satisfies the following axioms:

choosePoint(v) ⊆ v v , O⇒ point(choosePoint(v))

The inequality states that the chosen relation is contained in v, and the implication states that the chosen relation
is a point. The operation choosePoint is deterministic in the sense that it always produces the same result for a
given argument and hence may be modelled as a function in a relation algebra. There may be several different
implementations of a deterministic operation satisfying these axioms; any one works fine since our reasoning only
uses the properties stated by or following from the axioms.

Using choosePoint we can formally describe the construction of a path in Algorithm 1.
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Algorithm 1 Constructing a path
1 input D, x, y
2 p← choosePoint(D ; y)
3 W ← p ; yT

4 q← p
5 while q , x do
6 p← choosePoint(D ; q)
7 W ← W ∪ p ; qT

8 q← p
9 end

10 output W

We show correctness of Algorithm 1 if the input satisfies the following preconditions, whose conjunction is de-
noted by Pre(D, x, y):

D+ ⊆ I point(x) point(y) x , y D∗ ; y ⊆ DT∗ ; x

The first inequality states that D is acyclic. The following three conditions specify that x and y are distinct vertices.
The last inequality uses two vectors: D∗ ; y contains the transitive predecessors of y, which are the vertices from
which y is reachable, and DT∗ ; x contains the transitive successors of x, which are the vertices reachable from x. The
inequality expresses that every transitive predecessor of y is a transitive successor of x, which implies that there is a
path from x to y. Moreover, it follows that there is a path from x to any transitive predecessor of y, which is the reason
why the above Greedy algorithm works without searching.

The postcondition Post(D, x, y,W) of the algorithm is the conjunction of the following relation-algebraic formulas:

W ⊆ D termPath(W) x = start(W) y = end(W)

The first condition guarantees that the output W of Algorithm 1 is contained in the graph D. The second condition
states that W is a terminating path as defined in Section 4. The remaining two conditions ensure that the constructed
path starts in x and ends in y.

The loop invariant Inv(D, x, y,W, q) used to prove partial correctness of Algorithm 1 is the conjunction of the
following formulas:

D+ ⊆ I point(x) point(y) point(q) D∗ ; q ⊆ DT∗ ; x

W ⊆ D termPath(W) q = start(W) y = end(W)

The first line shows that the invariant contains most of Pre(D, x, q). Maintaining the precondition throughout the
while-loop is trivial since it uses only input variables, whose values do not change. Nevertheless these conditions
need to be formally part of the loop invariant since they are not only necessary for establishing the rest of the invariant
but also to maintain it. Moreover, the invariant contains Post(D, q, y,W) as shown in the second line.

From this invariant, Post(D, x, y,W) immediately follows using the negated loop condition q = x, which holds
after the while-loop terminates.

6.2. Topological Sorting

In our second example we look at topological sorting: given a directed acyclic graph R, the problem is to construct
a linear order of its vertices that contains x before y for each edge (x, y) of the graph. If the input graph models
dependencies between tasks, the output is a linear schedule of the tasks that respects all dependencies. We represent
the linear order of vertices as a path, in which the sequence of vertices gives the schedule.

A simple algorithm based on [31] for finding a topological sort W works as follows. It first picks a vertex without
a predecessor (Line 3 in Algorithm 2), which exists since the input R is acyclic. This vertex is marked (Line 4) and
used as the start point of the path to be constructed. As long as there are unmarked vertices (Line 5), the algorithm
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picks one that does not have an unmarked predecessor (Line 6). As before, such a vertex exists since any subgraph of
R is acyclic, too. The edge from the current end point q of W to the chosen vertex is then added to the path (Line 7).
The selected vertex is marked (Line 9).

The relational program given in Algorithm 2 implements this procedure. It represents the set of marked vertices as
the vector v; a vertex is marked if and only if the corresponding (relational) point is contained in v. Hence v contains
the unmarked vertices, and the condition v , L in Line 5 checks if there is still an unmarked vertex.

