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Abstract

We continue our investigation into hybrid polyadic multi-sorted logic
with a focus on expresivity related to the operational and axiomatic se-
mantics of programming languages, and relations with first-order logic.
We identify a fragment of the full logic, for which we prove sound and
complete deduction and we show that it is powerful enough to represent
both the programs and their semantics in an uniform way. Although
weaker than other hybrid systems previously developed, this system is
expected to have better computational properties. Finally, we provide
a standard translation from full hybrid many-sorted logic to first-order
logic.

Keywords: Hybrid modal logic, Many-sorted logic, Standard Translation,
Operational semantics, Program verification

1 Introduction

This paper presents several hybrid modal logic systems based on the initial
many-sorted structure we have developed [10] and progressively incorporating
different operators and binders to it. These findings have enabled us to bridge
the gap between the full many-sorted polyadic modal logic and First-Order Logic
by developing a standard translation between them.

In Section 1 we recall our many-sorted polyadic modal logic, KΣ, introduced
in [10], by presenting all the necessary information: the syntax, the semantics
and the deductive system, in order for the reader to get familiarized with this
logic. In Section 2, we propose and study HΣ(@z) a hybrid extension of KΣ and
we prove its soundness and completeness. Moreover, we provide an example of
using this system to axiomatically express operational semantics and to derive
proofs for statements concerning program executions. Sections 3 and 4 recall
two related hybrid systems introduced in [12]: HΣ(∀), an orthodogal extension
of KΣ; and HΣ(@z, ∀), a common extension of both HΣ(@z) and HΣ(∀). The
paper concludes by providing a standard translation from HΣ(@z, ∀) to first
order logic, showing that any many-sorted modal formula corresponds to a first-
order formula from its corresponding first-order language.
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1.1 Preliminaries: a many-sorted polyadic modal logic

For a general background on modal logic we refer to [5]. Basically, on top of
modal logic we have added the sorts for each variable and the many-sorted
polyadic operators σ together with the corresponding relation. The polyadic
operators are defined also in [5], but in a mono-sorted version.

Our language is determined by a fixed, but arbitrary, many-sorted signature
Σ = (S,Σ) and an S-sorted set of propositional variables P = {Ps}s∈S such
that Ps 6= ∅ for any s ∈ S and Ps1 ∩ Ps2 = ∅ for any s1 6= s2 in S. For any
n ∈ N and s, s1, . . . , sn ∈ S we denote Σs1...sn,s = {σ ∈ Σ | σ : s1 · · · sn → s}.

The set of formulas of KΣ, the many-sorted polyadic modal logic defined in
[10], is an S-indexed family inductively defined by:

φs ::= p | ¬φs |φs ∨ φs |σ(φs1 , . . . , φsn)

where s ∈ S, p ∈ Ps and σ ∈ Σs1···sn,s.
We use the classical definitions of the derived logical connectors: for any

σ ∈ Σs1...sn,s the dual operation is σ�(φ1, . . . , φn) := ¬σ(¬φ1, . . . ,¬φn).
In the sequel, by φs we mean that φ is a formula of sort s ∈ S. Similarly,

Γs means that Γ is a set of formulas of sort s. When the context uniquely
determines the sort of a state symbol, we shall omit the subscript.

The deductive system is presented in Figure 1.

The system KΣ

• For any s ∈ S, if φ is a formula of sort s which is a theorem in propositional
logic, then φ is an axiom.

• Axiom schemes: for any σ ∈ Σs1···sn,s and for any formulas φ1, . . . , φn, φ, χ
of appropriate sorts, the following formulas are axioms:

(Kσ) σ�(. . . , φi−1, φ→ χ, φi+1, . . .)→
(σ�(. . . , φi−1, φ, φi+1, . . .)→ σ�(. . . , φi−1, χ, φi+1, . . .))

(Dualσ) σ(ψ1, . . . , ψn)↔ ¬σ�(¬ψ1, . . . ,¬ψn)

• Deduction rules: Modus Ponens and Universal Generalization

(MP ) if | s φ and | s φ→ ψ then | s ψ
(UG) if |si φ then | s σ�(φ1, .., φ, ..φn)

Figure 1: (S,Σ) modal logic

In order to define the semantics we introduce (S,Σ)-frames and (S,Σ)-
models. An (S,Σ)-frame is a tuple F = (W, (Rσ)σ∈Σ) such that:

• W = {Ws}s∈S is an S-sorted set of worlds and Ws 6= ∅ for any s ∈ S,

• Rσ ⊆Ws ×Ws1 × . . .×Wsn for any σ ∈ Σs1···sn,s.
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An (S,Σ)-model based on F is a pairM = (F , V ) where V = {Vs}s∈S such
that Vs : Ps → P(Ws) for any s ∈ S. The model M = (F , V ) will be simply
denoted as M = (W, (Rσ)σ∈Σ, V ). For s ∈ S, w ∈ Ws and φ a formula of

sort s, the many-sorted satisfaction relation M, w |
s
= φ is inductively defined as

follows:

• M, w |
s
= p iff w ∈ Vs(p)

• M, w |
s
= ¬ψ iffM, w 6|

s
= ψ

• M, w |
s
= ψ1 ∨ ψ2 iffM, w |

s
= ψ1 orM, w |

s
= ψ2

• if σ ∈ Σs1...sn,s, then M, w |
s
= σ(φ1, . . . , φn) iff for any i ∈ [n] there exist

wi ∈ Wsi such that Rσww1 . . . wn andM, wi |
si= φi.

Definition 1 (Validity and satisfiability). Let s ∈ S and assume φ is a formula

of sort s. Then φ is satisfiable if M, w |
s
= φ for some model M and some

w ∈ Ws. The formula φ is valid in a model M if M, w |
s
= φ for any w ∈ Ws;

in this case we writeM |
s
= φ. The formula φ is valid in a frame F if φ is valid

in all the models based on F ; in this case we write F |
s
= φ. Finally, the formula

φ is valid if φ is valid in all frames; in this case we write |
s
= φ.

The set of theorems of KΣ is the least set of formulas that contains all the
axioms and it is closed under deduction rules. Note that the set of theorems
is obviously closed under S-sorted uniform substitution (i.e. propositional vari-
ables of sort s are uniformly replaced by formulas of the same sort). If φ is
a theorem of sort s write | s

KΣ

φ, or simply | s φ. Obviously, KΣ is a gener-

alization of the modal system K (see [5] for the mono-sorted version). The
completeness theorem of KΣ is proved in [10].

2 The many-sorted basic hybrid modal logic HΣ(@z)

Let (S,Σ) be a many-sorted signature. A basic hybrid modal logic is defined on
top of modal logic KΣ by adding nominals, states variables and specific opera-
tors. Nominals allow us to directly refer the worlds (states) of a model, since
they are evaluated in singletons in any model. However, a nominal may refer
different worlds in different models. The sorts will be denoted by s, t, . . . and
by PROP = {PROPs}s∈S , NOM = {NOMs}s∈S and SVAR = {SVARs}s∈S we
will denote some countable S-sorted sets. The elements of PROP are ordinary
propositional variables and they will be denoted p, q,. . .; the elements of NOM
are called nominals and they will be denoted by j, k, . . .; the elements of SVAR
are called state variables and they are denoted x, y, . . .. We shall assume that
for any distinct sorts s 6= t ∈ S, the corresponding sets of propositional vari-
ables, nominals and state variables are distinct. A state symbol is a nominal or
a state variable.

Recall that the satisfaction in modal logic is local, i.e. one analyzes what
happens in a given point of the model. With respect to this, nominals can be
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seen as local constants and, given a model (a frame and an evaluation), the value
of a nominal is a fixed singleton set. State variables are variables that range
over the individual points of a model, while the usual (propositional) variables
range over arbitrary sets of points.

