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Event structure semantics of (controlled) reversible CCS
Eva Graversen, Iain Phillips, Nobuko Yoshida

Imperial College London

Abstract

CCSK is a reversible form of CCSwhich is causal, meaning that actions can be reversed
if and only if each action caused by them has already been reversed; there is no control
on whether or when a computation reverses. We propose an event structure semantics
for CCSK. For this purpose we define a category of reversible bundle event structures,
and use the causal subcategory to model CCSK. We then modify CCSK to control the
reversibility with a rollback primitive, which reverses a specific action and all actions
caused by it. To define the event structure semantics of rollback, we change our re-
versible bundle event structures by making the conflict relation asymmetric rather than
symmetric, and we exploit their capacity for non-causal reversibility.
Keywords: Reversible Computations, CCS, Event Structures, Static Reversibility,
Denotational Semantics

1. Introduction

Reversible process calculi have been studied in works such as [7, 9, 11, 18, 19, 26].
One feature of such reversible processes compared to forward-only processes is their
sensitivity to true concurrency distinctions [25]. For instance, using CCS notation, the
processes a|b and a.b+ b.a, which are respectively a parallel composition and a choice
between two orderings of events, are equivalent under interleaving semantics; however
in a reversible setting we can distinguish them by noting that a|b allows us to perform a
followed by b and then to reverse a, which is impossible for a.b + b.a. This motivates
us to use event structures [24] to formulate a truly concurrent semantics of a reversible
process calculus.

Two reversible forms of CCS have been proposed, both using uncontrolled reversibil-
ity: RCCS [9] andCCSK [26]. RCCS creates separatememories to store past (executed)
actions, what is known as dynamic reversibility, while CCSK annotates past actions
with keys within the processes themselves, known as static reversibility. We formulate
an event structure semantics for CCSK rather than RCCS, since the semantics for past
and future actions can be defined in a similar manner, rather than having to encompass
both processes and memories. We note that Lanese et al. [16, 22] showed that RCCS
and CCSK can be encoded in one another, meaning one can use their encoding in con-
junction with our event structure semantics to obtain an event structure semantics for
RCCS.
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Event structures are a model of true concurrency and have been used for modelling
forward-only process calculi [3, 6, 31]. Describing reversible processes as event struc-
tures gives us a simple representation of the causal relationships between actions and
also yields equivalences between processes which generate isomorphic event structures.
True concurrency in semantics is particularly important in reversible process calculi, as
the order actions can reverse in depends on their causal relations rather than how the
parallel actions interleave [25]. Knowing the causal relationships between actions in
concurrent processes is also important when using causal-consistent debugging [20] to
find bugs created by interactions between processes.

Cristescu et al. [8] used rigid families [4], related to event structures, to describe
the semantics of R� [7]. However, their semantics requires a process to first reverse all
actions to find the original process, map this process to a rigid family, and then apply
each of the reversed memories in order to reach the current state of the process. Aubert
and Cristescu [1] used a similar approach to describe the semantics of RCCS processes
without auto-concurrency, auto-conflict, or recursion as configuration structures. By
contrast, we map a CCSK process (with auto-concurrency, auto-conflict, and recur-
sion) with past actions directly to a (reversible) event structure in a strictly denotational
fashion.

Reversible forms of prime [27], asymmetric [27], and general [29] event struc-
tures have already been defined, but the usual way of handling parallel composition of
forward-only prime (PES) and asymmetric event structures (AES) [30] does not trans-
late into a reversible setting, and general event structures are far more expressive than is
necessary for modelling reversible CCSK.We also considered using a reversible variant
of flow event structures [3], but found that the additional expressiveness of flow event
structures was unnecessary, and in fact created problems when it came to defining a cat-
egory of the forward-only flow event structures [5]. We therefore chose to use bundle
event structures (BESs) [21].

BESs were created with the specific purpose of allowing the same event to have
multiple conflicting causes, thereby making it possible to model parallel composition
without creating multiple copies of events. They do this by associating events with
bundles of conflicting events, X ↦ e, where in order for event e to happen one of the
events of X must have already happened.

This approach can be used for modelling cases such as Example 1.1 below, where
an action a has multiple options for synchronisation, either of which would allow the
process to continue with the action b. If we model each synchronisation or lack thereof
as a separate event then we clearly need to let b have multiple possible causes, which
we can accomplish using BESs, but not using PESs. Having multiple copies of events
depending on which causes we use is not possible in a reversible PES, as we do not
know when performing an event what will cause it to reverse. If in Example 1.1 instead
(the event labelled) b can reverse only from configurations containing either a or �, we
can have a situation where we do not have a or � in the configuration we want to add b
to, and then we do not know whether to add the b that can reverse when a is present or
the b that can reverse when � is present. In a reversible setting, bundles therefore not
only simplify our event structures, but become necessary when we have events causing
each other to reverse.
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a � a

Figure 1: The event structure described in Example 1.1.

Example 1.1 (Process represented as a BES). The CCS process a.b ∣ a can be described
by a BES with the events a, �, a, b, the bundle {a, �} ↦ b, and the conflicts a ♯ � and
a ♯ � as seen in Figure 1 where a dashed line indicates conflict and connected arrows
indicate a bundle. The process cannot be represented by a PES or AES without splitting
some events into multiple events, due to b having multiple possible causes.

We therefore define a category of reversible BESs (RBESs) in Section 3. Since
the reversibility allowed in CCSK (as in RCCS) is causal, meaning that actions can
be reversed if and only if every action caused by them has already been reversed, we
use the causal subcategory of RBESs for defining a denotational semantics of CCSK in
Section 4.

Causal reversibility has the drawback of allowing a process to get into a loop doing
and undoing the same action indefinitely; there is no control on whether or when a
computation reverses. We modify CCSK to control reversibility by adding the rollback
introduced for roll-� in [17]. In Roll-CCSK every action receives a tag 
 , and the
process only reverses when reaching a roll 
 primitive, upon which the action tagged
with 
 , together with all actions caused by it, are reversed. As in roll-�, the rollback in
Roll-CCSK ismaximally permissive, meaning that any subset of reached rollbacks may
be executed, even if one of them rolls back the actions leading to another.

The operational semantics of rollback works somewhat differently in Roll-CCSK
from roll-�, since roll-� has a set of memories describing past actions in addition to
a �-calculus process, while CCSK has the past actions incorporated into the structure
of the process, meaning that it is harder to know whether one has found all the actions
necessary to reverse. Since roll-� is based on higher order-�, it can create recursion by
sending processes. Roll-CCSK on the other hand has explicit recursion, and therefore
needs to use bindings on tags to avoid ambiguity about which tag a roll is associated
with.

As in roll-�, we also describe a more distributed semantics of rollback. This ver-
sion of the semantics reverses each action marked for rollback individually, rather than
performing the entire roll in one step. However, unlike roll-�, we mark all past actions
in one step. We do this because propagating a marking of past actions would otherwise
require the action being marked to be able to look at previous actions further back in
the structure of the process to find markings it can propagate. In roll-� this is not an
issue, since one has a set of parallel memories all at the same level, which can easily
be compared to find out which order they are in. We describe both of these operational
semantics of Roll-CCSK in Section 6.

Rollback has also been defined for �KLAIM, a tuple-based language with shared
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Figure 2: Event structure and configuration system categories and the functors between them. The categories
RBES and REBES are new to this work, along with the functors to and from them. While BESs and EBESs
are not new to this work, the morphisms in the categories BES and EBES and the functors going to and from
them are. The remaining categories and functors were defined in [15].

memory [13]. This was done similarly to roll-�, giving the locations of shared mem-
ories keys, which change when a process interacts with the location. Another variant
of CCS with rollback, CCSroll was defined in [23]. CCSroll, like roll-�, has memories
in parallel with the process and equips the process with an ordering of keys, which
it uses to determine which actions have been caused by the action being rolled back.
This makes the semantics less compositional than Roll-CCSK. The causal-consistent
reversible debugger for Erlang, CauDEr [20], allows the user to roll back not only to a
checkpoint, but to other past events such as receiving or sending a specific message.

Once a roll 
 event has happened, we need to ensure that not only are the events
caused by the 
-tagged action a
 able to reverse, but they cannot re-occur until the
rollback is complete, at which point the roll 
 event is reversed. This requires us to
model asymmetric conflict between roll 
 and events caused by a
 (apart from roll 

itself). Asymmetric conflict is allowed in extended BESs (EBESs) [21]. We define a
category of reversible EBESs (REBESs) in Section 5 and use them to give an event
structure semantics of rollback in Section 7. Note that we do not restrict ourselves to
the causal subcategory of REBESs, since reversibility in Roll-CCSK is not necessarily
causal: an action a
 tagged with 
 is a cause of roll 
 , but we want a
 to reverse before
roll 
 does.
Outline. Section 2 recalls CCSK. Section 3 describes (reversible) bundle event struc-
tures and their categories. Section 4 defines the event structure semantics of CCSK.
Section 5 describes (reversible) extended bundle event structures. Section 6 defines
Roll-CCSK, a version of CCSK where reversibility is controlled by rollback, and its
operational semantics, and Section 7 uses reversible extended bundle event structures
to describe the event structure semantics of Roll-CCSK.
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Changes from conference version [14].

• We include proofs of all results.
• Sections 3 and 5 include categorical definitions of the forward-only bundle and

extended bundle event structures.
• Sections 3 and 5 include functors between the newly introduced categories and

their forward-only counterparts and between RBES and REBES and other cate-
gories of reversible event structures introduced in [15] creating the categories of
reversible event structures and functors between them shown in Figure 2.

• Section 2 includes Proposition 4.8 showing that our ordering on event structures
is a complete partial order and Lemmas 4.9, 4.10, 4.11, and 4.12 showing that
the operations we define on the event structures are monotonic.

• Section 5 includes full definitions of REBES-morphisms, a functor fromREBES
to CS, and causal and cause-respecting REBESs. It also includes characterisa-
tions of products and coproducts of REBESs.

• We correct Definitions 6.1 and 6.2 so that they deal with keys rather than tags,
as tags are not necessarily unique. As a consequence we change rollbacks to be
performed on tags after they find their associated action and therefore do not need
the concept of bound tags.

• We add a more distributed small-step variant of the rollback semantics to Sec-
tion 6. This semantics marks all the actions needing to be reversed and afterwards
reverses them individually, rather than reversing them all at once when the roll-
back is performed. While the marked actions are being reversed, subprocesses
not preceded by marked actions can continue to perform forward actions.

• Section 7 includes intermediate results Lemmas 7.17 and 7.18.
• We have added Examples 3.5, 3.22, 3.26, 6.3, 6.7, 6.14, 7.2, and 7.5.

2. CCSK

CCSK was defined in [26], and distinguishes itself from most reversible process
calculi by retaining the structure of the process when actions are performed, and an-
notating past actions with keys instead of generating memories. This means we get
a.P ∣ a.Q

�[n]
←←←←←←←←←←←←←←←→ a[n].P ∣ a[n].Q, with the shared key n denoting that a and a have

previously communicated, and we therefore cannot reverse one without reversing the
other.

We call the set of action of CCSK  and let a, b, c range over , �, � range over
 ∪, and � range over  ∪ ∪ {�}. We let  be an infinite set of communication
keys and let m, n range over .

CCSK then has the following syntax, very similar to CCS:
P ∶∶= �.P ∣ �[n].P ∣ P0 + P1 ∣ P0|P1 ∣ P ⧵ A ∣ P [f ]
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Here P ⧵A restricts communication on actions inA∪A and P [f ] applies a function
f ∶  →  to the labels of transitions performed by P .

Table 1 shows the forwards rules of the operational semantics of CCSK. As CCSK
is causal, the reverse rules can be derived from these. We use ⇝ to denote a reverse
action, std(P ) to denote that P is a standard process, meaning it contains no past actions,
keys(P ) to denote the set of keys used in P , and fsh[n](P ) to denote that the key n is
fresh for P . We use ↣ to denote that an action may be forwards or reverse. The rules
are slightly reformulated compared to [26] in that we use structural congruence ≡. The
rules for structural congruence are:

P ∣ 0 ≡ P P0 ∣ P1 ≡ P1 ∣ P0 P0 ∣ (P1 ∣ P2) ≡ (P0 ∣ P1) ∣ P2
P + 0 ≡ P P0 + P1 ≡ P1 + P0 P0 + (P1 + P2) ≡ (P0 + P1) + P2

We extend CCSK with recursion as follows. We add process constants A⟨

b̃
⟩, to-

gether with definitions A(ã) = PA, where PA is a standard process and ã is a tuple
containing the actions of PA. This leads us to expand our definition of structural con-
gruence with A⟨

b̃
⟩

≡ PA{b̃∕ã}.
Definition 2.1 (Reachability). A process P is reachable if there exists a standard pro-
cess Q such that Q ↣∗ P , and forwards-reachable if there exists a standard process Q
such that Q →∗ P .

Since CCSK is causal, all reachable processes are forwards-reachable ([26], Propo-
sition 5.15; the proof still applies with recursion added).
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std(P )

�.P
�[n]
←←←←←←←←←←←←←←←←→ �[n].P

P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ m ≠ n

�[n].P
�[m]
←←←←←←←←←←←←←←←←←←→ �[n].P ′

P ≡ Q
�[n]
←←←←←←←←←←←←←←←←→ Q′ ≡ P ′

P
�[n]
←←←←←←←←←←←←←←←←→ P ′

P0
�[n]
←←←←←←←←←←←←←←←←→ P ′0 fsh[n](P1)

P0 ∣ P1
�[n]
←←←←←←←←←←←←←←←←→ P ′0 ∣ P1

P0
�[n]
←←←←←←←←←←←←←←←←→ P ′0 P1

�[n]
←←←←←←←←←←←←←←←←→ P ′1

P0 ∣ P1
�[n]
←←←←←←←←←←←←←←←→ P ′0 ∣ P

′
1

P0
�[n]
←←←←←←←←←←←←←←←←→ P ′0 std(P1)

P0 + P1
�[n]
←←←←←←←←←←←←←←←←→ P ′0 + P1

P
�[n]
←←←←←←←←←←←←←←←←→ P ′ �, � ∉ A

P ⧵ A
�[n]
←←←←←←←←←←←←←←←←→ P ′ ⧵ A

P
�[n]
←←←←←←←←←←←←←←←←→ P ′

P [f ]
f (�)[n]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′[f ]

std(P )

�[n].P
�[n]

�.P

P
�[m]

P ′ m ≠ n

�[n].P
�[m]

�[n].P ′

P ≡ Q
�[n]

Q′ ≡ P ′

P
�[n]

P ′

P0
�[n]

P ′0 fsh[n](P1)

P0 ∣ P1
�[n]

P ′0 ∣ P1

P0
�[n]

P ′0 P1
�[n]

P ′1

P0 ∣ P1
�[n]

P ′0 ∣ P
′
1

P0
�[n]

P ′0 std(P1)

P0 + P1
�[n]

P ′0 + P1

P
�[n]

P ′ �, � ∉ A

P ⧵ A
�[n]

P ′ ⧵ A

P
�[n]

P ′

P [f ]
f (�)[n]

P ′[f ]

Table 1: Semantics of CCSK [28]
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3. Reversible Bundle Event Structures

In this section we define the reversible bundle event structures which we intend to
use for defining denotational true concurrency semantics of CCSK in Section 4. For
this we want a categorical definition, since we can use morphisms to determine rela-
tionships between the event structures generated by different processes and use prod-
ucts and coproducts to define parallel composition and choice operators. Forward-only
bundle event structures were introduced by [21], but have not yet been defined categor-
ically. We therefore start by giving a categorical formulation of bundle event structures
in Section 3.1 before moving on to reversible bundle event structures in Section 3.2.
3.1. Bundle event structures

Bundle event structures (BES) (Definition 3.1) extend prime event structures by al-
lowing multiple possible causes for the same event. They do this by replacing the causal
relation with a bundle set, so that if X ↦ e then one of the events in X must have hap-
pened before e can happen. This gives us the configurations described in Definition 3.3.

Definition 3.1 (Bundle Event Structure [21]). A bundle event structure (BES) is a
triple  = (E,↦, ♯) where:

1. E is the set of events;
2. ♯ ⊆ E × E is the irreflexive and symmetric conflict relation;
3. ↦ ⊆ 2E ×E is the bundle set, satisfyingX ↦ e ⇒ ∀e1, e2 ∈ X.(e1 ≠ e2 ⇒ e1 ♯
e2).

BESs allow events to have infinitely many causes, as there is no limit on the number
of bundles per event, which enables them to model certain behaviours that general event
structures cannot. We therefore define a subcategory of finitely caused bundle event
structures in Definition 3.2, which can be modelled by general event structures.
Definition 3.2 (Finitely Caused Bundle Event Structure). A finitely caused BES
(FCBES) is a BES  = (E,↦, ♯) where for any e ∈ E, {X ⊆ E ∣ X ↦ e} is finite.
Definition 3.3 (BES configuration [21]). Given a BES  = (E,↦, ♯), a configuration
of  is a set X ⊆ E such that:

1. X is conflict-free, that is, no events e, e′ ∈ X exist such that e ♯ e′;
2. there exists a sequence e1,… , en (n ≥ 0), such that X = {e1,… , en} and for all
i, 1 ≤ i ≤ n, if Y ↦ ei+1 then {e1,… , ei} ∩ Y ≠ ∅.

A category of BESs has not, to our knowledge, been defined, and so we define a BES
morphism in Definition 3.4. We want to say that the events of E0 can behave the same
way as those they synchonise with in E1, but the bundle sets mean this is somewhat
harder to describe than in other event structures. If we said that f (X) ↦ f (e) implies
X ↦ e, we would be requiring X′ ↦ e for every X′ = X ∪ X′′ where e ∈ X′′ ⇒
f (e) = ⊥, and by extension e ♯ e′ if f (e) = f (e′) = ⊥. As this is not what we want, we
instead adopt the constraint seen in Definition 3.4.
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∅

{a} {c}

{a, b} {b, c}

0

∅

{a′}

{a′, b′}

1

Figure 3: The configurations of the BESs discussed in Example 3.5.

Definition 3.4 (BES morphism). Given BESs 0 = (E0,↦0, ♯0) and 1 = (E1,↦1
, ♯1), a BES morphism from 0 to 1 is a partial function f ∶ E0 → E1 such that for all
e, e′ ∈ E0:

1. if f (e) ♯1 f (e′) then e ♯0 e′;
2. if f (e) = f (e′) ≠ ⊥ and e ≠ e′ then e ♯0 e′;
3. for X1 ⊆ E1 if X1 ↦1 f (e) then there exists X0 ⊆ E0 such that X0 ↦0 e,
f (X0) ⊆ X1, and if e′ ∈ X0 then f (e′) ≠ ⊥.

Example 3.5 (BES morphism). Consider the two BESs 0 = (E0,↦0, ♯0) and 1 =
(E1,↦1, ♯1) where E0 = {a, b, c}, a ♯ c and {a, c} ↦ b, and E1 = {a′, b′} and
{a′} ↦ b′, with the configurations seen in Figure 3, where an arrow from X to X′

indicates that X contains an event from every bundle associated with the events in
X′ ⧵X and X ∪X′ is conflict-free.

We can define morphisms f from 0 to 1 and f ′ from 1 to 0 as

f (e) =
{

a′ if e ∈ {a, c}
b′ if e = b

f ′(e) =
{

a if e = a′

b if e = b′

We show that BES morphisms preserve configurations.
Proposition 3.6. Given BESs 0 = (E0,↦0, ♯0) and 1 = (E1,↦1, ♯1) and a morphism
f ∶ E0 → E1, if X ⊆ E0 is a configuration of 0, then f (X) is a configuration of 1.

Proof. We show that f (X) fulfils the conditions of Definition 3.3:
1. For any e, e′ ∈ X0, if f (e) ♯1 f (e′), then e ♯0 e′, and therefore if X0 is conflict-free then f (X0) is conflict-free.
2. There exists a sequence e1,… , en (n ≥ 0), such that X0 = {e1,… , en} and for

all i, 1 ≤ i ≤ n, if Y ↦ ei+1 then {e1,… , ei} ∩ Y ≠ ∅. Obviously f (X0) =
{f (e1),… , f (e0)}, and for all i, if Y1 ↦ f (ei+1), then there exists Y0 such that
Y0 ↦ ei+1, f (Y0) ⊆ Y1, and if e′ ∈ Y0, then f (e′) ≠ ⊥. Since Y0 ∩ {e1,… , ei} ≠
∅, we obviously get that Y1 ∩ {f (e1),… , f (ei)} ≠ ∅.

Proposition 3.7. BES consisting of BESs and BES morphisms is a category.
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Proof. Composition of partial functions is associative and f (e) = e functions as an
identity arrow, and so we need only show that the morphisms are composable:

If 0 = (E0,↦0, ♯0), 1 = (E1,↦1, ♯1), and 2 = (E2,↦2, ♯2) are BESs and
f ∶ E0 → E1 and g ∶ E1 → E2 are morphisms, we show that f◦g ∶ E0 → E2 is alsoa morphism:

1. If g(f (e)) ♯2 g(f (e′)) then f (e) ♯1 f (e′), and therefore e ♯0 e′.
2. If g(f (e)) = g(f (e′)) and e ≠ e′, then either f (e) = f (e′), in which case e ♯0 e′,or f (e) ≠ f (e′), in which case f (e) ♯1 f (e′), and therefore e ♯0 e′.
3. If X2 ↦2 g(f (e)) then there exist X1 ⊆ E1 and X0 ⊆ E0 such that X1 ↦1 f (e),
X0 ↦0 e, g(X1) ⊆ X2, f (X0) ⊆ X1 and if e1 ∈ X1 then g(e1) ≠ ⊥ and if
e0 ∈ X0 then f (e0) ≠ ⊥. This means that g(f (X0)) ⊆ X2, and if e0 ∈ X0 then
g(f (e0)) ≠ ⊥.

