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Abstract

Context-sensitive rewriting is a restriction of term rewriting which is obtained
by imposing replacement restrictions on the arguments of function symbols. It
has proven useful to analyze computational properties of programs written in
sophisticated rewriting-based programming languages such as CafeOBJ, Haskell,
Maude, OBJ*, etc. Also, a number of extensions (e.g., to conditional rewriting
or constrained equational systems) and generalizations (e.g., controlled rewriting
or forbidden patterns) of context-sensitive rewriting have been proposed. In this
paper, we provide an overview of these applications and related issues.

Keywords: Program Analysis, Programming Languages, Term Rewriting

1. Introduction

When computing with reduction-based systems, rules cannot be applied just
anywhere [98, page 34]. For instance, in Generalized Rewrite Theories [16, 17],
the use of replacement restrictions, aimed at avoiding this, brings “a substantial
increase in expressive power of the Rewriting Logic formalism” (see [94]) that

“has to do with the fact that rewrites should not happen every-
where, because in many applications suitable evaluation strategies or
context-dependent rewrites could considerably improve performance
and even avoid non-termination. Correspondingly, rewrite theories
can be generalized by forbidding rewriting under certain operators
or operator positions (frozen operators and arguments). Although
this could be regarded as a purely operational aspect, the frequent
need for it in many applications suggests that it should be supported
directly at the semantic level of rewrite theories.” [17, Section 1]

Perhaps this observation explains why replacement restrictions imposed by
context-sensitive rewriting (CSR [79, 86]) have been used to analyze semantic

IPartially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and
PROMETEO/2019/098.
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mod ExSec11_1_Luc02 is

sort S .

ops 0 nil : -> S . ops dbl s recip sqr terms : S -> S .

ops add first : S S -> S . op _:_ : S S -> S [frozen (2)] .

vars m n x : S . var xs : S .

rl add(0,n) => n . rl add(s(m),n) => s(add(m,n)) .

rl dbl(0) => 0 . rl dbl(s(n)) => s(s(dbl(n))) .

rl sqr(0) => 0 . rl sqr(s(n)) => s(add(sqr(n),dbl(n))) .

rl first(0,xs) => nil . rl first(s(n),x : xs) => x : first(n,xs) .

rl terms(n) => recip(sqr(n)) : terms(s(n)) .

endm

Figure 1: Maude specification to approximate π2/6

aspects and properties of several programming languages and systems. Report-
ing on these applications of CSR is the main purpose of this paper.

In CSR a replacement map µ specifies, for each k-ary symbol f , the active
argument positions µ(f) ⊆ {1, . . . , k} where rewriting is allowed in a function
call f(t1, . . . , tk) (while any other argument ti with i /∈ µ(f) remains frozen).
In unrestricted rewriting, if a term s rewrites into t, then, for all k-ary function
symbols f and arguments i, 1 ≤ i ≤ k, we have that f(· · · s︸︷︷︸

i

. . .) rewrites

into f(· · · t︸︷︷︸
i

. . .), i.e., s still rewrites into t when surrounded by any syntactic

context f(· · · ︸︷︷︸
i

. . .). In CSR, this happens (and it is top-down propagated)

for indices i ∈ µ(f) only.

A motivating example. In connection with the use of CSR to reinforce termina-
tion of programs, consider the Maude [19] program in Figure 1 which is a Maude
presentation of the TRS in [82, Example 2] with the replacement map used in
[86, Examples 6.7 and 9.8] and that can be used to compute approximations to
π2/6 = 1, 64493406684823 · · · as the sum of the n components of an initial sub-
list s = first(sn(0), terms(s(0)))1 of the infinite list terms(s(0)), consisting
of 1

12 ,
1
22 ,

1
32 , . . . ,

1
n2 , . . ., where each reciprocal fraction 1

m above is represented as
recip(sm(0)) see [44, page 265]. Note that, if we drop the frozenness annotation
for the list constructor _:_, i.e.,

op _:_ : S S -> S [frozen (2)] .

which corresponds to a replacement map µ given by µ(_:_) = {1} and µ(f) =
{1, . . . , k} for any other k-ary symbol f , the program is not terminating due to

1Here and in the following, for the sake of readability, we often use sn(0) instead of
s(· · · (s(︸ ︷︷ ︸

n

0 ) · · · )︸ ︷︷ ︸
n

.
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the last program rule which permits an infinite recursion on successive recursive
calls to terms(sn(0)) for n ≥ 0. The attempt to use the Maude command
rewrite to obtain the first 4 components of the sequence approximating π2/6
yields:

Maude> rew first(s(s(s(s(0)))),terms(s(0))) .

rewrite in ExSec11_1_Luc02 : first(s(s(s(s(0)))), terms(s(0))) .

rewrites: 6 in 0ms cpu (0ms real) (750000 rewrites/second)

result S: recip(s(0)) : first(s(s(s(0))), terms(s(s(0))))

The replacement restrictions make the program terminating by avoiding re-
ductions on the second argument of _:_ (thus cutting the aforementioned in-
finite recursion). However, the program fails to obtain the expected outcome
[ 1
1 ,

1
4 ,

1
9 ,

1
16 ], represented by the program expression

recip(s(0)) : recip(s4(0)) : recip(s9(0)) : (recip(s16(0)) : nil.

In Section 10.2, though, we show how to overcome this problem.

Contributions of the paper. In [86] the basic aspects and facts about CSR were
described, including the practical use of CSR by means of the interpreters of ex-
isting rewriting-based languages with capabilities to express replacement maps
(in particular, Maude, as exemplified above), the ability of CSR to simulate
unrestricted rewriting, the analysis of confluence and termination of CSR, and
how CSR can be used to compute canonical forms (head-normal forms, values,
normal forms, and (approximations of) infinite normal forms) which are of inter-
est in rewriting-based computations and (algebraic, equational, and functional)
programming languages.

In this paper we focus on applications and extensions of CSR developed in
the last 20 years by several authors to model, investigate, and prove properties of
rewriting and rewriting-based programming languages. After some preliminary
definitions in Sections 2 and 3 (which try to make this paper sufficiently self-
contained), we explore the use of CSR to analyze termination properties of
variants of rewriting like first-order lazy functional programs, and innermost and
outermost rewriting (Section 4), conditional rewriting (Section 5), productivity
(Section 6), and runtime complexity (Section 7). Section 8 investigates the
interaction of CSR with related notions of rewriting, like conditional rewriting,
constrained rewriting, equational rewriting, and narrowing. Section 9 shows how
the notion of CSR has been modified to be used with rewriting to achieve more
flexibility, leading to on-demand strategy annotations, lazy rewriting, rewriting
with forbidden patterns, and controlled term rewriting. Section 10 shows how
the theory of CSR has been used to analyze properties of OBJ programs2 and
improve their computations by including (in Maude) techniques developed for
CSR like normalization via µ-normalization which can now be used through

2As in [54], by OBJ we mean OBJ2, OBJ3, CafeOBJ, or Maude.
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Maude’s strategy language. In the development of these sections, we made an
effort to provide a uniform presentation and draw connections among them
and provide illustrative examples of use. Section 11 concludes. Some technical
results in the paper are new (thus labeled with (?)).

2. Preliminaries

This section collects some definitions and notations from term rewriting.
More details and missing notions can be found in [12, 116]. In the following,
P(A) denotes the powerset of a set A. Given a binary relation R ⊆ A×A on a set
A, we denote its transitive closure by R+, and its reflexive and transitive closure
by R∗. An element a ∈ A is irreducible (or an R-normal form), if there exists
no b such that a R b. We say that b is an R-normal form of a (written aR! b), if
a R∗b and b is an R-normal form. We also say that a is R-normalizing, i.e., a has
an R-normal form. Also, R is normalizing if every a ∈ A has an R-normal form.
Given a ∈ A, if there is no infinite sequence a = a1 R a2 R · · · R an R · · · , then
a is R-terminating (or well-founded3); R is terminating if a is R-terminating for
all a ∈ A. We say that R is confluent if, for every a, b, c ∈ A, whenever a R∗b
and a R∗c, there exists d ∈ A such that b R∗d and c R∗d.

Throughout the paper, X denotes a countable set of variables and F de-
notes a signature, i.e., a set of function symbols f, g . . ., each having a fixed
arity ar(f). The set of terms built from F and X is T (F ,X ). The set of vari-
ables in a term t is denoted Var(t). A term is said to be linear if it has no
multiple occurrences of a single variable. Terms are viewed as labelled trees in
the usual way. Positions p, q, . . . are represented by chains of positive natural
numbers used to address subterms of t. Given positions p, q, we denote their
concatenation as p.q. Positions are ordered by the standard prefix ordering ≤.
Given a set of positions P , minimal≤(P ) is the set of minimal positions of P
w.r.t. ≤. If p is a position, and Q is a set of positions, p.Q = {p.q | q ∈ Q}. We
denote the empty chain by Λ. The set of positions of a term t is denoted Pos(t).
Positions of non-variable symbols in t are denoted as PosF (t), and PosX (t) are
the positions of variables. The subterm of t at position p is denoted as t|p and
t[s]p is the term t with the subterm at position p replaced by s. The symbol la-
belling the root of t is denoted as root(t). Given terms t and s, Poss(t) denotes
the set of positions of the subterm s in t, i.e., Poss(t) = {p ∈ Pos(t) | t|p = s}.

Two terms s and t unify if there is a substitution σ (i.e., a unifier) such that
σ(s) = σ(t). If s and t unify, then there is a (unique up to variable renaming)
most general unifier (mgu) θ of s and t satisfying that, for any other unifier σ
of s and t, there is a substitution τ such that, for all x ∈ X , σ(x) = τ(θ(x)).

A rewrite rule is an ordered pair (`, r), written ` → r, with `, r ∈ T (F ,X ),
` 6∈ X and Var(r) ⊆ Var(`). The left-hand side (lhs) of the rule is ` and r
is the right-hand side (rhs). A TRS is a pair R = (F , R) where R is a set of

3See [116, Definition 2.1.1] and the paragraph below this definition for a clarifying discus-
sion about the use of ‘well-founded’ and ‘terminating’ in Mathematics and Computer Science.
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rewrite rules. L(R) denotes the set of lhs’s of R. An instance σ(`) of a lhs ` of
a rule is a redex. A TRS R is left-linear if for all ` ∈ L(R), ` is a linear term.
Given R = (F , R), we consider F as the disjoint union F = C ] D of symbols
c ∈ C, called constructors and symbols f ∈ D, called defined functions, where
D = {root(`) | `→ r ∈ R} and C = F − D. We often denote as CR (resp. DR)
the constructor (resp. defined) symbols of R. Then, T (C,X ) (resp. T (C)) is the
set of (ground) constructor terms.

A term s ∈ T (F ,X ) rewrites to t (at position p), written s
p→R t (or just

s → t), if s|p = σ(`) and t = s[σ(r)]p, for some rule ρ : ` → r ∈ R, p ∈
Pos(s) and substitution σ. A TRS is confluent (terminating) if → is confluent
(terminating). A term s is root-stable (or a head-normal form) if there is no
redex t such that s →∗ t. A term is said to be root-normalizing if it has a
root-stable reduct. A term is said to be normalizing if it is →-normalizing.

Two rules ` → r and `′ → r′ such that Var(`) ∩ Var(`′) = ∅ (rename the
variables if necessary) define a critical pair 〈σ(`)[σ(r′)]p, σ(r)〉 if p ∈ PosF (`)
(the critical position) is a nonvariable position of ` such that `|p and `′ unify
with mgu σ. The case `→ r = `′ → r′ (up to renaming) and p = Λ is excluded.
A left-linear TRS without critical pairs is called orthogonal.

3. Context-sensitive rewriting

The concepts and notations in this section are extracted from [86]. A re-
placement map is a mapping µ : F → P(N) satisfying that, for all symbols f in
F , µ(f) ⊆ {1, . . . , ar(f)}. The set of replacement maps for a signature F is MF
(for TRSs R = (F , R), we use MR instead). Replacement maps are compared
as follows: µ v µ′ if for all f ∈ F , µ(f) ⊆ µ′(f); we often say that µ is more
restrictive than µ′. Extreme cases are µ⊥, which disallows replacements in all
arguments: µ⊥(f) = ∅ for all f ∈ F ; and µ>, which restricts no replacement:
µ>(f) = {1, . . . , k} for all k-ary symbols f ∈ F . We say that a binary rela-
tion R on terms is µ-monotonic if for all k-ary symbols f , i ∈ µ(f), and terms
s1, . . . , sk, ti, if si R ti, then f(s1, . . . , si, . . . , sk) R f(s1, . . . , ti, . . . , sk). We say
that R is monotonic if it is µ>-monotonic.

Active and frozen positions. The replacement restrictions introduced by µ on
the arguments of function symbols are lifted to positions of terms t ∈ T (F ,X ):
the set Posµ(t) of µ-replacing or active positions of t is:

Posµ(t) =

{
{Λ} if t ∈ X
{Λ} ∪

⋃
i∈µ(f) i.Pos

µ(ti) if t = f(t1, . . . , tk)

The set Posµ(t) = Pos(t) − Posµ(t) contains the non-µ-replacing or frozen
positions of t.
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The frozen positions of term t (depicted
in red in the joint diagram) have a fron-
tier set Frµ(t) = minimal≤(Posµ(t))
with the active positions. The maximal
replacing context MRCµ(t) = t[2]Frµ(t)

of t is the prefix of t whose positions
are active. Hence, t can be written
t = C[t1, . . . , tn] with C = MRCµ(t)
with the frozen positions Frµ(t) filled
with appropriate terms t1, . . . , tn.

t

Posµ(t)

MRCµ(t)

Frµ(t)Posµ(t)

Context-sensitive rewriting. CSR is the restriction of rewriting obtained when a
replacement map µ is used to specify the redex positions that can be contracted.

Definition 1 (Context-sensitive rewriting). Let R be a TRS, µ ∈MR and

s and t be terms. Then, s µ-rewrites to t, written s
p
↪→R,µ t (or s ↪→R,µ t, also

s ↪→µ t, or even s ↪→ t), if s
p→R t and p is active in s (i.e., p ∈ Posµ(s)).

Terms t which cannot be µ-rewritten are called µ-normal forms. In the following
NFµR denotes the set of µ-normal forms of R.

Example 1. The µ-rewriting sequence corresponding to the Maude evaluation
in the introduction is the following:

first(s4(0)), terms(s(0))) ↪→µ first(s4(0)), recip(sqr(s(0)))) : terms(s2(0)))

↪→µ recip(sqr(s(0)))) : first(s3(0)), terms(s2(0)))

↪→µ recip(s(sqr(0) + dbl(0))) : first(s3(0)), terms(s2(0)))

↪→µ recip(s(0 + dbl(0))) : first(s3(0)), terms(s2(0)))

↪→µ recip(s(0 + 0)) : first(s3(0)), terms(s2(0)))
↪→µ recip(s(0)) : first(s3(0)), terms(s2(0)))

which stops in the µ-normal form t = recip(s(0)) : first(s(s(s(0))), terms(s(0)))
which displays the first component 1

1 (denoted recip(s(0))) of the sequence only.