For this section we drew our inspiration mainly from [4]. As already an-
nounced, in this section we extend the system defined in Section 1 by adding
the satisfaction operators @s

z where s ∈ S and z is a state symbol. The formulas
of HΣ(@z) are defined as follows:

φs := p | j | xs | ¬φs | φs ∨ φs | σ(φs1 , . . . , φsn)s | @
s
zψt

Here, p ∈ PROPs, j ∈ NOMs, t ∈ S, x ∈ SVARs, σ ∈ Σs1···sn,s, z is a state
symbol of sort t and ψ is a formula of sort t.

In order to define the semantics for HΣ(@z) more is needed. Given an
(S,Σ)-model M = (W, (Rσ)σ∈Σ, V ), an assignment is an S-sorted function
g : SVAR→W , which evaluates states variables to singleton sets, and for any
s ∈ S we have gs : SVARs → Ws.

The satisfaction relation is defined similar with the one in KΣ, but we only
need to add the definition for @z:

M, g, w |
s
= @s

zφ if and only ifM, g,Deng(z) |
t
= φ

where z is a state symbol of sort t and φ is a formula of the same sort t. Here,
Deng(z) is the denotation of the state symbol z of sort s in an (S,Σ)-modelM
with an assignment function g, where Deng(z) = Vs(z) if z is a nominal, and
Deng(z) = gs(z) if z is a state variable.

Let us remark that if z is a nominal, then the satisfaction relation is equiv-
alent with the one in [11]:

M, g, w |
s
= @s

zφ if and only ifM, g,Deng(z) |
t
= φ if and only if

M, g, v |
t
= φ where Deng(z) = Vt(z) = {v}.

One important remark is the definition of the satisfaction modalities: if z
and φ are a state symbol and a formula both of the sort t ∈ S, then we define a
family of satisfaction operators {@s

zφ}s∈S such that @s
zφ is a formula of sort s

for any s ∈ S. This means that φ is true at the world denoted by z on the sort
t and is acknowledged on any sort s ∈ S. For example, if we take j and k two
nominals of sort t and s 6= t the formula @s

j¬k expresses the fact that at any
world of sort s we know that the worlds of sort t named by j and k are different.
So, our sorted worlds are not isolated any more, both from a syntactic and a
semantic point of view.

Proposition 2 (Soundness). The deductive systems for HΣ(@z) from Figure 2
is sound.

Proof. LetM be an arbitrary model and w any state of sort s.

(K@) SupposeM, g, w |
s
= @s

z(φt → ψt) if and only ifM, g,Deng(z) |
t
= φt →

ψt if and only ifM, g,Deng(z) |
t
= φt impliesM, g,Deng(z) |

t
= ψt. Let us prove
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The system HΣ(@z)

• The axioms and the deduction rules of KΣ

• Axiom schemes: any formula of the following form is an axiom, where
s, s′, t are sorts, σ ∈ Σs1···sn,s, φ, ψ, φ1, . . . , φn are formulas (when neces-
sary, their sort is marked as a subscript), and y, z are state symbols:

(K@) @s
z(φt → ψt)→ (@s

zφ→ @s
zψ)

(SelfDual) @s
zφt ↔ ¬@

s
z¬φt

(Intro) z → (φs ↔ @s
zφs)

(Agree) @t
y@

t′

z φs ↔ @t
zφs

(Ref) @s
zzt

(Back) σ(. . . , φi−1,@
si
z ψt, φi+1, . . .)s → @s

zψt

• Deduction rules:

(BroadcastS) if | s @s
zφt then |

s′ @s′

z φt
(Gen@) if |s

′

φ then | s @zφ, where z and φ have the same sort s′

(Paste0) if | s @s
z(y ∧ φ)→ ψ then | s @zφ→ ψ

where z is distinct from y that does not occur in φ or ψ
(Paste1) if | s @s

zσ(. . . , y ∧ φ, . . .)→ ψ then | s @s
zσ(. . . , φ, . . .)→ ψ

where z is distinct from y that does not occur in φ or ψ

Figure 2: (S,Σ) basic hybrid modal logic

the non-trivial case: suppose that M, g, w |
s
= @s

jφt. Then M, g,Deng(z) |
t
=

φt, but this implies that M, g,Deng(z) |
t
= ψt if and only if M, g, w |

s
= @s

zψt.

Therefore,M, g, w |
s
= @s

zφt → @s
zψt.

(Agree) Suppose M, g, w |
t
= @t

y@
t′

z φs if and only if M, g,Deng(y) |
t′

= @t
zφs

impliesM, g,Deng(z) |
s
= φs. It follows thatM, g, w |

t
= @t

zφs.

(SelfDual) Suppose M, g, w |
s
= ¬@s

z¬φt if and only if M, g, w 6|
s
= @s

z¬φt if

and only ifM, g,Deng(z) 6|
t
= ¬φt if and only ifM, g,Deng(z) |

t
= φt if and only

ifM, g, w |
s
= @s

zφt.

(Back) SupposeM, g, w |
s
= σ(. . . , φi−1,@

si
z ψt, φi+1, . . .)s if and only if there

is (w1, . . . , wn) ∈ Ws1 × · · · ×Wsn such that Rσww1 . . . wn and M, g, wi |
si= φi

for any i ∈ [n]. This implies that there is wi ∈ Wsi such thatM, g, wi |
si= @si

z ψt,

soM, g,Deng(z) |
t
= ψt. Hence,M, g, w |

s
= @s

zψt

(Ref) SupposeM, g, w 6|
s
= @s

zzt. ThenM, g,Deng(z) 6|
t
= z, contradiction.

(Intro) SupposeM, g, w |
s
= z andM, g, w |

s
= φs. Then w = Deng(z), so we

get that M, g,Deng(z) |
s
= z and M, g,Deng(z) |

s
= φs implies that M, g, w |

s
=

@s
zφs.

Now, suppose M, g, w |
s
= z and M, g, w |

s
= @s

zφs. Because from the first
assumption we haveDeng(z) = {w}, then, from the second one, we can conclude
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thatM, g, w |
s
= φs.

The following lemma generalizes the results from [2], being essentially used
in the proof of the completeness theorem.

Lemma 3. The following formulas are theorems:

(Nomz) @s
zyt → (@s

zφt ↔ @s
yφt)

for any s, t ∈ S, zt, yt state symbols of sort t and φt a formula
of sort t.

(Sym) @s
zyt → @s

yzt
where s, t ∈ S and zt, yt are state symbols of sort t,

(Bridge) σ(. . . φi1 , zsi , φi+1 . . .) ∧@s
zφsi → σ(. . . φi−1, φsi , φi+1, . . .)

if σ ∈ Σs1...sn,s, zsi is a state symbol of sort si and φsi is a
formula of sort si.

Proof. In the sequel, by PL we mean classical propositional logic and by ML we
mean the basic modal logic.

(Nomz)
(1) | t yt → (φt ↔ @t

yφt) (Intro)
(2) | s @s

z(yt → (φt ↔ @t
yφt)) (Gen@)

(3) | s @s
z(yt → (φt ↔ @t

yφt))→ (@s
zyt → @s

z(φt ↔ @t
yφt)) (K@)

(4) | s @s
zyt → @s

z(φt ↔ @t
yφt) (MP ) : (2), (3)

(5) | s @s
z(φt ↔ @t

yφt)↔ (@s
zφt ↔ @s

z@
t
yφt) ML

(6) | s @s
zyt → (@s

zφt ↔ @s
z@

t
yφt) PL:(4), (5)

(7) | s @s
z@

t
yφt ↔ @s

yφt (Agree)
(8) | s @s

zyt → (@s
zφt ↔ @s

yφt) PL:(6), (7)

(Sym)
(1) | s @s

yzt ∧@s
zyt → @s

zyt Taut
(2) | s (@s

yzt ∧@s
zyt → @s

zyt)→ (@s
yz → (@s

zyt → @s
zyt)) Taut

(3) | s @s
yz → (@s

zyt → @s
zyt) (MP ) : (1), (2)

(4) | s (@s
zyt → @s

zyt)→ @s
zyt PL

(5) | s @s
yz → @s

zyt PL
(6) | s @s

zyt → @s
yz Analogue

(7) | s @s
zyt ↔ @s

yz PL:(5), (6)