We also construct a product in this category in Definition 3.8. Having products in
our categories is useful for defining parallel composition in our semantics.
Definition 3.8 (BES product). Given BESs 0 = (E0,↦0, ♯0) and 1 = (E1,↦1, ♯1),we construct 0 × 1 = (E,↦, ♯) with projections �0, �1 where:

1. E = E0×∗E1 = {(e, ∗) ∣ e ∈ E0}∪{(∗, e) ∣ e ∈ E1}∪{(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. for (e0, e1) ∈ E, �i(e0, e1) = ei;
3. for any e ∈ E, X ⊆ E, X ↦ e iff there exists i ∈ {0, 1} and Xi ⊆ Ei such that
Xi ↦ �i(e) and X = {e′ ∈ E ∣ �i(e′) ∈ Xi};

4. for any e, e′ ∈ E, e ♯ e′ iff there exists i ∈ {0, 1} such that �i(e) ♯i �i(e′), or
�i(e) = �i(e′) ≠ ⊥ and �1−i(e) ≠ �1−i(e′).

Example 3.9 (Product). Consider the BESs 0 with events a, b and 1 with event c
such that {a} ↦ b. Then 0 × 1 has the bundles {(a, ∗), (a, c), } ↦ (b, ∗) and {(a, ∗
), (a, c), } ↦ (b, c) and conflict (a, ∗) ♯ (a, c), (b, ∗) ♯ (b, c), (∗, c) ♯ (a, c), (∗, c) ♯ (b, c),
and (a, c) ♯ (b, c).

Proposition 3.10. Given BESs 0 = (E0,↦0, ♯0) and 1 = (E1,↦1, ♯1), we have that
0 × 1 = (E,↦, ♯) is their product in the category BES.

Proof. We define f as f (e) = (f0(e), f1(e)) and prove that f , �0, and �1 are morphisms
in Appendix B.1.
Proposition 3.11. Given FCBESs 0 and 1, we have that 0 × 1 is a FCBES.

Proof. We say that 0 = (E0,↦0, ♯0) and 1 = (E1,↦1, ♯1).For any (e0, e1) ∈ E, clearly {X ⊆ E ∣ X ↦ (e0, e1)} = {{e′ ∈ E ∣ �0(e′) ∈
X0} ∣ X0 ↦0 e0} ∪ {{e′ ∈ E ∣ �1(e′) ∈ X1} ∣ X1 ↦1 e1}, which is finite because
{X0 ∣ X0 ↦0 e0} and {X1 ∣ X1 ↦1 e1} are finite.

We construct a coproduct of BESs in Definition 3.12. We will later be able to use
the coproducts in our categories when modelling choices in CCSK.
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Definition 3.12 (BES coproduct). Given BESs 0 = (E0,↦0, ♯0) and 1 = (E1,↦1
, ♯1), we construct 0 + 1 = (E,↦, ♯) with injections �0, �1 where:

• E = {(0, e) ∣ e ∈ E0} ∪ {(1, e) ∣ e ∈ E1};
• for e ∈ Ej , �j(e) = (j, e) for j ∈ {0, 1};
• X ↦ (j, e) iff for all (j′, e′) ∈ X, j = j′ and �j(X)↦j e;
• (j, e) ♯ (j′, e′) iff j ≠ j′ or e ♯j e′.

Proposition 3.13. Given BESs 0 and 1, we have that 0 + 1 is their coproduct in
the category BES.

Proof. We define f as f (j, e) = fj(e) and prove that f , �0, and �1 are morphisms in
Appendix B.2.
Proposition 3.14. Given FCBESs 0 and 1, we have that 0 + 1 is a FCBES.

Proof. Follows straightforwardly from Definitions 3.2 and 3.12.
3.2. Reversible bundle event structures

We define reversible bundle structures (RBES) by extending the bundle relation to
map to reverse events, denoted e, and adding a prevention relation, such that if e ⊳ e′
then e′ cannot be reversed from configurations containing e. We use e∗ to denote either
e or e.
Definition 3.15 (Reversible Bundle Event Structure). An RBES is a 5-tuple  =
(E, F ,↦, ♯,⊳) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. the conflict relation, ♯ ⊆ E × E, is symmetric and irreflexive;
4. the bundle set, ↦ ⊆ 2E × (E ∪ F ), satisfies X ↦ e∗ ⇒ ∀e1, e2 ∈ X.e1 ≠ e2 ⇒
e1 ♯ e2 and for all e ∈ F , {e} ↦ e;

5. ⊳ ⊆ E × F is the prevention relation.
Definition 3.16 (Finitely Caused Reversible Bundle Event Structure). Afinitely
caused RBES (FCRBES) is an RBES  = (E, F,↦, ♯,⊳) where for any e∗ ∈ E ∪ F ,
{X ⊆ E ∣ X ↦ e∗} is finite.

Example 3.17 shows the configurations of an RBES. The configuration {b, c} is
reachable despite b being required for c to happen, and c being a possible cause of b.
In future examples we will leave out bundles on the form {e} ↦ e, since they can be
assumed to exist for any e ∈ F .
Example 3.17 (RBES). An RBES  = (E, F,↦, ♯,⊳)whereE = {a, b, c}, F = {a, b},
a ♯ c, {a, c} ↦ b, {b} ↦ c {a} ↦ a, {b} ↦ a, and {b} ↦ b, has the configurations
seen in Figure 4 where we use the dotted arrow to indicate a reverse bundle.

11



b

a

c

∅

{a} {b} {c}

{a, b} {b, c}

Figure 4: The configurations of the RBES described in Example 3.17.

Once again, in order to get a categorical definition of RBESs, we define a morphism
in Definition 3.18. It is very similar to Definition 3.4, and treats prevention in the same
way as conflict.
Definition 3.18 (RBES morphism). GivenRBESs 0 = (E0, F0,↦0, ♯0,⊳0) and 1 =
(E1, F1,↦1, ♯1,⊳1), an RBES morphism from 0 to 1 is a partial function f ∶ E0 →
E1 such that f (F0) ⊆ F1 and for all e, e′ ∈ E0:

1. if f (e) ♯1 f (e′) then e ♯0 e′;
2. if f (e) = f (e′) ≠ ⊥ and e ≠ e′ then e ♯0 e′;
3. for X1 ⊆ E1 if X1 ↦1 f (e)∗ then there exists X0 ⊆ E0 such that X0 ↦0 e∗,
f (X0) ⊆ X1, and if e′ ∈ X0 then f (e′) ≠ ⊥;

4. if f (e) ⊳1 f (e′) then e ⊳0 e′.
Proposition 3.19. RBES consisting of RBESs and RBES morphisms is a category.

Proof. Composition of partial functions is associative, and f (e) = e functions as an
identity arrow, and the morphisms are obviously composable.

As we did for BES, we construct a product of RBESs in Definition 3.20.
Definition 3.20 (RBES product). Given RBESs 0 = (E0, F0,↦0, ♯0,⊳0) and 1 =
(E1, F1,↦1, ♯1,⊳1), we construct 0 × 1 = (E, F,↦, ♯,⊳) with projections �0, �1where:

1. E = E0×∗E1 = {(e, ∗) ∣ e ∈ E0}∪{(∗, e) ∣ e ∈ E1}∪{(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. F = F0 ×∗ F1 = {(e, ∗) ∣ e ∈ F0} ∪ {(∗, e) ∣ e ∈ F1} ∪ {(e, e′) ∣ e ∈ F0 and e′ ∈
F1};

3. for (e0, e1) ∈ E, �i(e0, e1) = ei;
4. for any e∗ ∈ E ∪F , X ⊆ E, X ↦ e∗ iff there exists i ∈ {0, 1} andXi ⊆ Ei suchthat Xi ↦ �i(e)∗ and X = {e′ ∈ E ∣ �i(e′) ∈ Xi};
5. for any e, e′ ∈ E, e ♯ e′ iff there exists i ∈ {0, 1} such that �i(e) ♯i �i(e′), or
�i(e) = �i(e′) ≠ ⊥ and �1−i(e) ≠ �1−i(e′);

6. for any e ∈ E, e′ ∈ F , e ⊳ e′ iff there exists i ∈ {0, 1} such that �i(e) ⊲i �i(e′).
Proposition 3.21. Given RBESs 0 = (E0, F0,↦0, ♯0,⊳0) and 1 = (E1, F1,↦1, ♯1
,⊳1), we have that 0 × 1 is their product in the category RBES.

Proof. Similar to the proof of Proposition 3.10.
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∅

{a1} {b1} {c1}

{a1, b1} {b1, c1}

1

∅

{a0}

0

Figure 5: The configurations of the event structures discussed in Example 3.22.

Example 3.22. Consider the RBESs 0 = (E0, F0,↦0, ♯0,⊳0) and 1 = (E1, F1,↦1
, ♯1,⊳1) where E0 = F0 = {a0} and E1 = {a1, b1, c1}, F1 = {a1, b1}, a1 ♯1 c1,
{a1, c1} ↦1 b1, and {c1}↦1 b1, with the configurations seen in Figure 5.

Then 0 × 1 = (E, F,↦, ♯,⊳) where
E = {(a0, ∗), (a0, a1), (a0, b1), (a0, c1), (∗, a1), (∗, b1), (∗, c1)}
F = {(a0, ∗), (a0, a1), (a0, b1), (∗, a1), (∗, b1)}
(a0, a1) ♯ (a0, b1) (a0, b1) ♯ (a0, c1)
(a0, a1) ♯ (a0, c1) (a0, a1) ♯ (a0, ∗)
(a0, b1) ♯ (a0, ∗) (a0, c1) ♯ (a0, ∗)
(a0, a1) ♯ (∗, a1) (a0, b1) ♯ (∗, b1)
(a0, c1) ♯ (∗, c1) (a0, a1) ♯ (a0, c1)
(∗, a1) ♯ (∗, c1) (a0, a1) ♯ (∗, c1)
(∗, a1) ♯ (a0, c1)
{(a0, a1), (a0, c1), (∗, a1), (∗, c1)}↦ (a0, b1) {(a0, c1), (∗, c1)}↦ (∗, b1)
{(a0, a1), (a0, c1), (∗, a1), (∗, c1)}↦ (∗, b1) {(a0, c1), (∗, c1)}↦ (a0, b1)

Proposition 3.23. Given FCRBESs 0 and 1, we have that 0 × 1 is a FCRBES.

Proof. Similar to the proof of Proposition 3.11.
Definition 3.24 (RBES coproduct). GivenRBESs 0 = (E0, F0,↦0, ♯0,⊳0) and 1 =
(E1, F1,↦1, ♯1,⊳1), we construct 0+1 = (E, F,↦, ♯,⊳)with injections �0, �1 where:

• E = {(0, e) ∣ e ∈ E0} ∪ {(1, e) ∣ e ∈ E1}

• F = {(0, e) ∣ e ∈ F0} ∪ {(1, e) ∣ e ∈ F1}

• for e ∈ Ej , �j(e) = (j, e) for j ∈ {0, 1}
• X ↦ (j, e)∗ iff for all (j′, e′) ∈ X, j = j′ and �j(X)↦j e∗

• (j, e) ♯ (j′, e′) iff j ≠ j′ or e ♯j e′
• (j, e) ⊳ (j′, e′) iff j ≠ j′ or e ⊳j e′

Proposition 3.25. Given RBESs 0 and 1, we have that 0 + 1 is their coproduct in
the category RBES.
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∅

{(1, a1)} {(1, b1)} {(1, c1)}

{(1, a1), (1, b1)} {(1, b1), (1, c1)}

{(0, a0)}

Figure 6: The Configurations of the RBES discussed in Example 3.26.

Proof. Similar to the BES coproduct (Proposition 3.13).
Example 3.26. Consider again the RBESs 0 and 1 from Example 3.22. We can also
find 0 + 1 = (E, F,↦, ♯,⊳) where

E = {(0, a0), (0, b0), (1, a1), (1, b1), (1, c1)}
F = {(0, a0), (0, b0), (1, a1), (1, b1)}
(1, a1) ♯ (1, c1)
{(0, a0)}↦ (0, b0)
{(1, a1), (1, c1)}↦ (1, b1)
{(1, c1)}↦ (1, b1)
(0, b0) ⊳ (0, a0)

with the configurations seen in Fig-

ure 6.

Proposition 3.27. Given FCRBESs 0 and 1, we have that 0 + 1 is a FCRBES.

Proof. Follows straightforwardly from Definitions 3.16 and 3.24.
We want to model RBESs as configuration systems (CSs), and therefore define a

functor from one category to the other in Definition 3.29. A CS consists of a set of
events, some of which are reversible, configurations of these events, and labelled tran-
sitions between them, as described in Definition 3.28. We will later use the CSs corre-
sponding to our event structure semantics to describe the operational correspondence
between our event structure semantics and the operational semantics of CCSK.
Definition 3.28 (Configuration system [27]). Aconfiguration system (CS) is a quadru-
ple  = (E, F,C,→) where E is a set of events, F ⊆ E is a set of reversible events,
C ⊆ 2E is the set of configurations, and →⊆ C × 2E∪F × C is a labelled transition
relation such that if X A∪B

←←←←←←←←←←←←←←←←←←←→ Y then:
• A ∩X = ∅; B ⊆ X ∩ F ; Y = (X ⧵ B) ∪ A;

• and for all A′ ⊆ A and B′ ⊆ B, we have X A′∪B′
←←←←←←←←←←←←←←←←←←←←←←←←→ Z

(A⧵A′)∪(B⧵B′)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Y , meaning

Z = (X ⧵ B′) ∪ A′ ∈ C.
Definition 3.29 (From RBES to CS). The functor Cbr ∶ RBES → CS is defined as:

1. Cbr((E, F,↦, ♯,⊳)) = (E, F,C,→) where
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(a) X ∈ C if X is conflict-free;
(b) for X, Y ∈ C, A ⊆ E, and B ⊆ F , there exists a transition X A∪B

←←←←←←←←←←←←←←←←←←←→ Y if
i. Y = (X ⧵ B) ∪ A;
ii. X ∩ A = ∅;
iii. B ⊆ X;
iv. X ∪ A is conflict-free;
v. for all e ∈ B, if e′ ⊳ e then e′ ∉ X ∪ A;
vi. for all e ∈ A and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ B) ≠ ∅;
vii. for all e ∈ B and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ (B ⧵ {e})) ≠ ∅;

2. Cbr(f ) = f .
Proposition 3.30. Cbr is a functor from RBES to CS.

Proof. The definition of a CS morphism and proof can be seen in Appendix B.3.
We define cause-respecting and causal variants of RBES in Definition 3.31. In a

cause-respecting RPES events cannot reverse if they have caused a subsequent event
and in a causal RPES events can reverse if and only if they have not caused a subsequent
event. We also define the categories crRBES and CRBES, consisting of respectively
cause-respecting RBESs and causal RBESs and the morphisms between them.
Definition 3.31 (cause-respecting and causal RBES). We say that  = (E, F,↦, ♯
,⊳) is a cause-respecting RBES (crRBES) if whenever X ↦ e and e′ ∈ X ∩ F , then
e ⊳ e′.

We say that  = (E, F,↦, ♯,⊳) is a causal RBES (CRBES) if (1) if e ⊳ e′ then
either e ♯ e′ or there exists an X ⊆ E such that X ↦ e and e′ ∈ X, (2) if X ↦ e and
e′ ∈ X ∩ F , then e ⊳ e′, and (3) if X ↦ e then e ∈ X.
Proposition 3.32. Given a crRBES,  = (E, F,↦, ♯,⊳) with a corresponding CS
Crb() = (E, F,C,→), any reachable C ∈ C is forwards-reachable.

Proof. There exists a trace ∅ {e∗0}
←←←←←←←←←←←←←←←←←→ C0

{e∗1}
←←←←←←←←←←←←←←←←←→ C1…

{e∗n}
←←←←←←←←←←←←←←←←←→ Cn where Cn = C . Clearly

e∗0 is a forward event e0, and C0 is forwards-reachable, and we will show that if Cj isforwards-reachable for 0 ≤ j ≤ i, then Ci+1 is forwards-reachable.If e∗i+1 is a forwards event, then obviously Ci+1 is forwards-reachable.If e∗i+1 = ei, then Ci+1 = Ci−1, which is obviously forwards-reachable.
If e∗i+1 = ej for some 0 ≤ j < i, then for all 0 ≤ j′ ≤ i, since ej ′̸⊳ej , there does not

existX ⊆ E such that ej ∈ X andX ↦ ej′ . This means ∅ {e∗0}
←←←←←←←←←←←←←←←←←→ C0

{e∗1}
←←←←←←←←←←←←←←←←←→ C1…

{e∗j−1}
←←←←←←←←←←←←←←←←←←←←←←←←→

Cj−1
{e∗j+1}
←←←←←←←←←←←←←←←←←←←←←←←←→ Cj+1 ⧵ {ej}…

{e∗i }
←←←←←←←←←←←←←←←←←→ Ci+1.

Proposition 3.33.

1. If  = (E, F,↦, ♯,⊳) is a crRBES and Cbr() = (E, F,C,→) then whenever

X ∈ C is a reachable configuration and X
B
←←←←←←←←→ Y , there exists a transition Y

B
←←←←←←←←→

X.
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2. If  = (E, F,↦, ♯,⊳) is a CRBES and Cbr() = (E, F,C,→) then whenever

X ∈ C, X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y and A ∪ B ⊆ F , there exists a transition Y

B∪A
←←←←←←←←←←←←←←←←←←←→ X.

Proof.

1. By Proposition 3.32,X is forwards reachable, meaning for every e ∈ X, ifX′ ↦
e then there exists e′ such that X′ ∩X = {e′}. For each eb ∈ B, if Xb ↦ eb and
Xb ∩ X = {e′b} then either e′b ∉ F or eb ⊳ e′b, meaning e′b ∉ B, and therefore
clearly Y B

←←←←←←←←→ X.
2. For any forwards-reachable configuration X ∈ C and A,B ⊆ F , if X A∪B

←←←←←←←←←←←←←←←←←←←→

(X ∪ A) ⧵ B then (X ∪ A) ⧵ B
B∪A
←←←←←←←←←←←←←←←←←←←→ X according to Definition 3.29:

i to iv follow from X
A∪B
←←←←←←←←←←←←←←←←←←←→ (X ∪ A) ⧵ B being a transition.

v. For all e ∈ A and e′ ∈ E, if e′ ⊳ e, then either e′ ♯ e, or there exists X′ ⊆ E
such that X′ ↦ e′ and e ∈ X′.
If e′ ♯ e, then, as X ∪ A is conflict-free, e′ ∉ X ∪ A.
If there exists X′ ⊆ E such that X′ ↦ e′ and e ∈ X′ then for all e′′inX′ ⧵ {e}
we know e′′ ♯ e, meaning e′′ ∉ X ∪ A. This means X ∩ X′ = ∅, and therefore
for all X′′ ⊆ X, X′′ ̸

e′
←←←←←←←←→, and consequently e′ ∉ X ∪ A.

vi. For all e ∈ B and X′ ⊆ E, if X′ ↦ e, then, since X is forwards-reachable,
X′ ∩X ≠ ∅. If X′ ∩X ⧵ B = ∅, then there exists e′ ∈ X′ ∩ B. But this means
e ⊳ e′, conflicting with X A∪B

←←←←←←←←←←←←←←←←←←←→ (X ∪ A) ⧵ B.
vii. For all e ∈ A and X′ ⊆ E, if X′ ↦ e, then e ∈ X′.

We define functors between BES and RBES, and show that they form an adjunc-
tion, meaning that applying first Φb going from RBES to BES and then Pb going from
BES to RBES to an RBES always yields an under-estimation of the original, in that it
is the original with all actions made irreversible. We shall rely on the following char-
acterisation of adjunctions, based on [2, Definition 9.1].
Definition 3.34 (Adjunction). Let C and D be categories, and let F ∶ D → C and
G ∶ C → D be functors. Then F is a left adjoint of G, F ⊣ G, if there exists a natural
transformation � ∶ ID → F◦G (the unit) such that for any c ∈ C, d ∈ D and morphism
g ∶ d → G(c) there is a unique morphism f ∶ F (d) → c such that g = �d◦G(f ),where �d is the component of � at d.
Definition 3.35 (BES to RBES). The functor Pb ∶ BES → RBES is defined as:

1. Pb((E,↦, ♯)) = (E, ∅,↦, ♯, ∅ × ∅);
2. Pb(f ) = f .

Definition 3.36 (RBES to BES). The functor Φb ∶ RBES → BES is defined as:
1. Φb((E, F,↦, ♯,⊳)) = (E,↦ ∩(E2 × E), ♯);
2. Φb(f ) = f .
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Proposition 3.37. Pb ⊣ Φb.

Proof. For any RBES  = (E, F,↦, ♯,⊳), clearly Pb(Φb()) = (E, ∅, ♯,↦E , ∅ × ∅)with ↦E=↦ ∩(E2 × E), and we define � ∶ Pb(Φb()) →  such that for all e ∈ E
�(e) = e, and prove that it is an RBES morphism according to Definition 3.18

1. Pb and Φb do not change conflict.
2. If f (e) = f (e′) then e = e′.
3. This means f (e)∗ = f (e), and clearly if X ↦E f (e), then X = f (X)↦ e.
4. There are no e′ ∈ ∅.
We then show that given a BES A = (EA,↦A, ♯A), an RBES B = (EB , FB ,↦B

, ♯B ,⊳B), and an RBESmorphism g ∶ Pp(A)→ B, f ∶ A → Φp(B) is a BESmorphism
according to Definition 3.4:

1. Pb and Φb do not change conflict.
2. If f (e) = f (e′) then e = e′.
3. Pp and Φp do not affect ↦AE or ↦BE .

We also wish to relate RBESs to previously defined reversible event structures as shown
in Figure 2 in Section 1, reversible prime event structures (RPESs) [27] and reversible
stable general event structures (SRESs) [29], sowe define functors fromRPES toRBES
and from FCRBES to SRES in Appendix A.