A pair (R, µ) where R is a TRS and µ ∈MR is often called a CS-TRS. A TRS
R is µ-terminating if ↪→µ is terminating. Several tools have been furnished with
capabilities to automatically prove termination of CSR, see [86, Section 7.2]. In
this paper, we often use mu-term [60]:

http://zenon.dsic.upv.es/muterm/

Inference system and theory for a context-sensitive rewrite system. An alter-
native definition of CSR, which is used in Section 8, relies on the notion of
provability with a given inference system. Consider the inference rules in Fig-
ure 2, where (C)f,i is parametric on a function symbol f and an argument
1 ≤ i ≤ ar(f), and (Rl)`→r is parametric on a rule `→ r. The inference system

ICSR[S,M,R] = {(Rf), (T)}∪{(C)f,i | f ∈ S, i ∈M(f)}∪{(Rl)`→r | `→ r ∈ R}
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(Rf)
x→∗ x (C)f,i

xi → yi
f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)

(T)
x→ y y →∗ z

x→∗ z (Rl)`→r `→ r

Figure 2: Some parametric inference rules

is parametric on signatures (parameter S), replacement maps (parameter M),
and TRSs (parameter R). Given R = (F , R) and µ ∈ MR, let I(R, µ) be the
specific inference system obtained from ICSR by instantiating all parameters:

I(R, µ) = ICSR[F , µ,R]

Still, rules in I(R, µ) are schematic: each inference rule B1 ··· Bn
A can be used

under any instance σ(B1) ··· σ(Bn)
σ(A) of the rule by a substitution σ. Now, for

all terms s, t, we have s ↪→R,µ t (resp. s ↪→∗R,µ t) iff s → t (resp. s →∗ t)
can be proved in I(R, µ). We obtain a first-order theory Rµ from I(R, µ) by
translating each inference rule B1 ··· Bn

A into a universally quantified formula
(∀~x)B1 ∧ · · · ∧ Bn ⇒ A, where ~x = x1, . . . , xm are the variables occurring in
A,B1, . . . , Bn.

Remark 1. Unrestricted rewriting can be viewed as a particular case of CSR
where the replacement map µ> is used. We let ITRS[S,R] = ICSR[S, µ>,R].

Canonical context-sensitive rewriting. The canonical replacement map µcanR of a
TRS R is the most restrictive replacement map µ ensuring that the non-variable
subterms of the left-hand sides ` of the rules ` → r of R are all active, i.e.,
PosF (`) ⊆ Posµ(`): for each symbol f ∈ F and i ∈ {1, . . . , ar(f)},

i ∈ µcanR (f) iff ∃`→ r ∈ R, p ∈ PosF (`), (root(`|p) = f ∧ p.i ∈ PosF (`)).

Given a TRS R, we let CMR = {µ ∈MR | µcanR v µ} be the set of replacement
maps that are less (or equally) restrictive than the canonical replacement map.
If µ ∈ CMR, we also say that µ is a canonical replacement map for R; if µ is
exactly µcanR , we will speak about the canonical replacement map of R.

For TRSsR and µ ∈ CMR, we often say that ↪→R,µ performs canonical CSR
[82]. Canonical CSR is useful in head-normalization, normalization, and infini-
tary normalization with left-linear TRSs. In particular, the normalization-via-
µ-normalization procedure normµ in Figure 3 permits the layered normalization
of expressions using CSR by successive steps of µ-normalization of the maximal
frozen subterms of the µ-normal forms which are obtained in the previous layer,
see [86, Section 9] for further motivation and comparisons with well-known nor-
malization procedures in functional programming or term rewriting like, e.g.,
normalization via root-stabilization [96].

Frozen arguments in Maude for a practical use of context-sensitive rewriting.
When dealing with Maude system modules [19, Chapter 6], each k-ary function
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s

↪→!
µ

u

MRCµ(u)

s1 sn

MRCµ(u1) MRCµ(un)

↪→!
µ

↪→!
µ

· · ·

normµ(s) = C[normµ(s1), . . . , normµ(sn)]

where

u is a µ-normal form of s

u = C[s1, . . . , sn] for C[, . . . , ] = MRCµ(u)

Figure 3: Normalization via µ-normalization [86, Section 9.3]

symbol f has a set ϕ(f) ⊆ {1, . . . , k} of frozen argument positions that cannot
be rewritten [22, Section 3]. Dually, ϕ restricts rewritings as a replacement map
µϕ given by µϕ(f) = {1, . . . , ar(f)} − ϕ(f) for all symbols f .

Example 2. Program ExSec11_1_Luc02 specifies ϕ(:) = {2} and ϕ(f) = ∅ for
any other symbol f , i.e., only the second argument of _:_ is frozen. Accordingly,
µϕ(:) = {1} and µϕ(f) = {1, . . . , k} for any other k-ary symbol f .

Section 10.2 describes an implementation of normalization via µ-normalization
for Maude. We use it to obtain the normal form of s in the introduction.

4. Termination of CSR and other termination properties

In the following, we show how termination of CSR has been used to prove
other termination properties like termination of variants of rewriting with TRSs
like in lazy (first-order) functional programs (Section 4.1), innermost rewriting
(Section 4.2), and outermost rewriting (Section 4.3).

4.1. Termination of lazy functional programs

CSR can be used to model non-strict evaluation (
ns→) in TRSs and first-order

functional languages [49, Section 2].

Definition 2 (non-strict evaluation). [49, Definition 2] Let R be a left-linear

TRS. A term s rewrites to a term t with non-strict evaluation (written s
ns→ t)

iff there is a rule `→ r such that root(s) = root(`) and either (i) s = σ(`) and

t = σ(r) for some substitution σ, or (ii) s|p
ns→ t′ and t = s[t′]p for the mini-

mum position p ∈ PosF (`) ∩Pos(s) with respect to the lexicographical order on
positions such that root(s|p) 6= root(`|p).

8



Non-strict evaluation mimics the evaluation strategy of first-order, unconditional
programs in lazy functional languages like Haskell [69]. Such programs can be
viewed as left-linear TRSs. Giesl and Middeldorp prove the following.

Theorem 1. [49, Theorem 3] Let R be a left-linear TRS. If R is µcanR -terminating,

then
ns→ is terminating.

Example 3. Consider the Haskell program Nats for R in [49, Sect. 1]:

data Nat = Z | S Nat deriving Show

nats = adx zeros

adx (x : y) = incr (x : adx y)

zeros = Z : zeros

hd (x : y) = x

tl (x : y) = y

incr (x : y) = (S x) : incr y

with µ = µcanR , i.e., µ(:) = µ(s) = ∅ and µ(adx) = µ(hd) = µ(incr) = µ(tl) =
{1}. Although Nats is nonterminating (due to the third rule), it is µ-terminating

(use mu-term). By Theorem 1,
ns→ is terminating.

Giesl and Middeldorp argue that µcanR -termination is

“a sufficient but not a necessary criterion for the termination of
non-strict evaluation (and hence of the corresponding functional pro-
gram)” [49, page 385].

However, from termination of
ns→ for (the TRS associated to) Nats, for instance,

we cannot conclude termination of Nats in the usual sense, i.e., the absence
of infinite evaluation sequences. For instance, the evaluation of zeros in Nats

leads to an infinite sequence Z, . . . , Z, . . . computed and steadily displayed (unless
broken by the user) by the Haskell interpreter:

*Main> zeros

[Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z, ...,Z,Interrupted.

*Main>

This is not surprising, as in lazy functional programming (e.g., in Haskell) ter-
mination in the usual sense is often ‘neglected’, as the ability to deal with, or
even approximate, infinite values (like the infinite list of Z’s denoted by zeros)
is an asset. Of course, the ability to obtain a value when possible is also an
asset, but this fits the notion of normalization rather than termination.

CSR is a restriction of rewriting rather than a rewriting strategy. Hence, it is
not forced to reduce beyond µ-normal forms. Mappings H returning a nonempty
set H(t) ⊆ Posµ(t) of positions of active redexes for each term t which is not a
µ-normal form are called (one-step) context-sensitive rewriting strategies (or CS
strategies) [82, Definition 2]. We also speak of µ-strategies to make the specific

9



replacement map µ explicit. We write s ↪→H t if s
p
↪→µ t for some p ∈ H(s). We

can use (one-step) CS strategies H to obtain a strategy SH in the usual sense,
i.e., always reducing terms unless they are normal forms [82, Section 5]:

SH(t) =


H(t) if t 6∈ NFµR
∪1≤i≤npi.SH(ti) otherwise, where:

C[ ] = MRCµ(t), t = C[t1, . . . , tn],
and ti = t|pi for 1 ≤ i ≤ n

(1)

Corollary 1. [82, Corollary 10] Let R be a left-linear and confluent TRS, and
µ ∈ CMR. If R is µ-terminating, then SH is a normalizing strategy for every
µ-strategy H.

Thus, for left-linear, confluent, and µ-terminating TRSs R (with µ ∈ CMR), we
obtain a normalizing strategy SH from any µ-strategy H. In this way, Corollary
1 provides a more realistic formulation of the use of termination of canonical
CSR in lazy functional languages when dealing with first-order, unconditional
and confluent programs.

Example 4. The TRS R corresponding to Nats is left-linear and orthogonal
(hence confluent, see, e.g., [12]). By Corollary 1, the evaluation of every nor-
malizing initial expression e by using SH for an arbitrary µ-strategy H with
µ ∈ CMR always finishes.

4.2. Termination of innermost rewriting

In innermost rewriting computations (written s →i t), rewriting steps con-
tract innermost redexes of s, i.e., those which contain no other redex. When-
ever a rule ` → r is used to perform an innermost rewriting step s →i t, with
s|p = σ(`) and t = s[σ(r)]p, the matching substitution σ is normalized, i.e.,
for all x ∈ Var(`), σ(x) is a normal form. Thus, we can restrict reductions on
the arguments of function symbols f in r with a replacement map µ so that
for all p /∈ Posµ(r), r|p is a constructor subterm of r. In this way, σ(r|p) is a
normal form, where no rewriting can be performed anyway. Hence, the usable
arguments i ∈ µUA

R (f) for a k-ary symbol f are those satisfying that there is
a subterm f(t1, . . . , ti, . . . , tk) of the rhs r of a rule ` → r ∈ R such that ti
contains a defined symbol. We have the following.

Theorem 2. [39, Corollary 11] A TRS R is innermost terminating if R is
µUA
R -terminating.

Example 5. Let R be the following nonterminating TRS (Toyama’s example):

c → a c → b f(a, b, x) → f(x, x, x)

Note that µUA
R (f) = ∅. The µUA

R -termination of R can be proved with mu-term.
By Theorem 2, innermost termination of R follows.
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For locally confluent overlay TRSs4, innermost termination and termination
coincide [55]. Since terminating TRSs are µ-terminating, we have the following.

Corollary 2. A locally confluent overlay TRS R is (innermost) terminating if
and only if it is µUA

R -terminating.

Although the experiments in [3] suggest that, for the purpose of proving inner-
most termination of TRSs, Theorem 2 is weaker than the use of direct meth-
ods like the ones reported in [11, 51], Fernández’s work inspired successful ap-
proaches for the use of CSR in complexity analysis (see Section 7 below).

4.3. Termination of outermost rewriting

In outermost rewriting (written s →o t), reduction steps are performed at
outermost redexes, i.e., those which are not contained in any other redex. In
[32, 33] a transformation ∆π from TRSs R to CS-TRSs (∆πR, µ) so that µ-
termination of ∆πR implies outermost termination of R is defined. Here, ∆π

marks possible outermost redex positions by using an appropriate (semantic)
labelling π.5 Then, µ disallows rewritings in the arguments of marked symbols.
In this way, outermost sequences with R are simulated as µ-rewriting sequences
with ∆πR.

Example 6. For R in [33, Example 5.9]

g(x, x)→ f(f(x, x), x) f(x, x)→ g(x, x) f(x, y)→ y

f and g are marked as f⊥,⊥ and g⊥,⊥; µ(f⊥,⊥) = ∅ and µ(g⊥,⊥) = {1, 2}. Here,
µ differs for f⊥,⊥ and g⊥,⊥ due to the left-linear rule for f, which guarantees that
f(t, t′) is an outermost redex for all terms t and t′. In an outermost computation
s1 →o s2 →o · · · →o sn with R, for all i ≥ 1 either si = f(ti, t

′
i) or si = g(ti, t

′
i)

for some terms ti, t
′
i (except, perhaps, for sn, which could be a variable). In

the first case, si is an outermost redex and no reduction is required on ti or t′i.
Hence, we can safely let µ(f⊥,⊥) = ∅. In the second case, it is unclear whether
si is a redex or not, hence we may need to explore ti and t′i to find the outermost
redex. Hence, we have to let µ(g⊥,⊥) = {1, 2}. Finally, ∆πR is

g⊥,⊥(x, x)→ f⊥,⊥(f⊥,⊥(x, x), x) f⊥,⊥(x, x)→ g⊥,⊥(x, x) f⊥,⊥(x, y)→ y

Thus, there is a µ-rewriting sequence s⊥,⊥1 ↪→µ s⊥,⊥2 ↪→µ · · · ↪→µ s⊥,⊥n with

∆πR for the marked versions s⊥,⊥i of terms si (where symbols f are replaced by
f⊥,⊥) reducing the same redexes as the original outermost sequence.

4i.e., a TRS whose critical pairs 〈σ(`)[σ(r′)]p, σ(r)〉 = 〈s, t〉 are overlays (i.e., p = Λ) and
convergent, i.e., there is a term u such that s→∗R u and t→∗R u.

5In semantic labelling function symbols f in terms are marked using labels λ from a given
set of labels under the guidance of an algebraic interpretation A of the function symbols [130].
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In the following results we omit the exact conditions for the labelling π, as we do
not provide sufficient background here; full details can be found in [33, Theorem
5.8].

Theorem 3. [33, Theorem 5.8] If ∆πR is µ-terminating, then R is outermost
ground terminating.

∆πR in Example 6 is proved µ-terminating with mu-term. This proves R out-
ermost terminating. For (quasi-)left-linear6 TRSs (including left-linear TRSs),
the transformation characterizes outermost ground termination as termination
of CSR.

Theorem 4. [33, Theorem 5.13] If R is quasi-left-linear and outermost ground
terminating, then ∆πR is µ-terminating.

5. CSR in the analysis of conditional rewriting

Recall from [116, Section 7] the usual notions and notations regarding Con-
ditional Term Rewriting Systems (CTRSs). Conditional rules are written ` →
r ⇐ c, where ` and r are respectively called the left- and right-hand side of the
rule, and the conditional part c is a sequence s1 ≈ t1, · · · , sn ≈ tn, where si, ti
are terms. Terms s and t of a condition s ≈ t are called the left- and right- hand
side of the condition, respectively (lhs and rhs for short). A CTRS R whose
rules satisfy Var(r) ⊆ Var(`) ∪ Var(c) is called deterministic (DCTRS) if they

all satisfy Var(si) ⊆ Var(`) ∪
⋃i−1
j=1 Var(tj) for all 1 ≤ i ≤ n.

When dealing with oriented CTRSs, conditions si ≈ ti for 1 ≤ i ≤ n are
treated as reachability tests σ(si)→∗ σ(ti) from (instances of) si to (instances
of) ti.