(Bridge)
(1) | s σ(. . . φi−1, zsi , φi+1 . . .) ∧ σ�(. . . ,¬φi−1,¬φsi ,¬φi+1, . . .)→

→ σ(. . . φi−1, zsi ∧ φsi , φi+1, . . .) ML
(2) |si zsi ∧ ¬φsi → @si

z ¬φsi (Intro)
(3) | s σ(. . . φi−1, zsi ∧ ¬φsi , φi+1, . . .)→ σ(. . . φi−1,@

si
z ¬φsi , φi+1, . . .) ML

(4) | s σ(. . . φi−1,@
si
z ¬φsi , φi+1, . . .)→ @s

z¬φsi (Back)
(5) | s σ(. . . φi−1, zsi ∧ ¬φsi , φi+1, . . .)→ @s

z¬φsi PL:(3),(4)
(6) | s σ(. . . φi1 , zsi , φi+1 . . .) ∧ σ�(. . . ,¬φi−1,¬φsi ,¬φi+1, . . .)→ @s

z¬φsi
PL:(1),(5)

6



(7) | s σ(. . . φi1 , zsi , φi+1 . . .)→ (σ�(. . . ,¬φi−1,¬φsi ,¬φi+1, . . .)→ @s
z¬φsi )

PL
(8) | s σ(. . . φi1 , zsi , φi+1 . . .)→ (¬@s

z¬φsi → ¬σ
�(. . . ,¬φi−1,¬φsi ,¬φi+1, . . .))

PL
(9) | s σ(. . . φi1 , zsi , φi+1 . . .)→ (@s

zφsi → σ(. . . , φi−1, φsi , φi+1, . . .))
(Dual), (SelfDual)

(10) | s σ(. . . φi1 , zsi , φi+1 . . .) ∧@s
zφsi → σ(. . . , φi−1, φsi , φi+1, . . .) PL

Lemma 4. Let Γs be a maximal consistent set that contains a state symbol of
sort s, and for all state symbols z, let ∆z = {φ | @s

zφ ∈ Γs}. Then:

1) For every state symbol z of sort s, ∆z is a maximal consistent set that
contains z.

2) For all state symbols z and y of same sort, @s
zφ ∈ ∆y if and only if

@s
zφ ∈ Γs.

3) There is a state symbol z such that Γs = ∆z.

4) For all state symbols z and y of same sort, if z ∈ ∆y then ∆z = ∆y.

Proof. 1) Recall that for any state symbol z we have the (Ref) axiom, so
@s

zzt ∈ Γs. Hence, z ∈ ∆z. But, is ∆z a consistent set? Let us suppose
that is not. So there are χ1, . . . , χn ∈ ∆j such that✚

✚| t χ1 ∧ · · · ∧ χn, then
| t ¬(χ1∧· · ·∧χn). By use of (Gen@) rule we get | s @s

z¬(χ1∧· · ·∧χn), so
@s

z¬(χ1∧· · ·∧χn) ∈ Γs. By (SelfDual) axiom, we get that ¬@s
z(χ1∧· · ·∧

χn) ∈ Γs. But on the other hand, if χ1, . . . , χn ∈ ∆j , then by definition
of ∆j we have that @s

zχ1, . . . ,@
s
zχn ∈ Γs, and because @s

z is a normal
modality, then @s

z(χ1 ∧ · · · ∧ χn) ∈ Γs as well. But this contradicts the
consistency of Γs. Therefore ∆z is consistent.

Now, let us check if ∆z is maximal. Assume it is not. Then there is a
formula χ of sort t such that χ 6∈ ∆z and ¬χ 6∈ ∆z. But then @s

zχ 6∈ Γs

and @s
z¬χ 6∈ Γs. But also Γs is a maximal consistent set, then ¬@s

zχ ∈ Γs

and ¬@s
z¬χ ∈ Γs. On the other hand, if ¬@s

z¬χ ∈ Γs, then by (SelfDual)
axiom we get that @s

zχ ∈ Γs, and this contradicts the consistency of Γs.
Hence, we conclude that ∆z is a maximal consistent set.

2) By definition of ∆y, @
t
zφ ∈ ∆y if and only if @s

y@
t
zφ ∈ Γs. By (Agree)

axiom we have that @s
y@

t
zφ ∈ Γs if and only if @s

zφ ∈ Γs. This is called
the @-agreement property, which it plays an important role in the com-
pleteness proof.

3) Let the state symbol z of sort s be contained in Γs. Suppose φ ∈ Γs.
Because z ∈ Γs, by (Intro) axiom we get @s

zφ ∈ Γs, and by definition of
∆z , we have φ ∈ ∆z. Conversely, if φ ∈ ∆z , then by definition of ∆z it
follows that @s

zφ ∈ Γs. Moreover, z ∈ Γs and using again the same axiom
we get that φ ∈ Γs.
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4) Let z ∈ ∆y, then by definition of ∆y we have that @s
yz ∈ Γs and by (Sym)

we get that @s
zy ∈ Γs. Firstly, let us prove that ∆y ⊆ ∆z. Let φ ∈ ∆y,

then by definition of ∆y we have that @s
yφ ∈ Γs. Also, @s

zy ∈ Γs, so by
(Nomz) it follows that @s

zφ ∈ Γs and hence that φ ∈ ∆z. Secondly, a
similarly (Nomz)-based proof shows that ∆z ⊆ ∆y.

This Lemma gives us the maximal consistent sets needed in the Existence
Lemma. We build our models out of named sets, i.e. sets containing nominals.
But more is needed in order for our model to support an Existential Lemma.
Therefore, we add the Paste rules, as you can see in Figure 2. In this setting,
the system is still sound as we prove in the following:

(BroadcastS) Suppose M, g, w |
s
= @s

zφt if and only if M, g,Deng(z) |
t
= φt.

Hence, for any s′ ∈ S we haveM, g, w |
s′

= @s′

z φt.
Now, letM be an arbitrary named model.
(Paste0) SupposeM, g, w |

s
= @s

z(y∧φ)→ ψ if and only ifM, g, w |
s
= @s

z(y∧

φ) impliesM, g, w |
s
= ψ. Hence, (M, g, v |

s′

= y ∧ φ where Deng(z) = {v} implies

M, g, w |
s
= ψ) if and only if (M, g, v 6|

s′

= y andM, g, v 6|
s′

= φ, where Deng(z) = {v},

orM, g, w |
s
= ψ). It follows that (M, g, v 6|

s′

= y orM, g, w |
s
= ψ) and (M, g, v 6|

s′

= φ

or M, g, w |
s
= ψ), where Deng(z) = {v}. Then, (M, g, v 6|

s′

= φ or M, g, w |
s
= ψ),

where Deng(z) = {v}. So,M, g, w |
s
= @s

zφ→ ψ.

(Paste1) Suppose M, g, w |
s
= @s

zσ(ψ1, . . . , ψi−1, y ∧ φ, ψi+1, . . . , ψn) → ψ if

and only ifM, g, w |
s
= @s

zσ(ψ1, . . . , ψi−1, y ∧φ, ψi+1, . . . , ψn) impliesM, g, w |
s
=

ψ. Hence,M, g, v |
s′

= y∧φ whereDeng(z) = {v} if and only if exists (v1, . . . , vn) ∈

Ws1×. . .×Wsn such thatRσvv1 . . . vi . . . vn whereDeng(z) = {v} andM, g, ve |
s′

=

ψe for any e ∈ [n], e 6= i and M, g, vi |
si= y ∧ φ. Hence, M, g, vi |

si= y and

M, g, vi |
si= φ, so Deng(y) = {vi} and M, g, vi |

si= φ. Then, if there exists
(v1, . . . , vn) ∈Ws1×. . .×Wsn such that Rσvv1 . . . vi . . . vn whereDeng(z) = {v}

andM, g, ve |
s′

= ψe for any e ∈ [n], e 6= i andM, g, vi |
si= φ, these implyM, g, w |

s
=

ψ. So,M, g, v |
s′

= σ(ψ1, . . . , ψi−1, φ, ψi+1, . . . , ψn) where Deng(z) = {v} implies

M, g, w |
s
= ψ. In conclusion,M, g, w |

s′

= @s
zσ(ψ1, . . . , ψi−1, φ, ψi+1, . . . , ψn)→ ψ.