Algorithm 2 Topological sorting
1 input R
2 W ← O
3 q← choosePoint(min(R, L))
4 v← q
5 while v , L do
6 p← choosePoint(min(R, v))
7 W ← W ∪ q ; pT

8 q← p
9 v← v ∪ p

10 end
11 output W

To find vertices without unmarked predecessors, Algorithm 2 uses the operation min(S ,w) = w ∩ S T ; w, where S
is a relation and w is a vector [52]. It yields the S -minimal elements of the set represented by w. Hence min(R, L) in
Line 3 gives the vertices without predecessors in the whole graph, and min(R, v) in Line 6 gives the unmarked vertices
without any unmarked predecessors. As in Algorithm 1, we use the choosePoint operation to select one of these
vertices.

Algorithm 2 works if R is acyclic and finite; otherwise one of the choosePoint-operations in Lines 3 and 6 would
fail. To avoid this kind of failure and to ensure that there is no infinite descending chain of unmarked vertices, we
require that the input relation R is well-founded (also called regressively finite). In relation algebras this is expressed
by

w ⊆ RT ; w⇒ w = O

for all vectors w [52]. This property is the only precondition Pre(R) of the algorithm.
We now consider the postcondition. The relation W stores the constructed topological sort as a terminating path

with a start point and an end point. To express that W preserves the dependencies in R we use the condition R ⊆ W+,
that is, there must be a path in W from the source x to the target y of every edge (x, y) ∈ R. Finally, the path W has to
contain all vertices of R. If R has two or more vertices this can be specified as (W ∪WT) ; L = L, where the left-hand
side is the vector of all points in W. Alternative expressions for this vector are WT ; L∪ start(W) and W ; L∪ end(W).
If R contains only a single vertex, W is the empty path, so this specification does not work. We can either add a
precondition I , L stating that R has at least two vertices or modify the condition by replacing L with I ; L to handle
this special case. Using the latter option, we obtain the postcondition Post(R,W) as the conjunction of the following
formulas:

R ⊆ W+ termPath(W) (W ∪WT) ; L = I ; L

The loop invariant that allows us to prove partial correctness with respect to the precondition Pre(R) and the
postcondition Post(R,W) is the conjunction of the following formulas:

Pre(R) R ∩ v ; vT ⊆ W+ termPath(W)
point(q) q ⊆ v W = O ∨ q = end(W)
v = v ; L W ; L = v ∩ q R ; v ⊆ v

The first line contains the precondition, which is maintained trivially since R never changes, and the first two parts of
the postcondition; note that the formula R ∩ v ; vT ⊆ W+ is a generalisation of R ⊆ W+ that restricts R to the subgraph
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induced by the set of marked vertices. The remaining properties (second and third lines) are auxiliary properties
necessary to maintain the first three formulas of the loop invariant and to ensure the postcondition (W ∪WT) ; L = I ; L.
The second line characterises the relation q as a marked vertex, which is the end point of W except when W is empty
at the beginning of Algorithm 2. The third line characterises the relation v as the set of vertices of W and ensures that
all predecessors of these marked vertices are marked, too.

6.3. Construction of a Non-empty Cycle
Our last application is a correctness proof of an algorithm that constructs a non-empty cycle for a given directed

graph R. As precondition Pre(R) we assume that R is not acyclic, that is, it contains at least one cycle:

R+ ∩ I , O

This is the only condition needed for input R.
Algorithm 3 shows the relational program. It starts by picking two points, using the operation choosePoint again.

The first point y is selected in Line 2 as a vertex lying on an arbitrary cycle of R. The existence of such a point is
guaranteed by Pre(R). The second point x is selected in Line 3 as a direct successor of y (since x ⊆ RT ; y) that is also
a transitive predecessor of y (since x ⊆ R∗ ; y). These conditions ensure that x and y lie on a cycle of R. Lines 4 and 5
cover the case that the chosen points are identical. This means that the edge y ; xT = x ; xT is a loop and hence a cycle
in R, so the algorithm can terminate.

If x and y do not coincide, the algorithm progresses in three steps. Lines 7–13 construct a directed tree D ⊆ R
with root x in which y is a leaf. Lines 14–21 select a path W in D that connects x with y. This path W together with
the edge from y to x gives the required cycle in Line 22.

In the first step, the directed tree D is constructed as follows. Line 7 initialises the relation D as the empty tree.
The while-loop maintains the vector v that contains all vertices of the tree. At the start of the loop, v contains only the
point x which is the root of D; see Line 8. As long as the vertex y has not been reached, which is checked in Line 9,
the algorithm chooses an edge e of R that goes from a vertex in v to a vertex outside v in Line 10. The edge is added
to the tree in Line 11 and its end point is added to v in Line 12.