7 We consider the generic inference system

ICTRS[S,R] = {(Rf), (T)} ∪ {(C)f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(CRl)α | α ∈ R}

where (Rf), (T), and (C)f,i are as in Figure 2, and (CRl)α is

(CRl)α
s1 →∗ t1 · · · sn →∗ tn

`→ r

for a rule α : ` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn. Given an oriented CTRS R =
(F , R), an inference system I(R) = ICTRS[F ,R] is obtained. We write s→R t
(resp. s→∗R t) iff there is a proof tree for s→ t (resp. s→∗ t) using I(R).

6A TRS R is quasi-left-linear if for all ` → r ∈ R, ` is an instance of a linear lhs `′ for
some `′ → r′ ∈ R [120].

7Alternative treatments can be given, see [116, Definition 7.1.3].
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5.1. Proving operational termination of CTRSs

Operational termination of a CTRS R is defined as the absence of infinite
proof trees for goals s→∗ t in I(R) [87], see also [90, Section 3]. Early attempts
to prove operational termination of CTRSs involved

1. the use of well-founded orderings to compare the different components
of conditional rules [74, 72, 21] (in particular, quasi-decreasingness [116,
Definition 7.2.39], which is equivalent to operational termination [87]; we
silently use this equivalence in the following), and

2. the development of transformation techniques (starting from Marchiori’s
unravelings [93]) to prove operational termination of CTRSs as termina-
tion of TRSs, see also [46, 115].

In this second approach, the following transformation U for oriented DCTRSs
has been widely used, see [115, Definition 5] and also [46, page 45]. Each
conditional rule α : ` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn is transformed into n + 1
unconditional rules [116, Definition 7.2.48]:

` → Uα1 (s1, ~x1)

Uαi−1(ti−1, ~xi−1) → Uαi (si, ~xi) 2 ≤ i ≤ n
Uαn (tn, ~xn) → r

where Uαi are fresh new symbols and ~xi are vectors of variables containing
(for a given ordering on variables) the ordered sequence of the variables in
Var(`) ∪ Var(t1) ∪ · · · ∪ Var(ti−1) for 1 ≤ i ≤ n.

Example 7. For the CTRS R in [46, p. 46] (left) we show U(R) (right):

a → b

f(a) → b

g(x) → g(a)⇐ f(x) ≈ x (2)

a → b

f(a) → b

g(x) → U(f(x), x)

U(x, x) → g(a)

The transformation is sound for proving operational termination, i.e., if U(R)
is terminating, then R is operationally terminating [116, Proposition 7.2.50].
However, it is not complete, as there are operationally terminating TRSs R
such that U(R) is not terminating.

Example 8. As noticed by Giesl and Arts, although R in Example 7 is opera-
tionally terminating,8 U(R) is not terminating:

g(a)→U(R) U(f(a), a)→U(R) U(b, a)→U(R) U(b, b)→U(R) g(a)→U(R) · · · (3)

In the following, we discuss how CSR has been used to improve the use of
orderings and transformations in proofs of operational termination.

8Actually, Giesl and Arts proved R quasi-reductive, which implies quasi-decreasingness of
R (see [116, Section 7] for the definitions of these concepts and results relating them) and
hence operational termination [87].
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5.1.1. Context-sensitive quasi-reductivity

Let �µ be the strict active subterm relation, i.e., s�µ t iff t = s|p for some
p ∈ Posµ(s) − {Λ}. A DCTRS R = (F , R) is context-sensitively (cs-)quasi-
reductive if there is an extension F ′ of F (F ⊆ F ′), a replacement map µ
such that µ(f) = {1, . . . , ar(f)} for all f ∈ F , and a µ-monotonic, well-founded
partial order �µ on T (F ′,X ) such that, for every rule `→ r ⇐ s1 ≈ t1, . . . , sn ≈
tn, every substitution σ and every i, 0 ≤ i < n, (1) if σ(sj) �µ σ(tj) for
every 1 ≤ j ≤ i, then σ(`) �stµ σ(si+1), where �stµ is the transitive closure of
�µ ∪ �µ, and (2) if σ(sj) �µ σ(tj) for every 1 ≤ j ≤ n, then σ(`) �µ σ(t)
[123]. Schernhammer and Gramlich prove that cs-quasi-reductivity suffices for
operational termination of DCTRSs.

Theorem 5. [123, Corollary 1] Every cs-quasi-reductive DCTRS R is opera-
tionally terminating.

Schernhammer and Gramlich do not try to use cs-quasi-reductivity as a direct
technique for proving operational termination. Instead, they show that cs-quasi-
reductivity is implied by the termination of the TRSs obtained by using a refined
version of transformation U . Then, such a transformation is used in practice.
We discuss this in the following section.

5.1.2. Improving transformation U
In [26, Section 3.2] an optimized version Uopt9 of U was introduced where

the number of variables ~xi stored in the right-hand sides Uαi (si, ~xi) of the rules
was reduced to avoid keeping track of unused variables as follows:

~yi = (Var(`) ∪ Var(t1) ∪ · · · ∪ Var(ti−1))

∩ (Var(ti) ∪ Var(si+1) ∪ Var(ti+1) ∪ · · · ∪ Var(sn) ∪ Var(tn) ∪ Var(r))

Note that, for each sequence ~xi in a rule of U(R) now we have a (possibly)
shorter sequence ~yi of variables. The following example shows the difference
between U and Uopt .

Example 9. Consider the following CTRS R [123, Example 16]:

f(x) → c⇐ a→∗ b

g(x, x) → g(f(a), f(b))

We obtain the following TRSs U(R) (left) and Uopt(R) (right):

f(x) → U(a, x)

U(b, x) → c

g(x, x) → g(f(a), f(b))

f(x) → U(a)

U(b) → c

g(x, x) → g(f(a), f(b))

For R in Example 7, though, there is no difference.

9This notation is taken from [123, Section 7].
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Example 10. For R in Example 7, and the conditional rule (2), we have ~x1 =
Var(g(x)) ∩ (Var(x) ∪ Var(g(a)) = {x}, i.e., U(R) and Uopt(R) coincide.

In [26] an additional refinement was proposed to avoid infinite sequences like
(3) thus extending the use of the transformation in proofs of operational ter-
mination. The idea is to use a replacement map µU to restrict reductions on
the variable-storage part of the new symbols Uαi as follows: for all (oriented,
conditional) rules α : `→ r ⇐ s1 ≈ t1, · · · , sn ≈ tn and 1 ≤ i ≤ n,

µU (Uαi ) = {1}

and µU (f) = µ>(f) for any other symbol f .

Example 11. For R in Example 7, we have µU (f) = µU (g) = µU (U) = {1}.

If Uopt(R) is µU -terminating, then R is operationally terminating [23, Theorem
2], i.e., the new transformation is sound for proving operational termination of
CTRSs. Unfortunately, it remains incomplete.

Example 12. Consider R, U(R), and Uopt(R) as in Example 9. U(R) is ter-
minating (and hence R is operationally terminating). However, Uopt(R) is not
µU -terminating [123, Example 16]:

g(f(a), f(b)) ↪→+
Uopt (R),µU g(U(a), U(a)) ↪→Uopt (R),µU g(f(a), f(b)) ↪→Uopt (R),µU · · · (4)

Schernhammer and Gramlich proved that µU -termination of U(R) implies cs-
quasi-reductivity of R [123, Theorem 3]; hence, by Theorem 5, operational
termination of R follows. The last sentence in [123, footnote 17] says that
µU -termination of Uopt(R) implies µU -termination of U(R). No formal proof is
given, though. In this setting, the following question naturally arises: is proving
µU -termination of U(R) strictly better (for the purpose of proving operational
termination of CTRSs R) than just proving termination of U(R), as usually
done in termination tools like AProVE [47]? We can give a positive answer.

Proposition 1.(?) There is a CTRS R which can be proved operationally ter-
minating as the µU -termination of U(R) whereas U(R) is not terminating.

Proof. Appendix A proves that, for R in Example 7 and µU in Example 11,
U(R) (which coincides with Uopt(R), see Example 10) is µU -terminating. Recall
that U(R) is not terminating (see (3)). Thus, this proves the desired fact. 2

Since termination of U(R) implies the µU -termination of U(R), Proposition
1 shows that, for the purpose of proving operational termination of CTRSs R,
proving µU -termination of U(R) is more powerful than just proving termination
of U(R). Finally, a main contribution of [123] was the following completeness
result restricted to terms of the original signature F .

Theorem 6. [123, Theorem 4] Let R = (F , R) be a DCTRS. If R is opera-
tionally terminating, then U(R) is µU -terminating on T (F ,X ).
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5.2. Soundness and completeness of unravelings for CTRSs

The use of transformations for implementing rewriting with CTRSs R using
TRSs has been investigated by several authors. Interesting summaries with
many pointers to the literature can be found in [124, Section 2] and [112, Section
1]. Nishida, Sakabe and Sakai investigated the use of Marchiori’s unraveling
transformations. In [110, 111], they show that transformation U above

“is sound for a 3-DCTRS10 R if the reduction of U(R) is restricted
to context-sensitive rewriting with the replacement map µ such that
µ(Ui) = {1} (· · · ) the replacement map forbids reducing any redex
inside the second or later arguments of U symbols.” [112, p. 9]

Note that the aforementioned replacement map µ is just µU above. This means
that for all terms s, t ∈ T (F ,X ), if s ↪→∗U(R),µU t, then s →∗R t (soundness).

Replacement restrictions play an important role in guaranteeing this result.

Example 13. For R and U(R) in Example 7, the sequence (3) shows that
g(a)→+

U(R) g(a). However, since R is operationally terminating, g(a)→+
R g(a)

does not hold, i.e., U is not sound. As observed in [23, Example 5], this problem
is avoided by CSR using µU , which forbids the third step of the sequence.

Note that [23] did not investigate how to achieve soundness of U by using
CSR. The focus of [26, 23] was improving U into Uopt for proving operational
termination of CTRSs. Indeed, Uopt is not sound either.

Example 14. For R, Uopt , and µU in Example 12, the first part of (4) shows
that g(f(a), f(b)) ↪→+

Uopt (R),µU
g(f(a), f(b)). However, since R is operationally

terminating, g(f(a), f(b))→+
R g(f(a), f(b)) does not hold, i.e., Uopt is not sound.

Other variants of U have been considered and replacement restrictions success-
fully used to guarantee soundness and completeness [110, 108]. Schernhammer
and Gramlich proved U complete, i.e., for all terms s, t ∈ T (F ,X ), s→R t im-
plies s ↪→+

U(R),µU
t (this was proved for Uopt in [23, Lemma 3]) and also provided

a soundness result which does not require the membership condition in [110].

Theorem 7. Let R be a DCTRS and s, t ∈ T (F ,X ).

• (Completeness [123, Theorem 1]) If s→R t, then s ↪→+
U(R),µU

t.

• (Soundness [123, Theorem 2]) If s ↪→+
U(R),µU

t, then s→+
R t.

Remark 2 (Soundness of U and use of µU). In contrast to completeness,
which holds for any replacement map µ less restrictive than µU , i.e., µU v µ, it
is, in general, false that for all s, t ∈ T (F ,X ), s ↪→+

U(R),µ t implies s→+
R t. For

instance, since →U(R)=↪→U(R),µ> , sequence (3) provides a counterexample.

10That is, a DCTRS whose rules ` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn are 3-rules [116, Definition
7.1.1], i.e., Var(r) ⊆ Var(`) ∪

⋃n
i=1 Var(si) ∪ Var(ti) holds for all of them.
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5.3. Use of CSR for (dis)proving confluence of CTRSs

The following result can be used to (dis)prove confluence of DCTRSs by
using U and Uopt together with µU . Note that we require termination rather
than operational termination of CTRSs (which of course implies the former, but
not vice versa, see [90]). A CTRS is terminating if →R is terminating.

Theorem 8.(?) Let R be a DCTRS.

1. If R is terminating and Uopt(R) (or U(R)) is confluent, then R is con-
fluent.

2. If U(R) has a µU -critical pair 〈s, t〉 such that (i) s ∈ T (F ,X ), (ii) t /∈
T (F ,X ), (iii) t ↪→∗U(R),µU t

′ for some t′ ∈ T (F ,X ), and (iv) 〈s, t〉 is not

↪→∗U(R),µU -joinable, then R is not confluent.

Proof. In both cases, we proceed by contradiction.

1. If R is not confluent, then there are terms s, t, t′ ∈ T (F ,X ) such that
s →∗R t and s →∗R t′ but t and t′ are not →∗R-joinable. By termina-
tion of →R, we can assume that t and t′ are different irreducible terms11

t 6= t′. By [23, Lemma 3] (or Theorem 7(1) for U), s ↪→∗Uopt (R),µU t and

s ↪→∗Uopt (R),µU t
′. Since µU v µ>, and ↪→∗Uopt (R),µ>

=→∗Uopt (R) (and simi-

larly for U(R)), we have s→∗Uopt (R) t and s→∗Uopt (R) t
′. By confluence of

Uopt(R), there is u such that t →∗Uopt (R) u and t′ →∗Uopt (R) u. However,

since t and t′ are normal forms built from variables and symbols in F only,
they are →Uopt (R)-normal forms. Thus, t = u = t′, a contradiction.

2. If R is confluent but there is a µU -critical pair 〈s, t〉 satisfying (i)–(iv),
then there is a conditional rule ` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R and

a rule `′ → r′ ∈ R and p ∈ Posµ
U

F (`) such that s = σ(`|p)[σ(r′)]p and
t = Uα1 (s1, ~x) for the most general unifier σ of `|p and `′. Note that
σ(`) ↪→U(R),µU s and σ(`) ↪→U(R),µU t ↪→∗U(R),µU t′. Since σ(`), s, t′ ∈
T (F ,X ), by [123, Theorem 2] (which applies to µU only, not necessarilty
to less restrictive replacement maps µ), σ(`) →∗R s and σ(`) →∗R t′. By
confluence of R, there is u such that s →∗R u and t′ →∗R u. By [123,
Theorem 1], s ↪→∗U(R),µ u and t′ ↪→∗U(R),µ u. Thus, 〈s, t〉 is ↪→∗U(R),µU -

joinable, a contradiction.

2

Termination of CTRSs can be specifically proved by using the results and
techniques in [90, 91, 92], or automatically by proving operational termination
of R using AProVE or mu-term. The platform CoCoWeb [66], permits the use
of several confluence tools for (C)TRSs. As for (iii) and (iv) in Theorem 8(2):

11In conditional rewriting, distinguishing between irreducible terms (admitting no one-step
conditional reduction) and normal forms (irreducible terms raising no infinite proof tree) [89,
Definitions 5 & 6] is important. Here, termination of R guarantees irreducibility of t and t′.
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(iii) For the critical pair 〈s, t〉, if t is ground, then t ↪→∗U(R),µU t′ for some

t′ ∈ T (F ,X ) can be automatically proved as the feasibility of

t ↪→∗ x, test(x) ↪→∗ tt (5)

with respect to U(R)∪Test(F)12, where Test(F) is the CTRS with rules

test(a) → tt

test(b(x)) → test(x)

test(f(x1, . . . , xk)) → tt⇐ test(x1) ≈ tt, . . . , test(xk) ≈ tt

for all constant symbols a, monadic symbols b and k-ary symbols f for
k > 1 belonging to F , and a new symbol test . Here, µU can be extended
to test by µU (test) = ∅, although µU (test) = {1} is also valid.13 If
(5) is feasible, then a ground term t′ exists that satisfies (iii). The tool
infChecker14 [59] is able to deal with such kind of (in)feasibility problems
involving CSR.