Definition 5 (Named and pasted). Let s ∈ S and Γs be a set of formulas of
sort s from HΣ(@z). We say that

• Γs is named if one of its elements is a nominal,

• Γs is pasted if it is both 0-pasted and 1-pasted:

(-) Γs is 0-pasted if, for any t ∈ S, σ ∈ Σs1···sn,t, z a state symbol of
sort t, and φ a formula of sort si, whenever @s

zφ ∈ Γs there exists a
nominal j ∈ NOMsi such that @s

zσ(. . . , φi−1, j ∧ φ, φi+1, . . .) ∈ Γs.

(-) Γs is 1-pasted if, for any t ∈ S, σ ∈ Σs1···sn,t, z a state symbol of sort
t, and φ a formula of sort si, whenever @s

zσ(. . . , φi−1, φ, φi+1, . . .) ∈

8



Γs there exists a nominal j ∈ NOMsi such that @s
zσ(. . . , φi−1, j ∧

φ, φi+1, . . .) ∈ Γs.

Lemma 6 (Extended Lindenbaum Lemma). Let Λ be a set of formulas in the
language of HΣ(@z) and s ∈ S. Then any consistent set Γs of formulas of sort s
from HΣ(@z)+Λ can be extended to a named, pasted and @-maximal consistent
set by adding countably many nominals to the language.

Proof. The proof generalizes to the S-sorted setting well-known proofs for the
mono-sorted hybrid logic, see [5, Lemma 7.25], [2, Lemma 3, Lemma 4], [3,
Lemma 3.9].

For each sort s ∈ S, we add a set of new nominals and enumerate this set.
Given a set of formulas Γs, define Γk

s to be Γs ∪ {ks}, where ks is the first new
nominal of sort s in our enumeration. As showed in [11], Γk

s is consistent.
Now we enumerate on each sort s ∈ S all the formulas of the new language

obtained by adding the set of new nominals and define Γ0 := Γk
s . Suppose we

have defined Γm, where m ≥ 0. Let φm+1 be the m + 1 − th formula of sort
s in the previous enumeration. We define Γm+1 as follows. If Γm ∪ {φm+1} is
inconsistent, then Γm+1 = Γm. Otherwise:

(i) Γm+1 = Γm ∪ {φm+1}, if φm+1 is not of the form @zσ(. . . , ϕ, . . .) or @xx,
where ϕ a formula of sort s′′, x ∈ SVARs′′ and z is a state symbol.

(ii) Γm+1 = Γm ∪ {φm+1} ∪ {@x(k ∧ x)}, if φm+1 is of the form @xx, where k
is a new nominal that does not occur in Γm.

(iii) Γm+1 = Γm ∪ {φm+1} ∪ {@xσ(. . . , k ∧ φ, . . .)}, if φm+1 is of the form
@xσ(. . . , ϕ, . . .) and k is a new nominal that does not occur in Γm or
@xσ(. . . , ϕ, . . .).

In clauses (ii) and (iii), k is the first new nominal in the enumeration that does
not occur in Γi for all i ≤ m, nor in @xσ(. . . , ϕ, . . .).

Let Γ+ =
⋃

n≥0 Γ
n. Because k ∈ Γ0 ⊆ Γ+, this set in named, maximal,

pasted and @-witnessed by construction. We will check if it is consistent for the
expansion made in the second, third and fourth items.

Suppose Γm+1 = Γm ∪ {φm+1} ∪ {@x(k ∧ x)} is an inconsistent set, where
φm+1 is @xx. Then there is a conjunction of formulas χ ∈ Γm ∪ {φm+1} such
that | s χ→ ¬@x(k ∧ x) and so | s @x(k ∧ x)→ ¬χ. But k is the first new
nominal in the enumeration that does not occur neither in Γm, nor in @xx and
by Paste0 rule we get | s @xx → ¬χ. Then | s χ → ¬@xx, which contradicts
the consistency of Γm ∪ {φm+1}.

Suppose Γm+1 = Γm ∪ {φm+1} ∪ {@xσ(. . . , k ∧ ϕ, . . .)} is an inconsistent
set, where φm+1 has the form @xσ(. . . , ϕ, . . .). Then there is a conjunction
of formulas χ ∈ Γm ∪ {φm+1} such that | s χ → ¬@xσ(. . . , k ∧ ϕ, . . .) and so
| s @xσ(. . . , k ∧ ϕ, . . .)→ ¬χ. But k is the first new nominal in the enumeration
that does not occur neither in Γm, nor in @xσ(. . . , ϕ, . . .), therefore, by Paste1
rule we get | s @xσ(. . . , ϕ, . . .)→ ¬χ. It follows that |

s χ→ ¬@xσ(. . . , ϕ, . . .),
which contradicts the consistency of Γm ∪ {φm+1}.
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Definition 7 (Named models and natural assignments). For any s ∈ S, let
Γs be a named, pasted and witnessed maximal consistent set and for all state
symbols z, let ∆z = {ϕ | @s

zϕ ∈ Γs}. Define Ws = {∆z | z a state symbol
of sort s }. Then, we define M = (W, {Rσ}σ∈Σ, V ), the named model gen-
erated by the S-sorted set Γ = {Γs}s∈S, where Rσ and V are the restriction
of the canonical relation and the canonical valuation. We define the natural
assignment gs : SVARs →Ws by gs(x) = {w ∈Ws | x ∈ w}.

Lemma 8 (Existence Lemma). Let M = (W, {Rσ}σ∈Σ, V ) be a named model
generated by a named and pasted S-sorted set Γ and let w be a witnessed max-
imal consistent set. If σ(φ1, . . . , φn) ∈ w then there exist witnessed maximal
consistent sets ui such that Rσwu1 . . . un and φi ∈ ui for any i ∈ [n].

Proof. Let σ(φ1, . . . , φn) ∈ w, then @s
jσ(φ1, . . . , φn) ∈ Γs, but Γs is pasted(

then 1 − pasted), so there exists k1 a nominal of sort s1 such that @s
jσ(φ1 ∧

k1, . . . , φn) ∈ Γs, so σ(φ1 ∧ k1, . . . , φn) ∈ ∆j = w. We want to prove that
∆k1

, . . . ,∆kn
are suitable choices for u1, . . . , un.

Let ψ1 ∈ ∆k1
. Then @k1

ψ1 ∈ Γs and by agreement property we get @k1
ψ1 ∈

∆j . But | s k1 ∧ ψ1 → @k1
ψ1 (instance of (Intro) axiom), and by modal

reasoning we get σ(@k1
ψ1, φ2, . . . , φn) ∈ ∆j . From (Back) axiom, @k1

ψ1 ∈ ∆j

and by using the agreement property, @k1
ψ1 ∈ Γs. Hence, ψ1 ∈ ∆k1

.
Now, σ(ψ1, φ2, . . . , φn) ∈ ∆j , then @jσ(ψ1, φ2, . . . , φn) ∈ Γs, but the set is

pasted, then exists k2 a nominal of sort s2 such that @jσ(ψ1, k2∧φ2, φ3, . . . , φn) ∈
Γs. Then σ(ψ1, k2 ∧ φ2, φ3, . . . , φn) ∈ ∆j .

Let ψ2 ∈ ∆k2
. Then @k2

ψ2 ∈ Γs and by agreement property we get @k2
ψ2 ∈

∆j . But | s k2 ∧ ψ2 → @k2
ψ2 (instance of (Intro) axiom), and by modal

reasoning we get σ(ψ1,@k2
ψ2, φ3, . . . , φn) ∈ ∆j . From (Back) axiom, @k2

ψ2 ∈
∆j and by using the agreement property, @k2

ψ2 ∈ Γs. Hence, ψ2 ∈ ∆k2
.