Since our motivation for defining RBESs was modelling reversible processes, we
need to be able to label our events with a corresponding action from a process. For this
we use a labelled RBES (LRBES).
Definition 3.38 (Labelled Reversible Bundle Event Structure). A labelled reversible
bundle event structure  = (E, F,↦, ♯,⊳, �,Act) consists of an RBES (E, F,↦, ♯,⊳),
a set of labels Act, and a surjective labelling function � ∶ E → Act.
Definition 3.39 (LRBES morphism). Let 0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0) and 1 =
(E1, F1,↦1, ♯1,⊳1, �1,Act1) be LRBESs. An LRBES morphism f ∶ 0 → 1 is a par-tial function f ∶ E0 → E1 such that f ∶ (E0, F0,↦0, ♯0,⊳0) → (E1, F1,↦1, ♯1,⊳1) isan RBES morphism and for all e ∈ E0, either f (e) = ⊥ or �0(e) = �1(f (e)).

4. Event Structure Semantics of CCSK

Having defined RBESs, we will now use them to describe the semantics of CCSK.
Unlike the event structure semantics of CCS [3, 31], our semantics will generate both
an event structure and an initial configuration containing all the events corresponding
to past actions. This means that for any CCSK processes P and P ′, if P → P ′ then
P and P ′ will be described by the same, or at least isomorphic, event structures with
different initial states.

First we define the operators we will use in the semantics, particularly restriction,
parallel composition, choice, and action prefixes. Restriction is done by simply remov-
ing any events associated with the restricted action.
Definition 4.1 (Restriction). Given an LRBES  = (E, F,↦, ♯,⊳, �,Act), restricting
 to E′ ⊆ E creates  ↾ E′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) where:
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1. F ′ = F ∩ E′;
2. ↦′ =↦ ∩((E′) × (E′ ∪ F ′));
3. ♯′ = ♯ ∩(E′ × E′);

4. ⊳′ = ⊳ ∩ (E′ × F ′);
5. �′ = � ↾E′ ;
6. Act = ran(�′).

Parallel composition uses the product of RBESs, labels any event corresponding to
a synchronisation �, and removes any invalid events describing an impossible synchro-
nisation.
Definition 4.2 (Parallel). Given two LRBESs 0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0) and
1 = (E1, F1,↦1, ♯1,⊳1, �1,Act1), their parallel composition is 0||1 = (E, F,↦, ♯
,⊳, �,Act) ↾ {e ∣ �(e) ≠ 0} where:

1. (E, F,↦, ♯,⊳) = (E0, F0,↦0, ♯0,⊳0) × (E1, F1,↦1, ♯1,⊳1)

2. �(e) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�0(e0) if e = (e0, ∗)
�1(e1) if e = (∗, e1)
� if e = (e0, e1) and �0(e0) = �1(e1)
0 if e = (e0, e1) and �0(e0) ≠ �1(e1)

3. Act = Act0 ∪ Act1 ∪ {0, �}

Choice, which act as a coproduct of LRBESs, simply uses the coproduct of RBESs,
and defines the labels as expected.
Definition 4.3 (Choice). Given LRBESs 0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0) and 1 =
(E1, F1,↦1, ♯1,⊳1, �1,Act1);, the choice between them is 0+1 = (E, F,↦, ♯,⊳, �,Act)
where:

1. (E, F,↦, ♯,⊳) = (E0, F0,↦0, ♯0,⊳0) + (E1, F1,↦1, ♯1,⊳1);
2. �(j, e) = �j(e);
3. Act = Act0 ∪ Act1.

Proposition 4.4. If 0 and 1 are LRBESs, then  = 0 + 1 with injections �0 and �1
such that �j(j, e) = e is their coproduct.

Proof. Obviously  is an LRBES, and �0 and �1 aremorphisms, and sowe simply need to
prove that if there exists an LRBES 2 = (E2, F2,↦2, ♯2,⊳2, �2,Act2) and morphisms
f0 ∶ 0 → 2 and f1 ∶ 1 → 2, then there exists a unique LRBES-morphism
f ∶  → 2 such that f0 = f◦�0 and f1 = f◦�1.Since E0 + E1, �0, and �1 make up a coproduct in the category of sets and partial
functions, f must be unique.

We define f as f (j, e) = fj(e) and prove it to be a morphism. Since (E, F,↦
, ♯,⊳) = (E0, F0,↦0, ♯0,⊳0) + (E1, F1,↦1, ♯1,⊳1), we know f ∶ (E, F,↦, ♯,⊳) →
(E2, F2,↦2, ♯2,⊳2) is an RBES-morphism, and clearly �(e, j) = �j(e) = �2(fj(e)).

Causally prefixing an action onto an event structure means we add a new event such
that the new event causes all other events and is prevented from reversing by all other
events and has the designated label.
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{a, a, b}

Figure 7: LRBES and configurations of the process in Example 4.6.

Definition 4.5 (Causal Prefix). Given an LRBES  = (E, F,↦, ♯,⊳, �,Act), an event
e ∉ E, and a label �, we add e labelled � to the beginning of  to get �(e). =
(E′, F ′,↦′, ♯′,⊳′, �′,Act′) where:

1. E′ = E ∪ e;
2. F ′ = F ∪ e;
3. ↦′ =↦ ∪({{e}} × (E ∪ {e}));
4. ♯′ = ♯;

5. ⊳′ = ⊳ ∪ (E × {e});
6. �′ = � ∪ {(e, �)};
7. Act′ = Act ∪ {�}.

Now that we have defined the main operations of the process calculus, we de-
fine the event structure semantics in Table 2. We do this using rules of the form
⦃P⦄l = ⟨ , Init, k⟩ wherein l is the level of unfolding, which we use to model re-
cursion,  is an LRBES, Init is the initial configuration, and k ∶ Init →  is a function
assigning communication keys to the past actions, which we use in parallel composition
to determine which synchronisations of past actions to put in Init.

Note that the only difference between a future and a past action is that the event
corresponding to a past action is put in the initial state and given a communication key.
Example 4.6. The CCSK process a.b ∣ a can be represented by the RBES with events
labelled a, a, �, and b, the bundle {a, �} ↦ b, the conflicts a ♯ � and a ♯ �, and the
preventions b⊳a and b⊳ �, creating the LRBES seen in Figure 7 where we label events
with their labels.

We say that ⦃P⦄ = supl∈ ⦃P⦄l. This means we need to show that there exists
such a least upper bound of the levels of unfolding. As shown in [12], ordering closed
BESs by restriction produces a complete partial order. Since our LRBESs do not have
overlapping bundles (X ↦ e∗ and X′ ↦ e∗ implies X ≠ X′ or X ∩ X′ = ∅) they are
closed, and we can use a similar ordering.
Definition 4.7 (Ordering of LRBESs). Given LRBESs 0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0)and 1, we say that 0 ≤ 1 if 0 = 1 ↾ E0.

We can see that ≤ is a partial order with the empty LRBES as its minimum.
Proposition 4.8. Any !-chain 0 ≤ 1 ≤ 2… has a least upper bound  = (E, F,↦
, ♯,⊳, �,Act) where:
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⦃0⦄l = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩

⦃P0 + P1⦄l = ⟨0 + 1, Init, k⟩ whereFor i ∈ {0, 1}, ⦃Pi⦄l = ⟨i, Initi, ki⟩
Init = {(j, e) ∣ j ∈ {0, 1} and e ∈ Initj}
k(j, e) = kj(e) if e ∈ Initj

⦃�.P⦄l =
⟨

�(e).(E, F,↦, ♯,⊳, �,Act), Init, k
⟩ for e fresh for E where

⦃P⦄l =
⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩

⦃�[m].P⦄l =
⟨

�(e).(E, F,↦, ♯,⊳, �,Act), Init′, k′
⟩ for e fresh for E where

⦃P⦄l =
⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩

Init′ = Init ∪ {e}
k′ = k ∪ {(e, m)}

⦃P0 ∣ P1⦄l =
⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩ where

For i ∈ {0, 1}, ⦃Pi⦄l = ⟨i, Initi, ki⟩
(E, F,↦, ♯,⊳, �,Act) = 0||1
Init = {(e0, e1) ∣ e0 ∈ Init0, e1 ∈ Init1, k0(e0) = k1(e1)}∪
{

(∗, e1)
|

|

|

|

|

e1 ∈ Init1 and
∄e0 ∈ Init0.�0(e0) = �1(e1) and k0(e0) = k1(e1)

}

∪
{

(e0, ∗)
|

|

|

|

|

e0 ∈ Init0 and
∄e1 ∈ Init1.�0(e0) = �1(e1) and k0(e0) = k1(e1)

}

k(e) =

⎧

⎪

⎨

⎪

⎩

k0(e0) if e = (e0, ∗)
k1(e1) if e = (∗, e1)
k0(e0) if e = (e0, e1) – note that k0(e0) = k1(e1)

⦃P ⧵ A⦄l =
⟨

 ↾ {e ∣ �(e) ∉ }, Init′, k ↾ {e ∣ �(e) ∉ }
⟩ where

⦃P⦄l = ⟨ , Init, k⟩
Init′ = Init ∩ {e ∣ �(e) ∉ }
 = A ∪ A

⦃P [f ]⦄l =
⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩ where

⦃P⦄l =
⟨

(E, F ,↦, ♯,⊳, �′,Act′), Init, k
⟩

Act = f (Act′)
� = f◦�′

⦃

A
⟨

b̃
⟩⦄

0 = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩
⦃

A
⟨

b̃
⟩⦄

l =
⦃

PA{b̃∕ã}
⦄

l−1
where A(ã) = PA

Table 2: RBES-semantics of CCSK.

1. E =
⋃

n∈!
En;

2. F =
⋃

n∈!
Fn;

3. X ↦ e∗ if for all n ∈ ! such that

e ∈ En, (X ∩ En)↦ e∗;
4. ♯ = ⋃

n∈!
♯n;

5. ⊳ = ⋃

n∈!
⊳n;

20



6. �(e) = l if there exists n ∈ ! such
that �n(e) = l;

7. Act = ⋃

n∈!
Actn.

Proof. Clearly  is an LRBES, and for all i ∈ !, i ≤  . We therefore know that 
is an upper bound of the chain. We now show that  is the least upper bound of the
chain: Given an upper bound  ′, it is obvious that E ⊆ E′, F = E ∩F ′, and ifX ↦ e∗
then, for all n ∈ !, if e ∈ En then X ∩ En ↦n e∗, meaning since n ≤  ′ there exists
X′
n ⊆ E′ such that X′

n ↦ e∗ and X′
n ∩ En = Xn, and since for all n′ ≥ n, n′ ≤  ′

and e ∈ En′ , X′
n ∩ En′ ↦n′ e∗. This means clearly X′

n ∩ E =
⋃

n∈!
Xn = X. And for

e ∈ E, if X′ ↦′ e′∗, then for all n ∈ ! such that e ∈ En X′ ∩ En ↦n e∗, meaning
X′ ∩ E ↦ e∗. Similar arguments apply to ♯, ⊳, �, and Act.

Therefore, clearly  ≤  ′, and  is the least upper bound of the chain.
This means that, given a set of eventsA, with EA being the set of LRBESs (E, F,↦

, ♯,⊳, �,Act) such that E ⊆ A, we have that (EA,≤) is a complete partial order. We
then need to show that our operations are monotonic.
Lemma 4.9.

1. If 0 ≤ 1 and E ⊆ E1, then 0 ↾ (E ∩ E0) ≤ 1 ↾ E.
2. For any !-chain 0 ≤ 1 ≤ 2… and E ⊆

⋃

n∈! En, we have (
⨆

n∈!
n) ↾ E =

⨆

n∈!
(n ↾ (E ∩ En)).

Proof. Straightforward from Definition 4.1.
Lemma 4.10.

1. Given LRBESs 0 ≤ 1 and  , 0|| ≤ 1|| .
2. For any !-chain 0 ≤ 1 ≤ 2… and any LRBES  , we have (

⨆

n∈!
n)|| =

⨆

n∈!
(n||).

Proof. Straightforward from Definition 4.2.
Lemma 4.11.

1. Given LRBESs 0 ≤ 1 and  , 0 +  ≤ 1 +  .
2. For any !-chain 0 ≤ 1 ≤ 2… and LRBES  , we have (

⨆

n∈!
n) +  =

⨆

n∈!
(n + ).

Proof. Straightforward from Definition 4.3.
Lemma 4.12. 1. Given LRBESs 0 ≤ 1, an event e ∉ E1, and a label �, �(e).0 ≤

�(e).1.
2. For any !-chain 0 ≤ 1 ≤ 2… an event e ∉ E1, and a label �, we have
�(e).(

⨆

n∈!
n) =

⨆

n∈!
(�(e).n).
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Proof. Straightforward from Definition 4.5.
Proposition 4.13 (Unfolding). Given a forwards reachable process P and a level of
unfolding k, if ⦃P⦄k = ⟨ , Init, k⟩ and ⦃P⦄k−1 =

⟨

 ′, Init′, k′
⟩

, then  ′ ≤  , Init =
Init′, and k = k′.

Proof. We have proved in Lemmas 4.9 to 4.12 that all the operations used for defining
 and  ′ are monotonic, so clearly  ′ ≤  , and since P has been generated from a
standard process, we cannot have any �[m] inside a recursion, as it would have to have
been unfolded first.

In order to prove that our event structure semantics corresponds with the operational
semantics for CCSK defined in [28] we first show that event structures generated by our
semantics are causal according to Definition 3.31.
Proposition 4.14. Given a process P such that ⦃P⦄ = ⟨ , Init, k⟩,  is causal.

Proof. We say that  = (E, F,↦, ♯,⊳, �,Act) and prove this by induction on P :
• Suppose P = 0. Then  is empty, and therefore obviously causal.
• Suppose P = P0 +P1, ⦃Pi⦄ =

⟨

(Ei, Fi,↦i, ♯i,⊳i, �i,Acti), Initi, ki
⟩, e ∈ E and

e′ ∈ F . Then if e ⊳ e′, then there exists i ∈ {0, 1} such that either e ⊳i e′ or
e ∈ Ei and e′ ∈ F1−i. By induction, e ⊳i e′ this means there exists an Xi ⊆ Eisuch that Xi ↦i e and e′ ∈ Xi. As Xi ↦i e, we get Xi ↦ e. And Ei ×E1−i ⊆ ♯.
If there exists an X ⊆ E such that X ↦ e and e′ ∈ X, then there exists an
i ∈ {0, 1} such that X ↦i e. Then by induction we get e ⊳i e′, implying e ⊳ e′.
We have X ↦ e′ if and only if there exists an i ∈ {0, 1} such that X ↦i e′. Byinduction, this means e′ ∈ X.

• Suppose P = �.P ′, ⦃P ′⦄ = ⟨

(E′, F ′,↦′, ♯′,⊳′, �′,Act′), Init′, k′
⟩, e ∈ E and

e′ ∈ F . Then if e ⊳ e′ then either e ⊳′ e′, or e′ = e� and e ∈ E′. If e ⊳′ e′, thenby induction there exists an X ⊆ E′ such that X ↦′ e and e′ ∈ X, and X ↦ e.
If e′ = e� and e ∈ E′ then we know {e�}↦ e.
If there exists an X ⊆ E such that X ↦ e and e′ ∈ X, then either X ↦′ e, or
X = {e�} and e ∈ E′. IfX ↦′ e, then by induction we get e⊳′ e′, and therefore
e ⊳ e′. If X = {e�} and e ∈ E′, then we know e ⊳ e� .
We have X ↦ e′ if and only if X ↦′ e′ or e′ = e� and X = {e�}. By induction,
if X ↦′ e′ then e′ ∈ X.

• Suppose P = �[m].P ′. Then the proof is similar to the previous case.
• Suppose P = P0 ∣ P1, ⦃Pi⦄ =

⟨

(Ei, Fi,↦i, ♯i,⊳i, �i,Acti), Initi, ki
⟩, e ∈ E and

e′ ∈ F . Then if e ⊳ e′, then there exists an i ∈ {0, 1}, such that �i(e) ⊳i �i(e′).By induction, this means there exists an Xi ⊆ Ei such that Xi ↦i �i(e) and
�i(e′) ∈ Xi. This means {e′′ ∈ E ∣ �i(e′′) ∈ Xi} ↦ e, and obviously e′ ∈
{e′′ ∈ E ∣ �i(e′′) ∈ Xi}.

22



If there exists an X ⊆ E such that X ↦ e and e′ ∈ X, then there exists an
i ∈ {0, 1} and Xi ⊆ Ei such that Xi ↦i �i(e) and X = {e′′ ∈ E ∣ �i(e′′) ∈ Xi},meaning �i(e′) ∈ Xi. By induction we get �i(e) ⊳i �i(e′), and therefore e ⊳ e′.
We have X ↦ e′ if and only if there exists i ∈ {0, 1} and Xi ⊆ Ei such that
Xi ↦i �i(e′) and X = {e′′ ∈ E ∣ �i(e′′) ∈ Xi}. By induction, since Xi ↦i
�i(e′) we know �i(e′) ∈ Xi, meaning clearly e′ ∈ X.

• Suppose P = P ′ ⧵A, ⦃P ′⦄ = ⟨

(E′, F ′,↦′, ♯′,⊳′, �′,Act′), Init′, k′
⟩, e ∈ E and

e′ ∈ F . Then X ↦ e′∗ if and only if X ↦′ e′∗ and e ⊳ e′ if and only if e ⊳′ e′.
The rest of the case follows from induction.

• Suppose P = P ′[f ]. Then the result follows from induction.
We then show that structurally congruent processes will generate isomorphic event

structures.
Proposition 4.15 (Structural Congruence). Given processes P and P ′ such that P ≡
P ′, ⦃P⦄ = ⟨ , Init, k⟩, and ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, there exists an isomorphism f ∶
 →  ′ such that f (Init) = Init′ and for all e ∈ Init, k(e) = k′(f (e)).

Proof. We say that  = (E, F,↦, ♯,⊳, �,Act) and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′)
and do a case analysis on the structural congruence rules:
P = P ′ ∣ 0: The function f (e, ∗) = e fulfils the conditions.
P = P0 ∣ P1 and P ′ = P1 ∣ P0: Products are unique up to isomorphism and

f (e) =

⎧

⎪

⎨

⎪

⎩

(e1, e0) if e = (e0, e1)
(e1, ∗) if e = (∗, e1)
(∗, e0) if e = (e0, ∗)

clearly fulfils the conditions other conditions.
P = P0 ∣ (P1 ∣ P2) and P ′ = (P0 ∣ P1) ∣ P2: Products are associative up to isomorphism,

and f (e0, (e1, e2)) = ((e0, e1), e2) clearly fulfills the other conditions.
P = P ′ + 0: Clearly P = ({0} × E′, {0} × F ′,↦′ ∪∅, ♯′ ∪∅,⊳′ ∪ ∅, �′,Act′ ∪ ∅),

Init = {0} × Init′, and k = {0} × k′, meaning f (0, e) = 0.
P = P0 + P1 and P ′ = P1 + P0: Coproducts are unique up to isomorphism, and f (i, e) =

(1 − i, e) clearly fulfil the other conditions.
P = (P0 + P1) + P2 and P ′ = P0 + (P1 + P2): Coproducts are associative up to iso-

morphism, and

f (e) =

⎧

⎪

⎨

⎪

⎩

(0, e′) if e = (0, (0, e′))
(1, (0, e′)) if e = (0, (1, e′))
(1, (1, e′)) if e = (1, e′)

clearly fulfils the other conditions.
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P = A
⟨

b̃
⟩

and P ′ = PA{b̃∕ã} where A ⟨ã⟩ = PA: Follows fromProposition 4.13.
Before we show our correspondence between actions in the process and in the event

structure, we show that a reachable process has an empty initial state if and only if it
does not contain any past action.
Lemma 4.16 (Standard). Given a process P such that ⦃P⦄ = ⟨ , Init, k⟩ and there
exists a standard process Q such that Q →∗ P , we have std(P ) if and only if Init = ∅.

Proof. As the only rule which can add events to an empty Init is ⦃�[m].P⦄, clearly
Init = ∅ if std(P ).

If Init = ∅, then clearly we cannot have any �[m] in P , which are not guarded by a
restriction on �. But if such a restricted communication has occurred in P , then there
must exist a parallel a[m] inside the same restriction, meaning the corresponding event
(e� , e�) has the label �, not �, and would therefore be in Init. Therefore we must have
std(P ).

We now show that reachable processes have conflict-free initial states.
Lemma 4.17 (Reachable). If P is forwards-reachable and ⦃P⦄ = ⟨ , Init, k⟩, then Init
is conflict-free in  .

Proof. We show this by induction on P .
• Suppose P = 0. Then Init = ∅.
• Suppose P = �.P ′ and ⦃P ′⦄ = ⟨

 ′, Init′, k′
⟩. Then Init = Init′, and therefore

Init is conflict-free.
• Suppose P = �[m].P ′ and ⦃P ′⦄ = ⟨

 ′, Init′, k′
⟩. Then Init = Init′ ∪ {e�}, Init′is conflict-free, and therefore Init is clearly conflict-free.

• Suppose P = P1 + P2 and ⦃Pi⦄ = ⟨i, Initi, ki⟩. Then Init = ({0} × Init1) ∪
({1} × Init2) and, since P is reachable, either Init1 = ∅ or Init2 = ∅, and both
Init1 and Init2 are conflict-free. Therefore, Init is conflict-free.

• Suppose P = P1 ∣ P2 and ⦃Pi⦄ =
⟨

(Ei, Fi,↦i, ♯i,⊳i, �i,Acti), Initi, ki
⟩. Then,

since P is reachable from a standard process, each key appears at most once in P1and once in P2. Additionally, Init1 is conflict-free and Init2 is conflict-free, mean-
ing Init = {(e0, ∗) ∣ e0 ∈ Init0 and ∄e1 ∈ Init1.�0(e0) = �1(e1) and k0(e0) =
k1(e1)} ∪ {(∗, e1) ∣ e1 ∈ Init1 and ∄e0 ∈ Init0.�0(e0) = �1(e1) and k0(e0) =
k1(e1)} ∪ {(e0, e1) ∣ e0 ∈ Init0, e1 ∈ Init1, k0(e0) = k1(e1)} is conflict-free.