(iv) The non-↪→∗U(R),µU -joinability of 〈s, t〉 can be proved as the infeasibility of

s ↪→∗ x, t ↪→∗ x (6)

with respect to U(R) and µU , which, again, can be proved using infChecker.
Infeasibility tools in CoCoWeb not supporting CSR can also be used to
prove infeasibility of s→∗ x, t→∗ x, which implies infeasibility of (6).

Example 15. Consider the following CTRS R (left) and Uopt(R) (right):

b → f(a)

g(a) → c(a)

f(x) → y ⇐ g(x) ≈ c(y), x ≈ y

b → f(a)

g(a) → c(a)

f(x) → U1(g(x), x)

U1(c(y), x) → U2(x, y)

U2(y, y) → y

Operational termination of R can be proved with mu-term. All confluence tools
in CoCoWeb proved Uopt(R) confluent, thus concluding confluence of R.

Although a direct proof of confluence of R in Example 15 can be obtained by
using several tools in CoCoWeb, we failed to obtain a proof with CO3 [107] (also
using the online version of CO315). The fact that CO3 fails to prove confluence

12If there is a substitution σ such that t ↪→∗U(R),µU
σ(x) and test(σ(x)) ↪→∗

Test(F),µU
tt,

then (5) is feasible; otherwise, it is infeasible.
13In the feasibility framework [59], (5) could be more precisely given as t ↪→∗ x, test(x)→∗ tt

with ↪→∗ defined by U(R) and → defined by Test(F) without overlapping them. Unfortu-
nately, this is not supported by any tool yet.

14http://zenon.dsic.upv.es/infChecker/
15https://www.trs.cm.is.nagoya-u.ac.jp/co3/wui.php
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of R in Example 15 shows that Theorem 8 complements existing results on
proving confluence of CTRSs by using transformations [93, 124, 113]. Actually,
CO3 uses both U and Serbanuta and Ros,u’s transformation SR [124]. In their
description of CO3 [107], the authors write:

The main technique in this tool is based on the following theorem:
a weakly left-linear normal 1-CTRS R is confluent if one of SR(R)
and U(R) is confluent [113]

1-CTRSs consist of rules ` → r ⇐ c satisfying Var(r) ∪ Var(c) ⊆ Var(`); and
in normal CTRSs [116, Definition 7.1.3], the rhs’s ti of conditions si → ti are
ground and contain no preredex.16 Note thatR in Example 15 is neither normal
nor a 1-CTRS. Theorem 8 does not require CTRSs to be normal or 1-CTRSs
(but termination is required). Theorem 8 is also useful to disprove confluence.

Example 16. Consider the following CTRS R (left) and U(R) (right):

b → f(a) (7)

g(x) → c(x) (8)

a → d (9)

f(a) → y ⇐ d ≈ x, g(x) ≈ c(y) (10)

b → f(a) (11)

g(x) → c(x) (12)

a → d (13)

f(a) → U1(d) (14)

U1(x) → U2(g(x), x)(15)

U2(c(y), x) → y (16)
Note that R is not confluent as we have:

f(a)→(9) f(d) and f(a))→(10) d

In the last case, this is due to the use of substitution σ(x) = d, σ(y) = d and
because d = σ(x) and σ(g(x)) = g(d)→(8) c(d) = σ(c(y)). Both f(d) and d are
normal forms. No tool in CoCoWeb, though, was able to disprove confluence of
R. The only critical pair of U(R) is 〈f(d), U1(d)〉 and we have:

U1(d) ↪→(14) U2(g(d), d) ↪→(12) U2(c(d), d) ↪→(16) d ∈ T (F ,X )

Note that f(d) ∈ T (F ,X ) is a normal form and U1(d) /∈ T (F ,X ) is not reducible
to f(d), i.e., the critical pair is not ↪→∗U(R),µU -joinable. By Theorem 8, R is not

confluent.

Soundness and completeness of U and µ with regard to eager computations
using innermost reduction in CTRSs is also investigated in [109].

6. Productivity

Productivity in lazy functional languages “captures the idea of computability,
of progress of infinite-list programs. If an infinite-list program is productive, then
every element of the list can be computed in finite ‘time’” [125].

16[13, Definition 4.1] uses preredex for instances σ(`) of the left-hand sides ` of conditional
rules `→ r ⇐ c. The term redex is reserved for reducible preredexes [13, Definition 2.4.1].
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Remark 3 (Infinite terms). Productivity often involves the possiblity of com-
puting (i.e., approaching) infinite terms. Formally, infinite terms are partial
functions t : N∗>0 → F ∪X from sequences of positive numbers to symbols where
the domain Dom(t) is a tree-domain, i.e., an infinite set of positions satisfy-
ing (a) Dom(t) is prefix closed, and (b) if p ∈ Dom(t) and root(t) = f , then
p.i ∈ Dom(t) for all 1 ≤ i ≤ ar(f) [20, Section 1.2]. For instance, for f of arity
1, t = fω is given by t(p) = f for all p ∈ 1∗ (i.e., Dom(t) = 1∗ = {Λ, 1, 1.1, . . .}).
Note, however, that, as usually done in the literature of productivity, we do not
allow infinite terms in rules of TRSs.

In term rewriting most presentations of productivity analysis use sorted signa-
tures [53]. The set of sorts S is partitioned: S = ∆ ] ∇, where ∆ is the set of
data sorts (inductive datatypes like booleans, natural numbers, finite lists,. . . )
and ∇ is the set of codata sorts (coinductive datatypes such as streams and
infinite trees) [34, 132]. Terms of sort ∆ (resp. ∇) are called (co)data terms.
For a ranked symbol f : τ1 × · · · × τn → τ , denote as ar∆(f) (resp. ar∇(f)) the
number of arguments of f of sort ∆ (resp. ∇). Data arguments come in the first
ar∆(f) arguments of symbols. A constructor TRS R is a TRS with constructor
symbols C where the left-hand sides ` of all rules ` → r ∈ R are of the form
f(`1, . . . , `k) for constructor terms `1, . . . , `k ∈ T (C,X ). A tree specification
is a (∆ ] ∇)-sorted, orthogonal, exhaustive constructor TRS R [34, Definition
3.1]. Here, R is called exhaustive if for all f ∈ F , every f(t1, . . . , tk) is a redex
whenever ti are (possiby infinite) ground constructor terms for 1 ≤ i ≤ k.17

Remark 4 (CSR in sorted signatures). Although our presentation of CSR
pays no explicit attention to sorts, an extension of CSR to deal with ranked
functions f : s1 · · · sk → s and sorted Term Rerwriting Systems is immediate,
see [63, 23]. The definition of canonical replacement map is also ported without
changes. Rewriting sorted terms using CSR is done in the obvious way and then
the notion of termination of CSR used below naturally arises.

6.1. Termination of CSR and constructor normalization

A TRS R is constructor normalizing if every ground term t ∈ T (F) rewrites
into a possibly infinite constructor normal form [34, Definition 3.5]. For left-
linear TRSs R and canonical replacement maps µ ∈ CMR, the µ-termination
of R provides a sufficient condition for constructor normalization.

Theorem 9. [85, Theorem 4] Let R be an exhaustive, left-linear TRS and µ ∈
CMR. If R is µ-terminating, then R is constructor normalizing.

Since tree specifications are left-linear and exhaustive, Theorem 9 holds for tree
specifications as well.

17See the paragraph below [34, Definition 2.9] for a discussion regarding the relationship
between exhaustiveness and the well-known property of sufficient completeness [75].
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Example 17. The following tree specification R (cf. [132, Example 4.6])

p → zip(alt, p)

alt → 0 : 1 : alt

zip(x : σ, τ) → x : zip(τ, σ)

(where no constant for empty lists is included!) is easily proved µcanR -terminating
(use mu-term). Note that R is exhaustive due to the sort discipline (for in-
stance, zip(0, 0) is not allowed) and to the fact that no constructor for empty
lists is provided (i.e., there is no finite list and all constructor lists are of the
form s : t for constructor terms s and t, where t is always infinite). By Theorem
9, R is constructor normalizing.

With some additional conditions, constructor normalization is characterized by
canonical termination of CSR. We say that a TRS R is strongly compatible iff
Posµ

can
R (`) = PosF (`) for all `→ r ∈ R [85, Section 3.2].

Theorem 10. [85, Theorem 6] Let R = (C ] D, R) be an orthogonal, strongly
compatible TRS such that either (i) µcanR (c) = ∅ for all c ∈ C, or (ii) R contains
no rule ` → x for some x ∈ X and µcanR (c) = ∅ for all c ∈ C such that
c = root(r) for some ` → r ∈ R. If R is constructor normalizing, then it is
µcanR -terminating.

As remarked in [34, Section 3.2], several authors call R productive if it is con-
structor normalizing [30, 29, 31, 131, 132]. Zantema and Raffelsieper were the
first to prove constructor normalization as termination of CSR.

Theorem 11. [132, Theorem 4.1] Let R = (C]D, R) be a proper tree specifica-
tion and µ given by µ(f) = {1, . . . , ar(f)} if f ∈ D and µ(c) = {1, . . . , ar∆(c)}
if c ∈ C. If R is µ-terminating, then R is constructor normalizing.

Theorem 11 is a particular case of Theorem 9 because proper tree specifications
are TRSs whose rules ` → r have left-hand sides ` = f(t1, . . . , tk), where ti is
either a variable or a flat constructor term ci(x1, . . . , xm) for some constructor
symbol ci and variables x1, . . . , xm. In this case, µ in Theorem 11 must be
canonical, i.e., µ ∈ CMR [85].

6.2. Termination and productivity

Endrullis and Hendriks give a more elaborate (and restrictive) definition of
productivity. Given a (possibly infinite) term t and Γ ⊆ F , a Γ-path in t is
a (finite or infinite) sequence 〈p1, c1〉, 〈p2, c2〉, . . . such that ci = root(t|pi) ∈ Γ
and pi+1 = pi.j with 1 ≤ j ≤ ar(ci) [34, Definition 3.7]. A tree specification is
data-finite if for all ground terms s ∈ T (F) and (possibly infinite) constructor
normal forms t of s, every C∆-path in t (containing data constructors only) is
finite [34, Definition 3.8].

Definition 3. [34, Definition 3.11] A tree specification R is productive if R is
constructor normalizing and data-finite.
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In the following result, µ∆ is given by µ∆(c) = {1, . . . , ar∆(c)} for all c ∈ C∆,
and µ∆(f) = ∅ for all other symbols f .

Theorem 12. [85, Theorem 5] Let R be a left-linear, exhaustive TRS and µ ∈
CMR be such that µ∆ v µ. If R is µ-terminating, then R is productive.

Example 18. For R in [34, Example 6.8], i.e.,

x+ 0 → x

x+ S(y) → S(x+ y)

x+ L(σ)) → L(x+L σ)

x+L (y : σ) → (x+ y) : (x+L σ)

nats(x) → x : nats(S(x))

x× 0 → 0

x× S(y) → (x× y) + x

x× L(σ) → L(x×L σ)

x×L (y : σ) → (x× y) : (x×L σ)

ω → L(nats(0))

where ∆ = {Ord} (with Ord a data sort for ordinals) and ∇ = {Str} (with Str
a codata sort for streams of ordinals), the ranks for the constructor symbols
are: 0 : Ord, S : Ord → Ord, L : Str → Ord and (:) : Ord × Str → Str.
Thus, C∆ = {0,S, L} and we let µ∆(S) = {1} and µ∆(L) = ∅. For µ given by
µ(f) = µcanR (f) ∪ µ∆(f) for all symbols f , we have µ(+) = µ(+L) = µ(×) =
µ(×L) = {2}, µ(S) = {1}, and µ(L) = µ(:) = µ(nats) = ∅. Since R is µ-
terminating (use mu-term), by Theorem 12, R is productive.

Endrullis and Hendriks characterize productivity as termination of CSR [34].
First, an inductively sequential [9] tree specification R is transformed into a
tree specification R′ by a productivity preserving transformation. A second
transformation yields a CS-TRS (R′′, µ).

Theorem 13. Let R be an inductively sequential tree specification. Then, R
is productive if and only if R′ is productive [34, Theorem 5.5]. And R′ is
productive if and only if R′′ is µ-terminating [34, Theorem 6.6].

Although Theorem 12 does not provide a characterization of productivity as
termination of CSR (see [85]), we can use R′ together with Theorem 12 to
prove productivity of R without using the second transformation, see [85].

7. Obtaining bounds on runtime complexity

The derivational height dh(s,R) of a term s with respect to a finitely branch-
ing relation R is defined (for R-terminating terms s) as the maximal length of
R-sequences starting from s [68]. Then, given n ∈ N, the derivational complexity
for R is dcR(n) = max{dh(s,R) | |s| ≤ n}, where |s| is the size of s, i.e., the
number of symbols occurring in s. Hence, for all terms s, dh(s,R) ≤ dcR(|s|). In
derivational complexity analysis, we aim at finding (upper and lower) asymp-
totic bounds on dcR(n). Since dh(s,R) exists for R-terminating terms s only,
a well-known technique to obtain bounds on dcR(n) is proving R terminating
and then trying to extract such bounds from the termination technique which
has been used to achieve this goal. For instance, for the term rewriting relation
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→R, bounds on dc→R(n) (or just dcR(n)) can be obtained from proofs of termi-
nation using polynomial interpretations [18, 14, 15, 119], matrix interpretations
[101, 106], path orderings [67, 128], dependency pairs [64, 100], etc.

Runtime complexity analysis [64] focuses on obtaining bounds on dh(s,R)
for basic terms s = f(t1, . . . , tk) ∈ Tb(F ,X ), where f is a defined symbol and
t1, . . . , tk are constructor terms. Runtime complexity rcR(n) is defined as dcR(n)
but restricting the attention to basic terms s of size |s| ≤ n only. Recently, both
notions of computational complexity have been related by Fuhs who developed
a transformation to obtain bounds on dcR(n) from bounds on rcR(n) [45].

Hirokawa and Moser use matrix interpretations A [35] to obtain bounds on
rcR(n). The interpretation domain is Nd, the set of tuples (or vectors) ~x of
d natural numbers. Each k-ary function symbol f is interpreted as a linear
expression fA(~x1, . . . , ~xk) = F1~x1 + · · · + Fk~xk + ~f0, where ~f0 is a vector of
d natural numbers and F1, . . . , Fk are d-square matrices of natural numbers.
Terms t are interpreted by induction on their structure in the usual way, by
using valuation mappings α : X → A to give meaning to variables as follows:
(i) [x]Aα = α(x) if x ∈ X and (ii) [f(t1, . . . , tk)]Aα = fA([t1]Aα , . . . , [tk]Aα ). A
(well-founded) ordering � on n-tuples of natural numbers is also considered:
~x � ~y iff x1 > y1 and for all 2 ≤ i ≤ d, xi ≥ yi. In matrix interpretations,
monotonicity of fA is guaranteed if, for all 1 ≤ i ≤ ar(f), the top leftmost entry
(Fi)1,1 is positive. We say that A is compatible with R if for all ` → r ∈ R
and α : X → A, we have [`]Aα � [r]Aα . In restricted matrix interpretations
(RMIs), constructor symbols c are interpreted using upper triangular matrices
where only 0 or 1 occur in the diagonal entries [65, Section 2]. RMIs permit
the obtention of polynomial bounds on rcR(n). Unfortunately, the monotonicity
requirements for compatible RMIs are often difficult to achieve.