Therefore, by induction, we get that ψi ∈ ∆ki
for any i ∈ [n]. Then @ki

ψi ∈ Γs

if and only if, by agreement property, @ki
ψi ∈ ∆j . But σ(k1, . . . , kn) ∈ ∆j and

by using (Bridge), it follows that σ(ψ1, . . . , ψn) ∈ ∆j . We proved that for any
i ∈ [n], ψi ∈ ∆ki

we have σ(ψ1, . . . , ψn) ∈ ∆j and by Definition 7, it follows
that Rσ∆j∆k1

. . .∆kn
.

Lemma 9 (Truth Lemma). Let M be an (S,Σ)-model, g an M-assignment
function and w a maximal consistent set. For any sort s ∈ S and any formula
φ of sort s, we have:

φ ∈ w if and only ifM, g, w |
s
= φ.

Proof. We make the proof by structural induction on φ.

• M, g, w |
s
= a,where a ∈ PROPs ∪ NOMs, if and only if w ∈ Vs(a) if and

only if a ∈ w;

• M, g, w |
s
= x, where x ∈ SVARs, if and only if w = gs(x), if and only if

x ∈ w;
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• M, g, w |
s
= ¬φ if and only ifM, g, w 6|

s
= φ if and only if φ 6∈ w (inductive

hypothesis) if and only if ¬φ ∈ w (maximal consistent set);

• M, g, w |
s
= φ ∨ ψ if and only ifM, g, w |

s
= φ orM, g, w |

s
= ψ if and only if

φ ∈ w or ψ ∈ w (inductive hypothesis) if and only if φ ∨ ψ ∈ w;

• let σ ∈ Σs1...sn,s and φ = σ(φ1, . . . , φn); then M, g, w |
s
= σ(φ1, . . . , φn), if

and only if for any i ∈ [n] there exist ui ∈ Wsi such that Rσwu1 . . . un
and M, g, ui |

si= φi if and only if for any i ∈ [n] there exist ui ∈ Wsi

such that φi ∈ ui and Rσwu1 . . . un (induction hypothesis) if and only if
σ(φ1, . . . , φn) ∈ w (using Existence Lemma 8).

• M, g, w |
s
= @s

zφ if and only if M, g,∆z |
s
= @s

zφ ∈ ∆z (by Lemma 4.(3))
if and only if φ ∈ ∆z (inductive hypothesis) if and only if @s

zφ (by Intro
axiom together with z ∈ ∆z) if and only if @s

zφ ∈ w (by Lemma 4.(2)).

Theorem 10 (Completeness). Every consistent set of formulas is satisfied.

Proof. Let Γs be an s-sorted set of formulas. By the Extended Lindenbaum
Lemma 6 we can expand it to a named and pasted set Γ+

s . By the Truth
Lemma 9, the named and natural assignment that Γ+

s give rise to satisfy Γs at
Γ+
s .

2.1 Example

Modal logic has traditionally been used for program verification, one of the
most remarkable examples being Propositional Dynamic Logic (PDL), which
can represent Hoare Logics. In both Hoare Logics and Dynamic Logic programs
are verified using axiomatic semantics, while the state transition system is only
semantically defined. For a general discussion we refer to [8].

Our many-sorted setting allows us to define both the syntax of a program-
ming language and its evaluation context in the syntactic layer of our logic, and
consequently to define its operational semantics. The change of a configuration
after the execution of a program is represented as an implication in our logic,
the configuration and the programs being formulas of appropriate sorts.

Our goal is to express operational semantics of languages as axioms in this
logic, and to make use of such semantics in program verification. We consider
here the SMC Machine described by Plotkin [13], we derive a Dynamic Logic
set of axioms from its proposed transition semantics, and we argue that this
set of axioms can be used to derive Hoare-like assertions regarding functional
correctness of programs written in the SMC machine language.

The semantics of the SMC machine as laid out by Plotkin consists of a set
of transition rules defined between configurations of the form 〈S,M,C〉, where
S is a value stack of intermediate results, M represents the memory, mapping
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Syntax

Nat ::= natural numbers

V ar ::= program variables

Bool ::= true | false
AExp ::= Nat | V ar

| AExp +AExp

BExp ::= AExp <=AExp

Stmt ::= x :=AExp

| if BExp

then Stmt

else Stmt

| while BExp do Stmt

| skip
| Stmt ;Stmt

Semantics

V al ::= Nat | Bool

V alStack ::= nil

| V al . V alStack

Mem ::= empty | set(Mem,x, n)
| get(x,n)

CtrlStack ::= c(AExp)
| c(BExp)
| c(Stmt)
| asgn(x)
| plus | leq
| V al?
| c1; c2

Config ::= config(V alStack,Mem)

Figure 3: Signature

program identifiers to concrete values, and C is the control stack of commands
representing the control flow of the program.

Inspired by the Propositional Dynamic Logic (PDL) [8], we identify a com-
mand from the control stack with a “program” from PDL, and use the “;”
operator from PDL to denote stack composition. We define our formulas to
stand for configurations of the form config(vs,mem) comprising only a value
stack and a memory.

Similarly to PDL, we use the modal operator [ ] : CtrlStack × Config →
Config to assert that a configuration formula must hold after executing the
commands in the control stack. The axioms defining the dynamic logic semantics
of the SMC machine are then formulas of the form cfg → [ctrl]cfg′ saying that
a configuration satisfying cfg must change to one satisfying cfg′ after executing
ctrl.

In Figure 3, we introduce the signature of our logic as a context-free gram-
mar (CFG) in a BNF-like form. We make use of the established equivalence
between CFGs and algebraic signatures (see, e.g., [9]), mapping non-terminals
to sorts and CFG productions to operation symbols. Note that, due to non-
terminal renamings (e.g., Exp ::= Int), it may seem that our syntax relies
on sub-sorting. However, this is done for readability reasons only. The re-
naming of non-terminals in syntax can be thought of as syntactic sugar for
defining injection functions. For example, Exp ::= Int can be thought of as
Exp ::= int2Exp(Int), and all occurrences of an integer term in a context in
which an expression is expected could be wrapped by the int2Exp function.

The sorts CtrlStack and Config correspond to ”programs” and ”formulas”
from PDL, respectively. Therefore the usual operations of dynamic logic ; (com-
position), ∪ (reunion), ∗ (repetition), [ ] are defined accordingly [8, Chapter 5].
We depart from PDL with the definition of “?” (test): in our setting, in order
to take a decision, we test the top value of the value stack. Consequently, the
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signature of the test operator is ? : V al → CtrlStack.

We are ready to define our axioms. For the rest of the paper, whenever φ is
a theorem of sort s, i.e. | s φ, we will simply write ⊢ φ, since the sort s can be
easily inferred.

PDL-inspired axioms. The first group of axioms is inspired by the axioms
of PDL [8, Chapter 5.5]. π, π′ are formulas of sort CtrlStack (”programs”), γ
is a formula of sort Config (the analogue of ”formulas” from PDL), v and v′

are variables of sort V ar, vs has the sort V alStack and mem has the sortMem.

(A∪) [π ∪ π′]γ ↔ [π]γ ∧ [π′]γ
(A; ) [π;π′]γ ↔ [π][π′]γ
(A∗) [π∗]γ ↔ γ ∧ [π][π∗]γ
(A?) config(v · vs,mem)→ [v?]config(vs,mem)
(A¬?) config(v · vs,mem)→ [v′?]γ where v and v′ are distinct.

SMC-inspired axioms. Next, we encode the transition system of the SMC
machine as a set of axioms. Apart from the axioms for memory (which are
straight-forward), we follow the rules of the SMC machine as closely as allowed
by the formalism, using the same notation as in [13]. The sort of each variable
can be easily deduced.