• Suppose P = P ′ ⧵ A and ⦃P ′⦄ = ⟨

 ′, Init′, k′
⟩. Then Init′ is conflict-free, and

Init ⊆ Init′, meaning Init is conflict-free.
• Suppose P = P ′[f ]. Then Init = Init′, which is conflict-free.
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Finally we show in Theorems 4.18 and 4.19 that given a process P with a conflict-
free initial state, including any reachable process, there exists a transition P �

←←←←←←←→ P ′ if
and only if the event structure corresponding to P is isomorphic to the event structure
corresponding to P ′ and an event e labelled � exists such that e is available in P ’s initial
state, and P ′’s initial state is P ’s initial state with e added.
Theorem4.18. If⦃P⦄ = ⟨ , Init, k⟩,  = (E, F,↦, ♯,⊳, �,Act),Cbr() = (E, F,C,→

), Init is conflict-free, and there exists a transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ such that ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, then there exists an isomorphism f ∶  →  ′ and a transition Init
{e}
←←←←←←←←←←←←←→

X such that �(e) = �, f◦k′ = k ∪ {(e, m)}, and f (X) = Init′.

Proof. We prove this by induction on P �[m]
←←←←←←←←←←←←←←←←←←→ P ′. The full proof can be seen in Ap-

pendix C.1
Having shown that each forwards transition in the operational semantics corre-

sponds to one in the generated event structure, we now show the converse.
Theorem 4.19. Let P be a reachable process. If ⦃P⦄ = ⟨ , Init, k⟩,  = (E, F,↦
, ♯,⊳, �,Act), Cbr() = (E, F,C,→), Init is conflict-free, and there exists a transition

Init
e
←←←←←→ X in Cbr(), then there exists a key m and a transition P

�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′, such that

⦃P ′⦄ =
⟨

 ′, Init′, k′
⟩

and there exists isomorphism f ∶  →  ′ such that f◦k′ =
k ∪ {(e, m)} and f (X) = Init′.

Proof. We prove the theorem by induction on P in Appendix C.2.
Corollary 4.20. Given a process P such that ⦃P⦄ = ⟨ , Init, k⟩, Init is forwards-
reachable in  if and only if P is forwards-reachable.

Since we showed in Proposition 4.14 that any event structures generated by pro-
cesses are causal, it follows that we get a similar correspondence between the reverse
transitions of processes and event structures.
Theorem 4.21. Let P be a CCSK process. If ⦃P⦄ = ⟨ , Init, k⟩,  = (E, F,↦, ♯
,⊳, �,Act), Cbr() = (E, F,C,→), Init is conflict-free, and there exists a transition

P
�[m]
⇝ P ′ such that ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, then there exists isomorphism f ∶  →  ′

and a transition Init
{e}
←←←←←←←←←←←←←→ X such that �(e) = �, f◦k′ = k∪{(e, m)}, and f (X) = Init′.

Proof. Implied by Proposition 4.14, Theorem 4.18, and Corollary 4.20.
Theorem 4.22. Let P be a CCSK process. If ⦃P⦄ = ⟨ , Init, k⟩,  = (E, F,↦, ♯
,⊳, �,Act), Cbr() = (E, F,C,→), Init is conflict-free, and there exists a transition

Init
e
←←←←←→ X in Cbr(), then there exists a a key m and a transition P

�(e)[m]
⇝ P ′, such that

⦃P ′⦄ =
⟨

 ′, Init′, k′
⟩

and there exists isomorphism f ∶  →  ′ such that f◦k′ =
k ∪ {(e, m)} and f (X) = Init′.

Proof. Implied by Proposition 4.14, Theorem 4.19, and Corollary 4.20.
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We have now proved operational correspondence between the operational seman-
tics of CCSK and the event structure semantics presented in this section. Proving this
correspondence on reverse actions was made easy by both the calculus and the gener-
ated event structures having uncontrolled causal reversibility. However, uncontrolled
reversibility comes with problems, in that it allows a process or event structure to do
and undo the same action indefinitely. We would therefore like CCSK to have a way to
control its reversibility.

5. Reversible Extended Bundle Event Structures

Suppose one wishes to model a program consisting of multiple parallel processes,
but rather than allowing the process to do and undo actions whenever as in CCSK, it
might be preferable to have one action that causes all actions, or all actions since the
last safe state, to be reversed before the process can continue, similar to the roll com-
mand of [17]. RBESs can easily ensure that this roll event is required for other events
to reverse. We simply say that {roll} ↦ e for all e, but preventing events from hap-
pening in RBESs requires symmetric conflict, which would mean the other events also
prevent roll from occurring. To solve this problem in sequential processes, Phillips and
Ulidowski [27] use reversible asymmetric event structures, which replace symmetric
conflict with asymmetric. But since these use the same notion of causality as reversible
prime event structures, they have trouble modelling concurrent processes with synchro-
nisation, as shown in Example 1.1.

Extended bundle event structures (EBES) (Definition 5.2) add asymmetric conflict,
similar to that of AESs to bundle event structures, and so defining a reversible variant
of these will allow us to model the above scenario easily. In this section we therefore
define a category of reversible bundle event structures, similar to the category of RBESs
we defined in Section 3.
Example 5.1 (The necessity of REBESs for modelling rollback). Consider a process
a.b ∣ a
 .roll 
 , where roll 
 means undo the action labelled 
 , that is a, and everything
caused by it before continuing. To model this we would need to expand the RBES from
Example 4.6 with a new event roll 
 , and split b into two different events depending
on whether it needs to be reversed during the rollback or not. This would give us an
RBES ({a, �, a, ba, b� , roll 
}, {a, �, a, ba, b� , roll 
},↦, ♯,⊳) where {a} ↦ ba, {�} ↦
b� , {a, �}↦ roll 
 , {roll 
}↦ �, {roll 
} ↦ a, {roll 
}↦ b� , a ♯ �, a ♯ �, ba⊳a, b� ⊳�,
a ⊳ roll 
 , and � ⊳ roll 
 . This would indeed ensure that a and the events caused by it
could only reverse if one of the roll events had occurred, but it would not force them to do
so before doing anything else. For this we use asymmetric conflict: roll 
 ⊳ a, roll 
 ⊳ �,
roll 
 ⊳ b� , giving us a CS with the reachable configurations shown in Figure 8.

Definition 5.2 (Extended Bundle Event Structure [21]). An extended BES (EBES)
is a triple (E,↦,⊳) where:

1. E is the set of events;
2. ↦ ⊆ 2E × E is the bundle set, satisfying X ↦ e ⇒ ∀e1, e2 ∈ X.(e1 ≠ e2 ⇒
e1 ⊲ e2);
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∅

{a}

{�}

{a}

{a, ba}

{�, b�}

{a, a} {a, a, ba}

{roll 
}

{a, roll 
}{a, roll 
}

{a, ba, roll 
}

{a, a, roll 
}

{a, a, ba, roll 
}

{�, roll 
} {�, b� , roll 
}

Figure 8: The reachable configurations of the REBES described in Example 5.1.

3. ⊲ ⊆ E × E is the asymmetric conflict relation, which is irreflexive.
As we did for BESs, we define configurations, product, coproduct, and a finitely caused
subcategory of EBESs. The full details can be found in Appendix D.

We again define a reversible version of EBESs in Definition 5.3, simply extending
the asymmetric conflict and bundles to act on reversible events similarly to RBESs.
Definition 5.3 (Reversible Extended Bundle Event Structure). A reversible EBES
(REBES) is a triple  = (E, F,↦,⊳) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. ↦⊆ 2E ×(E ∪F ) is the bundle set, satisfyingX ↦ e⇒ ∀e1, e2 ∈ X.(e1 ≠ e2 ⇒
e1 ⊲ e2), and for all e ∈ F , {e}↦ e;

4. ⊲ ⊆ (E ∪ F ) × E is the asymmetric conflict relation, which is irreflexive.
Unlike the forward-only general event structures, reversible general event structures

(RESs) can model asymmetric conflict, by using their preventing set. This means that
when we create a subcategory of finitely caused REBESs, they can be modelled by
RESs.
Definition 5.4 (Finitely Caused Reversible Extended Bundle Event Structure).
A finitely caused REBES (FCREBES) is an REBES  = (E, F,↦,⊳) where for any
e∗ ∈ E ∪ F , the set {X ⊆ E ∣ X ↦ e∗} is finite.

Example 5.5 shows an REBES, which cannot be represented by an RBES, since one
gets a transition ∅→ {a}, but no {b} → {a, b}, despite {a, b} being a configuration.
Example 5.5 (REBES). An REBES  = (E, F,↦,⊳) whereE = {a, b, c}, F = {a, b},
{a, c} ↦ b, {b} ↦ c {a} ↦ a, {b} ↦ a, {b} ↦ b, a ⊳ c, c ⊳ a, and b ⊳ a gives the CS
Cer() in Figure 9.
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∅

{a} {b} {c}

{a, b} {b, c}

Figure 9: The configurations of the REBES described in Example 5.5.

In order to define REBESmorphisms, we extend the RBES definition in the obvious
way, as seen in Definition 5.6.
Definition 5.6 (REBES morphism). Given REBESs 0 = (E0, F0,↦0,⊳0) and 1 =
(E1, F1,↦1,⊳1), an REBESmorphism from 0 to 1 is a partial function f ∶ E0 → E1such that f (F0) ⊆ F1 and for all e, e′ ∈ E0:

1. if f (e) = f (e′) and e ≠ e′ then e ♯0 e′;
2. forX1 ⊆ E1 ifX1 ↦1 f (e)∗ then there existsX0 ⊆ E0 such that f (X0) ⊆ X1, if
e′ ∈ X0 then f (e′) ≠ ⊥, and X ↦0 e∗;

3. if f (e) ⊲1 f (e′)∗ then e ⊲0 e′∗.
We again construct a product of REBESs in Definition 5.7.
Definition 5.7 (REBES product). Given REBESs 0 = (E0, F0,↦0,⊳0) and 1 =
(E1, F1,↦1,⊳1), we construct 0 × 1 = (E, F,↦,⊳) with projections �0, �1 where:

1. E = E0×∗E1 = {(e, ∗) ∣ e ∈ E0}∪{(∗, e) ∣ e ∈ E1}∪{(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. F = F0 ×∗ F1 = {(e, ∗) ∣ e ∈ F0} ∪ {(∗, e) ∣ e ∈ F1} ∪ {(e, e′) ∣ e ∈ F0 and e′ ∈
F1};

3. for (e0, e1) ∈ E, �i(e0, e1) = ei;
4. for any e∗ ∈ E ∪F , X ⊆ E, X ↦ e∗ iff there exists i ∈ {0, 1} andXi ⊆ Ei suchthat Xi ↦ �i(e)∗ and X = {e′ ∈ E ∣ �i(e′) ∈ Xi};
5. for any e ∈ E, e′∗ ∈ E ∪ F , e ⊳ e′∗ iff there exists i ∈ {0, 1} such that �i(e) ⊲i
�i(e′)∗.

Proposition 5.8. Given REBESs 0 = (E0, F0,↦0,⊳0) and 1 = (E1, F1,↦1,⊳1), we
have that 0 × 1 = (E, F,↦,⊳) is their product in the category REBES.

Proof. Similar to the proof of Proposition D.7 seen in Appendix D.
Proposition 5.9. Given FCREBESs 0 = (E0, F0,↦0,⊳0) and 1 = (E1, F1,↦1,⊳1),
we have that 0 × 1 = (E, F,↦,⊳) is an FCREBES.

Proof. Similar to the proof of Proposition 3.11 seen in Appendix D.
Definition 5.10 (REBES coproduct). GivenREBESs 0 = (E0, F0,↦0,⊳0) and 1 =
(E1, F1,↦1,⊳1), we construct 0 + 1 = (E, F,↦,⊳) with injections �0, �1 where:

• E = {(0, e) ∣ e ∈ E0} ∪ {(1, e) ∣ e ∈ E1};
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• F = {(0, e) ∣ e ∈ F0} ∪ {(1, e) ∣ e ∈ F1};
• for e ∈ Ej , �j(e) = (j, e) for j ∈ {0, 1};
• X ↦ (j, e)∗ iff for all (j′, e′) ∈ X, j = j′ and �j(X)↦j e∗;
• (j, e)∗ ⊲ (j′, e′) iff j ≠ j′ or e∗ ⊲j e′.

Proposition 5.11. If 0 and 1 are REBESs, then 0 + 1 is their coproduct in the
category REBES.

Proof. Similar to that of BES coproduct (Proposition 3.13 on Appendix D).
Proposition 5.12. Given FCREBESs 0 = (E0, F0,↦0,⊳0) and 1 = (E1, F1,↦1,⊳1),
we have that 0 + 1 = (E, F,↦,⊳) is an FCREBES.

Proof. Similar to Proposition 3.27.
We again model REBESs as CSs, defining a functor in Definition 5.13.

Definition 5.13 (From REBES to CS). The functor Cer ∶ REBES → CS is defined
as:

1. Cer((E, F,↦,⊳)) = (E, F,C,→) where:
(a) X ∈ C if ⊲ is well-founded on X;
(b) For X, Y ∈ C, A ⊆ E, and B ⊆ F , there exists a transition X A∪B

←←←←←←←←←←←←←←←←←←←→ Y if:
i. Y = (X ⧵ B) ∪ A;
ii. X ∩ A = ∅;
iii. B ⊆ X;
iv. for all e∗ ∈ A ∪ B, if e′ ⊳ e∗ then e′ ∉ X ∪ A;
v. for all e ∈ A and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ B) ≠ ∅;
vi. for all e ∈ B and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ (B ⧵ {e})) ≠ ∅.

2. Cer(f ) = f .
The definition of a cause-respecting and causal REBES (Definition 5.14) is of course

practically identical to that of a crRBES and CRBES (Definition 3.31).
Definition 5.14 (Cause-respecting and Causal REBES). We say that  = (E, F,↦
,⊳) is a cause-respecting REBES (crREBES) if wheneverX ↦ e and e′ ∈ X or e⊳ e′,
then e ⊳ e′.

We say that  = (E, F,↦, ♯,⊳, �,Act) is a causal REBES (CREBES) if (1) if e⊳e′
then either e ♯ e′ or there exists an X ⊆ E such that X ↦ e and e′ ∈ X, (2) if e⊳ e′ or
X ↦ e and e′ ∈ X ∩ F , then e ⊳ e′, and (3) if X ↦ e then e ∈ X.
Proposition 5.15. Given aCREBES,  = (E, F,↦,⊳) and corresponding CSCre() =
(E, F,C,→), any reachable C ∈ C is forwards-reachable.

Proof. Similar to the corresponding proof for RBESs (Proposition 3.32).
Proposition 5.16.
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1. If  = (E, F,↦, ♯,⊳) is a crREBES and Cbr() = (E, F,C,→) then whenever

X ∈ C is a reachable configuration, X
B
←←←←←←←←→ Y , Y

B
←←←←←←←←→ X

2. If  = (E, F,↦, ♯,⊳) is a CREBES and Cbr() = (E, F,C,→) then whenever

X ∈ C, X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y and A ∪ B ⊆ F , there exists a transition Y

B∪A
←←←←←←←←←←←←←←←←←←←→ X.

Proof. Similar to the corresponding proofs for RAESs [27] andRBESs (Proposition 3.33).

We define a simple functor from RBES to REBES.
Definition 5.17 (RBES to REBES). The functor Be ∶ RBES → REBES is defined
as:

1. Be((E, F,↦,⊳)) = (E, F ,↦,⊲′), where e ⊲′ e′ if e ♯ e′ and e ⊲′ e′ if e′ ⊳ e;
2. Be(f ) = f .
We define functors between EBES and REBES, which form an adjunction.

Definition 5.18 (EBES to REBES). The functor Pe ∶ EBES → REBES is defined
as:

1. Pe((E,↦,⊳)) = (E, ∅,↦,⊲);
2. Pe(f ) = f .

Definition 5.19 (REBES to EBES). The functor Φe ∶ REBES → EBES is defined
as:

1. Φe((E, F,↦,⊳)) = (E,↦E ,⊲E);2. Φe(f ) = f .
Proposition 5.20. Pe ⊣ Φe.
Proof. Similar to the proof of Proposition 3.37.

As REBESs use asymmetric conflict, we create a functor from RAES to REBES
in Definition E.3. As before, we also define a functor from FCREBES to SRES in
Appendix E. Of course this causes the same problem as a functor fromRAES to SRES,
namely that a set of eventsX containing an infinite chain e1⊲e2⊲… does not have any
finite subsets containing such an infinite chain, unless X also contains a finite ⊲-loop.
This means that we may have some configurations of the generated SRES, which were
not configurations of the original FCREBES.

Since we intend to use our REBESs for modelling the semantics of Rollback in
CCSK, we need a labelled variant, much as we have of RBESs.
Definition 5.21 (Labelled Reversible Extended Bundle Event Structure). A la-
belled REBES (LREBES)  = (E, F,↦,⊳, �,Act) consists of an REBES (E, F,↦,⊳),
a set of labels Act, and a surjective labelling function � ∶ E → Act.
Definition 5.22 (LREBES morphism). Given two labelled REBESs 0 = (E0, F0,↦0
, ♯0,⊳0, �0,Act0) and 1 = (E1, F1,↦1, ♯1,⊳1, �1,Act1), an LREBES morphism f ∶
0 → 1 is a partial function f ∶ E0 → E1 such that f ∶ (E0, F0,↦0,⊳0) →
(E1, F1,↦1,⊳1) is an REBES morphism and for all e ∈ E0, either f (e) = ⊥ or
�0(e) = �1(f (e)).
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6. Roll-CCSK

In this sectionwe add a rollback operator, similar to that of roll-� [17], to CCSK. The
semantics of roll-� is not directly translatable to CCSK, as it makes use of the fact that
one can know, when looking at a memory, whether the communication it was associ-
ated with was with another process or not, and therefore, for a given subprocess P and a
memorym, one knows whether all the memories and subprocesses caused bym are part
ofP . In CCSK, this is not the case, as the rollback in the subprocess �
 [n].roll 
 , where 
is a tag denoting which rollback rolls back which action, may or may not require rolling
back the other end of the � communication, and all actions caused by it. For example, in
the process P = a
 [n].roll 
 ∣ b[m], rolling back 
 does not involve reversing b[m], but
if we have a larger process, a[n].b[m] ∣ (a
 [n].roll 
 ∣ b[m]), of which P is a subprocess,
then b[m] does need to get reversed. In roll-�, since all the memories are together and
their tags make their causal relationships clear, this is not an issue. This makes it signif-
icantly harder to know when to stop rolling back, as (unless all the actions needing to be
rolled back were �-actions) we do not know that the rollback is complete. We therefore
need to check at every instance of parallel composition whether any communication
with actions being rolled back has taken place, and if so roll back those actions and all
actions caused by them. This may include rolling back additional actions from the sub-
process containing the rollback, as in a[n1].b[n2] ∣ c[n3].(a
 [n1].roll 
 ∣ b[n2]), where itdoes not become clear that b[n2] needs to be reversed during the rollback until the outerparallel composition. Additionally, roll-� uses asymmetric communication, meaning
the memories that need to be reversed form a sequence, as opposed to one commu-
nication potentially causing more actions at both ends. This causes further problems
when trying to define distributed semantics, which we do later in this section. To get
around these problems, our distributed semantics marks all involved actions for rollback
at once, but reverses them individually by using similar reversal rules to CCSK without
rollback but only applying them to marked actions.

The syntax of Roll-CCSK is as follows:
P ∶∶= �
 .P ∣ �
 [n].P ∣ P0 + P1 ∣ P0|P1 ∣ P ⧵ A

∣ P [f ] ∣ A
⟨

b̃, 
̃
⟩

∣ 0 ∣ roll 
 ∣ rolling 


Most of the syntax is the same as CCSK and CCS, but adding tags and rolls as
described above, and rolling 
 , which denotes a rollback in progress, the necessity of
which is justified later. From now on we will use �.P to denote �
 .P where no roll 

exists in P . We also add a tuple of tags to our process constants, which get substituted
just like the actions in a new structural congruence rule:

A
⟨

b̃, �̃
⟩

≡ PA{b̃∕ã�̃∕
̃} if A(ã, 
̃) = PA
Before defining our semantics of rollback, we first define causal dependence and

projection similarly to [17], which we will use to define our semantics.
Definition 6.1 (Causal dependence). Let P be a process. Then the binary relation ≤Pis the smallest relation on keys(P ) satisfying:
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• If there exists a process P ′ and past actions �
 [n] and �
′ [m] such that �
 [n].P ′is a subprocess of P and �
′ [m] occurs in P ′ then n ≤P m.
• ≤P is reflexively and transitively closed.