An edge is a relation consisting of a single pair and can therefore be represented by an atom. We use the predicate
atom(a) to specify that the relation a is an atom in the relation-algebraic sense as defined in Section 2.3. Similarly
to points, we use an operation chooseAtom(x) that (deterministically) chooses an atom contained in a non-empty
relation x. To reason about the operation chooseAtom, we assume it satisfies the following axioms:

chooseAtom(x) ⊆ x x , O⇒ atom(chooseAtom(x))

Since the while-loop adds edges leaving the set v and since it is known that y is reachable from x, the vertex y will
eventually be included in v, so D will contain a path from x to y.

By construction, D is acyclic and satisfies D∗ ; y ⊆ DT∗ ; x. As a consequence we can use Algorithm 1 to determine
a path from x to y; Lines 14–21 of Algorithm 3 are identical to Lines 2–9 of Algorithm 1. When the second while-loop
of Algorithm 3 terminates, W contains a terminating path from x to y. Line 22 adds to this path the edge from y to x
to obtain a cycle C. By the choice of x and y in Lines 2 and 3 this edge is contained in R.

We now discuss the postcondition of Algorithm 3. It constructs a non-empty cycle C that is also a subgraph
of R. These conditions immediately translate into the following formulas, whose conjunction is the postcondition
Post(R,C):

C , O cycle(C) C ⊆ R

Here the condition cycle(C) specifies that C is a cycle as defined in Section 5.
We conclude this section by discussing the invariant used to prove partial correctness of Algorithm 3 with respect

to Pre(R) and Post(R,C). As before, Isabelle/HOL’s Hoare logic tactic splits the correctness proof into a number of
verification conditions. For example, the if-statement is split into two goals, one for each case. For the case x = y the
postcondition is easy to establish since the loop on this vertex is immediately available.

The case x , y requires more effort. To reuse Algorithm 1 we have to show that its precondition Pre(D, x, y) holds,
which is the conjunction of the following formulas:

D+ ⊆ I point(x) point(y) x , y D∗ ; y ⊆ DT∗ ; x
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Algorithm 3 Constructing a cycle
1 input R
2 y← choosePoint((R+ ∩ I) ; L)
3 x← choosePoint(R∗ ; y ∩ RT ; y)
4 if x = y then
5 C ← y ; xT

6 else
7 D← O
8 v← x
9 while ¬(y ⊆ v) do

10 e← chooseAtom(v ; vT
∩ R)

11 D← D ∪ e
12 v← v ∪ eT ; L
13 end
14 p← choosePoint(D ; y)
15 W ← p ; yT

16 q← p
17 while q , x do
18 p← choosePoint(D ; q)
19 W ← W ∪ p ; qT

20 q← p
21 end
22 C ← W ∪ y ; xT

23 end
24 output C

To establish these conditions we use the conjunction of the following formulas as the invariant for the first while-loop
in Lines 9–13:

point(x) point(y) x , y y ⊆ RT∗ ; x y ; xT ⊆ R

D ⊆ R D+ ⊆ I D ; DT ⊆ I D ⊆ v ; vT v = v ; L

x ; vT ⊆ D∗ D ; x = O v = x ∪ DT ; L

The first line lists simple conditions that follow immediately from the selection of x and y in Lines 2 and 3 of Algorithm
3. These properties are needed later and have to be maintained throughout the entire proof, which is not difficult since
R, x and y are not modified in Lines 4–23.

The first three inequalities of the second line state that D is an injective acyclic subgraph of R, that is, a forest in
R. The remaining two conditions in this line state that v is a vector and that D contains only edges between vertices in
the set represented by v.

The first two conditions in the third line specify that x is the root of D, that is, that all vertices in v are reachable
from x in D and that x has no predecessors. This implies that D is a tree with root x. Finally, v = x∪DT ; L states that
v contains x and the target vertices of all edges in D.