(CStmt) c(s1;s2)↔ c(s1); c(s2)
(AMem0) empty → get(x, 0)
(AMem1) set(mem, x, n)→ get(x, n)
(AMem2) set(set(mem, x, n), y,m)↔ set(set(mem, y,m), x, n)

where x and y are distinct
(AMem3) set(set(mem, x, n), x,m)→ set(mem, x,m)
(Aint) config(vs,mem)→ [c(n)]config(n · vs,mem)

where n is an integer
(Aid) config(vs, set(mem, x, n))→ [c(x)]config(n · vs, set(mem, x, n))
(Dplus) c(a1 + a2)↔ c(a1); c(a2); plus
(Aplus) config(n2 · n1 · vs,mem)→ [plus]config(n · vs,mem)

where n is n1 + n2
(Dleq) c(a1 <= a2)↔ c(a2); c(a1); leq
(Aleq) config(n1 · n2 · vs,mem)→ [leq]config(t · vs,mem)

where t is the truth valueo of n1 ≤ n2
(Askip) γ → [c(skip)]γ
(Dasgn) c(x := a)↔ c(a); asgn(x)
(Aasgn) config(n · vs,mem)→ [asgn(x)]config(vs, set(mem, x, n))
(Dif) c(if b then s1 else s2)↔ c(b); ((true ?; c(s1)) ∪ (false ?; c(s2)))
(Dwhile) c(while b do s)↔ c(b); (true?; c(s); c(b))∗; false?

The system HΣ(@z) presented in this paper can be used to certify execu-
tions, but we still cannot perform symbolic verification similarly with the system
presented in [10].
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We conclude by a simple example formalizing and stating a formula which
can be proven by deduction in our logic. Let pgm be the following program

i1:= 1; i2:= 2; if i1<=i2 then m:= i1 else m:= i2

Note that pgm is a formula of sort Stmt in our logic, m is a formula of sort
V ar and 1 is a formula of sort Nat. For this formula we have proved in [10] the
following property:

(Ppgm) ⊢ config(vs,mem)→ [c(pgm)]config(vs,mem′) implies
|Mem mem′ → get(m, 1)

for any mem,mem′ of sort Mem and vs of sort V alStack.

Which, can be read in plain English as: after executing pgm the value of
the program variable m (in memory) will be 1, and the value stack will be the
same as before the execution.

But HΣ(@z) is an enriched system with the satisfaction operator and we will
show that for this system we can prove the following property:

(P’) config(vs,mem)→ [c(pgm)]@mem′ get(m, 1)

In [10] we have already proved that:
⊢ config(vs,mem)→ [c(pgm)]config(vs, set(set(set(mem, i2, 2), i1, 1),m, 1))

But in order to carry on with the proof of the new property, we need to add
a new axiom for the constructor config in order to perform unification:

(NoConfusion) config(φ1, ψ1) ∧ config(φ2, ψ2)→ config(φ1 ∧ φ2, ψ1 ∧ ψ2)

We refer to [14] for a general discussion.
Due to lack of space and in order to ease understanding, from this point on

we will use the following notation: mf = set(set(set(mem, i2, 2), i1, 1),m, 1)

Proof of (P’):
(1) config(vs,mem)→ [c(pgm)]config(vs,mf)
(2) config(vs,mem)→ [c(pgm)]config(vs,mem′)
(3) config(vs,mem)→ ([c(pgm)]config(vs,mf) ∧ [c(pgm)]config(vs,mem′))

PL:(1),(2)
(4) ([c(pgm)]config(vs,mf) ∧ [c(pgm)]config(vs,mem′))→

[c(pgm)](config(vs,mf) ∧ config(vs,mem′)) ML
(5) (config(vs,mf) ∧ config(vs,mem′))→ config(vs ∧ vs,mf ∧mem′)

(NoConfusion)
(6) config(vs ∧ vs,mf ∧mem′)→ config(vs ∧ vs,@mem′ mf)

(Intro), ML
(7) config(vs ∧ vs,@mem′ mf)→ @mem′ mf (Back)
(8) [c(pgm)](config(vs ∧ vs,@mem′ mf)→ @mem′ mf) (UG)
(9) [c(pgm)]config(vs ∧ vs,@mem′ mf)→ [c(pgm)]@mem′ mf (Kσ), (MP )
(10) mf → get(m, 1) (AMem2)
(11) @mem′ mf → @mem′ get(m, 1) ML:(10)
(12) [c(pgm)]@mem′ mf → [c(pgm)]@mem′ get(m, 1) (UG),(Kσ), (MP )
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(13) [c(pgm)](config(vs,mf) ∧ config(vs,mem′))→
[c(pgm)]config(vs ∧ vs,mf ∧mem′) (UG):(5), (Kσ), (MP )

(14) [c(pgm)]config(vs∧vs,mf ∧mem′)→ [c(pgm)]config(vs∧vs,@mem′ mf)
(UG):(6), (Kσ), (MP )

(15) config(vs,mem)→ [c(pgm)]@mem′ get(m, 1) PL:(3),(4),(13),(14),(9),(12)

3 The many-sorted hybrid modal logic HΣ(∀)

The hybridization of our many-sorted modal logic is developed using a combi-
nation of ideas and techniques from [1, 2, 3, 5, 6, 7], but for this section we drew
our inspiration mainly from [3].

Hybrid logic is defined on top of modal logic by adding nominals, states vari-
ables and specific binders. This is a first step towards employing the procedure
of hybridization on top of the many-sorted polyadic modal logic. The main idea
was to define a general logical system that is powerful enough to represent both
the programs and their semantics in an uniform way.

Once again , the sorts will be denoted by s, t, . . . and by PROP = {PROPs}s∈S ,
NOM = {NOMs}s∈S and SVAR = {SVARs}s∈S we will denote the same count-
able S-sorted sets presented in Section 2.

Definition 11 (HΣ(∀) formulas). For any sort s ∈ S we define the formulas of
sort s:

φs := p | j | ys | ¬φs | φs ∨ φs | σ(φs1 , . . . , φsn)s | ∀xt φs

Here, p ∈ PROPs, j ∈ NOMs, t ∈ S, x ∈ SVARt, y ∈ SVARs and σ ∈ Σs1···sn,s.
We also define the dual binder ∃. For any s, t ∈ S, if φ is a formula of sort

s and x is a state variable of sort t, then

∃xφ := ¬∀x¬φ is a formula of sort s.

The notions of free state variables and bound state variables are defined as
usual.

Given a model M = (W, (Rσ)σ∈Σ, V ), then g : SVAR→W is an assign-
ment is an S-sorted function. If g and g′ are assignment functions s ∈ S and
x ∈ SVARs then we say that g′ is an x-variant of g (and we write g′

x
∼ g) if

gt = g′t for t 6= s ∈ S and gs(y) = g′s(y) for any y ∈ SVARs, y 6= x.
The satisfaction relation is defined similar with the one in KΣ, but we only

need to add the definition for binders:

M, g, w |
s
= ∀xφ, if and only ifM, g′, w |

s
= φ for all g′

x
∼ g.

Consequently,M, g, w |
s
= ∃xφ, if and only if ∃g′(g′

x
∼ g andM, g′, w |

s
= φ).

In order to define the axioms of our system, one more definition is needed.
We assume #s be a new propositional variable of sort s and we inductively

define NC = {NCs}s by

• #s,⊤s ∈ NCs for any s ∈ S
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• if σ ∈ Σs1···sn,s and ηi ∈ NCsi for any i ∈ [n] then σ(η1, . . . , ηn) ∈ NCs.

We further define NomC = {NomCs}s∈S such that η ∈ NomCs iff η ∈ NCs

and |{#s | s ∈ S,#s ∈ η}| = 1. If η ∈ NomCs then η� is its dual and
η(ϕ) := η[ϕ/#s′ ].

Remark 12. If η ∈ NomCs and ϕ ∈ Forms′ thenM, g, w |
s
= η(ϕ) iffM, h, w′ |

s′

=
ϕ for some w′ in the submodel generated by X where Xs = {w} and Xt = ∅ for

t 6= s. Dually, M, g, w |
s
= η�(ϕ) iff M, h, w′ |

s′

= ϕ for any w′ in the submodel
generated by X .

The deductive system is presented in Figure 4.