Example 19. Hirokawa and Moser show that no monotone RMI is compatible
with the following TRS R in [65, Example 1] (from [11, Example 2]):

x− 0 → x (17)

s(x)− s(y) → x− y (18)

0÷ s(y) → 0 (19)

s(x)÷ s(y) → s((x− y)÷ s(y)) (20)

In order to overcome this problem, in [65] Hirokawa and Moser use replacement
maps µ to relax the monotonicity requirements to µ-monotonicity. In this way,
the matrix coefficients Fi in the linear expression for fA which are required to
satisfy (Fi)11 ≥ 1 are those with i ∈ µ(f) only.

Example 20. With µ(s) = µ(−) = µ(÷) = {1}, the following 1-dimensional
(actually polynomial) interpretation [65, Example 18]

0A = 1 sA(x) = x+ 2 x−A y = x+ 1 x÷A y = 3x

is µ-monotonic (but not monotonic; for instance y > y′ does not imply x−Ay >
x−A y′). In this way, a linear bound for rcR(n) is obtained.

In order to understand the role of µ-monotonicity to obtain bounds on rcR(n),
consider R in Example 19 and µ in Example 20 (where, in particular, µ(÷) =
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{1}). When evaluating a basic term s = s(t1)÷ s(t2), the only applicable rule is
(20). After applying it, reducing the first argument (t1−t2) of ÷ in the obtained
reduct s((t1 − t2) ÷ s(t2)) could be necessary. However, the second argument
s(t2) is a constructor term, hence irreducible. Thus, having 2 /∈ µ(÷) does not
prevent CSR from performing necessary reductions. This leads to the notion of
usable replacement map in runtime complexity which is similar to Fernandez’
usable arguments (see Section 4.2). Hirokawa and Moser, though, define two
kinds of replacement maps: for the runtime analysis of innermost rewriting (µi)
and unrestricted rewriting (µf). The definition of µi is similar to Fernández’;
for µf they use fixpoint techniques. For instance, µ in Example 20 is µf for R.

For all basic (terminating) terms s, dh(s,→i) is bounded by the maximum
length of µi-rewriting sequences starting from s, i.e., dh(s,→i) ≤ dh(s, ↪→µi);
and also dh(s,→) = dh(s, ↪→µf

) [65, Corollary 17]. Then, [65, Corollary 20] es-
tablishes how µi-/µf -monotone RMIs compatible with R can be used to bound
the (innermost) runtime complexity of R: for M the component-wise maxi-
mum of all matrices Ci, 1 ≤ i ≤ k used in the interpretation cA(x1, . . . , xk) =∑k
i=1 Cixi + ~c0 of constructor symbols c ∈ C, the number p of ones occurring

along the diagonal of M yields the polynomial bound O(np).

Remark 5 (Runtime complexity bounds for CSR).(?) As a matter of fact,
Hirokawa and Moser’s work provides the first analysis of runtime complexity
of CSR. Indeed, a µ-monotonic RMI A compatible with a TRS R proves µ-
termination of R. The validity of the polynomial bounds obtained from matrix
interpretations A in [65, Section 2] does not depend on any monotonicity as-
sumption. Thus, given a replacement map µ, they actually provide bounds on
rcR,µ(n) = max{dh(s, ↪→µ) | s ∈ Tb(F ,X ), |s| ≤ n}, the runtime complex-
ity bound for CSR, which then bounds rcR(n) (resp. rciR(n)) as a consequence
of dh(s,→) = dh(s, ↪→µf

) if µ = µf (resp. dh(s,→i) ≤ dh(s, ↪→µi) if µ = µi).
Therefore, the results in [65, Section 2] can be used to obtain bounds on rcR,µ(n)
for arbitrary replacement maps µ.

In [76] similar ideas are developed to provide the first complexity analysis for
conditional TRSs by also relying on transformations of CTRSs into CS-TRSs.

8. CSR for variants of term rewriting

In order to make the advantages of CSR available in other computational set-
tings and programming languages, several extensions to more general rewriting-
based frameworks like conditional rewriting, constrained rewriting (where the
rules include a conditional part to be tested before being able to rewrite any
call), equational rewriting (where terms are rewritten modulo an equational the-
ory), and narrowing (where pattern matching is replaced by unification when
function calls are bound to rules) have been envisaged.

Remark 6 (Introducing context-sensitivity). Rule (C)f,i in Figure 2 of-
ten occur in inference systems I. A systematic way to make I ‘context-sensitive’
is using (C)f,i for all i ∈ µ(f) rather than for all 1 ≤ i ≤ ar(f).
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In this section, we briefly discuss some known extensions, which we often recast
as a simple transformation of inference systems following Remark 6.

8.1. Conditional context-sensitive rewriting

By a CS-CTRS we mean a pair (R, µ) where R = (F , R) is a CTRS and
µ ∈ MF . In [26], CSR was extended to CTRSs by applying the procedure in
Remark 6 to obtain

ICS-CTRS[S,M,R] = {(Rf), (T)}∪{(C)f,i | f ∈ S, i ∈M(f)}∪{(CRl)α | α ∈ R}.

An inference system I(R, µ) = ICS-CTRS[F , µ,R] for a CTRS R = (F , R) and
µ ∈ MR is obtained and one-step and many-step conditional µ-rewriting ↪→µ

and ↪→∗µ are defined as provability of goals s→ t and s→∗ t in I(R, µ).

8.1.1. Operational termination of CS-CTRSs

We say that a CTRS R is operationally µ-terminating if there are no terms s
and t with an infinite proof tree for s→∗ t in I(R, µ). Operational termination
of CS-CTRSs was investigated in [26] by using transformation Uopt (see Section
5.1) with µ extended to symbols Uαi as before (denoted µ U ):

µ U (f) =

{
µ(f) if f ∈ F
{1} otherwise, i.e., for symbols Uαi

We have the following

Theorem 14. Let R be a DCTRS and µ ∈MR.

1. [23, Lemma 3] If s ↪→R,µ t, then s ↪→∗Uopt (R),µ U
t.

2. [23, Theorem 2] If Uopt(R) is µ U -terminating, then R is operationally
µ-terminating.

The analysis of operational termination of CS-CTRSs by using dependency pairs
(as done for CTRSs [90, 91, 92] and CS-TRSs [2, 58]) is still a subject for future
work.

8.1.2. Confluence of CS-CTRSs

A CS-CTRS (R, µ) is µ-confluent if ↪→R,µ is confluent. We have the following
generalization of Theorem 8 (regarding confluence).

Theorem 15.(?) Let R be a DCTRS and µ ∈ MR. If R is µ-terminating and
Uopt(R) is µ U -confluent, then R is µ-confluent.

Proof. By contradiction. IfR is not µ-confluent, then there are terms s, t, t′ ∈
T (F ,X ) such that s ↪→∗R,µ t and s ↪→∗R,µ t′ but t and t′ are not ↪→∗R,µ-joinable.
By µ-termination of R, we can assume that t and t′ are different µ-normal
forms t 6= t′. By Theorem 14.(1), s ↪→∗Uopt (R),µ U

t and s ↪→∗Uopt (R),µ U
t′. By µ U -

confluence of Uopt(R), there is u such that t ↪→∗Uopt (R),µ U
u and t′ ↪→∗Uopt (R),µ U

u.

However, since t and t′ are µ-normal forms built from variables and symbols in
F only, they are ↪→Uopt (R),µ U -normal forms and t = u = t′, a contradiction. 2
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Example 21. The following CTRS R
a → b (21)

f(x) → y ⇐ g(x)→ c(y) (22)

g(a) → c(d) (23)

g(b) → c(b) (24)

is not confluent. We have f(a) →R d because g(a) →R c(b) using (23). Also,
f(a) →R f(b) →R b because g(b) →R c(d) using (24). Now, consider the re-
placement map µ(f) = µ(g) = ∅ and µ(c) = {1}. The TRS Uopt(R) is

a → b

f(x) → U(g(x))

U(c(y)) → y

g(a) → c(d)

g(b) → c(b)

and µ U is µ U (f) = µ U (g) = ∅ and µ U (c) = µ U (U) = {1}. There is no µ U -
critical pair.18 Furthermore, Uopt(R) has left-homogeneous µ-replacing vari-
ables (µ-LHRV), i.e., each active variable in the left-hand side of a rule is active
everywhere in the rule [86, Section 8.1]. According to [86, Sections 8.3 and 8.4]
Uopt(R) is locally µ U -confluent and hence µ U -confluent due to µ U -termination
of Uopt(R) (use mu-term). By Theorem 15, R is µ-confluent.

Unfortunately, µ-confluence of CTRSs is underexplored to date. However, [27,
Definition 10] generalizes the notions of µ-critical pair and conditional critical
pair for CTRSs19 to define conditional critical pairs for order-sorted conditional
rewrite theories with frozenness specifications ϕ (see Section 3) and [27, Theo-
rem 5] uses them to prove coherence of such rewrite theories.

8.1.3. Canonical CSR with CS-CTRSs

Regarding canonical CSR (Section 3), when dealing with (oriented) CS-
CTRSs, we need to revise the notion of canonical replacement map to consider
the reachability goals si →∗ ti in (CRl)Rρ as µ-reachability problems σ(si) ↪→∗R,µ
σ(ti). The canonical replacement map µcanR for CTRSs R is

the most restrictive replacement map µ ensuring that, for all ` →
r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R, PosF (`) ⊆ Posµ(`) and PosF (ti) ⊆
Posµ(ti), 1 ≤ i ≤ n [84, Section 3.1].

This does not suffice, though: the µ-normal forms of left-linear TRSs are head-
normal forms if µ ∈ CMR [86, Section 6]; the ability of CSR to compute
canonical forms relies on this fact [86, Section 9]. This fails to hold for CTRSs.

Example 22. Let R = {a → b, f(x) → b ⇐ b → x}. Since 1 /∈ µcanR (f) and
b 6↪→∗µ a, term f(a) is not µcanR -reducible. However, f(a) → f(b) and f(b) is a
redex, i.e., f(a) is not a head-normal form.

18A µ-critical pair is a critical pair whose critical position is active, see [86, Section 8.2].
19For CTRSs we have conditional critical pairs 〈s, t〉 ⇐ c, where the conditional part c is

empty if both rules defining the critical pair are unconditional, see [116, Definition 7.1.8].
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Recall from Section 5.3 that rhs’s ti of conditions si → ti in rules of normal
CTRSs are ground and contain no preredex (see footnote 16). For left-linear
and normal CTRSs, if µ is canonical, then µ-normal forms are head-normal
forms [84, Theorem 3]. Note that R in Example 22 is not normal.

8.2. Built-in numbers and collection data structures

Falke and Kapur integrate replacement restrictions into their Constrained
Equational Rewrite Systems (CERSs [37]) that extend TRSs with built-in data
structures, in particular integer numbers and collection data structures. In
CERSs, constrained rules `→ r [[ϕ]] are allowed. Here ϕ is a numeric constraint,
i.e., a Boolean expression with atoms s ./ t where ./ ∈ {>,≥,'}. Such formulas
ϕ are handled apart, as ‘built-ins’, and the rewrite relation is not used in sat-
isfiability tests [37, Definition 5]. Computations with CERSs can be described
using the generic system

ICERS[S,R] = {(R), (T)} ∪ {(C)f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(CERl)α | α ∈ R}

where (CERl)α is ϕ
`→r for α : ` → r [[ϕ]]. Proofs of ϕ are assumed to be de-

rived to the appropriate subsytem. Falke and Kapur use CSR to avoid infinite
computations when dealing with infinite data structures such as sets of integers,
etc. This enables a more natural specification of some algorithms in the rewrit-
ing framework [38]. The integration of CS replacement restrictions in CERSs
follows the usual approach of allowing reductions on µ-replacing positions only
[37, Definition 7]. Equivalently, this corresponds to rely on

ICS-CERS[S,M,R] = {(R), (T)}∪{(C)f,i | f ∈ S, i ∈M(f)}∪{(CERl)α | α ∈ R}.

The authors extend the dependency pair framework in [1] to CERSs, thus being
able to prove termination of CS-CERS as well [36, 38].

8.3. Context-sensitive rewriting modulo

The generic inference system

IETRS[S,E,R] = IEQ[S,E]∪{(C)f,i | f ∈ S, 1 ≤ i ≤ ar(f)}∪{(Rl)α | α ∈ R}∪IRM

where

IEQ[S,E] = {(ER), (ET)} ∪ {(EC)f,i | f ∈ S, 1 ≤ i ≤ ar(f)} ∪ {(Eq)ε | ε ∈ E}

is the generic system for equational deduction with a set of equations E (see the
inference rules in Figure 4) and IRM = {(MR), (MT), (RM)} encodes rewriting
modulo with R (Figure 5), can be used to define one-step and many-step rewrit-
ings →R/E and →∗R/E with a TRS R modulo a set of equations E as provability

of goals s→= t and s→∗= t in an inference system I(R, E) = IETRS[F , E ,R].
Context-sensitive rewriting modulo associativity and commutativity was first

considered in [40]. The authors use a restricted equational theory generated by
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(ER)
x = x

(EC)f,i
xi = yi

f(x1, . . . , xi, . . . , xk) = f(x1, . . . , yi, . . . , xk)

(ET) x = y y = z
x = z

(Eq)s=t
s = t

Figure 4: Parametric inference rules for equational reasoning

(MR) x = y
x→∗= y

(RM) w = x x→ y y = z
w →= z

(MT) x→= y y →∗= z
x→∗= z

Figure 5: Parametric inference rules for rewriting modulo

a set of equations and a replacement map µ [40, Definition 6]. This is equivalent
to use

ICS-EQ[S,M,E] = {(ER), (ET)} ∪ {(EC)f,i | f ∈ S, i ∈M(f)} ∪ {(Eq)ε | ε ∈ E},

which is like IEQ with the range of i controlled by a replacement map in (EC)f,i.
For the context-sensitive extension of rewriting modulo, Ferreira and Ribeiro use
a second replacement map µ′. Then, [40, Definition 7] corresponds to the use of

ICS-ETRS[S,M1,E,M2,R] = ICS-EQ[S,M1,E] ∪ {(C)f,i | f ∈ S, i ∈M2(f)}
∪ {(Rl)α | α ∈ R} ∪ IRM

to obtain an inference system I(E ,R, µ, µ′) = ICS-ETRS[F , µ, E , µ′,R] in proofs
of goals s→= t and s→∗= t (one-step and many step context-sensitive rewriting
modulo, respectively). Note the use of µ (with (EC)f,i, as part of ICS-EQ[F , µ, E ])
and µ′ (with (C)f,i).