Definition 6.2 (Projection). Given a process P and a set of keys C , P C is defined as:
(�
 [n].P ) C = �
 [n].(P C ) if n ∉ C 0 C = 0
(�
 [n].P ) C = �
 .(P C{roll 
∕rolling 
}) if n ∈ C (P ⧵ A) C = (P C ) ⧵ A
roll 
 C = roll 
 rolling 
 C = rolling 

(P0 ∣ P1) C = P0 C ∣ P1 C A

⟨

b̃, 
̃
⟩

 C = A
⟨

b̃, 
̃
⟩

(P [f ]) C = P C [f ] (P0 + P1) C = P0 C + P1 C
(�
 .P ) C = �
 .(P C )

Much as in [17] we carry out our rollback in two steps, the first triggering the roll-
back, and the second actually performing the roll, in order to ensure that we can start
multiple rollbacks at the same time. For example, in the process (a
 .(d.0 ∣ c.roll 
) ∣
b
′ .(c ∣ d.roll 
 ′) ∣ a ∣ b) ⧵ {a, b, c, d}, similar to an example from [17], we will other-
wise never be able to roll all the way back to the beginning, as rolling back a
 will stopus from reaching roll 
 ′ and vice versa. Tables 3 and 4 show that new rules for reversing
actions in Roll-CCSK. The rules for forward actions are still the same as in Table 1.
Example 6.3. Consider the process (a
 [na].(d[nd].0 ∣ c[nc].roll 
) ∣ b
′ [nb].(c[nc] ∣
d[nd].roll 
 ′) ∣ a[na] ∣ b[nb]) ⧵ {a, b, c, d}. We would like to roll this process back to
its initial state, but performing one of the rolls would disable the other, since it would
reverse the communications on c and d. We therefore say that we first need to trigger
the rolls,

a
 [na].(d[nd].0∣c[nc].roll 
) ∣b
′ [nb].(c[nc] ∣d[nd].roll 
 ′) ∣a[na] ∣ b[nb]) ⧵{a, b, c, d}
start roll 
 start roll 
′

(a
 [na].(d[nd].0 ∣ c[nc].rolling 
) ∣ b
′ [nb].(c[nc] ∣ d[nd].rolling 
 ′) ∣ a[na] ∣ b[nb])
⧵{a, b, c, d}

meaning that the rolls can now be executed even if the preceding actions have been
reversed, so we can do

a
 [na].(d[nd].0 ∣ c[nc].rolling 
) ∣ b
′ [nb].(c[nc] ∣ d[nd].rolling 
 ′) ∣ a[na] ∣ b[nb])
⧵{a, b, c, d}
roll nb

(a
 [na].(d.0 ∣ c.rolling 
) ∣ b
′ .(c ∣ d.roll 
 ′) ∣ a[na] ∣ b) ⧵ {a, b, c, d}

Since rolling 
 has been triggered it can now be executed despite c having been reversed,

a
 [na].(d.0 ∣ c.rolling 
) ∣ b
′ .(c ∣ d.roll 
 ′) ∣ a[na] ∣ b) ⧵ {a, b, c, d}
roll na

(a
 .(d.0 ∣ c.roll 
) ∣ b
′ .(c ∣ d.roll 
 ′) ∣ a ∣ b) ⧵ {a, b, c, d}

In addition, to ensure every rollback is associated with exactly one action, we define
a consistent process.
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(start ROLL) roll 

start roll 


rolling 
 (par ROLL)
P0

roll n
P ′
0 C = {m ∣ n ≤P ′0 ∣P1

m}

P0 ∣ P1
roll n

(P0 ∣ P1) C

(ROLL) rolling 

roll 


roll 
 (act ROLL)
P

roll 

P ′ C = {m ∣ n ≤�
 [n].P m}

�
 [n].P
roll n

�
 .P ′
 C

Table 3: The main rules for rollback in the operational semantics of Roll-CCSK.

Definition 6.4 (Consistent process). A roll-CCSK process P is consistent if
1. there exists a standard processQ with no subprocess rolling 
 such thatQ→∗ P ;
2. any roll 
 or rolling 
 in P is part of a subprocess, �
 .P ′ or �
 [n].P ′;
3. any subprocess of P , �
 .P ′ or �
 [n].P ′ contains at most one instance of roll 
 or

rolling 
 not part of a subprocess of P ′, �′
 .P ′′ or �′
 [n].P ′′;
4. if A ⟨ã, 
̃⟩ is a subprocess of P defined as A(b̃, �̃) = PA, then PA is consistent.

Proposition 6.5. Let P be a consistent process and P ≡ P ′. Then P ′ is consistent.

Proof. The tags and definitions of process constants will not change between P and
P ′.
Proposition 6.6. Let P be a consistent process and P

�[n]
←←←←←←←←←←←←←←←←→ P ′. Then P ′ is consistent.

Proof. The tags and definitions of process constants will not change between P and
P ′.
Example 6.7 (Recursion). Consider the process a
 .A ⟨a; 
⟩ where we have a recursive
definition A(b; �) = b� .(A ⟨b; �⟩ ∣ roll �). This process is consistent and we show that
we do not have problems of confusing which actions are supposed to be reversed by
which instance of roll 
 . After doing some actions and unfoldings we get

a
 [n0].a
 [n1].(a
 [n2].(A ⟨a; 
⟩ ∣ roll 
) ∣ rolling 
)

At this point, if we execute the outer rolling 
 we will get

rolling 

roll 


roll 


(a
 [n2].(A ⟨a; 
⟩ ∣ roll 
) ∣ rolling 
)
roll 


(a
 [n2].(A ⟨a; 
⟩ ∣ roll 
) ∣ roll 
)

a
 [n1].(a
 [n2].(A ⟨a; 
⟩ ∣ roll 
) ∣ rolling 
)
roll n1

a
 .(a
 .(A ⟨a; 
⟩ ∣ roll 
) ∣ roll 
)

a
 [n0].a
 [n1].(a
 [n2].(A ⟨a; 
⟩ ∣ roll 
) ∣ rolling 
)
roll n1

a
 [n0].a
 .(a
 .(A ⟨a; 
⟩ ∣ roll 
) ∣ roll 
)

And we see that switching the rollback from the tag to the key once we reach the first

-tagged action means that is the action we roll back to.
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(prop ROLL 1)
P

roll 

P ′ 
 ≠ 
 ′

�
′ [m].P
roll 


�
′ [m].P ′ (prop ROLL start 1)
P

start roll 

P ′

�
′ [n].P
start roll 


�
′ [n].P ′

(prop ROLL 2)
P

roll 

P ′

�
′ .P
roll 


�.
 ′.P ′ (prop ROLL start 2)

P0
start roll 


P ′0 std(P1)

P0 + P1
start roll 


P ′0 + P1

(prop ROLL 3)

P0
roll 


P ′0

P0 + P1
roll 


P ′0 + P1 (prop ROLL start 3)

P0
start roll 


P ′0

P0 ∣ P1
start roll 


P ′0 ∣ P1

(prop ROLL 4)
P

roll 

P ′

P ⧵ A
roll 


P ′ ⧵ A (prop ROLL start 4)
P → P ′

P ⧵ A
start roll 


P ′ ⧵ A

(prop ROLL 5)
P

roll 

P ′

P [f ]
roll 


P ′[f ] (prop ROLL start 5)
P

start roll 

P ′

P [f ]
start roll 


P ′[f ]

(prop ROLL 6)
P ≡ Q

roll 

Q′ ≡ P ′

P
roll 


P ′ (prop ROLL start 6)
P ≡ Q

start roll 

Q′ ≡ P ′

P
start roll 


P ′

(prop ROLL Key 1)
P

roll n
P ′ n ≠ m

�
 [m].P
roll n

�
 [m].P ′ (prop ROLL Key 2 )
P

roll n
P ′

�
 .P
roll n

�.
.P ′

(prop ROLL Key 3)

P0
roll n

P ′0

P0 + P1
roll n

P ′0 + P1 (prop ROLL Key 4)
P

roll n
P ′

P ⧵ A
roll n

P ′ ⧵ A

(prop ROLL Key 5)
P

roll n
P ′

P [f ]
roll n

P ′[f ] (prop ROLL Key 6)
P ≡ Q

roll n
Q′ ≡ P ′

P
roll n

P ′

Table 4: The operational semantics for propagation of rolls in Roll-CCSK.
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Weare then ready to prove Theorem 6.9, stating that for consistent subprocesses, any
rollback can be undone by a sequence of forwards actions. For this we use Lemma 6.8,
which states that projecting on an upwards-closed set of keys always results in a possible
previous state of the process.
Lemma 6.8. Given a consistent process P with no subprocess rolling 
 and a set of
keys C such that if n ∈ C and n ≤P m then m ∈ C , we have a sequence of transitions
P C →∗ P .

Proof. We prove this by induction on the size of C .
Suppose C = ∅. Then P C = P .Suppose P C′ →∗ P and C = C ′∪{n} for some n such that ifm ≤P n thenm ∉ C ′.Then if there does not exist an action � and a tag 
 such that �
 [n] occurs in P , we get

P C = P C′ →∗ P . If there exists a process P ′, an action � and tag 
 such that �
 [n].P ′is a subprocess of P then all past actions of P ′ are in C ′, meaning P ′ C = rt(P ′), and
since m ≤P n⇒ m ∉ C ′, we get P C

�
 [n]
←←←←←←←←←←←←←←←←←←←→ P C′ →∗ P .

Theorem 6.9 (Loop (Soundness)). Given consistent processes P0 and P1 containing

no subprocesses rolling 
 , such that P0
start roll 


P ′0
roll n

P1, we have P1 →∗ P0.

Proof. Follows from Lemma 6.8.
We will from now on use →CCSK and ⇝CCSK to distinguish CCSK-transitions

from roll-CCSK transitions. The last thing we need to prove about our rollback opera-
tional semantics before moving on to event structure semantics is Theorem 6.12, stating
that (1) our rollbacks only reverse the actions caused by the action we are rolling back
according to CCSK, and (2) our rollbacks are maximally permissive, meaning that any
subset of reached rollbacks may be successfully executed.

In order to define our notion of completeness, we first need a way to translate roll-
CCSK to CCSK.
Definition 6.10 (Transforming roll-CCSK to CCSK). Wedefine a function,�, which
translates a roll-CCSK process into CCSK:
�(0) = 0 �(P0 + P1) = �(P0) + �(P1) �(P0 ∣ P1) = �(P0) ∣ �(P1)
�(�
 .P ) = �.�(P ) �(�
 [n].P ) = �[n].�(P ) �(P ⧵ A) = �(P ) ⧵ A
�(P [f ]) = �(P )[f ] �(roll 
) = 0

Definition 6.11 (Reversing Upto Keys). LetP be aCCSKprocess and T = {m0, m1,…mn}be a set of keys. We say that P ⇝T P ′ if there exists actions �, � and a key m such that
P

�[m]
CCSK P ′ and �[mi] ≤P �[m] for some mi ∈ T .

Theorem 6.12 (Completeness). Let P be a consistent roll-CCSK process with subpro-
cesses with rolls, �0
0 [m0]… roll 
0, �1
1 [m1]… roll 
1,… , �n
n [mn]… roll 
n. Then for
all T ⊆ {m0, m1,…mn}, if �(P )⇝∗

T P
′ ̸⇝T then there exists a roll-CCSK process P ′′

such that �(P ′′) = P ′ and P ⇝∗ P ′′.
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(start ROLL) roll 

start roll 


SM rolling 
 (par ROLL)
P0

roll n
SM P ′0 C = {m ∣ n ≤P0 ∣P1 m}

P0 ∣ P1
roll n

SM markC (P0 ∣ P1)

(ROLL) rolling 

roll 


SM roll 
 (act ROLL)
P

roll 

SM P ′ C = {m ∣ n ≤�
 [n].P m}

�
 [n].P
roll n

SM �
 [n]∙.markC (P ′)

Table 5: The main rules for semi-distributed rollback of Roll-CCSK.

Proof. To get P ′′ we apply first start roll 
i for every mi ∈ T and then roll mi for every
mi ∈ T to P . We show that this is the correct P ′′.

Let Pr be P with every rolling 
 replaced with roll 
 . Then Pr ⇝∗ P ′′r , where P ′′r is
P ′′ with every rolling 
 replaced with roll 
 using the same rules as P ⇝∗ P ′′.

By the loop theorem we get P ′′r →∗ Pr. And since �(Pr) = �(P ) and �(P ′′r ) =
�(P ′′), we can translate this computation into CCSK: �(P ′′) →∗

CCSK �(P ). From the
loop lemma of CCSK, this gives us �(P )⇝∗

CCSK �(P ′′). And obviously �(P ′′) ⇝̸T .We then only need to show that if �(P ) ⇝∗
T P

′ ̸⇝T , then P ′ = �(P ′′). Since theyboth reverse all the keys causally dependent on keys in T , this follows from Proposi-
tion 5.16 of [26].
With Theorems 6.9 and 6.12, we have shown that our semantics captures the behaviour
of a rollback, but we would like to be able to roll back the actions one at a time in a
distributed manner. For this purpose we define a new semantics, in which the rollback
marks the actions needing to be rolled back with the key associated with the rollback,
so they can be rolled back individually. We refer to this as single-mark semantics and
annotate its transitions with SM; we call the semantics described above high-level se-
mantics, which we annotate with HL.

To mark the actions we define a new function, mark, similar to  , which marks all
the actions with a specific set of keys, C , with ∙.
Definition 6.13 (Marking Function). Given a processP and a set of keysC ,mark∙C (P )is defined as:

markC (�
 [m].P ) = �
 [m].markC (P ) if m ∉ C markC (0) = 0
markC (P ⧵ A) = markC (P ) ⧵ A markC (roll 
) = roll 

markC (�
 [m].P ) = �
 [m]∙.markC (P ) if m ∈ C markC (rolling 
) = rolling 

markC (P0 ∣ P1) = markC (P0) ∣ markC (P1) markC (A

⟨

b̃, 
̃
⟩

) = A
⟨

b̃, 
̃
⟩

markC (P0 + P1) = markC (P0) +markC (P1) markC (�
 .P ) = �
 .markC (P )
markC (P [f ]) = markC (P )[f ]We call a process containing actions marked with ∙ a marked process.

Note that this marking is not defined on already marked actions, meaning all mark-
ings must be removed before a new rollback can start.

The forwards rules are still the same, though note that a forwards action cannot
propagate past marked actions. The roll rules (Tables 4 and 5) are the same as in the
previous semantics, with the exception of replacing instances of P C with markC (P )
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std(P )

�[n]∙.P
�[n]

SM �.P

P
�[m]

SM P ′ m ≠ n

�[n].P
�[m]

SM �[n].P ′

P
�[m]

SM P ′ m ≠ n

�[n]∙.P
�[m]

SM �[n]∙.P ′

P ≡ Q
�[n]

SM Q′ ≡ P ′

P
�[n]

SM P ′

P0
�[n]

SM P ′0 fsh[n](P1)

P0 ∣ P1
�[n]

SM P ′0 ∣ P1

P0
�[n]

SM P ′0 P1
�[n]

SM P ′1

P0 ∣ P1
�[n]

SM P ′0 ∣ P
′
1

P0
�[n]

SM P ′0 std(P1)

P0 + P1
�[n]

SM P ′0 + P1

P
�[n]

SM P ′ �, � ∉ A

P ⧵ A
�[n]

SM P ′ ⧵ A

P
�[n]

SM P ′

P [f ]
f (�)[n]

SM P ′[f ]

Table 6: Reversing marked actions.

and letting start roll propagate past marked actions. For actually reversing the marked
actions, we introduce the rules seen in Table 6, which invert the forwards rules, but
must start with a marked action.
Example 6.14. Consider the process a
 [n].b[m].rolling 
 ∣ (b[m] ∣ a[n]) in which the
a’s and b’s have communicated and the rollback has been activated. In order to actually
execute the roll, we mark the actions needing to be rolled back with n:

a
 [n].b[m].rolling 
 ∣ (b[m] ∣ a[n])
roll n

SM a
 [n]∙.b[m]∙.roll 
 ∣ (b[m]∙ ∣ a[n]∙)

We can then reverse the marked actions in a causal way:

a
 [n]∙.b[m]∙.roll 
 ∣ (b[m]∙ ∣ a[n]∙)
�[m]
←←←←←←←←←←←←←←←←←→SM a
 [n]∙.b.roll 
 ∣ (b ∣ a[n]∙)
�[n]
←←←←←←←←←←←←←←←→SM a
 .b.roll 
 ∣ (b ∣ a)

We intend to show that this new semantics is equivalent to the previous. For this
purpose we define a notion of reverse-ignoring bisimulation which, as the name sug-
gests ignores all reverse transitions except rolls.
Definition 6.15 (Reverse-ignoring Bisimulation). A relation on processes from single-
mark and high-level semantics, is a reverse-ignoring bisimulation if whenever P Q:

1. If P �[n]
←←←←←←←←←←←←←←←←→SM P ′ then Q �[n]

←←←←←←←←←←←←←←←→HL Q′ and P ′Q′.
2. If Q �[n]

←←←←←←←←←←←←←←←←→HL Q′ then P
�[n]
←←←←←←←←←←←←←←←→SM P ′ and P ′Q′.

3. For l ∈ {roll n ∣ n is a key}, if P l
SM P ′ then Q l

←←←→HL Q′ and P ′Q′.
4. For l ∈ {roll n ∣ n is a key}, if Q l

HL Q′ then P
l
←←←→SM P ′ and P ′Q′.

Where P l
←←←→ P ′ if P l1

⋯
li l
←←←←←→

l′1
⋯

l′j
P ′ or P l1

⋯
li l l′1

⋯
l′j
P ′ for

{l1,… , li, l′1,… , l′j} ∩ ({roll n ∣ n is a key}) = ∅.For processes P and Q, if there exists a reverse-ignoring bisimulation  such that
PQ then P SM≈HL Q.
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We also define a mapping,M , which removes the ∙ and key from all marked actions,
effectively reversing them, which we will use to describe our bisimulation relation be-
tween single-mark and high-level processes.
Definition 6.16 (Mapping from single-mark to high-level semantics). Given a reach-
able process of the single-mark semantics, P , we define a mapping to a high-level pro-
cess without markings:
M(�
 [n].P ) = �
 [n].M(P ) M(0) = 0
M(P ⧵ A) =M(P ) ⧵ A M(roll 
) = roll 

M(rolling 
) = rolling 
 M(P0 ∣ P1) =M(P0) ∣M(P1)
M(A

⟨

b̃, 
̃
⟩

) = A
⟨

b̃, 
̃
⟩

M(�
 [n]∙.P ) = �
 .M(P ) M(P0 + P1) =M(P0) +M(P1)
M(�
 .P ) = �
 .M(P ) M(P [f ]) =M(P )[f ]

Using those, we get a correspondence between the two semantics, as expressed in
Theorem 6.17.
Theorem 6.17. Given a process P reachable with the single-mark semantics, P SM≈HL
M(P ).

Proof. We define
 = {(P ,M(P )) ∣ P is reachable }

and show that this is a reverse-ignoring bisimulation.
We do this by induction on the structure of P , and it is obvious in all cases except

P = �
 [n]∙.P ′. In this case P can only perform reverse non-rollback actions P �[m]
SM

Q, but M(P ) can perform M(P )
�
 [n′]
←←←←←←←←←←←←←←←←←←←←←←→HL R. Fortunately P can perform a series of

transitions P �1[m1]
SM ⋯

�i[mi]
SM

�[n]
SM M(P )

�
 [n′]
←←←←←←←←←←←←←←←←←←←←←←→SM R.

7. Event Structure Semantics of Roll-CCSK

Now that we have defined operational semantics of rollback, we are ready to de-
scribe a more formal method for using LREBESs to model rollback than the ad-hoc
approach we used in Example 5.1.

Tomodel a rollback in an event structure, we have two events, one which triggers the
rollback, labelled start roll 
 , and another which starts the actual rollback by allowing
the events caused by the associated action to begin reversing. When prefixing a process
P with an action �
 , we now need to ensure that any action in P , and any start roll
associated with such an action, will be reversed by any roll 
 in P , and that the rollback
does not stop, signified by the event labelled roll 
 being reversed, until those actions
have all been reversed.

When composing the LREBESs of two processes, we also create a separate event
for each set of causes it might have (Definition 7.1), similarly to how products of PESs
are handled or how we define enablings when converting to an RES. This allows us to
say that an event can be rolled back if it was caused by a communication with one of the
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events being rolled back, but not if the communication went differently. Consider the
process a
 .roll 
 ∣ a.b ∣ a
′ .roll 
 ′. In this case we will want b to roll back if both (a
 , a)and roll 
 have happened, or if both (a
′ , a) and roll 
 ′ have happened, but not if any
other combination of the four events has happened, something which bundles cannot
express unless b is split into multiple events. In addition, we use the sets of causes to
ensure that if e is in e′’s set of causes and eroll can cause e to reverse, then eroll can cause
e′ to reverse.
Definition 7.1 (Possible Causes). Given an LREBES,  = (E, F,↦,⊳, �,Act), the
set of possible causes for an event e ∈ E, cause(e) = X, contains minimal sets of
events such that if x ∈ X then:

1. if x′ ↦ e then there exists e′ such that x′ ∩ x = {e′};
2. if e′ ∈ x then there exists x′ ∈ cause(e′) such that x′ ⊆ x;
3. if e1, e0 ∈ X then not e0 ♯ e1.

Example 7.2 (Causes and parallel composition). Consider the process P = a
 .roll 
 ∣
a
′ .roll 
 ′. This process would generate the event structure ⦃P⦄ = ⟨ , ∅, ∅⟩with events:

{(∅, (a, ∗)), (∅, (∗, a)), (∅, (a, a)), ({(a, ∗)}, (start roll 
, ∗)),
({(a, a)}, (start roll 
, ∗)), ({(∗, a)}, (∗, start roll 
 ′)), ({(a, a)},
(∗, start roll 
 ′)), (roll 
, ∗), (∗, roll 
 ′)}

Here all events but the rolls have a set of causes associated with them but are still
labelled based only on the action.

The actions are not preceded by other actions, so their sets of causes are empty and
they can happen at the start of the process.

The start roll-labelled events are all caused by their preceding actions either hap-
pening on their own or synchronising, and whether they synchronise or not determines
which of the start roll events happens.

The roll events do not have sets of causes, since we do not treat them as forwards
actions needing to be reversed before the actions causing them are reversed.