The system HΣ(∀)

• The axioms and the deduction rules of KΣ

• Axiom schemes: for any σ ∈ Σs1···sn,s and for any formulas φ1, . . . , φn, φ, ψ
of appropriate sorts, the following formulas are axioms:

(Q1) ∀x (φ→ ψ)→ (φ→ ∀xψ) where φ contains no free occurrences of x
(Q2) ∀xφ→ φ[y/x] where y is substitutable for x in φ

(Name) ∃xx
(Barcan) ∀xσ�(φ1, . . . , φn)→ σ�(φ1, . . . , ∀xφi, . . . , φn)

(Nom) ∀x [η(x ∧ φ)→ θ�(x→ φ)],
for any s ∈ S, η and θ ∈ NomCs, x ∈ SVARs′

• Deduction rules:
(Gen) if | s φ then | s ∀xφ, where φ ∈ Forms and x ∈ SVARt for some t ∈ S.

Figure 4: (S,Σ) hybrid logic

In [12] we have proved the soundness and completeness of the HΣ(∀) system.

4 The many-sorted hybrid modal logic HΣ(@z, ∀)

In [11], given a concrete language with a concrete SMC-inspired operational se-
mantics, we showed how to define a corresponding (sound and complete) logical
system and we also proved (rather general) results that allow us to perform
Hoare-style verification. Our approach was to define the weakest system that
allowed us to reach our goals. For that, we needed to define the satisfaction
operator only on nominals.

Furthermore, in [12], in order to establish the connection with Matching
logic, we have introduced the HΣ(@z, ∀) system which allows the satisfaction
operators @z to also range over state variables, not just over nominals.

Therefore, let (S,Σ) be a many-sorted signature. As already announced,
in this section we extend the system HΣ(∀) previously defined by adding the
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satisfaction operators @s
z where s ∈ S and z is a state symbol, i.e. a nominal or

a state variable.
The formulas of HΣ(@z, ∀) are defined as follows:

φs := p | j | ys | ¬φs | φs ∨ φs | σ(φs1 , . . . , φsn)s | ∀xt φs | @
s
zψt

Here, p ∈ PROPs, j ∈ NOMs, t ∈ S, x ∈ SVARt, y ∈ SVARs, σ ∈ Σs1···sn,s,
z is a state symbol of sort t and ψ is a formula of sort t.

The satisfaction relation is defined similar with the one inHΣ(∀), but we only

need to add the definition for @z: M, g, w |
s
= @s

zφ if and only ifM, g,Deng(z) |
t
=

φ where z is a state symbol of sort t and φ is a formula of the same sort t.
Here, Deng(z) is the denotation of the state symbol z of sort s in a model M
with an assignment function g, where Deng(z) = Vs(z) if z is a nominal, and
Deng(z) = gs(z) if z is a state variable.

The deductive system is presented in Figure 5.
We have proved the soundness and completeness of the HΣ(@z, ∀)-system in

[12].

5 Standard Translation

Next, we will talk about the relationship between modal and classical logic. We
first specify our correspondence language, more precisely, the language we will
translate our modal formulas to.

Recall that in our many-sorted polyadic modal logic we have τ = (S,Σ) a
many-sorted signature, where the sorts are denoted by s, t, . . . and by PROP =
{PROPs}s∈S , NOM = {NOMs}s∈S and SVAR = {SVARs}s∈S the well known
S-sorted sets.

We introduce the notation ar(σ) which denotes not just the arity of the
many-sorted modal operator σ, but also the sort of the arguments, where
ar(σ) =< s1 . . . sn, s >.

Let us take a look at an (S,Σ)-model M = (W, {Rσ}σ∈Σ, V ) which is a
relational structure where W can be seen as a domain of quantification, each
Rσ a relation over this domain, and Vs(p) is a unary relation for each p ∈
PROPs. On the other hand, if we talk about this modelM = (W, {Rσ}σ∈Σ, V )
using first-order logic we will make use of a first-order language with a relation
symbol Rσ for each σ ∈ Σ, and a unary relation symbol (predicate) Pp for every
p ∈ PROPs.

For the correspondence language in First-Order Logic (FOL) we will define:

Lτ := Lτ (PROP,NOM, SVAR) := {=} ∪ {Pp | p ∈ PROPs}s∈S ∪ {Rσ | σ ∈ Σ}.

Therefore, we consider Lτ the first-order language with equality which has
unary predicates Pp corresponding to the propositional letters p ∈ PROPs

where ar(Pp) =< s > if and only if p ∈ PROPs. We add the (n+1)-ary relation
symbol Rσ for each n-ary many-sorted modal operator σ, and we consider that
ar(Rσ) =< ss1 . . . sn > if and only if ar(σ) =< s1 . . . sn, s >.
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The system HΣ(@z, ∀)

• The axioms and the deduction rules of KΣ

• Axiom schemes: any formula of the following form is an axiom, where
s, s′, t are sorts, σ ∈ Σs1···sn,s, φ, ψ, φ1, . . . , φn are formulas (when neces-
sary, their sort is marked as a subscript), x is state variable and y, z are
state symbols:

(K@) @s
z(φt → ψt)→ (@s

zφ→ @s
zψ)

(SelfDual) @s
zφt ↔ ¬@

s
z¬φt

(Intro) z → (φs ↔ @s
zφs)

(Agree) @t
y@

t′

z φs ↔ @t
zφs

(Ref) @s
zzt

(Back) σ(. . . , φi−1,@
si
z ψt, φi+1, . . .)s → @s

zψt

(Q1) ∀x (φ→ ψ)→ (φ→ ∀xψ) where φ contains no free occurrences of x
(Q2) ∀xφ→ φ[y/x] where y is substitutable for x in φ

(Name) ∃xx
(Barcan) ∀xσ�(φ1, . . . , φn)→ σ�(φ1, . . . , ∀xφi, . . . , φn)

(Barcan@) ∀x@zφ→ @z∀xφ,where x 6= z
(Nomx) @zx ∧@yx→ @zy

• Deduction rules:

(BroadcastS) if | s @s
zφt then |

s′ @s′

z φt
(Gen@) if |s

′

φ then | s @zφ, where z and φ have the same sort s′

(Paste0) if | s @s
z(y ∧ φ)→ ψ then | s @zφ→ ψ

where z is distinct from y that does not occur in φ or ψ
(Paste1) if | s @s

zσ(. . . , y ∧ φ, . . .)→ ψ then | s @s
zσ(. . . , φ, . . .)→ ψ

where z is distinct from y that does not occur in φ or ψ
(Gen) if | s φ then | s ∀xφ,

where φ ∈ Forms and x ∈ SVARt for some t ∈ S.

Figure 5: (S,Σ) hybrid logic

Recall that a model in many-sorted polyadic modal logic is defined by
M = (W,Rσ, V ) where V : PROP → W . For each model in our logic we
define the corresponding one by M = (W,Rσ, Pp). We use the same modal
relation Rσ to interpret the relation symbol Rσ in FOL, and the set Vs(p) to
interpret the unary predicates Pp. As emphasized in [5], there is no mathe-
matical distinction between modal and first-order models; because both modal
and first-order models are relational structures. Given the construction of out
logic on top of modal logic, we can also transfer this feature when talking about
the relation between our logic and FOL. Moreover, we use the S-sorted set
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VFOL = {VFOLs}s∈S for the set of first-order variables.

Definition 13. Let x be a first-order variable. The standard translation STx
taking modal formulas to first-order formulas in Mτ is defined as follows:

• STx(p) = Pp(x), where p ∈ PROPs

• STx(y) = (x = y), where y ∈ SV ARs

• STx(j) = (x = cj), where j ∈ NOMs

• STx(σ(φ1, . . . , φn)) = ∃y1 . . . ∃yn(Rσxy1 . . . yn∧STy1
(φ1)∧ . . . STyn

(φn)),
where y1, . . . , yn are fresh variables , that is, variables that have not been
used so far in the translation.