These invariants imply that D∗ ; y ⊆ DT∗ ; x holds after the first while-loop, so we can use Algorithm 1 afterwards.
By the correctness of Algorithm 1 we know that its postcondition Post(D, x, y,W) holds after the second while-loop
of Algorithm 3. This postcondition is:

W ⊆ D termPath(W) x = start(W) y = end(W)

Theorem 5.5 then implies that C as constructed in Line 22 is a cycle. The remaining two postconditions of Algorithm
3, that is, C , O and C ⊆ R are easy to prove using x , y and W ⊆ D and D ⊆ R.
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7. Paths with Roots

In the previous sections a path was described by a relation only; in Section 4 we have discussed conditions under
which paths have a start point and/or an end point. In this section we describe paths together with a designated root.
A root is a vertex of the graph represented by a (relational) point. Our main results are equivalences between the
definitions of paths with and without roots. Most of these equivalences only hold if the point axiom is assumed.

We represent a path with root by two relations R and p such that R is injective and univalent and p is a point. The
relations R and p will satisfy further conditions depending on the kind of path that is represented.

7.1. Paths

We start with a result that characterises all paths [ÀÁÂÃÄÅ]. The condition p ; R ⊆ R∗ ∪ RT∗ states that any end
vertex of an edge in R must be reachable from the vertex p by going forward in R or by going backward in R.

Theorem 7.1. Let R be an injective and univalent relation. Then R is a path if and only if there exists a point p such
that p ; R ⊆ R∗ ∪ RT∗.

If the path is not empty, we can guarantee that the vertex p of the previous theorem is contained in the path. This
is stated by the additional condition p ⊆ (R ∪ RT) ; L of the following characterisation [ÀÁÂÃÄ].

Corollary 7.2. Let R be an injective and univalent relation. Then R is a non-empty path if and only if there exists a
point p such that p ; R ⊆ R∗ ∪ RT∗ and p ⊆ (R ∪ RT) ; L.

The following theorem shows that a path R is acyclic if p has no predecessors in R.

Theorem 7.3. Let R be an injective and univalent relation and let p be a point such that p;R ⊆ R∗∪RT∗ and R; p = O.
Then R is acyclic.

7.2. Backward Finite Paths

The following result characterises backward finite paths [ÀÂÄÅ]. The condition p ; R ⊆ R+ states that any end
vertex of an edge in R must be reachable from the vertex p by a non-empty path in R. It implies the previous condition
p ; R ⊆ R∗ ∪ RT∗ since R+ ⊆ R∗ ⊆ R∗ ∪ RT∗.

Theorem 7.4. Let R be an injective and univalent relation. Then R is a backward finite path if and only if there exists
a point p such that p ; R ⊆ R+.

For a point p, the condition p ; R ⊆ R+ is equivalent to each of RT ; L ⊆ RT+ ; p and RT ; L = RT+ ; p.
Again, if the path is not empty, we obtain that it contains p, which can now be stated as p ⊆ R ; L in the following

characterisation [ÀÂÄ].

Corollary 7.5. Let R be an injective and univalent relation. Then R is a non-empty backward finite path if and only if
there exists a point p such that p ; R ⊆ R+ and p ⊆ R ; L.

For backward finite paths, Theorem 7.3 can be extended to an equivalence as the following result shows.

Theorem 7.6. Let R be an injective and univalent relation and let p be a point such that p ; R ⊆ R+. Then R ; p = O
if and only if R is acyclic.
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7.3. Cycles

The following result characterises non-empty cycles [Ä]. The additional condition p ⊆ RT ; L states that p is the
end vertex of an edge in R. For a point p it is equivalent to R ; p , O.

Theorem 7.7. Let R be an injective and univalent relation. Then R is a non-empty cycle if and only if there exists a
point p such that p ; R ⊆ R+ and p ⊆ RT ; L.

In this case any point q on the cycle – that is, satisfying q ⊆ R∗ ; p – can take the place of p in the previous theorem
– that is, satisfies q ; R ⊆ R+ and q ⊆ RT ; L. Moreover, p ⊆ R∗ ; q and q ⊆ R+ ; q = R∗ ; q = R∗ ; p = R ; L follow.
Finally, also p ; RT ⊆ RT+ and p ⊆ R ; L hold, so the previous theorem dualises to the converse cycle. The condition
q ⊆ R∗ ; p to make all of this happen for non-empty cycles can equivalently be stated as each of p ⊆ R∗ ; q or R ; q , O
or RT ; q , O or q ⊆ R ; L or q ⊆ RT ; L.