As a side effect of adding causes, we also need to change the definition of restriction
to remove not only the actions associated with the restricted labels, but also the actions
caused by them. We do this because we want the event structures generated by P and
0 ∣ P to always be isomorphic, but if P = (a.b) ⧵ {a}, we will otherwise get an event b,
which, having no possible causes, disappears once we put P in parallel with anything,
since this involves generating a b event for each set of possible causes.
Definition 7.3 (Removing labels and their dependants). Given an event structure  =
(E, F,↦,⊳, �,Act) and a set of labels A ⊆ Act, we define �(A) = X as the maximum
subset of E such that

1. if e ∈ X then �(e) ∉ A;
2. if e ∈ X then there exists x ∈ cause(e) such that x ⊆ X.
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We are now ready to define event structure semantics of Roll-CCSK in Table 7.
Both roll 
 and rolling 
 generate the same event structure consisting of a start rollback
event es and a rollback event er, but with the es in the initial state of rolling 
 . A process
with an action prefix, �
 .P has to find any roll 
 events rolling back to �
 , R, and any
events not part of a potential roll back to �
 , Eroll. To define Eroll, we look for whether
tags occur in P . This is not strictly necessary, as we can tell for a given rollback event
whether P contains its corresponding action by seeing whether it is caused by any action
events (as we do when defining R). We then say that all non-rollback events in P are
caused by e� and reversed by the rolls in R. And that the rolls in R are prevented from
reversing by e� . After adding causes to action events, a parallel composition, P0 ∣ P1,has to figure out which rolls are associated with which of the new events with causes.
To do this, we need to find the rolls associated with either half of either the original
event or one of its causes. The rest of the event structure semantics is similar to that of
Section 4.

Table 7: LREBES-semantics of Roll-CCSK.

⦃roll 
⦄l = ⟨({er, es}, {er, es},↦,⊳, �,Act), ∅, ∅⟩ where:
{er} ↦ er {es}↦ es {es}↦ er, and {er} ↦ es
es ⊳ er and er ⊳ es
�(e) =

{

roll 
 if e = er
start roll 
 if e = es

Act = {roll 
, start roll 
}

⦃rolling 
⦄l = ⟨({er, es}, {er, es},↦,⊳, �,Act), {es}, ∅⟩ where:
{er} ↦ er {es}↦ es {es}↦ er, and {er} ↦ es
es ⊳ er and er ⊳ es
�(e) =

{

roll 
 if e = er
start roll 
 if e = es

Act = {roll 
, start roll 
}

⦃0⦄l = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩

⦃�
 .P⦄l = ⟨(E, F ,↦,⊳, �,Act), Init, k⟩ where:
⦃P⦄l = ⟨(EP , FP ,↦P ,⊳P , �P ,ActP ), Init, k⟩
E = EP ∪ {e�} where e� fresh
Eroll =

{

e
|

|

|

|

|

�P (e) ∈ {roll 
 ′ ∣ 
 ′ is a tag } or
�P (e) ∈ {start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occurs in �
 .P }

}

F = FP ∪ {e�}
X ↦ e if X ↦P e or X = {e�}, e ∈ EP , and �P (e) ≠ roll 
 ′
We define the set of roll events rolling back to �
 as:
R = {e ∣ �P (e) = roll 
 and e′ ⊳P e ⇒ �P (e′) = start roll 
}
X ↦ e if X = {e}, or e = e� and X = R, or e ∈ Eroll and X ↦P e,or e ∉ Eroll, {e} ≠ X′ ↦P e, and X = X′ ∪ R
⊳ = ⊳P ∪ ((E ⧵ {er ∣ ∃
 ′.�(er) ∈ {roll 
 ′, start roll 
 ′}}) × {e�})∪
({e�} × R) ∪ (R × (E ⧵ R))
Act = ActP ∪ {�}

For all e ∈ E, �(e) =
{

�P (e) if e ∈ EP
� if e = e�
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Table 7: LREBES-semantics of Roll-CCSK (continued).

⦃�
 [m].P⦄l = ⟨(E, F ,↦,⊳, �,Act), Init, k⟩ where:
⦃�
 .P⦄l =

⟨

(E, F,↦,⊳, �,Act), Init′, k′
⟩

{e�} = {e ∈ E ∣ �(a) = � and ∄X ⊆ E.X ↦ e�}

Init = Init′ ∪ {e�} k(e) =

{

m if e = e�
k′(e) otherwise

⦃

A
⟨

b̃, �̃
⟩⦄

0 = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩
⦃

A
⟨

b̃, �̃
⟩⦄

l =
⦃

PA{b̃,�̃∕ã,
̃}
⦄

l−1 where A ⟨ã, 
̃⟩ = PA and l ≥ 1
⦃P0 + P1⦄l = ⟨0 + 1, Init, k⟩ whereFor i ∈ {0, 1}, ⦃Pi⦄l = ⟨i, Initi, ki⟩

Init = {(j, e) ∣ j ∈ {0, 1} and e ∈ Initj}
k(j, e) = kj(e) if e ∈ Initj

⦃P0 ∣ P1⦄l = ⟨(E, F,↦,⊳, �,Act), Init, k⟩ where:
⦃Pi⦄l = ⟨i, Initi, ki⟩ and i = (Ei, Fi,↦i,⊳i, �i,Acti) for i ∈ {0, 1}
(E×, F×,↦×,⊳×, �×,Act×) = 0||1
Init× = {(e0, e1) ∣ e0 ∈ Init0, e1 ∈ Init1, k0(e0) = k1(e1)}∪
{(∗, e1) ∣ e1 ∈ Init1, ∄e0 ∈ Init0.�0(e0) = �1(e1), and k0(e0) = k1(e1)}∪
{(e0, ∗) ∣ e0 ∈ Init0, ∄e1 ∈ Init1.�0(e0) = �1(e1), and k0(e0) = k1(e1)}
Eaction =

{

(X, e)
|

|

|

|

|

e ∈ E×, �×(e) ∉ {roll 
 ∣ 
 is a tag }, X ∈ cause(e)
and ∀e′ ∈ X.∃X′ ∈ cause(e′).X′ ⊆ X

}

Eroll = {e ∣ e ∈ E× and �×(e) ∈ {roll 
 ∣ 
 is a tag }}
E = Eaction ∪ Eroll

Faction = {(X, e) ∈ E ∣ e ∈ F×} Froll = Eroll ∩ F× F = Faction ∪ FrollWe define �0 and �1 such that for (X, (e0, e1)) ∈ Ea, �i(X, (e0, e1)) = ei,and for (e0, e1) ∈ Er, �i(e0, e1) = ei
{(X, e′) ∣ X′ ⊆ X}↦ (X′, (e0, e1)) if e′ ∈ X′

X ↦ (e0, e1) if there exists X′ such that X′ ↦× e and
X = {e′ ∣ (�0(e′), �1(e′)) ∈ X′}
X ↦ e if X = {e}, or
e = (e0, e1) and X = {e′ ∣ (�0(e′), �1(e′)) ∈ X′} for some X′ ↦× e, or

e = (X′, e×) and X =
⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ Ei.Xi ↦ �i(e×)
or ∃e′× ∈ X′.Xi ↦ �i(e′×)
and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

e ⊳ e′∗ if there exists i ∈ {0, 1} such that �i(e) ⊳i �i(e′)∗, or
e ≠ e′, and e ∈ X ↦ e′, or
�i(e) = �i(e′) ≠ ⊥, and e ≠ e′, e′∗ = e′, or e′∗ ≠ e′ and e, e′ ∈ Eroll

Act = Act0 ∪ Act1 ∪ {�}

�(e) =

⎧

⎪

⎨

⎪

⎩

� if e = (X, (e0, e1))
�0(e0) if e = (X, (e0, ∗)) or e = (e0, ∗)
�1(e1) if e = (X, (∗, e1)) or e = (∗, e1)

Init = {(X, e) ∣ X ∪ {e} ⊆ Init×} ∪ (Eroll ∩ Init×)
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Table 7: LREBES-semantics of Roll-CCSK (continued).

k(e) =

⎧

⎪

⎨

⎪

⎩

k0(e0) if e = (X, (e0, ∗))
k1(e1) if e = (X, (∗, e1))
k0(e0) if e = (X, (e0, e1)) – note that k0(e0) = k1(e1)

⦃P ⧵ A⦄l =
⟨

 ↾ �(A ∪ A), Init ∩ �(A ∪ A), k ↾ �(A ∪ A)
⟩

where ⦃P⦄l = ⟨ , Init, k⟩

Much like we did in Proposition 4.13, we need to show that there exists a least upper
bound of the event structures resulting from unfolding recursion. For this we first show
that our action prefix, parallel composition, and tag binding are monotonic.
Proposition 7.4 (Unfolding). Given a consistent process P and a level of unfolding k,
if ⦃P⦄k = ⟨ , Init, k⟩ and ⦃P⦄k−1 =

⟨

 ′, Init′, k′
⟩

, then  ′ ≤  , Init = Init′, and
k = k′.

Proof. Follows from Lemmas F.1, F.2, and F.3 in Appendix F.1 and Proposition 4.13.

Example 7.5 (Recursion). Consider the process P = a
 .A ⟨a; 
⟩ with the recursive
definition A(b; �) = b� .(A ⟨b; �⟩ ∣ roll �) from Example 6.7. Since we have recursion
⦃P⦄ would have an infinite number of events, but we can still get a reasonable idea of
what it would look like by only unfolding twice, giving us ⦃P⦄2 = ⟨(E, F,↦,⊳), ∅, ∅⟩.
We name events after their labels and their level of unfolding so that e.g. roll 
∶1 is the
roll 
-labelled event originating from the first unfolding of the recursion.

E = F = {a∶0, a∶1, a∶2, start roll 
∶1, start roll 
∶2, roll 
∶1, roll 
∶2}
{a∶i} ↦ a∶j for i < j roll 
∶i ⊳ a∶j for i ≤ j
{a∶i} ↦ start roll 
∶j for i ≤ j roll 
∶i ⊳ start roll 
∶j for i ≤ j
{start roll 
∶i} ↦ roll 
∶i for i ∈ {1, 2} roll 
∶i ⊳ roll 
∶j for i ≠ j
{roll 
∶i} ↦ start roll 
∶i for i ∈ {1, 2} a∶i ⊳ a∶j for i > j
{roll 
∶i} ↦ a∶j for i ≤ j a∶i ⊳ roll 
∶i for i ∈ {0, 1}
�(�∶i) = � start roll 
∶i ⊳ roll 
∶i for i ∈ {1, 2}
Act = {a, start roll 
}

Obviously this can be extended to a greater level of unfolding by allowing i > 2.
In this case we deal with the issue of ensuring each rollback only rolls back to its

most recent a
 by using the set {er ∣ �P (er) = roll 
 and er ∈ X ↦ e ⇒ �(e) =
start roll 
} as the set of rollback events rolling back to �
 in the definition of

⦃

�
 .P
⦄

.
This ensures that if the rollback event has found another 
-tagged action in P then it
will be causing that to reverse and therefore not be in the set.

We then show that structurally congruent processes result in isomorphic event struc-
tures, for which we use Lemmas 7.6 to 7.11.

We first show that aside from rolls, we have causal consistency between events.
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Lemma 7.6 (Causal consistency of actions). Given Roll-CCSK process P such that
⦃P⦄ = ⟨ , Init, k⟩, for any events e, e′, if e ∈ X ↦ e′ and e′ ̸⊳e, then there exists 

such that �(e′) ∈ {roll 
, start roll 
}.

Proof. We prove this by structural induction on P in Appendix F.2.
We then show that, aside from rolls, causation is transitive.

Lemma 7.7 (Transitive causation). Given a Roll-CCSK process P such that ⦃P⦄ =
⟨(E, F,↦,⊳, �,Act), Init, k⟩, whenever X ↦ e ∈ X′ ↦ e′, we have X ↦ e′, or there
exists a 
 such that �(e′) = roll 
 .

Proof. We prove this by structural induction on P in Appendix F.3.
We then show that because we split actions into multiple events, each bundle asso-

ciated with an action event only contains one event.
Lemma 7.8 (Forwards bundles). Given a Roll-CCSK process P such that ⦃P ⦄ =
⟨(E, F,↦,⊳, �,Act), Init, k⟩, whenever X ↦ e, either there exists e′ such that X =
{e′}, or there exists a 
 such that �(e) = roll 
 .

Proof. We prove this by structural induction on P in Appendix F.4.
We then show a sort of reverse causality. If an event e′ causes e to reverse, then e′

prevents e. This means actions being reversed as part of a rollback must wait for the
rollback to be completed.
Lemma 7.9 (Reverse inverse causality). Given a Roll-CCSK process P with ⦃P⦄ =
⟨(E, F,↦,⊳, �,Act), Init, k⟩, whenever e′ ∈ X ↦ e and e ≠ e′, we get e′ ⊳ e.

Proof. We prove this by structural induction on P in Appendix F.5.
We then show that the reversal of an event is associated with at most one bundle.

This means no action needs multiple rolls to be in progress before it can reverse.
Lemma 7.10 (Single backwards bundle). Given a Roll-CCSK process P such that
⦃P⦄ = ⟨(E, F,↦,⊳, �,Act), Init, k⟩, for any event e ∈ F , there exists at most one
bundle X ↦ e such that X ≠ {e}.

Proof. We prove this by structural induction on P in Appendix F.6.
The final lemma we need for structural congruence says that if e′ causes an action

event e then every rollback that reverses e′ must also reverse e.
Lemma 7.11 (Reverse transitivity). Given a Roll-CCSK process P such that ⦃P⦄ =
⟨(E, F,↦,⊳, �,Act), Init, k⟩, whenever e′ ∈ X ↦ e, X′ ↦ e′, X′ ≠ {e′}, and �(e) =
�, there must exist X′′ ⊇ X′ such that X′′ ↦ e.

Proof. We prove this by structural induction on P in Appendix F.7.
Having introduced these lemmas, we are ready to prove that structurally congruent

processes generate isomorphic event structures.
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Proposition 7.12 (Structural Congruence). Given consistent roll-CCSK-processes P
and P ′, if P ≡ P ′, ⦃P⦄ = ⟨ , Init, k⟩, and ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, then there exists an
isomorphism f ∶  →  ′ such that f (Init) = Init′ and for all e ∈ Init, k(e) = k′(f (e)).

Proof. We prove this by case analysis on the structural congruence rules. We use Lem-
mas 7.7, 7.8, 7.9, 7.10 and 7.11. The full proof can be seen in Appendix F.8.

We then prove, much like we did for our CCSK event structure semantics, that, as
stated in Theorems 7.13 and 7.14, a process P has a transition P �

←←←←←←←→ P ′ if and only
if P and P ′ correspond to isomorphic event structures, and there exists a �-labelled
transition from the initial state of ⦃P⦄ to the initial state of ⦃P ′⦄.
Theorem 7.13. Let P be a consistent roll-CCSK process. If ⦃P⦄ = ⟨ , Init, k⟩l,
 = (E, F,↦,⊳, �,Act), Cre() = (E, F,C,→), Init is conflict-free, and there exists a

transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ such that ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

l, then there exists isomorphism

f ∶  →  ′ and a transition Init
{e}
←←←←←←←←←←←←←→ X such that �(e) = �, f◦k′ = k ∪ {(e, m)}, and

f (X) = Init′.

Proof. We prove this by induction on P �[m]
←←←←←←←←←←←←←←←←←←→ P ′ using Proposition 7.12 and Lem-

mas 7.7, 7.9, and 7.11. The full proof can be seen in Appendix F.9.
Having shown that each forwards transition in the operational semantics corre-

sponds to one in the generated event structure, we now show the converse.
Theorem 7.14. Let P be a consistent roll-CCSK process. If ⦃P⦄ = ⟨ , Init, k⟩,  =
(E, F,↦,⊳, �,Act), Cbr() = (E, F,C,→), Init is conflict-free, and there exists a tran-
sition Init

e
←←←←←→ X in Cbr() such that �(e) = �, then there exists a key m and a transition

P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′, such that ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

and there exists isomorphism f ∶  →  ′
such that f◦k′ = k ∪ {(e, m)} and f (X) = Init′.

Proof. We prove this by induction on P in Appendix F.10 using Lemma 7.6.
We then prove the same correspondence for start roll transitions.

Proposition 7.15. Let P be a consistent roll-CCSK process. If ⦃P⦄ = ⟨ , Init, k⟩,
 = (E, F,↦,⊳, �,Act), Cre() = (E, F,C,→), Init is conflict-free, and there exists

a transition P
start roll 

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′ such that ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, then there exist iso-

morphisms f ∶  →  ′ and g ∶  ′ →  and a transition Init
{e}
←←←←←←←←←←←←←→ X such that

�(e) = start roll 
 , f◦k′ = k ∪ {(e, m)}, and f (X) = Init′.

Proof. Similar to the proof of Theorem 7.13.
Proposition 7.16. Let P be a consistent roll-CCSK process. If ⦃P⦄ = ⟨ , Init, k⟩,
 = (E, F,↦,⊳, �,Act), Cbr() = (E, F,C,→), Init is conflict-free, and there exists
a transition Init

e
←←←←←→ X in Cbr() such that �(e) = start roll 
 , then there exists a a key

m and a transition P
start roll 

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′, such that ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

and there exist
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isomorphisms f ∶  →  ′ and g ∶  ′ →  such that f◦k′ = k ∪ {(e, m)} and
f (X) = Init′.

Proof. Similar to the proof of Theorem 7.14.
We finally need to prove that P can do a roll 
 transition if and only if the event

structure generated by P can do a roll 
-labelled event followed by reversing all the
events corresponding to actions and start roll’s with tags causally dependent on 
 and
then undoing roll 
 . For this we need Lemmas 7.17 to 7.21.

Lemma 7.17 states that all rolls are in conflict.
Lemma 7.17. LetP be a roll-CCSK process with⦃P⦄ = ⟨(E, F,↦,⊳, �,Act), Init, k⟩.
Given events e, e′ ∈ E such that e ≠ e′ and there exist tags 
, 
 ′ such that �(e) = roll 

and �(e′) = roll 
 ′ we get e ⊳ e′.

Proof. It is obvious from the syntax of Roll-CCSK that e and e′ come from parallel
subprocesses or different branches of a choice, and the result follows from the parallel
composition and choice rules of Table 7.

Lemma 7.18 states that reversal of actions and rollback initiations are only caused
by rollbacks.
Lemma 7.18. Let P be a roll-CCSK process. If ⦃P⦄ = ⟨(E, F,↦,⊳, �,Act), Init, k⟩
and e ∈ E where there does not exist 
 such that �(e) = roll 
 . Then whenever X ↦ e,
either X = {e} or for all e′ ∈ X, there does not exist 
 ′ such that �(e′) = roll 
 ′.

Proof. Obvious in most cases. In parallel composition we use the fact that we never
have e′′ ∈ X′′ ↦ e′′′ where there does not exist 
 ′′ such that �(e′′) = roll 
 ′′.

Lemma 7.19 states that if an event e′ in the initial state of a process prevents another
event e in the initial state from reversing, then the key of e must have caused the key
of e′.
Lemma 7.19. Let P be a roll-CCSK process. If ⦃P⦄ = ⟨(E, F,↦,⊳, �,Act), Init, k⟩
and e, e′ ∈ Init then e′ ⊳ e if and only if k(e) ≤P k(e′).

Proof. We prove this by induction on P . It is trivial in all cases except P = �
′′ [n].P ′and P = P0 ∣ P1.
• Suppose P = �
′′ [n].P ′. Then if e′ ⊳ e either e = e� or the result follows

from induction and the fact that e ∈ Init means there does not exist 
 ′′ such
that �(e) = roll 
 ′′. If e = e� then e′ ⊳ e unless �(e′) ∈ {start roll 
 ′, roll 
} for
some 
 .

• Suppose P = P0 ∣ P1. Then there exists i ∈ {0, 1} such that either �i(e′)⊳i �i(e)
or �i(e′) = �i(e). If �i(e′) ⊳i �i(e) then the result follows from induction, and if
�i(e′) = �i(e) then that contradicts e, e′ ∈ Init.

We now need a function, N(e), to give us the key an event e labelled with an initiated
rollback roll 
 is rolling back to in Definition 7.20. We prove that N finds such a key in
Lemma 7.21.

45



Definition 7.20 (N). Let P be a Roll-CCSK process with ⦃P⦄ = ⟨ , Init, k⟩ and  =
(E, F,↦,⊳, �,Act). We define a partial function N on events such that for an event
e ∈ E, N(e) = roll n if (1) �(e) = roll 
 , (2) Init e

←←←←←→, (3) for any key m, we have m ≥P nif and only if there exists an event e′ ∈ Init such that k(e′) = m and X ⊆ E such that
X ↦ e′ and e ∈ X. Otherwise N(e) is undefined.
Lemma 7.21. Let P be a consistent forwards-reachable roll-CCSK process such that
⦃P⦄ = ⟨ , Init, k⟩ and  = (E, F,↦,⊳, �,Act), then:

1. Let e ∈ E be an event such that �(e) = roll 
 and Init
e
←←←←←→. Then N(e) is defined

and unique.

2. Let P roll n
←←←←←←←←←←←←←←←←←←←→. Then there exists a unique e ∈ E such that N(e) = roll n.

Proof.
1. By Theorems 7.13 and 7.14 any key m occurs in P if and only if it occurs in
k(Init) and given e, e′ ∈ Init, e ∈ X ↦ e′ if and only if k(e) <P k(e′). The restfollows from Lemma 7.11.

2. Since P is consistent and forwards-reachable, exactly one �
 [n]must occur some-
where in P and by Theorems 7.13 and 7.14, we have e′ ∈ E such that �(e′) = �
and k(e′) = n. Then we say that e is the event such that �(e) = roll 
 and by
similar logic to the first part, N(e) = �(e) = roll n. To prove uniqueness, we only
need to show that in the subprocess �
 [n].P ′ of P , no other such e′ exists. This
follows from the definition of R in ⦃�
 [n].P ′

⦄ in Table 7 and the consistency of
P .