For termination analysis, Ferreiro and Ribeiro consider AC -theories where E
only contains associative and commutative axioms f(x, f(y, z)) = f(f(x, y), z)
and f(x, y) = f(y, x), for each AC (binary) symbol f . An AC-rewrite system
(denoted R/AC) is an equational rewrite system R/E where E is an AC -theory.
They restrict the rewriting steps with µr, and define a restricted equational the-
ory with µac (i.e., µ = µac and µ′ = µr above). They characterize termination
of AC-CSR using orderings [40, Theorem 2].

Example 23. Consider the following TRS [40, Example 4]

It(p) → p ; It(p)

(p+ q) ; r → (p ; r) + (q ; r)

(p ; q) ; r → p ; (q ; r)

p ; skip → p

abort ; p → abort

p+ q → p

p+ q → q

p ‖ abort → abort

p ‖ skip → p

p ‖ (q + r) → (p ‖ q) + (p ‖ r)
for a process language with parallel composition (‖) and choice (+) AC oper-
ators. For the sequential composition operator (;) we have µr(; ) = {1}. No
further replacement restrictions are imposed with µr. And no replacement map
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µac is considered here. Termination of ↪→R/AC,µr is proved by the following
polynomial interpretation: the domain is A = N2, i.e., the set of natural num-
bers bigger than 1; for function symbols:

abortA = 2 skipA = 2 ItA(x) = 2x+ 1

x ;A y = 2x x +A y = x+ y + 1 x ‖A y = xy

Note that +A and ‖A are commutative and associative. Also note that ;A is µr-
monotonic (but not monotonic). The key point for proving AC µr-termination
of R is compatibility of the ordering > over the naturals with the first rule of
the TRS, i.e., It(p)→ p ; It(p). We develop this here: for all p ∈ A,

It(p)A = 2p+ 1 > 2p = (p ; It(p))A

Ferreira and Ribeiro also introduced a transformation for proving termination
of AC-CSR by proving AC-termination of the obtained TRS. Following Ferreira
and Ribeiro’s work, Giesl and Middeldorp developed new and more powerful
transformations for proving termination of AC-CSR [49]. The analysis of ter-
mination of AC-CS-TRSs by using dependency pairs (as done for CS-TRSs (see
references above) and AC-TRSs [4, 129]) is still a subject for future work.

8.4. Context-sensitive narrowing

Functional Logic Languages integrate the most interesting features of pure
logic and functional languages in a unified framework [10]. Logical variables,
partial data structures and search for solutions (from the logic programming
side), are available in functional logic languages. Nested expressions, higher-
order functions and the possibility of benefitting from the deterministic nature of
functions also become available from the functional component [61, 62]. In order
to deal with logic variables we need an operational mechanism to instantiate
them during the evaluation of expressions. This mechanism is narrowing, which
combines term rewriting and unification [126]. A term s narrows to t, written
s ;[p,α,σ] t, if there is p ∈ PosF (s) and a variant (i.e., a renamed version)
of a rule α : ` → r such that s|p and ` unify with (idempotent) mgu σ, and
t = σ(s[r]p). The idea of limiting narrowing by means of replacement restrictions
is considered in [79, Section 6].

Definition 4 (Context-sensitive narrowing). [79, Definition 15] Let R be

a TRS and µ ∈MR. A term s µ-narrows to t (s
µ
;[p,α,σ] t) if s ;[p,α,σ] t and

p ∈ Posµ(t).

Context-sensitive narrowing can be used in Maude 3.0.

Example 24. The Maude module in Figure 6 encodes the TRS R in [79, Ex-
ample 1] for use in narrowing computations with Maude 3.0 (hence the manda-
tory labels [narrowing] in each rule). When if(and(x,ff),y + s(0),0) is
narrowed, the second argument y + s(0) of if should be narrowed only after be-
ing appropriately instantiatiated and having evaluated the condition and(x, ff).
With the frozenness annotation ϕ given by
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mod Ex1_JFLP98 is

sort S .

ops tt ff 0 : -> S .

op s : S -> S .

op if : S S S -> S [frozen (2 3)] .

ops and _+_ : S S -> S .

var x y : S .

rl if(tt,x,y) => x [narrowing] .

rl if(ff,x,y) => y [narrowing] .

rl and(tt,x) => x [narrowing] .

rl and(ff,x) => ff [narrowing].

rl 0 + x => x [narrowing] .

rl s(x) + y => s(x + y) [narrowing] .

endm

Figure 6: Context-sensitive narrowing in Maude

op if : S S S -> S [frozen (2 3)] .

(i.e., µϕ(if) = {1}) we obtain the desired effect by using the narrowing com-
mand vu-narrow of Maude 3.0 [22, Section 7], with the expression

if(and(x:S,ff),y:S + s(0),0) =>! Z:S

This computes all possible narrowings of the expression. The different outcom-
ing values are kept in variable Z, whilst x and y are instantiated at need, see
Figure 7. Only two narrowing evaluation sequences are obtained, for the two
instantiations of x to either tt or ff, when using the and-rules. No ‘real’ in-
stantiation of y is attempted to (wastefully) evaluate the second argument, as it
is forbidden by ϕ. Actually, the attempt to narrow if(and(x,ff),y + s(0),0)

with no frozen annotation in Ex1_JFLP98 leads to an infinite computation with
Z always instantiated to 0, but y instantiated to 0, s(0), s(s(0)), . . .

9. Variants of CSR for term rewriting

Several authors have devised weaker restrictions of rewriting trying to im-
prove the computational power of CSR. As discussed in [86, Section 11], the
canonical replacement map µcanR is the usual starting point to use CSR in com-
putations with a (left-linear) TRS R. This guarantees that a number of results
and techniques can be used to perform semantically meaningful computations,
see [86, Section 9]. However, termination of CSR is often an important reason
to use CSR instead of (a strategy for) unrestricted rewriting, see [86, Remark
1.2]. In some cases, though, µcanR fails to achieve both requirements.
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Maude> vu-narrow in Ex1_JFLP98 : if(and(x:S,ff),y:S + s(0),0) =>! Z:S .

vu-narrow in Ex1_JFLP98 : if(and(x, ff), y + s(0), 0) =>! Z:S .

Solution 1

rewrites: 4 in 0ms cpu (1ms real) (4305 rewrites/second)

state: 0

accumulated substitution:

x --> tt

y --> %1:S

variant unifier:

Z:S --> 0

Solution 2

rewrites: 4 in 1ms cpu (3ms real) (3350 rewrites/second)

state: 0

accumulated substitution:

x --> ff

y --> %1:S

variant unifier:

Z:S --> 0

No more solutions.

rewrites: 4 in 1ms cpu (3ms real) (3254 rewrites/second)

Figure 7: A narrowing evaluation in Maude

Example 25. Consider the following TRS R from [104]

2nd(x : y : z) → y

from(x) → x : from(s(x)) (25)

Since µcanR (from) = µcanR (s) = ∅, µcanR (2nd) = {1} and µcanR (:) = {2}, CSR
obtains the value of s = 2nd(from(0)):

2nd(from(0)) ↪→µcanR
2nd(0 : from(s(0)))

↪→µcanR
2nd(0 : s(0) : from(s(s(0)))) ↪→µcanR

s(0) (26)

Unfortunately, R is not µcanR -terminating due to (25). An ‘eager’ attempt to
evaluate from(s(s(0))) in the last step of the sequence before applying the rule
for 2nd leads to an infinite computation:

2nd(from(0)) ↪→µcanR
2nd(0 : from(s(0)))

↪→µcanR
2nd(0 : s(0) : from(s(s(0)))) ↪→µcanR

· · · (27)

With µ(:) = ∅, though, R is µ-terminating but the evaluation stops too early

2nd(from(0)) ↪→µ 2nd(0 : from(s(0)))

Note that µ /∈ CMR. The obtained µ-normal form u = 2nd(0 : from(s(0))) is
not a head-normal form. Thus, it is not safe to jump into the maximal frozen
part from(s(0) to perform normalization via-µ-normalization (see Figure 3) of
u as this would lead to an infinite sequence again.
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ROOT Λ ∈ Posγ(t)
DOWN p.q ∈ Posγ(C[t]p)⇒ p ∈ Posγ(C[t]p)
SUBTERM p.q ∈ Posγ(C[t]p)⇒ q ∈ Posγ(t)
COMP (p ∈ Posγ(C[t]p) ∧ q ∈ Posγ(t))⇒ p.q ∈ Posγ(C[t]p)

Figure 8: A list of basic properties of syntactic replacement restrictions, where C, t ∈ T (F ,X )

Example 25 shows how the usual computational procedures based on CSR may
fail. In the following, we consider some alternative mechanisms that have been
proposed to overcome these problems. We often illustrate them in connection
with Example 25 to see how do they help to solve such problems.

9.1. A more general framework for syntactic replacement restrictions

The replacement restrictions on terms t induced by a replacement map µ (i.e.,
Posµ(t)) are a particular case of a more general notion of syntactic replacement
restriction which directly focuses on the positions of terms [78].

Definition 5 (Syntactic replacement restriction). Let F be a signature.
A syntactic replacement restriction γ is a mapping γ : T (F ,X )→ ℘(N∗>0) such
that, for all t ∈ T (F ,X ), γ(t) ⊆ Pos(t).

We often write Posγ(t) rather than γ(t). Let ΓF (or just Γ) be the set of
syntactic replacement restrictions for F and Γcsr be the subset of Γ induced by
replacement maps µ ∈ MF . Many replacement restrictions can be associated
to a given signature. We identify a property PROP on replacement restrictions
with a subset ΓPROP ⊆ Γ of Γ and say that γ has property PROP if γ ∈ ΓPROP.
Figure 8 shows some basic properties of replacement restrictions:

• ROOT enables reductions of a term at the root.

• DOWN guarantees that Posγ(t) is prefix closed. This is useful to imple-
ment systems using these restrictions: when looking inside a term t for a
(replacing) redex, if we find a nonreplacing position p ∈ Posγ(t), we can
stop the search for other redexes below: they are nonreplacing as well.

• SUBTERM and COMP concern locality of (restricted) computations: after
replacing a redex we can locally resume the search for a new (replacing)
redex; no backtracking to the root of the maximal input term is necessary.

Given properties PROP1, . . . ,PROPn, Γ∧
n
i=1PROPi =

⋂n
i=1 ΓPROPi collects all re-

stritions which simultaneously satisfy PROP1, . . . ,PROPn. We have the follow-
ing characterization of context-sensitive replacement restrictions.

Theorem 16. [78] Γcsr = ΓROOT∧COMP∧DOWN∧SUBTERM.

The variants of CSR described below can be seen as appropriate ways to specify
and analyze syntactic replacement restrictions.
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mod! TEST {

[T]

op 0 : -> T

op s : T -> T {strat: (1)}

op _:_ : T T -> T {strat: (1 -2)}

op 2nd : T -> T {strat: (1 0)}

op from : T -> T {strat: (0)}

vars X Y Z : T

eq from(X) = X:from(s(X)) .

eq 2nd(X:(Y:Z)) = Y .

}

Figure 9: CafeOBJ program with on-demand strategy annotations

9.2. On-demand strategy annotations
On-demand E-strategies are sequences ξ(f) = (i1 · · · in) of integers associ-

ated to k-ary function symbols f in CafeOBJ programs, so that −k ≤ ij ≤ k for
all 1 ≤ j ≤ n. They guide the evaluation strategy of function calls f(t1, . . . , tk)
by taking indices i from ξ(f) from left-to-right and: (a) if i > 0, then ti is (re-
cursively) evaluated; (b) if i = 0, a rule defining f is attempted; and (c) if i < 0,
then t|i| is evaluated ‘on-demand’, where a ‘demand’ is an attempt to match
a pattern against t|i| [103, 104, 114]. Negative annotations aim at avoiding
nontermination while complete evaluations of expressions are still possible.

Example 26. The CafeOBJ program in Figure 9 encodes R in Example 25
together with on-demand E-strategies for s, :, 2nd, and from [104]. Note that
the second argument of ‘:’ is evaluated on-demand. The evaluation of from(s(0))
in 2nd(0 : from(s(0))) is demanded by the rule defining 2nd, and index −2 in
ξ(:) permits a reduction step. However, the third step of (27) is not demanded
by the rule; thus, the infinite sequence is not possible. In contrast, the sequence
(26) is possible with ξ, which obtains the normal form.

The on-demand evaluation strategy (ODE) [5, 6] refines the on-demand E-
strategy and has better computational properties; also, a transformation for
proving termination of ODE as termination of CSR is given. Termination of
TEST in Figure 9 can be proved in this way.

9.3. Lazy rewriting
In [83] the lazy graph rewriting of [43, 73] is formalized as term rewriting

over labeled terms which carry information about the reducibility state of the
positions in the term: eager, if they can be freely reduced, or lazy if they block
reductions (on, and also below them) until some activation condition is raised.

Example 27. As in [83, Example 3.1], consider R in Example 25 and µ(:) =
µ(2nd) = µ(from) = µ(s) = {1}. In lazy rewriting, the replacement map is used
to label the terms. The intended labelling of s = 2nd(0 : from(s(0))) is

t = labelµ(s) = 2nde(0e :e from`(se(0e)))
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The intended labeling starts from the root of a term t, which is always labeled as
eager (e); then, for each subterm f(t1, . . . , tk) of t, the root of each immediate
subterm ti is labeled with e or ` depending on whether i ∈ µ(f) or i /∈ µ(f),
respectively. Each lazy rewriting step on labelled terms may have two different
effects:

1. changing the status (active or not) of a given position within a labelled

term by means of an activation relation
A→ between labelled terms, or

2. performing a rewriting step on an active position by means of the relation

of active rewriting
R→µ between labelled terms.

Then,
LR→µ =

A→ ∪ R→µ. A TRS is LR(µ)-terminating if, for all s ∈ T (F ,X ), no

infinite
LR→µ-rewrite sequence starts from labelµ(s). Schernhammer and Gramlich

develop a transformation from a CS-TRS (R, µ) (which defines lazy rewriting)

into another CS-TRS (R̃, µ̃) which characterizes LR(µ)-termination [122].

9.4. Forbidden patterns

In [56] CSR is extended by using patterns to identify (as instances by some
substitution) subterms whose reduction is forbidden. Forbidden patterns are
triples 〈t, p, λ〉, where t is a term, p ∈ Pos(t), and λ ∈ {h, b, a} specifies how the
pattern forbids reductions with respect to position p: (i) here at p, (ii) strictly
below p, or (iii) strictly above (but not at, below or parallel to) p [56, Definition
1]. Given a term s, a pattern π = 〈t, p, λ〉 determines a set Pt,p(s) ⊆ Pos(s)
of positions as follows: for all q ∈ Pos(s), q ∈ Pt,p(s) ⇔ s|q′ = σ(t) ∧ q = q′.p
for some substitution σ and position q′, i.e., Pt,p(s) is the set of positions q of s
which are obtained by extending with the component p of π (so that q = q′.p)
the position q′ of a subterm s|q′ of s matched by the component t of π. Thus,
Pt,p defines a kind of frontier set of positions in s from which the parameter λ
of π establishes whether we take positions in s which are above or below such
frontier, or exactly here, in the frontier. Accordingly, Pπ(s) is as follows:

Pπ(s) =

 {q
′ ∈ Pos(s) | ∃q ∈ Pt,p(s) | q′ < q} if λ = a
{q′ ∈ Pos(s) | ∃q ∈ Pt,p(s) | q′ > q} if λ = b
Pt,p(s) if λ = h

Finally, given a term s and a set Π of forbidden patterns, PosΠ
(s) =

⋃
π∈Π Pπ(s)

is the set of forbidden positions associated to s and PosΠ(t) = Pos(t)−PosΠ
(t)

is the set of allowed positions for rewriting: s→Π t if s
p→ t for some p ∈ PosΠ(s)

[57, Section 2].