Moreover, it follows that if R and S are non-empty cycles such that R ⊆ S then R = S . Another consequence is
that the two conditions of the previous theorem can be combined into one inequality if also the empty cycle is allowed
[ÄÅ].

Corollary 7.8. Let R be an injective and univalent relation. Then R is a cycle if and only if there exists a point p such
that p ; R ⊆ R+ ∩ RT ; L.

7.4. Backward Terminating Paths

The following result characterises backward terminating paths [ÀÂÅ]. The additional condition R ; p = O states
that vertex p has no predecessors in R.

Theorem 7.9. Let R be an injective and univalent relation. Then R is a backward terminating path if and only if there
exists a point p such that p ; R ⊆ R+ and R ; p = O.

If the relation is not empty, it follows that the root p of the previous theorem is the start point of R [ÀÂ].

Corollary 7.10. Let R be an injective and univalent relation. Then R is a non-empty backward terminating path if
and only if start(R) is a point such that start(R) ; R ⊆ R+.

7.5. Terminating Paths

For characterising terminating paths we additionally need an end point [ÀÅ]. The condition p ⊆ R∗ ; q states that
vertex q is reachable from vertex p in R. The condition RT ; q = O states that vertex q has no successors in R.

Theorem 7.11. Let R be an injective and univalent relation. Then R is a terminating path if and only if there exist
points p, q such that p ; R ⊆ R+ and p ⊆ R∗ ; q and RT ; q = O.

In this case it follows that R ; p = O. Moreover, also q ⊆ RT∗ ; p and q ; RT ⊆ RT+ follow, so the previous theorem
dualises by swapping p and q and taking the converse of R. Finally, R = O if and only if p = q.

If the relation is not empty, the point q of the previous theorem is the end point of R [À].

Corollary 7.12. Let R be an injective and univalent relation. Then R is a non-empty terminating path if and only if
start(R) and end(R) are points such that start(R) ; R ⊆ R+ and start(R) ⊆ R∗ ; end(R).
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8. Conclusion

We have shown how relation algebras can be used to compactly specify and reason about different kinds of paths
in graphs. We have applied the developed formalism to verify the correctness of simple graph algorithms. Proofs of
results use equational reasoning instead of point-wise arguments with quantified variables. This style of reasoning
strongly benefits from support by automated and interactive theorem provers.

In this paper we have developed a fundamental theory of paths. There are several directions of extension. First,
relation algebras can be extended to deal with cardinalities of relations [32, 10, 5]; for a path this would simply be the
number of edges it contains. This facilitates, for example, proofs about the complexity of graph algorithms. Second,
different combinations of the defining properties of paths and other properties yield different classes of graphs. For
example, an injective acyclic relation represents a forest; adding connectivity yields trees. We expect that a number
of results are common to the classes and can be derived from fewer properties making them more widely applicable.
Third, relation algebras can be generalised to structures that can represent weighted graphs [23]. Using the results of
this paper in such a setting would allow us to reason, for example, about shortest-path algorithms.
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[21] R. Glück. Algebraic investigation of connected components. In P. Höfner, D. Pous, and G. Struth, editors, Relational and Algebraic Methods

in Computer Science (RAMiCS 2017), volume 10226 of Lecture Notes in Computer Science, pages 109–126. Springer, 2017.
[22] W. Guttmann. An algebraic approach to computations with progress. Journal of Logical and Algebraic Methods in Programming, 85(4):520–

539, 2016.
[23] W. Guttmann. An algebraic framework for minimum spanning tree problems. Theoretical Computer Science, 744:37–55, 2018.
[24] W. Guttmann. Verifying minimum spanning tree algorithms with Stone relation algebras. Journal of Logical and Algebraic Methods in

Programming, 101:132–150, 2018.

18

http://isa-afp.org/entries/Relation_Algebra.html
http://isa-afp.org/entries/Relation_Algebra.html


[25] F. Harary. Graph Theory. Addison-Wesley Publishing Company, 1969.
[26] R. Hirsch and I. Hodkinson. Relation Algebras by Games. Elsevier Science B.V., 2002.
[27] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–580/583, 1969.
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