With these lemmas and definitions introduced, we will now prove Theorems 7.22
and 7.23. These state that a process P can do roll 
 if and only if the REBES generated
by P can do a roll 
 event, followed by undoing all the events corresponding to actions
P rolled back, and then reverse the roll 
 event.
Theorem 7.22. Let P be a roll-CCSK process such that ⦃P⦄ = ⟨ , Init, k⟩. Whenever

P
roll n

P ′, there exist e and e0, e1,… en such that Init
{e}
←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→ X1⋯

{en}
←←←←←←←←←←←←←←←←←→

Xn+1
{e}
←←←←←←←←←←←←←→ Xdone, N(e) = roll n, {e0, e1,… en} = {e′ ∣ n ≤P k(e′)}, ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩

, and there exists an isomorphism f ∶  →  ′ such that f (Xdone) = Init′.

Proof. We prove this through induction on the derivation of P roll n
P ′ using Lem-

mas 7.6, 7.10, 7.11, 7.17, and 7.18, Proposition 7.12 and 7.19, Theorem 7.13. The full
proof can be seen in Appendix F.11.

Having shown that each rollback transition in the operational semantics corresponds
to a sequence of transitions in the generated event structure, we now show the converse.
Theorem 7.23. Let P be a consistent roll-CCSK process such that ⦃P⦄ = ⟨ , Init, k⟩.

Whenever Init
{er}
←←←←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→ X1⋯

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, we have a transition

P
roll n

P ′, such that N(er) = roll n, {e0, e1,… en} = {e′ ∣ n ≤P k(e′)}, ⦃P ′⦄ =
⟨

 ′, Init′, k′
⟩

, and there exists an isomorphism f ∶  →  ′ such that f (Xdone) = Init′.
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Proof. Follows from Theorem 7.13 and Proposition 7.12
We have now proved an operational correspondence between the operational seman-

tics presented in Section 6 and the denotational event structure semantics presented in
this section. In particular, we have shown that using non-causal event structures lets us
model a control operator.

8. Conclusion

We have defined a reversible variant of bundle event structures and a category us-
ing these as objects, and used a causal subcategory of this to describe event structure
semantics of uncontrolled CCSK, the first event structure semantics of a reversible cal-
culus that we are aware of. We chose to use CCSK for this purpose because the way
CCSK records previous actions preserves the structure of the process, meaning we can
use very similar semantics for previous and future actions.

Unlike previous efforts to describe truly concurrent semantics of a reversible pro-
cess calculus such as the one using rigid families [8], we have generated both the event
structure and the initial state directly from the process, rather than needing to first undo
previous actions to get the original process and from there the event structure, and then
redo the actions to get the initial state. This was made easier by CCSK using static re-
versibility, since we did not have to combine events generated separately from amemory
and a process. Our event structure semantics has shown that the same process at dif-
ferent points in its execution will generate isomorphic event structures with different
initial states.

We have also proposed a variant of CCSK called Roll-CCSK, which uses the roll-
back described in [17] to control its reversibility. We have given two semantics for this
calculus, one in which the entire roll is completed in one step, and one in which each
action being rolled back takes a step. We have proved an operational correspondence
between these semantics. We have defined a reversible variant of extended bundle event
structures, which add asymmetric conflict to bundle event structures, and a category us-
ing these as objects, and used non-causal variants of these to define the event structure
semantics of Roll-CCSK. Using event structures with non-causal reversibility allows
us to treat rolls as normal events where the process a
 .roll 
 has the event a
 cause theevent roll 
 , and at the same time a
 prevents roll 
 from reversing.

We have proved operational correspondence between the operational and event struc-
ture semantics of both CCSK (Theorems 4.18 and 4.19) andRoll-CCSK (Theorems 7.13,
7.14, 7.22, and 7.23).

Another common way to control reversibility is by commit or irreversible actions,
introduced for reversible CCS in [10]. These are used to denote a safe state which the
process cannot reverse past. As such they function as a dual of the rollback, which en-
sures the process will reverse when hitting a fail state. Irreversible actions are simple
to add to event structure semantics of CCSK by making the corresponding events irre-
versible, but would be more challenging to add to Roll-CCSK due to potentially having
events which are irreversible but also required to reverse in order to finish a roll. We
chose to focus on rollback since, as pointed out in [17], rollback gives the programmer
more control than commit and more closely models system recovery techniques.

47



Future work. There exist many other reversible calculi which one might want to define
event structure semantics for, most of which deal with previous actions by putting them
into separate memories, rather than annotating them and keeping them in the process as
CCSK does. This will likely make defining event structure semantics more challenging,
particularly if trying to avoid defining the event structure corresponding to the fully
reversed process first and then finding the action which have already been performed.
Having event structure semantics of multiple calculi would allow us to reason about
them and compare them.
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A. Relating RBES to other categories of reversible event structures

In this appendix we recall the categories of reversible prime and stable event struc-
tures and describe how they relate to the category RBES defined in Section 3.2.
Definition A.1 (RPES [27]). A reversible prime event structure (RPES) is a sextuple
 = (E, F, <, ♯, ≺,⊳)whereE is the set of events, F ⊆ E is the set of reversible events,
and

• < ⊆ E × (E ∪ F ) is an irreflexive partial order such that for every e ∈ E,
{e′ ∈ E ∣ e′ < e} is finite and conflict-free;

• ♯ ⊆ E × E is irreflexive and symmetric such that if e < e′ then not e ♯ e′;
• ⊳ ⊆ E × F is the prevention relation;
• ≺ ⊆ E × F is the reverse causality relation where for each e ∈ F , e ≺ e and
{e′ ∣ e′ ≺ e} is finite and conflict-free and if e ≺ e′ then not e ⊳ e′;

• ♯ is hereditary with respect to sustained causation≪ and≪ is transitive, where
e ≪ e′ means that e < e′ and if e ∈ F then e′ ⊳ e.
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Definition A.2 (RPES morphism [15]). Let 0 = (E0, F0, <0, ♯0, ≺0,⊳0) and 1 =
(E1, F1, <1, ♯1, ≺1,⊳1) be RPESs. A morphism f ∶ 0 → 1 is a partial function
f ∶ E0 → E1 such that

• for all e ∈ E0, if f (e) ≠ ⊥ then {e1 ∣ e1 <1 f (e)} ⊆ {f (e′) ∣ e′ <0 e};
• for all e, e′ ∈ E0, if f (e) ≠ ⊥ ≠ f (e′) and f (e) ♯1 f (e′) then e ♯0 e′;
• for all e ∈ F0, if f (e) ≠ ⊥ then {e1 ∣ e1 ≺1 f (e)} ⊆ {f (e′) ∣ e′ ≺0 e};
• for all e ∈ E0 and e′ ∈ F0, if f (e) ≠ ⊥ ≠ f (e′) and f (e) ⊳1 f (e′) then e ⊳0 e′;
• for all e, e′ ∈ E0, if f (e) = f (e′) ≠ ⊥ and e ≠ e′ then e ♯0 e′;
• f (F0) ⊆ F1.

Definition A.3 (RPES to RBES). The functor Br ∶ RPES → RBES is defined as:
1. Br((E, F, <, ♯, ≺,⊳)) = (E, F,↦, ♯,⊳), where {e′} ↦ e if e′ < e and {e′} ↦ e

if e′ ≺ e;
2. Br(f ) = f .

Definition A.4 (SRES [15]). A stable reversible event structure (SRES) is a triple  =
(E, F,Con, ⊢) where E is the set of events, Con ⊆f in 2E is the consistency relation,
which is left-closed, ⊢ ⊆ Con × 2E × (E ∪ E) is the enabling relation, and

1. if X ⦸ Y ⊢ e∗ then (X ∪ {e}) ∩ Y = ∅;
2. if X ⦸ Y ⊢ e then e ∈ X;
3. if X ⦸ Y ⊢ e∗, X ⊆ X′ ∈ Con, and X′ ∩ Y = ∅ then X′ ⦸ Y ⊢ e∗;
4. ifX ⦸ Y ⊢ e∗,X′ ⦸ Y ′ ⊢ e∗, andX∪X′+e∗ ∈ Con thenX ∩X′ ⦸ Y ∩ Y ′ ⊢
e∗.

Definition A.5 (SRES morphism [15]). Let (E0,Con0, ⊢0) and (E1,Con1, ⊢1) be twoSRESs. A morphism f ∶ (E0,Con0, ⊢0) → (E1,Con1, ⊢1) is a partial function f ∶
E0 → E1 such that:

• for all e ∈ E0, if f (e) ≠ ⊥ and X ⦸ Y ⊢0 e∗ then there exists a Y1 ⊆ E1 suchthat for all e0 ∈ E0, if f (e0) ∈ Y1 then e0 ∈ Y and f (X) ⦸ Y1 ⊢1 f (e)∗;
• for any X0 ∈ Con0, f (X0) ∈ Con1;
• for all e, e′ ∈ E0, if f (e) = f (e′) ≠ ⊥ and e ≠ e′ then no X ∈ Con0 exists suchthat e, e′ ∈ X.

Definition A.6 (FCRBES to SRES). The functor Eb ∶ FCRBES → SRES is defined
as:

1. Eb((E, F,↦, ♯,⊳)) = (E, F,Con, ⊢) where
(a) Con is the set of finite conflict-free subsets of E;
(b) For e ∈ E, X ⦸ ∅ ⊢ e if X ∪ {e} ∈ Con and for all X′ ⊆ E such that

X′ ↦ e, X′ ∩X ≠ ∅;
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(c) For e ∈ F , X ⦸ Y ⊢ e if X ∈ Con, for all X′ ⊆ E such that X′ ↦ e,
X′ ∩X ≠ ∅, Y = {e′ ∣ e′ ⊳ e}, and Y ∩X = ∅;

2. Eb(f ) = f .
Proposition A.7. Given a FCRBES  = (E, F,↦, ♯,⊳), we have that Eb() is an
SRES.

Proof. We prove the conditions of Definition A.4.
1. If X ⦸ Y ⊢ e then Y = ∅ and therefore (X ∪ {e}) ∩ Y = ∅. If X ⦸ Y ⊢ e then
Y ∩X = ∅ and e ∈ X, and therefore (X ∪ {e}) ∩ Y = ∅.

2. If X ⦸ Y ⊢ e then {e} ↦ e and therefore {e} ∩X ≠ ∅ and e ∈ X.
3. If X ⦸ Y ⊢ e∗, X ⊆ X′ ∈ Con, and X′ ∩ Y = ∅ then for all X′′ ↦ e∗,
X ∩X′ ≠ ∅, and therefore X′ ⦸ Y ⊢ e∗.

4. If X ⦸ Y ⊢ e∗, X′ ⦸ Y ′ ⊢ e∗, and X ∪X′ + e∗ ∈ Con then, Y = Y ′, X ∪X′

is conflict-free, meaning there must exist an X′′ ⊆ (X ∩ X′) such that for all
X′′′ ↦ e∗, we have X′′′ ∩X′′ ≠ ∅. This means X ∩X′ ⦸ Y ∩ Y ′ ⊢ e∗.

B. Proofs from Section 3

B.1. Proof of Proposition 3.10
Proof. We first show that �0 and �1 are morphisms:

1. If �i(e) ♯i �i(e′), then obviously e ♯ e′.
2. If �i(e) = �i(e′) and e ≠ e′, then �1−i(e) ≠ �1−i(e′), and therefore e ♯ e′.
3. If Xi ↦ �i(e), then {e′ ∈ E ∣ �i(e′) ∈ Xi} ↦ e. Clearly �i({e′ ∈ E ∣ �i(e′) ∈
Xi}) = Xi, and for all e′ ∈ {e′ ∈ E ∣ �i(e′) ∈ Xi}), �i(e′) ≠ ⊥.

4. If X is a configuration of 0 × 1, then we show that �i(X) satisfies the require-ments of a configuration of i:
(a) As shown above �i(e) ♯i �i(e′) ⇒ e ♯ e′, which means that X conflict-free

implies �i(X) conflict-free.(b) If there exists a sequence e1,… , en such that X = {e1,… , en} and for all
j, 1 ≤ j ≤ n, if Y ↦ ej+1 then {e1,… , ej} ∩ Y ≠ ∅, then �i(X) =
{�i(e1),… , �i(en)} and if �i(ej+1) ≠ ⊥, then whenever Yi ↦ �i(ej+1),
{e′ ∈ E ∣ �i(e′) ∈ Yi} ↦ ej+1, meaning {e′ ∈ E ∣ �i(e′) ∈ Yi} ∩
{e1,… , ej} ≠ ∅. Therefore, we must get Yi∩{�i(e1),… , �i(ej)} ≠ �i(∅) =
∅.

We then show that for any BES, 2 = (E2,↦2, ♯2), if there exist morphisms f0 ∶
2 → 0 and f1 ∶ 2 → 1, then there exists a unique morphism f ∶ 2 →  , such
that �0◦f = f0 and �1◦f = f1.Clearly f (e) = (f0(e), f1(e)) is the only partial function for which this commutes,
so we prove it to be a morphism:

1. If f (e) ♯ f (e′) then there exists i ∈ {0, 1} such that either �i(f (e)) ♯i �i(f (e′)),in which case clearly fi(e) ♯i fi(e′)i, and therefore e ♯2 e′, or �i(f (e)) =
�i(f (e′)) ≠ ⊥ and �1−i(f (e)) ≠ �1−i(f (e′)), in which case fi(e) = fi(e′) ≠ ⊥,
and e ≠ e′, meaning e ♯2 e′.
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2. If f (e) = f (e′) ≠ ⊥ then f0(e) = f0(e′) ≠ ⊥ or f1(e) = f1(e′) ≠ ⊥, meaning if
e ≠ e′ then e ♯2 e′.

3. For X ⊆ E, if X ↦ f (e), then there exists i ∈ {0, 1} and Xi ⊆ Ei such that
Xi ↦ �i(e) and X = {e′ ∈ E ∣ �i(e′) ∈ Xi}. And since Xi ↦ fi(e), thereexistsX2 ⊆ E2 such thatX2 ↦2 e, fi(X2) ⊆ Xi, and if e′ ∈ X2 then fi(e′) ≠ ⊥.
Clearly f (X2) ⊆ X.

4. If X is a configuration of 2, then we show that f (X) satisfies the requirements
of a configuration of 0 × 1:
(a) As shown above, if f (e) ♯ f (e′), then e ♯2 e′, meaning ifX is conflict-free,

then f (X) is conflict-free.
(b) If there exists a sequence e1,… , en such that X = {e1,… , en} and for all

j, 1 ≤ j ≤ n, if Y ↦ ej+1 then {e1,… , ej} ∩ Y ≠ ∅, then f (X) =
{f (e1),… , f (en)} and if f (ej+1) ≠ ⊥, then whenever Y ′ ↦ f (ej+1), {e′ ∈
E ∣ f (e′) ∈ Y ′} ↦ ej+1, meaning {e′ ∈ E ∣ f (e′) ∈ Y ′} ∩ {e1,… , ej} ≠
∅. Therefore, we must get Y ′ ∩ {f (e1),… , f (ej)} ≠ f (∅) = ∅.

B.2. Proof of Proposition 3.13
Proof. Obviously  is a BES, and �0 and �1 are morphisms, so we simply need to prove
that if there exists a BES 2 = (E2,↦2, ♯2) and morphisms f0 ∶ 0 → 2 and f1 ∶
1 → 2, then there exists a unique BES morphism f ∶  → 2 such that the followingcommutes:



0 1

2

�0 �1

f

f0 f1

Clearly the only partial function for which this could hold is f (j, e) = fj(e), so we
prove it to be a morphism:

• If f (e) ♯2 f (e′) then e = (j, ej), e′ = (j′, ej′ ) fj(ej) = f (e), fj′ (ej′ ) = f (e′),
and either j ≠ j′ or j = j′. If j ≠ j′, then obviously e ♯ e′. If j = j′, then
fj(ej) ♯2 fj(ej′ ), meaning ej ♯j ej′ , and therefore e ♯ e′.

• If f (e) = f (e′) ≠ ⊥ then e = (j, ej) and e′ = (j′, ej′ ) and fj(ej) = f (e) =
f (e′) = fj′ (ej′ ).
If j = j′ then e ≠ e′ means that ej ≠ ej′ , which means that ej ♯j ej′ and therefore
e ♯ e′.
If j ≠ j′, then by definition e ♯ e′.

• IfX2 ↦ f (e), then e = (j, ej), and there existsXj such thatXj ↦j ej , fj(Xj) ⊆
X2, and if e′j ∈ Xj then fj(e′j) ≠ ⊥. This means {(j, e′j) ∣ e′j ∈ Xj} ↦ e,
f ({(j, e′j) ∣ e

′
j ∈ Xj}) ⊆ X2, and if e′ ∈ {(j, e′j) ∣ e′j ∈ Xj} then e′ ≠ ⊥.

The diagram obviously commutes.
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B.3. Proof of Proposition 3.30
Definition B.1 (CS morphism). Let 0 = (E0, F0,C0,→0) and 1 = (E1, F1,C1,→1)be configuration systems. A CS morphism is a partial function f ∶ E0 → E1 such that

1. for any X ∈ C0, f (X) ∈ C1;
2. for any X, Y ∈ C0, A ⊆ E0, and B ⊆ F0, if X

A∪B
←←←←←←←←←←←←←←←←←←←→0 Y and f (A ∪ B) ≠ ∅ then

f (X)
f (A)∪f (B)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→1 f (Y );

3. for all e0, e′0 ∈ E0, if f (e0) = f (e′0) ≠ ⊥ and e0 ≠ e′0 then there exists noX ∈ C0
such that e0, e′0 ∈ X.

Proof. Wefirst show that if  = (E, F,↦, ♯,⊳) is an RBES, thenCbr() = (E, F,C,→
) is a CS, as defined in Definition 3.28, meaning that forX, Y ∈ C, A ⊆ E, and B ⊆ F ,
if X A∪B

←←←←←←←←←←←←←←←←←←←→ Y , then:
1. A ∩X = ∅, B ⊆ X ∩ F , and Y = (X ⧵ B) ∪ A by definition.
2. For all A′ ⊆ A and B′ ⊆ B, (X ⧵ B′) ∪ A = Z ∈ C because Z ⊆ X ∪ A ∈ C.

MoreoverX A′∪B′
←←←←←←←←←←←←←←←←←←←←←←←←→ Z andZ

(A⧵A′)∪(B⧵B′)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Y obviously fulfil the conditions for

transitions.
We then show that if f ∶ 0 → 1 is an RBES morphism then f ∶ Cbr(0) → Cbr(1)is a CS morphism satisfying the conditions of Definition B.1:

1. Suppose X ∈ C0. Then X is conflict-free. Since, by definition of an RBES
morphism, f (e0) ♯1 f (e′0) ⇒ e0 ♯0 e′0, this implies that f (X) is conflict-free,
and therefore f (X) ∈ C1.

2. Suppose X A∪B
←←←←←←←←←←←←←←←←←←←→0 Y . Then f (X)

f (A)∪f (B)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→1 f (Y ) because:

(a) f (X), f (Y ) ∈ C1 since X, Y ∈ C0, as implied by item 1.
(b) f (Y ) = (f (X) ⧵ f (B)) ∪ f (A) since Y = (X ⧵ B) ∪ A.
(c) f (A)∩f (X) = ∅ sinceA∩X = ∅, and by definition of an RBESmorphism,

for all e0, e′0 ∈ E0, if f (e0) = f (e′0) ≠ ⊥ and e0 ≠ e′0 then e0 ♯0 e′0, implying
e0, e′0 ∉ (X ∪ A) = Y ∈ C0, since Y is conflict-free.

(d) f (B) ⊆ f (X) since B ⊆.
(e) f (X) ∪ f (A) is conflict-free because X ∪ A is conflict-free and f (e0) ♯1

f (e′0)⇒ e0 ♯0 e′0.(f) For all e ∈ B, if e′ ⊳ e then e′ ∉ X ∪ A.
(g) For all e1 ∈ f (B), if e′1 ⊳1 e1 then e′1 ∉ f (X) ∪ f (A) because for any

e0 ∈ B, e′0 ∈ E0 such that f (e0) = e1 and f (e′0) = e′1 we have e′0 ⊳ e0 and
therefore e′0 ∉ X ∪ A.

(h) For all e1 ∈ f (A) and X1 ⊆ E1, if X1 ↦1 e1 then X1 ∩ (f (X) ⧵ f (B)) ≠
∅ because then there exists e0 and X0 such that f (e0) = e1, X0 ↦0 e0,
f (X0) ⊆ X1, and if e′0 ∈ X0 then f (e′0) ≠ ⊥. Therefore,X0 ∩ (X ⧵B) ≠ ∅,
and f (X0) ∩ (f (X) ⧵ f (B)) ≠ ∅.(i) For all e1 ∈ f (B) and X1 ⊆ E1, if X1 ↦1 e1 then X1 ∩ (f (X)1 ⧵ (f (B) ⧵
{e1})) ≠ ∅ for similar reasons to the previous condition.

54



(j) For every a ∈ f (A), {e ∈ E1 ∣ e <1 f (a)} ⊆ f (X) because for every
a0 ∈ A, {e ∈ E0 ∣ e <0 a0} ⊆ X, and by definition of a PES morphism,
{e1 ∣ e1 <1 f (a0)} ⊆ {f (e) ∣ e <0 a0}.

3. Suppose f (e0) = f (e′0) ≠ ⊥ and e0 ≠ e′0. By definition of an RBES morphism,
e0 ♯0 e′0, and since allX ∈ C0 are conflict-free, there exists noX ∈ C0 such that
e0, e′0 ∈ X.

Then to prove it is a functor we simply need to show that:
Cbr(f ∶ 1 → 2) = Cbr(f ) ∶ Cbr(1) → Cbr(2), which is obvious since Cbr(f ) =

f , Cbr(E0) = E0, and Cbr(E1) = E1.
Cbr(1 ) = 1Cbr() since the identity function for all RBES and CS objects is f (e) = e.
Cbr(f◦f ′) = Cbr(f )◦Cbr(f ′) since Cbr(f ) = f and Cbr(f ′) = f ′.