Example 28. As in [56, Example 1], consider R in Example 25 and the set
of forbidden patterns Π = {〈x : (y : from(z)), 2.2, h〉} in [56, Example 2], con-
taining a single forbidden pattern actually. Figure 10 depicts the positions of
s = 2nd(0 : s(0) : from(s(s(0)))). For π = 〈t, p, λ〉 = 〈x : (y : from(z)), 2.2, h〉,
and q′ = 1, s|1 = 0 : s(0) : from(s(s(0))) is an instance of π = x : (y : from(z)).
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Figure 10: Positions of s above , below , or here w.r.t. p = 2.2 for π in Example 28

Thus, q′.p = 1.2.2 is in Pt,p. Actually, it is the only one, i.e., Pt,p = {1.2.2}.
Therefore, since λ = h in π, PosΠ

(s) = {1.2.2}. This means that (only) subterm
from(s(s(0))) of s is not →Π-reducible in (27).

Gramlich and Schernhammer show that →Π is terminating and also head-
normalizing for R [56, Examples 6 and 11].

Forbidden patterns can be used to specify restrictions of rewriting like innermost
or outermost rewriting. Regarding CSR, ↪→µ=→Πcsr

for

Πcsr = {〈f(x1, . . . , xk), i, h〉, 〈f(x1, . . . , xk), i, b〉 | f ∈ F , i ∈ {1, . . . , k} − µ(f)}

see [56, Section 3]. However, some of their combinations, like innermost CSR,
can not be simulated by using forbidden patterns. The notion of canonical
forbidden pattern [56, Definition 4] generalizes the canonical replacement maps
to rewriting with forbidden patterns [56, Section 5]. Some methods for proving
termination of rewriting with forbidden patterns are also given [57].

9.5. Controlled term rewriting

Controlled term rewriting [70] can be used to define restrictions of the rewrit-
ing relation by means of selection automata that select positions in a term.
Controlled TRSs consist of rules of the form A : ` → r, where A is a selection
automaton and `→ r is an ordinary rewrite rule. The rewriting steps on a term
s with a rule A : `→ r are restricted to the positions p of redexes σ(`) in s that
are accepted by A. As remarked by the authors, “context-sensitive rewriting is
a particular case of controlled rewriting”. Actually, it is a strict subcase because
“the root position is always rewritable whereas this is not the case for controlled
rewriting” [70, page 181]. Prefix-constrained TRSs (pCTRSs) [71] are a proper
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subclass of controlled TRSs where the rewritable positions of a term are those
whose prefix is accepted by a finite automaton. Given a CS-TRS (R, µ), a
pCTRS P generating ↪→R,µ is obtained as follows [8, Section 3]: let L = Σ∗ for
the alphabet Σ = {〈f, i〉 | f ∈ F , i ∈ µ(f)}. Then, P = {L : `→ r | `→ r ∈ R}.

Example 29. For the TRS R
a → b

h(a, b) → i(a)

f(h(x, y), y) → g(x, y)

with µ(i) = µ(g) = ∅ and µ(f) = µ(h) = {1} in [8, Example 26], P = {L : `→
r | `→ r ∈ R} where L = Σ∗ for Σ = {〈f, 1〉, 〈h, 1〉}.

Controlled and prefix-constrained rewriting also fit the framework for replace-
ment restrictions in Section 9.1 and can be seen as an interesting way to further
develop it, using selection automata to describe the sets of active positions.
However, controlled and prefix-constrained rewriting is not purely syntactic be-
cause each rule has an associated selection automaton whose behavior could be
different for different rules of the same symbol. In this sense, it is more powerful
than the approach in Section 9.1.

Prefix-constrained and controlled rewrite systems can be transformed into
ordinary TRSs so that termination (tools and techniques) for TRSs can be used
to prove and disprove termination of controlled rewriting [7]. This transforma-
tion extends and simplifies the (sound and complete) transformation in [48] for
proving termination of CSR. Confluence of pCTRSs is investigated in [8] by
extending the analysis of (local) confluence for CSR in [77].

10. Analysis of OBJ programs

In OBJ programs an operator evaluation strategy for a k-ary symbol f is a
sequence ξ(f) = (i1 i2 · · · in), where ij ∈ {0, . . . , k} for all 1 ≤ j ≤ n. The
evaluation of a term t = f(t1, . . . , tk) proceeds by considering the i1, . . . , in-th
immediate subterms of t from left to right. If ij = 0, then an attempt to apply
a rule to t′ is made (where t′ is t with ti1 , . . . , tij−1

replaced by their evaluated
versions t′i1 , . . . , t

′
ij−1

); otherwise, the evaluation of tij (into t′ij ) is recursively
accomplished. The order of indices i1, i2, . . . , in determines the evaluation or-
der of the immediate subterms of t. If no explicit evaluation strategy is given
(i.e., all k-ary function symbols use the default strategy (1 2 · · · k 0)), then
Maude’s evaluation strategy (in functional modules [19, Chapter 4]) corresponds
to leftmost-innermost evaluation.

Example 30. Consider the functional module in Figure 11, where sort NatList
represents finite lists of natural numbers and NatIList represents possibly in-
finite lists. Symbol cons is overloaded and take can be used to obtain a given
number of the initial components of a list. Besides illustrating the specifica-
tion of E-strategies in OBJ programs, we will use it to illustrate the use (and
limitations) of the current theory of CSR to analyze their properties.
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fmod InfListsAndTake is

sorts Nat NatList NatIList .

subsorts NatList < NatIList .

op 0 : -> Nat .

op s : Nat -> Nat .

op nil : -> NatList .

op cons : Nat NatIList -> NatIList [strat (0)].

op cons : Nat NatList -> NatList [strat (0)].

op inf : Nat -> NatIList .

op take : Nat NatIList -> NatList [strat (2 0)].

vars M N : Nat .

var IL : NatIList .

eq inf(N) = cons(N,inf(s(N)) .

eq take(0, IL) = nil .

eq take(s(M), cons(N, IL)) = cons(N, take(M, IL)) .

endfm

Figure 11: Example of Maude program

Evaluation strategies (ξ) Frozenness annotations (ϕ)
Available in CafeOBJ, OBJ2, OBJ3, Maude Maude
Use in Maude Functional modules System modules
Definition ξ(f) seq. of i ∈ {0, . . . , ar(f)} ϕ(f) ⊆ {1, . . . , ar(f)}
Intended use Defines the ev. strategy Replacement restrictions
Rep. map µξ(f) = ξ(f) ∩ N>0 µϕ(f) = {1, . . . , k} − ϕ(f)

Table 1: Use of context-sensitive rewriting in OBJ languages

Frozenness annotations in [17] were added later to Maude [19, Section 4.4.9] for
use with system modules [19, Chapter 6].20 As for frozenness annotations, a
replacement map µξ can be associated to ξ so that (i) the sequence becomes a
set and (ii) indices 0 are removed: µξ(f) = ξ(f)− {0}, or more precisely

µξ(f) = {i1, . . . , in | ξ(f) = (i1 i2 · · · in)} − {0}

Both uses of CS replacement restrictions in OBJ languages (in particular in
Maude, as frozenness annotations are not available in CafeOBJ, OBJ2, or OBJ3)
are summarized and compared in Table 1. We often represent computations
with OBJ programs R which can be seen as TRSs and use evaluation strategies
ξ or frozenness annotations ϕ by means of reduction relations →R,ξ and →R,ϕ,
respectively.

Remark 7 (CSR and OBJ computations). Both →R,ξ and →R,ϕ perform

20This is part of recent presentations of Rewriting Logic [94], which provides the theoretical
basis for Maude, which “supports both forms of context-sensitive rewriting: with equations
using the strat attribute, and with rules using the frozen attribute” [95, page 736].

37



µξ-reduction or µϕ-reduction steps with R, respectively. Actually,

→R,ξ ⊆ ↪→R,µξ for CafeOBJ, OBJ* programs, and Maude functional modules R
→R,ϕ = ↪→R,µϕ for Maude system modules R

For evaluation strategies, →R,ξ = ↪→R,µξ does not hold (in general) due to the
strategic component of E-strategies which not only prevents the evaluation of
some arguments in function calls, but also establishes an order for such an
evaluation. In some cases a closer correspondence with innermost CSR can
be obtained, see [80, 81]. Frozenness annotations ϕ provide a closer (although
dual) correspondence: ϕ is a replacement map µϕ where, for each symbol f ,
the set of frozen arguments in ϕ(f) are out of µϕ(f) and vice versa. Hence,
→R,ϕ=↪→R,µϕ .

Remark 7 summarizes the basis for the use of CSR in the analysis of OBJ
programs which can be seen as TRSs, as we assume in the remainder of this
section, unless stated otherwise. In the following, we discuss the connection
between µ-normal forms and expressions computed by OBJ programs (Section
10.1). We explore the use of normalization via µ-normalization in Maude by
using its strategy language (Section 10.2). The use of termination of CSR to
prove termination of OBJ programs is discussed in Section 10.3. Then, we briefly
discuss the use of CSR in the analysis of behavioral CafeOBJ specifications
(Section 10.4); for modeling π-calculus in Maude (Section 10.5); and in Real-
Time Maude (Section 10.6).

10.1. Computing µ-normal forms in OBJ programs

Since →R,ϕ = ↪→R,µϕ , the evaluation of expressions in a TRS-like system
moduleR with frozenness annotation ϕ returns µϕ-normal forms. Hence, results
and techniques using µ-normal forms in head-normalization, normalization and
infinitary normalization can be used with Maude system modules (Section 10.2).

The evaluation of expressions with evaluation strategies ξ, though, returns
E-normal forms (ENF s), i.e., terms which cannot be further rewritten using ξ.
If for all defined symbols f ∈ D, ξ(f) ends in 0 (see [28, 102] for details), we
have:

Theorem 17. [80] Let R = (C]D, R) be a TRS and ξ be an evaluation strategy
such that for all f ∈ D, ξ(f) ends in 0. Every ENF t is a µξ-normal form.

Thus, under this reasonable condition, the aforementioned results and tech-
niques for head-normalization, etc., are available for evaluation strategies as
well.

10.2. Normalization via µ-normalization in Maude

For left-linear TRS-like OBJ programs R returning µ-normal forms (for
µ = µϕ of µ = µξ) for all initial expressions s, and such that µ ∈ CMR,
canonical CSR can be used to obtain head-normal forms, values, and (infinite)
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smod NORM_VIA_MUNORM is

protecting ExSec11_1_Luc02 .

vars x y : S .

strat norm_via_munorm @ S .

strat munorm @ S . strat decomp @ S . strat dsuc @ S . strat dcons @ S .

strat drecip @ S . strat dadd @ S . strat ddbl @ S . strat dhalf @ S .

strat dsqr @ S . strat dfirst @ S . strat dterms @ S .

sd norm_via_munorm := munorm ; try(decomp) .

sd munorm := one(all) ! .

sd decomp := dsuc | dcons | drecip | dadd | ddbl | dhalf

| dsqr | dfirst | dterms .

sd dsuc := matchrew s(x) by x using norm_via_munorm .

sd dcons := matchrew (x : y) by x using norm_via_munorm , y

using norm_via_munorm .

sd drecip := matchrew recip(x) by x using norm_via_munorm .

sd dadd := matchrew add(x,y) by x using norm_via_munorm , y

using norm_via_munorm .

sd ddbl := matchrew dbl(x) by x using norm_via_munorm .

sd dhalf := matchrew half(x) by x using norm_via_munorm .

sd dsqr := matchrew sqr(x) by x using norm_via_munorm .

sd dfirst := matchrew first(x,y) by x using munorm , y using norm_via_munorm .

sd dterms := matchrew terms(x) by x using norm_via_munorm .

endsm

Figure 12: Maude strategy for normalization-via-µ-normalization

normal forms [86, Section 9]. In particular, normal forms can be obtained by
normalization-via-µ-normalization (see Figure 3). In Maude, the strategy lan-
guage [121] can be used to implement normµ as a Maude strategy defined by the
strategy module NORM_VIA_MUNORM (Figure 12). The main strategy component

sd norm_via_munorm := munorm ; try(decomp) .

specifies that norm_via_munorm consists of a sequence of two steps:

1. the computation of the µ-normal form u of the initial expression s, as the
repeated application of rules until no further steps can be issued

sd munorm := one(all) ! .

from which only one reduct is chosen, followed by
2. the (attempt of) decomposition of u to recursively apply norm_via_munorm

to s1, . . . , sk if u = f(s1, . . . , sk)21 (if u is a constant or a variable nothing
happens). Such a decomposition:

sd decomp := dsuc | dcons | drecip | dadd | ddbl | dhalf

| dsqr | dfirst | dterms .

21This description of normµ does not use the decomposition u = C[s1, . . . , sn] of the com-
puted µ-normal forms u as for the maximal replacing context C[ ] = MRCµ(u) to jump into
maximal frozen parts s1, . . . , sn. The equivalent decomposition u = f(s1, . . . , sn) permits a
simpler implementation which avoids the detection of the entire maximal replacing contexts.
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is a disjunction of matchrew operators with patterns f(x1, . . . , xk) for each
k-ary function symbol f (with k > 0) to extract the immediate subterms
to feed norm_via_munorm again. Generically, each disjunctive component
df of decomp is defined as follows:

sd df = matchrew f(x1, . . . , xk) by
x1 using norm_via_munorm, . . . , xk using norm_via_munorm

If R is left-linear, µ ∈ CMR and R is confluent and µ-terminating, then
normµ(s) obtains the normal form of any normalizing term s, see [86, Section
9]. For R in Example 1, we can use norm_via_munorm to obtain the first 4
components of the sequence approximating π2/6, using command dsrew:

Maude> dsrew first(s(s(s(s(0)))),terms(s(0)))

using norm_via_munorm .

dsrewrite in NORM_VIA_MUNORM :

first(s(s(s(s(0)))), terms(s(0))) using norm_via_munorm .