• STx(@s
yφ) = STy(φ)

• STx(∃yφ) = ∃ySTx(φ)

That is, the standard translation maps proposition symbols to unary predi-
cates (that is Pp(x) is true when p holds in world x), commutes with booleans,
and handles σ by explicit first-order quantification over Rσ-accessible points.
The variables y1, . . . , yn that are used in the clauses for σ are chosen to be any
new variables, ones that has not been used so far in the translation. Please no-
tice that we are using the same set of symbols for state variables and first-order
variables. Moreover, for each nominal j ∈ NOMs, we introduce a correspond-
ing constant cj in the first-order language in order to translate the nominals
into. Also, the satisfaction operators are translated by substituting the relevant
first-order constant for the free-variable x. Note that this translation returns
first-order formulas with at most one free variable x, not exactly one. This is
because a constant may be substituted for the free occurrence of x. For example,
the hybrid formula @s

jj translates into the first-order sentence j = j.
The truth of a formula of Lτ in a structure M, relative to an assignment

function g : SV AR→ W is given in the classical way. We can writeM |=
FOL

STx(φ)[x ← w] which means that the first-order formula STx(φ) is satisfied in
the usual sense of first-order logic in the modelM when w is assigned to the free
variable x. By assigning a value to the free variable , which gives the internal
perspective representative for modal logic, we can evaluate a formula inside a
model at a certain point.

Proposition 14 (Local and Global Correspondence on Models). Let (S,Σ) be
a many-sorted signature and φ a formula of sort s ∈ S.

1) For all (S,Σ)-models M and all states w of M :

M, w |
s
= φ if and only ifM |=

FOL
STx(φ)[x← w]

2) For all (S,Σ)-models M:

M |
s
= φ if and only if M |=

FOL
∀xSTx(φ).
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Proof. 1)By structural induction over φ.
LetM |=

FOL
STx(p)[x ← w] if and only ifM |=

FOL
Pp(x)[x ← w] if and

only if w ∈ Pp if and only if w ∈ Vs(p) if and only if M, g, w |
s
= p for any

assignment function g if and only ifM, w |
s
= p.

Let M |=
FOL

STx(y)[x ← w] if and only if M |=
FOL

(x = y)[x ← w] for
any g′ where g′(y) = w and g′(z′) = g(z′) for any z′ 6= z state variables of sort

t and gs(z
′) = g′s(z

′) for any s 6= t ∈ S if and only if M, g, w |
t
= y for any g if

and only ifM, w |
t
= y.

Let M |=
FOL

STx(j)[x ← w] if and only if M |=
FOL

(x = cj)[x ← w] if
and only if w = cj for any assignment function g if and only if w ∈ Vs(j) for

any g if and only ifM, g, w |
s
= j for any g if and only ifM, w |

s
= j.

Let σ ∈ Σs1...sn,s. Then M |=
FOL

STx(σ(φ1, . . . , φn))[x ← w] if and
only ifM |=

FOL
∃y1 . . .∃yn(Rσxy1 . . . yn ∧ STy1

(φ1) ∧ . . . ∧ STyn
(φn))[x← w]

if and only if there exists (u1, . . . , un) ∈Ws1 × · · · ×Wsn such that
M |=

FOL
(Rσxy1 . . . yn∧STy1

(φ1)∧. . .∧STyn
(φn)) [x← w, y1 ← u1, . . . , yn ←

un]
if and only if there exists (u1, . . . , un) ∈Ws1 ×· · ·×Wsn such that Rσwu1 . . . un
and M |=

FOL
STyi

(φi)[yi ← ui] for any i ∈ [n] if and only if there exists

(u1, . . . , un) ∈ Ws1×· · ·×Wsn such thatRσwu1 . . . un andM, ui |
si= φi for any i ∈

[n](induction hypothesis) if and only if there exists (u1, . . . , un) ∈ Ws1×· · ·×Wsn

such that Rσwu1 . . . un andM, g, ui |
si= φi for any i ∈ [n] and any g if and only

ifM, g, w |
s
= σ(φ1, . . . , φn) for any g if and only ifM, w |

s
= σ(φ1, . . . , φn).

Let z be a state variable of sort t ∈ S. Then M, w |
s
= @s

zφt if and only

if M, g, w |
s
= @s

zφt for any g if and only if M, g′, u |
t
= φt for any g′ where

g′t(z) = u and g′t(z
′) = gt(z

′) for any z′ 6= z state variables of sort t and

gs(z
′) = g′s(z

′) for any s 6= t ∈ S if and only ifM, u |
t
= φt for any u if and only

ifM |=
FOL

STz(φt)[z ← w] for any u if and only ifM |=
FOL

STz(φt) if and
only ifM |=

FOL
STz(φt)[x← w] if and only ifM |=

FOL
STx(@

s
zφt)[x← w].

Let j be a nominal of sort t. Then M, w |
s
= @s

jφt if and only if M, g, w |
s
=

@s
jφt for any g if and only if M, g, u |

t
= φt for any g and u ∈ Vt(j) if and only

if M, u |
t
= φt where u ∈ Vt(j) if and only if M |=

FOL
STj(φt) if and only if

M |=
FOL

STj(φt)[x← w] if and only ifM |=
FOL

STx(@
s
jφt)[x← w].

LetM |=
FOL

STx(∀yφ)[x← w] if and only ifM |=
FOL

(∀y STz(φ))[x← w]
if and only if for any a ∈ Wt,M |= FOL

STx(φ)[x← w, y ← a]
2) Let x ∈ V FOLs. Then M |=

FOL
∀xSTx(phi) if and only if for any

w ∈ Ws, M |=
FOL

STx(φ)[x ← w] if and only if for any w ∈ Ws, M, w |
s
= φ(

use item 1) of this proposition) if and only ifM |
s
= φ.

Thus the standard translation gives us a bridge between many-sorted modal
logic and classical logic.
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6 Conclusions

Improving over previous work [10, 11, 12], this paper makes the following con-
tributions: (1) We study the @-only fragment of the more general hybrid modal
logic proposed in [11, 12], and provide a sound and complete deduction system
for it. This logic is important as it is weaker than the full hybrid modal logic
and thus it is expected to have better computational properties. Nevertheless,
although weaker, we show it can be used to axiomatically express operational
semantics and to derive proofs for statements concerning program executions.
(2) We provide a standard translation from full hybrid modal logic to first-order
logic and prove that it induces both local and global correspondence on models.

Future Work Although the use of quantifiers (particularly existentials) makes
for easier to write and express statements about programs, the @ operator can
suplement the need for quantification in many cases. Exploring the limits of
this capacity seems like an interesting path to follow.

The promise of giving up quantification in favor of just @ is that we sacrifice
expresiveness for better computational properties. We would like to find out
if that indeed is the case, by investigating decidability results for the @-only
fragment of the logic.

References

[1] Areces, C., ten Cate, B.: Hybrid Logics. In: Handbook of Modal Logic, P.
Blackburn et al. (Editors) 3, pp. 822–868 (2007).

[2] Blackburn, P., ten Cate, B.: Pure Extensions, Proof Rules, and Hybrid
Axiomatics. Studia Logica 84(2), pp. 277–322 (2006).

[3] Blackburn, P., Tzakova, M.: Hybrid Completeness. Logic Journal of the
IGPL 4, pp. 625–650 (1998).

[4] Blackburn, P., Tzakova, M.: Hybrid languages and temporal logic. Logic
Journal of the IGPL 7, pp. 27–54 (1999).

[5] Blackburn, P., Venema, Y., de Rijke, M.: Modal Logic. Cambridge Univer-
sity Press (2002).

[6] Gargov, G., Goranko, V.: Modal logic with names. Journal of Philosophical
Logic 22, pp. 607–636 (1993).

[7] Goranko, V., Vakarelov, D.: Sahlqvist Formulas in Hybrid Polyadic Modal
Logics. Journal of Logic and Computation 11 (2001).

[8] Harel, D., Tiuryn, J., Kozen, D.: Dynamic logic. MIT Press Cambridge
(2000)

21



[9] Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J., The syntax definition
formalism SDF —reference manual—. ACM Sigplan Notices 24(11), pp. 43–
75 (1989).
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