Solution 1

rewrites: 73 in 1ms cpu (2ms real) (45653 rewrites/second)

result S: recip(s(0)) : (recip(s(s(s(s(0)))))

: (recip(s(s(s(s(s(s(s(s(s(0))))))))))

: (recip(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))))

: nil)))

No more solutions.

rewrites: 73 in 1ms cpu (2ms real) (42690 rewrites/second)

where the obtained expression represents the expected list [ 1
1 ,

1
4 ,

1
9 ,

1
16 ]. Using

meta-level features of Maude 3.0 [22, Section 8], Rubén Rubio has developed
a transformation which automatically constructs the norm-via-munorm strat-
egy for any Maude functional or system module and permits a direct use of
normalization-via-µ-normalization for a given initial expression, see

http://maude.ucm.es/strategies/examples/munorm.maude

10.3. Termination of OBJ programs

Since the reduction relation of TRS-like OBJ programs is included in the
corresponding one-step µ-rewrite relation (see Remark 7), termination of (in-
nermost) CSR provides a sufficient (and necessary, for Maude system modules)
termination criterion [80, 81]; also [41, 42, 52]. In [26, 23, 88] a sequence of
theory transformations is used to bridge the gap between termination of Maude
programs and termination of CSR. In this setting, given a membership equa-
tional program P, a CS-TRS (RP , µP) is obtained whose termination implies
that of P.

Remark 8. The replacement restrictions in µP are (partly) due to the defini-
tion of the transformation itself. Thus, the replacement restrictions are actually
part of the appropriate definition of the transformation.
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Further developments are reported in [25]. An important outcome of this re-
search was the development of the Maude Termination Tool (MTT [24]). The
tool transforms Maude programs into CS-TRSs and uses mu-term and AProVE
as backends to obtain proofs of termination of the program. More information,
examples of use, and benchmarks can be found here:

http://www.lcc.uma.es/~duran/MTT

Example 31. The frozenness annotations in ExSec11_1_Luc02 make it termi-
nating. Also, the E-strategy in InfListsAndTake makes it terminating. Both
claims can be automatically proved by using MTT.

10.4. Analysis of (behavioral) CafeOBJ specifications

CafeOBJ behavioral specifications are modules that contain a special sort H
(the hidden sort) and associated operation symbols called behavioral operation
symbols [105, Section 4]. Sorts that are not hidden are called visible, and V is the
set of visible sorts. Behavioral operation symbols are required to have exactly
one hidden sort in their arguments, i.e., if f : s1 × · · · × sk → s is behavioral
(denoted f ∈ Σb), then one and only one of the si belongs to H. The central
concept in behavioral specification is behavioral equivalence, which is defined
by the notion of behavioral context. A context C[ ]p is said to be behavioral
if all symbols in the path above position p are behavioral. The context is
called visible if its sort is in V. Then, given a sorted Σ-algebra A = (A,ΣA),
where A is an S-indexed set A = {As | s ∈ S}, two elements a, a′ ∈ As are
behaviorally equivalent (written a ∼ a′) if they are not distinguished by any
behavioral operation symbol, i.e., [[C[a]]]A = [[C[a′]]]A for all visible behavioral
contexts C[ ] [105, Definition 29]. Then, the authors call a non-behavioral
symbol f : s1 × · · · × sk → s to be behaviorally coherent for a model A of a
given behavioral specification if for all ~a,~b with ai, bi ∈ Asi for all 1 ≤ i ≤ k,

ai, bi ∈ Asi are such that ai ∼ bi, then [[f(~a)]] ∼ [[f(~b)]] [105, Definition 31]. [105,
page 566] defines a replacement map µBC and proves that µBC-normalization
and, in particular, µBC-termination of the behavioral specification can be used
to check behavioral coherence of CafeOBJ specifications [105, Theorem 47] and
[105, page 572].

10.5. Use of CSR to model π-calculus in Maude

Milner’s π-calculus [97, 98, 99] is a computational scheme which models
concurrency. The set P of processes P ∈ P is defined by: P ::= Σi∈Iπi.Pi | (P |
Q) | !P | (νx)P , where πi ::= x(y) | xy, for x, x, y ∈ X (a set of names),
represents the basic communication actions: input (x(y)) and output (xy)); and
the process constructors are ‘|’ (parallelism), ‘!’ (replication), νx (restriction)
and ‘+’ (nondeterministic choice). Some expressions are identified by means of
a congruence ≡ on P. The transition relation → ⊆ P × P that formalizes the
reduction process is defined by the axiom (COMM) and the rules below [97]:

COMM:(· · ·+ x(y).P ) | (· · ·+ xz.Q)→ P [z/y] | Q
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PAR:
P → P ′

P | Q→ P ′ | Q RES:
P → P ′

(νx)P → (νx)P ′

STRUCT:
Q ≡ P, P → P ′, P ′ ≡ Q′

Q→ Q′

Note the absence of context-passing rules for replication (!) and choice (+).
Thatti, Sen, and Mart́ı-Oliet describe an executable specification of the opera-
tional semantics of an asynchronous version of the π-calculus in Maude [127]. In
their specification, each of the non-constant syntax constructors is declared as
frozen, so that the corresponding arguments cannot be rewritten by rules [127,
page 264]. This is necessary, not only to faithfully represent the operational
semantics of the calculus (see [127, Table 2]) but also to avoid the ill-formed
terms, see [127, Section 3].

10.6. Use of eager and lazy rewrite rules in Real-Time Maude

Ölveczky and Meseguer have shown how to use replacement restrictions to
implement eager and lazy rewrite rules in real-time and hybrid systems in rewrit-
ing logic [118]. Eager and lazy rewrite rules were introduced in [117] to model
urgency by letting the application of eager rules take precedence over the appli-
cation of lazy tick rules that model the elapse of time on a system [117, Section
2.2]. In [118], taking benefit from replacement restrictions in Maude (see Section
3), a new encoding of eager and lazy rules is provided so that there is no need
to treat them asymmetrically, in an ad-hoc manner, in the implementation of
Real-Time Maude 2.1 [118, Section 3.2].

11. Conclusions

We have given an overview on applications and extensions of CSR reported
by several authors during the last 20 years. Such applications and extensions
come from quite different subfields of term rewriting and rewriting-based pro-
gramming languages: termination analysis and strategies, conditional rewriting,
productivity, computational complexity, etc. We made an effort to use a uni-
form notation for material coming from different authors, and also to introduce
unifying approaches hopefully helpful to draw connections among apparently
disconnected fields. We clarify some insufficiently discussed aspects of the con-
sidered applications and extensions.

We also provide some new results (marked with (?)), in particular, Propo-
sition 1 shows that proving µU -termination of U(R) improves on just proving
termination of U(R) when trying to prove operational termination of CTRSs
R. Theorem 8 provides a new criterion of (non-)confluence for CTRSs by using
transformation U while Theorem 15 provides a new criterion of confluence for
CS-CTRSs by using transformation Uopt . We plan to implement them in the
near future. Also, examples are given to illustrate the use or relevance of the
different applications or results gathered in the paper. Many of them come from
the literature, although in most cases we extended their scope in some way. For
instance, the program in Figure 1 is an excerpt of a TRS in [82, Section 11.1],
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but its use as a Maude system module is new (in [86] the same TRS was handled
as a Maude functional module). Other examples are new (e.g., Examples 5, 14,
15, 16, 21, 28, and 32). Besides, Remark 5 stresses how Hirokawa and Moser
provided, as a ‘side effect’ of their work on runtime complexity of TRSs, the
first results regarding runtime complexity (bounds) for CSR.

There also are new contributions to the use of CSR in rewriting-based lan-
guages like Maude, with the development of an implementation of normalization-
via-µ-normalization using Maude’s strategy language (see Section 10.2), and also
showing the use of replacement maps in Maude system modules, both for rewrit-
ing (Section 3) and narrowing (Section 8.4).

11.1. Future work

Regarding possible avenues of further research and cross-fertilization, sev-
eral paragraphs in the development point to underexplored aspects deserving
further research (e.g., the analysis of operational termination of CS-CTRSs us-
ing dependency pairs, the analysis of confluence of CS-CTRSs, termination of
AC-CS-TRSs using dependency pairs, etc.). Also, Section 10 discusses a number
of applications of the theory of CSR in the analysis of sophisticated program-
ming languages in use like CafeOBJ and Maude. Programs in such languages are
more sophisticated than TRSs and many of their features may concern correct-
ness and completeness of computations in ways not sufficiently covered by the
current theory of CSR, which essentially focuses on TRSs. For instance, in Sec-
tion 8.1 we discuss the mismatch between the canonical replacement map and
the use of conditional rules, that leads to ‘bad’ properties of ENF s like not being
head-normal forms. A partial solution has been provided for normal CTRSs,
but how to obtain normal forms in this setting? Is there a normalization-
via-µ-normalization process that applies? These are subjects deserving further
research. Also, sort information could be used to improve the definition of
canonical replacement maps in sorted TRSs and Maude programs to guarantee
good computational properties.

Example 32. Consider the Maude functional module in Figure 11. Although
the E-strategy ξ forbids reductions on the first argument of take and µξ /∈ CMR,
calls to take can be completely evaluated. This is because there is no equation
associated to any function of sort Nat. Thus, reductions on the first argument
of take are actually impossible (rather than forbidden!). Also, the program is
completely defined due to the sort discipline.

Again, these issues deserve further investigation. Since modern rewriting-based
programming languages like CafeOBJ and Maude often combine these features
(and more), this brief discussion shows that more research is necessary to provide
more appropriate support of context-sensitivity in such computational settings.
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for A OR C -Termination. In: Ölveczky, P. C. (Ed.), Rewriting Logic
and Its Applications - 8th International Workshop, WRLA 2010, Held as
a Satellite Event of ETAPS 2010, Paphos, Cyprus, March 20-21, 2010,
Revised Selected Papers. Vol. 6381 of Lecture Notes in Computer Science.
Springer, pp. 35–51.

[5] Alpuente, M., Escobar, S., Gramlich, B., Lucas, S., 2002. Improving On-
Demand Strategy Annotations. In: Baaz, M., Voronkov, A. (Eds.), LPAR.
Vol. 2514 of Lecture Notes in Computer Science. Springer, pp. 1–18.

[6] Alpuente, M., Escobar, S., Gramlich, B., Lucas, S., 2010. On-demand
strategy annotations revisited: An improved on-demand evaluation strat-
egy. Theor. Comput. Sci. 411 (2), 504–541.

[7] Andrianarivelo, N., Pelletier, V., Réty, P., 2017. Transforming Prefix-
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[23] Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X., 2008. Proving
operational termination of membership equational programs. High. Order
Symb. Comput. 21 (1-2), 59–88.

[24] Durán, F., Lucas, S., Meseguer, J., 2008. MTT: The Maude Termination
Tool (System Description). In: Armando, A., Baumgartner, P., Dowek, G.
(Eds.), Automated Reasoning, 4th International Joint Conference, IJCAR
2008, Sydney, Australia, August 12-15, 2008, Proceedings. Vol. 5195 of
Lecture Notes in Computer Science. Springer, pp. 313–319.

[25] Durán, F., Lucas, S., Meseguer, J., 2009. Methods for Proving Termi-
nation of Rewriting-based Programming Languages by Transformation.
Electr. Notes Theor. Comput. Sci. 248, 93–113.

[26] Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X., 2004. Proving
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Appendix A. Proof of µU -termination of U(R) in Example 7

Although AProVE and mu-term can be used for proving termination of
CSR, we failed to obtain an automatic proof of µU -termination of U(R) in
Example 7 with µU in Example 11 by using the available versions of the tools.
For this reason, in this appendix we develop a semi-automatic proof based on
some recent developments.

First, according to [2], the µU -termination of U(R) is equivalent to the ab-
sence of infinite chains of context-sensitive dependency pairs (CSDPs). For
(U(R), µU ), we have the following CSDPs:

G(x) → U ](f(x), x) (A.1)

G(x) → F(x) (A.2)

U ](x, x) → G(a) (A.3)

U ](x, x) → A (A.4)

which are obtained by just collecting in DP(R, µ) (the set of CSDPs for R),
a rule `] → s] for each ` → r ∈ U(R), where s is an active subterm of r
with root(s) ∈ D and for all terms t = f(t1, . . . , tk), t] denotes the marking
of t as f ](t1, . . . , tk) (i.e., only the root symbol f is marked in t). Note that
the marked versions f ] of symbols f ∈ D (often just capitalized: F instead
of f ]) are assumed to be different from any other symbol in F (or previously
introduced by marking).

Now, a chain of dependency pairs is a (finite or infinite sequence) (ui →
vi)i≥1 where ui → vi are renamed versions of CSDPs DP(R, µ) so that, for all
i, j with i 6= j, Var(ui) ∩ Var(uj) = ∅. Furthermore, there is a substitution σ
such that, for all i ≥ 1, σ(vi) ↪→∗R σ(ui+1).22

A proof of µ-termination using CSDPs typically starts with the construction
of the context-sensitive dependency graph which is a graph DG(R, µ) whose
nodes are the elements of DP(R, µ).

22These are simplified definitions of CSDPs and chains of CSDPs which nevertheless suffice
to deal with our simple example. Further details can be found in [2].
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Example 33. The set of nodes of DG(U(R), µU ) is {(A.1), (A.2), (A.3), (A.4)}.

There is an arc from u → v ∈ DP(R, µ) to (a renamed version) u′ → v′ of a
pair in DP(R, µ) iff (i) Var(u) ∩ Var(u′) = ∅ and (ii) σ(v) ↪→∗ σ(u′) for some
substitution σ.

Example 34. There is an arc from (A.3) to (A.1) (and (A.2)) because v(A.3) =
G(a) is an instance of G(x) = u(A.1) = u(A.2) with σ(x) = a. Thus, we have
σ(v(A.3)) = G(a)) = σ(u(A.1)) = σ(u(A.2)).

However, there is no arc from (A.2) to any other node in the graph because
no lhs u in a CSDP u → v is rooted with F and the symbol F in the right-
hand side of (A.2) cannot be changed by rewritings with R as it is not in the
signature F of R (marked symbols f ] are different from any other symbol in F).
Similarly, there is no arc from (A.4) to any other node in DG(U(R), µU ).

The graph is intended to represent chains of CSDPs as paths in the graph.
An important fact is that the absence of cycles in DG(R, µ) implies the µ-
termination of R. Thus, what we do in the following is just showing that
there is no cycle in DG(U(R), µU ). In Example 34 we have enumerated all arcs
outcoming from (A.2), (A.3), and (A.4). Regarding (A.1), we need to consider
the following feasibility goal [59]:

U ](f(x), x) ↪→∗ U ](y, y) (A.5)

whose infeasibility can be automatically proved by using the tool infChecker. If

we obtain a model A of the theory U(R)µU associated to (U(R), µU ), see Section
3, together with ¬(∃x, y) U ](f(x), x) ↪→∗ U ](y, y), i.e., if

A |= U(R)µU ∪ {¬(∃x, y) U ](f(x), x) ↪→∗ U ](y, y)}

holds for some structure A, then (A.5) is infeasible [59]. The following model
is obtained by infChecker: the domain is A = Z; for function and predicate
symbols we have:

aA = −1 bA = 0 fA(x) = x+ 1

gA(x) = 0 uA(x, y) = 0 UA(x, y) = x− y

x(→R)Ay⇔ y ≥ x ∧ x+ 1 ≥ y x(→∗R)Ay⇔ y ≥ x

This witnesses that there is no arc from (A.1) to any other node. Overall,
DG(U(R), µU ) is as follows:

A.1 A.2

A.3A.4

Since there is no cycle in DG(U(R), µU ), we conclude µU -termination of U(R).
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