C. Proofs from Section 4

C.1. Proof of Theorem 4.18
Proof. We say that  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) and the inverse of f is g ∶  ′ →  .
We prove the theorem by inductions on P �[m]

←←←←←←←←←←←←←←←←←←→ P ′ using the forwards semantics seen
in Table 1 and describing how  and  ′ are constructed:

• Suppose P = �.Q, P ′ = �[m].Q, � = �, and std(Q). Then there exist Q and e�such that:
– ⦃Q⦄ =

⟨

Q, Init, k
⟩,

– Q = (EQ, FQ,↦Q, ♯Q,⊳Q, �Q,ActQ),
– e� ∉ EQ,
– E = EQ ∪ {e�},
– F = FQ ∪ {e�},
– X ↦ e∗ if X ↦Q e∗ or X = {e�} and e∗ = e ∈ EQ,
– ♯ = ♯Q,
– ⊳ = ⊳Q ∪ (EQ × {e�}),
– Act = ActQ ∪ {�},
– for all e ∈ E, �(e) =

{

�Q(e) if e ∈ EQ
� if e = e�

,
– and if Init ≠ ∅ then for all e ∈ E, {e} ↦ e and for all e ∈ F , e ⊳ e.

There also exist  ′Q and e′� such that:

– ⦃Q′⦄ =
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

,
–  ′ is constructed similarly to  ,
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– Init′ = Init′Q ∪ {e
′
�},

– and k′(e) =
{

k′Q(e) If e ∈ Init′Q

m If e = e′�
.

As Q and  ′Q have been generated by the same process, we have isomorphisms
fQ ∶ Q →  ′Q and gQ ∶  ′Q → Q. We say that f = fQ ∪ {(e� , e′�)} and
g = gQ ∪ {(e′� , e�)}. These are obviously isomorphisms.
Since Init is conflict-free and ♯ = ♯Q, X = Init ∪ {e�} is conflict-free, and
therefore a configuration of Cbr(). And since no X′ ⊆ E exists such that X′ ↦

e� , we get Init
{e�}
←←←←←←←←←←←←←←←←←→ {e�}, and clearly �(e�) = � and k(f (e)) = m.

• Suppose that P = �[n].Q, P ′ = �[n].Q′, Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′, and m ≠ n. Then there

exist Q, InitQ, kQ, e� ,  ′Q, Init′Q, k′Q, and e′� similar to the previous case.
By induction, we get isomorphisms fQ ∶ Q →  ′Q and gQ ∶  ′Q → Q and a
transition InitQ

{e}
←←←←←←←←←←←←←→ XQ in Cbr(Q) such that �Q(e) = �, k′Q(fQ(e)) = m, and

fQ(XQ) = Init′Q.
We define f = fQ ∪ {(e� , e′�)} and g = gQ ∪ {(e′� , e�)}. Since InitQ and XQ are
conflict-free in Q, InitQ ∪{e�} = Init andXQ ∪{e�} = X are configurations of
Crb(), and clearly Init

{e}
←←←←←←←←←←←←←→ X.

• Suppose P = Q ∣ R, P ′ = Q′ ∣ R, Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′, and fsh[m](R). Then there exist

Q and R such that:
– ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩,

– Q = (EQ, FQ,↦Q, ♯Q,⊳Q, �Q,ActQ),
– ⦃R⦄ = ⟨R, InitR, kR⟩,
– R = (ER, FR,↦R, ♯R,⊳R, �R,ActR),
– E = {(e, ∗) ∣ e ∈ EQ} ∪ {(∗, e) ∣ e ∈ ER} ∪ {(e, e′) ∣ e ∈ EQ, e′ ∈
ER, �Q(e) = �R(e′)},

– F = {(e, ∗) ∣ e ∈ FQ} ∪ {(∗, e) ∣ e ∈ FR} ∪ {(e, e′) ∣ e ∈ FQ, e′ ∈
FR, �0(e) = �1(e′)},

– there exist �Q and �R such that �i(eQ, eR) = ei for i ∈ {Q,R},
– X ↦ e∗ if there exists i ∈ {Q,R} and Xi ⊆ Ei such that Xi ↦i �i(e) and
X = {e′ ∈ E ∣ �i(e′) ∈ Xi},

– e ♯ e′ if there exists i ∈ {Q,R} such that �i(e) ♯i �i(e′) or �i(e) = �i(e′) ≠
⊥,

– e ⊳ e′ if there exists i ∈ {Q,R} such that �i(e) ⊳i �i(e′),
– Act = ActQ ∪ ActR ∪ {�},
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– �(e) =

⎧

⎪

⎨

⎪

⎩

� if e = (eQ, eR)
�Q(eQ) if e = (eQ, ∗)
�1(eR) if e = (∗, eR)

,

– Init = {(eQ, eR) ∣ eQ ∈ InitQ, eR ∈ InitR, kQ(eQ) = kR(eR)} ∪ {(eQ, ∗) ∣
eQ ∈ InitQ and ∄eR ∈ InitR.�Q(eQ) = �R(eR) and kQ(eQ) = kR(eR)} ∪
{(∗, eR) ∣ eR ∈ InitR and ∄eQ ∈ InitQ.�Q(eQ) = �R(eR) and kQ(eQ) =
kR(eR)},

– and k(e) =
⎧

⎪

⎨

⎪

⎩

kQ(eQ) If e = (eQ, ∗)
kR(eR) If e = (∗, eR)
kQ(eQ) If e = (eQ, eR)

.

We also have ⟨ ′, Init′, k′⟩ constructed similarly from some
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

and
⟨

 ′R, Init
′
R, k

′
R
⟩ such that ⦃Q′⦄ =

⟨

 ′Q, Init
′
Q, k

′
Q

⟩

and ⦃R⦄ = ⟨

 ′R, Init
′
R, k

′
R
⟩.

We clearly have isomorphisms fQ ∶ Q → Q′ , gQ ∶  ′Q → Q, fR ∶ R →  ′R,
and gR ∶  ′R → R and a transition InitQ

{eQ}
←←←←←←←←←←←←←←←←←←←→ XQ of Crb(Q) such that �Q(e) =

�, k′Q(fQ(eQ)) = m, and fQ(XQ) = Init′Q.
Since Init is conflict-free andXQ is conflict-free in Q, clearly Init∪ {(eQ, ∗)} =
X is conflict-free, and Init

(eQ,∗)
←←←←←←←←←←←←←←←←←←←←←←←→ X.

We define our isomorphisms as

f (e) =

⎧

⎪

⎨

⎪

⎩

(fQ(e′), ∗) if e = (e′, ∗)
(∗, fR(e′)) if e = (∗, e′)
(fQ(e′), fR(e′′)) if e = (e′, e′′)

and

g(e) =

⎧

⎪

⎨

⎪

⎩

(gQ(e′), ∗) if e = (e′, ∗)
(∗, gR(e′)) if e = (∗, e′)
(gQ(e′), gR(e′′)) if e = (e′, e′′)

And, since fsh[m](R), f (X) = Init′. The rest of the proof is straightforward.

• Suppose P = Q ∣ R, P ′ = Q′ ∣ R′, Q �[m]
←←←←←←←←←←←←←←←←←→ Q′, R �[m]

←←←←←←←←←←←←←←←←←→ R′, and � = �.
Then we have ⟨ , Init, k⟩ constructed from ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩ and ⦃R⦄ =

⟨R, InitR, kR⟩ and
⟨

 ′, Init′, k′
⟩ constructed from ⦃Q′⦄ =

⟨

 ′Q, Init
′
Q, k

′
Q

⟩

and
⦃R′⦄ =

⟨

 ′R, Init
′
R, k

′
R
⟩ as in the previous case.

By induction, we have isomorphisms fQ ∶ Q →  ′Q, gQ ∶  ′Q → Q, fR ∶

R → R′ , and gR ∶ R′ → R and transitions InitQ
{eQ}
←←←←←←←←←←←←←←←←←←←→ XQ of Crb(Q) such
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that �Q(e) = �, k′Q(fQ(eQ)) = m, and fQ(XQ) = Init′Q, and InitR
{eR}
←←←←←←←←←←←←←←←←←←→ XR of

Crb(R) such that �R(e) = �, kR′ (fR(eR)) = m, and fR(XR) = InitR′ .
We define our isomorphisms as

f (e) =

⎧

⎪

⎨

⎪

⎩

(fQ(e′), ∗) if e = (e′, ∗)
(∗, fR(e′)) if e = (∗, e′)
(fQ(e′), fR(e′′)) if e = (e′, e′′)

and

g(e) =

⎧

⎪

⎨

⎪

⎩

(gQ(e′), ∗) if e = (e′, ∗)
(∗, gR(e′)) if e = (∗, e′)
(gQ(e′), gR(e′′)) if e = (e′, e′′)

We know that Init,XQ, andXR are conflict-free, so the only way Init∪{(eQ, eR)}has conflict is if InitQ or InitR an event with the key m, which we know from
Lemma 5.2 of [26] is not possible. The rest of the proof is straightforward.

• Suppose P = Q+R, P ′ = Q′ +R, Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′, and std(R). Then there exist Qand R such that:

– ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩,

– Q = (EQ, FQ,↦Q, ♯Q,⊳Q, �Q,ActQ),
– ⦃R⦄ = ⟨R, InitR, kR⟩,
– R = (ER, FR,↦R, ♯R,⊳R, �R,ActR),
– E = EQ ∪ ER,
– F = FQ ∪ FR,
– X ↦ e∗ if there exists i ∈ {Q,R} such that X ↦i e∗,
– ♯ = ♯Q ∪ ♯R ∪ (EQ × ER) ∪ (ER × EQ),
– ⊳ = ⊳Q ∪ ⊳R ∪ (EQ × FR) ∪ (ER × FQ),
– Act = ActQ ∪ ActR,
– for all e ∈ E, i ∈ {Q,R}, �(e) = �i(e) if e ∈ Ei,
– Init = InitQ ∪ InitR,
– for i ∈ {Q,R}, k(e) = ki(e) if e ∈ Initi,
– if InitQ ≠ ∅ and InitQ ≠ ∅ then for all e ∈ E, {e} ↦ e and for all e ∈ F ,
e ⊳ e.

We also have ⟨ ′, Init′, k′⟩ constructed similarly from some
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

and
⟨

 ′R, Init
′
R, k

′
R
⟩ such that ⦃Q′⦄ =

⟨

 ′Q, Init
′
Q, k

′
Q

⟩

and ⦃R⦄ = ⟨

 ′R, Init
′
R, k

′
R
⟩.
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We clearly have isomorphisms fQ ∶ Q →  ′Q, gQ ∶  ′Q → Q, fR ∶ R →  ′R,
and gR ∶  ′R → R and a transition InitQ

{e}
←←←←←←←←←←←←←→ X of Crb(Q) such that �Q(e) = �,

k′Q(fQ(e)) = m, and f (X) = Init′Q. We define our isomorphisms

f (e) =
{

fQ(e) if e ∈ EQ
fR(e) if e ∈ ER

and
g(e) =

{

gQ(e) if e ∈ E′Q
gR(e) if e ∈ E′R

Since std(R), InitR = ∅, and therefore Init = InitQ, which is conflict-free end
therefore a configuration. Obviously Init

{e}
←←←←←←←←←←←←←→ X in Crb(), and the rest follows.

• Suppose P = Q⧵A, P ′ = Q′ ⧵A,Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′, and � ∉ A∪A. Then there exists

Q such that:
– ⦃Q⦄ =

⟨

Q, InitQ, kQ
⟩

–  = Q ↾ {e ∣ �Q(e) ∉ A ∪ A}

– Init = InitQ ∩ {e ∣ �Q(e) ∉ A ∪ A}

– k = kQ ↾ {e ∣ �Q(e) ∉ A ∪ A}

And there exists  ′Q such that:

– ⦃Q′⦄ =
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

–  ′ =  ′Q ↾ {e ∣ �′Q(e) ∉ A ∪ A}

– Init′ = Init′Q ∩ {e ∣ �
′
Q(e) ∉ A ∪ A}

– k′ = k′Q ↾ {e ∣ �′Q(e) ∉ A ∪ A}

By inductions we have isomorphisms fQ ∶ Q →  ′Q and g ∶  ′Q → Q and a
transition InitQ

{eQ}
←←←←←←←←←←←←←←←←←←←→ XQ or Crb(Q) such that �Q(e) = �, k′Q(fQ(eQ)) = m, and

fQ(XQ) = Init′Q. We define our isomorphisms as fQ ↾ {e ∣ �′Q(e) ∉ A ∪ A}
and gQ ↾ {e ∣ �′Q(e) ∉ A ∪ A}. And since �(e) ∉ A ∪ A, the rest of the proof is
straightforward.

• Suppose P = Q[f ′], P ′ = Q′[f ′], Q �[m]
←←←←←←←←←←←←←←←←←→ Q′, and f ′(�) = �. Then there exist

�Q and ActQ such that:
– ⦃Q⦄ =

⟨

(E, F ,↦, ♯,⊳, �Q,ActQ), Init, k
⟩,

– Act = f ′(ActQ)
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– and � = f ′◦�Q.
And there exist �′Q and Act′Q such that

– ⦃Q′⦄ =
⟨

(E′, F ′,↦′, ♯′,⊳′, �′Q,Act
′
Q), Init

′, k′
⟩

,
– Act′ = f ′(Act′Q)

– and � = f ′◦�′Q.
By induction, we get isomorphisms fQ ∶ Q →  ′Q and gQ ∶  ′Q → Q and
a transition Init

{e}
←←←←←←←←←←←←←→ X in Crb(Q) such that �Q(e) = �, k′(f ′(e)) = m, and

f (X) = Init′. We define our isomorphisms f = fQ and g = gQ, and the rest of
the proof is straightforward.

• Suppose P ≡ Q, P ′ ≡ Q′, and Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′. Then the result follows from

induction and Proposition 4.15.
C.2. Proof of Theorem 4.19
Proof. We say that  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) and the inverse of f is g ∶  ′ →  ,
and prove the theorem by induction on P .

• Suppose P = 0. Then E = ∅, and obviously no transitions exist in Cbr().
• Suppose P = �.Q. Then {e�} ↦ e′ for all e′ ∈ E ⧵ {e�}, meaning by definition
e = e� . In addition, since P is reachable, clearly std(P ) meaning Init = ∅. This
means we get P �[m]

←←←←←←←←←←←←←←←←←→ �[m].Q for some freshm, and the isomorphisms are similar
to this case in the proof of Theorem 4.18.

• Suppose P = �[n].Q and ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩. Then e� ∈ Init, and clearly

InitQ
e
←←←←←→ XQ, meaning there exists a key m and a transition Q �(e)[m]

←←←←←←←←←←←←←←←←←←←←←←←←←←→ Q′, such
that ⦃Q′⦄ =

⟨

 ′Q, Init
′
Q, k

′
Q

⟩

and there exist isomorphisms fQ ∶ Q →  ′Q and
gQ ∶  ′Q → Q such that k′Q(fQ(e)) = m and fQ(XQ) = Init′Q. If m ≠ n, then
P

�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ �[m].P ′Q. Otherwise, we can chose a fresh m and still get a transition.

We define our isomorphisms as f = fQ ∪ {(e� , e′�)} and g = gQ ∪ {(e′� , e�)} andthe rest of the proof is straightforward.
• Suppose P = P0 + P1, ⦃P0⦄ = ⟨0, Init0, k0⟩, Cbr(0) = (E0, F0,C0,→0),
⦃P1⦄ = ⟨1, Init1, k1⟩, andCbr(1) = (E1, F1,C1,→1). Then either Init0

e
←←←←←→0 X0

and Init1 = ∅, or Init1
e
←←←←←→1 X1 and Init0 = ∅.

If Init0
e
←←←←←→0 X0, then there exists a key m and a transition P0

�0(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 , suchthat ⦃P ′0

⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩ and there exist isomorphisms f0 ∶ 0 →  ′0 and

g0 ∶  ′0 → 0 such that k′0(f0(e)) = m and f0(X0) = Init′0. Then, since Init1 = ∅
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means std(P1), P
�(e)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 + P1, and the isomorphisms are similar to this case

in the proof of Theorem 4.18.
If Init1

e
←←←←←→1 X1, then the proof is similar.

• Suppose P = P0 ∣ P1 and we have ⦃P0⦄ = ⟨0, Init0, k0⟩, 0 = (E0, F0,↦0
, ♯0,⊳0, �0,Act0), Cbr(0) = (E0, F0,C0,→0), ⦃P1⦄ = ⟨1, Init1, k1⟩, 1 =
(E1, F1,↦1, ♯1,⊳1, �1,Act1), and Cbr(1) = (E1, F1,C1,→1). Then either e =
(e0, ∗), e = (∗, e1), or e = (e0, e1).
If e = (e0, ∗), then whenever X′

0 ↦0 e0, we get {e′ ∈ E ∣ �0(e′) ∈ X′
0} ↦ e.

And whenever �0(e′) ♯0 �0(e), we get e′ ♯ e. This means Init0 is conflict-free,
�0(X) is conflict-free, and Init0

e0
←←←←←←←←←→0 �0(X). There therefore exists a key m and

a transition P0
�0(e0)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 , such that ⦃P ′0

⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩ and there exist

isomorphisms f0 ∶ 0 →  ′0 and g0 ∶  ′0 → 0 such that k′0(f0(e0)) = m and
f0(�0(X)) = Init′0.
We chose an m, which is fresh for P1, and we get P

�0(e0)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 ∣ P1. We define

our isomorphisms

f (e′) =

⎧

⎪

⎨

⎪

⎩

(f0(e′0), ∗) if e′ = (e′0, ∗)
(∗, e′1) if e′ = (∗, e′1)
(f0(e′0), e

′
1) if e′ = (e′0, e′1)

and

g(e′) =

⎧

⎪

⎨

⎪

⎩

(g0(e′0), ∗) if e′ = (e′0, ∗)
(∗, e′1) if e′ = (∗, e′1)
(g0(e′0), e

′
1) if e′ = (e′0, e′1)

Since  ′ =  ′0 × 1, these are isomorphisms, and the rest of the case is straight-
forward.
If e = (e0, ∗), the argument is similar.
If e = (e0, e1), then for i ∈ {0, 1}, whenever X′

i ↦i ei, we get {e′ ∈ E ∣ �i(e′) ∈
X′
i} ↦ e. And whenever �i(e′) ♯0 �i(e), we get e′ ♯ e. This means Initi is

conflict-free, �i(X) is conflict-free, and Initi
e0
←←←←←←←←←→i �i(X). There therefore exists

a key mi and a transition Pi
�i(ei)[mi]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′i , such that ⦃P ′i

⦄

=
⟨

 ′i , Init
′
i, k

′
i
⟩ and

there exist isomorphisms fi ∶ 0 →  ′i and gi ∶  ′i → i such that k′i(fi(ei)) =
mi and fi(�i(X)) = Init′0.
We say that m0 = m1 is a fresh m, and then since �0(e0) = �1(e1) and �(e) = �,
we get P �(e)[m]

←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 ∣ P
′
1 . We define our isomorphisms

61



f (e′) =

⎧

⎪

⎨

⎪

⎩

(f0(e′0), ∗) if e′ = (e′0, ∗)
(∗, f1(e′1)) if e′ = (∗, e′1)
(f0(e′0), f1(e

′
1)) if e′ = (e′0, e′1)

and

g(e′) =

⎧

⎪

⎨

⎪

⎩

(g0(e′0), ∗) if e′ = (e′0, ∗)
(∗, g1(e′1)) if e′ = (∗, e′1)
(g0(e′0), g1(e

′
1)) if e′ = (e′0, e′1)

Since  ′ =  ′0 ×  ′1, these are isomorphisms, and the rest of the case is straight-
forward.

• Suppose P = Q ⧵ A, ⦃Q⦄ = ⟨

Q, Init, k
⟩, and Cbr(Q) = (EQ, FQ,CQ,→Q).

Then �(e) ∉ A ∪A and Init e
←←←←←→Q X, meaning there exists a key n and a transition

Q
�Q(e)
←←←←←←←←←←←←←←←←←←←←←→ Q′ such that ⦃Q′⦄ =

⟨

 ′Q, Init
′
Q, k

′
Q

⟩

, and there exist isomorphisms
fQ ∶ Q →  ′Q and gQ ∶  ′Q → Q such that fQ◦k′Q = kQ ∪ {(e, n)} and
fQ(X) = Init′Q.

This means P �Q(e)
←←←←←←←←←←←←←←←←←←←←←→ Q′ ⧵ A and the morphisms f ↾ E and g ↾ {e′ ∈ E′Q ∣

�′Q(e
′) ∉ A ∪ A} clearly fulfil the remaining conditions.

• Suppose P = Q[f ], ⦃Q⦄ =
⟨

Q, Init, k
⟩, and Cbr(Q) = (EQ, FQ,CQ,→Q).

Clearly Init
e
←←←←←→Q X, and f (�Q(e)) = �(e), and the proof is straightforward.

D. Extended bundle event structures

In this appendix we define the categorical concepts for EBESs, which we defined
for BESs in Section 3.1.

We first define a finitely caused subcategory (Definition D.1), though in this case
the asymmetric conflict still cannot be modelled by general event structures.
Definition D.1 (Finitely Caused EBES). Afinitely caused EBES (FCEBES) is an EBES
 = (E,↦,⊳) where for any e ∈ E, {X ⊆ E ∣ X ↦ e} is finite.

EBES configurations are sets which have an order in which the events could have
happened.
Definition D.2 (EBES configuration [21]). Given an EBES  = (E,↦,⊳), a config-
uration of  is a set X ⊆ E such that there exists a sequence e0,… , en such that:

1. {e0,… , en} = X;
2. if ei ⊲ ej then i < j;
3. if X ↦ ei then X ∩ {e0,… , ei−1} ≠ ∅.
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Acategory of EBESs has not, to our knowledge, been defined, so we define an EBES
morphism in Definition D.3. This morphism is similar to the BES morphism defined
previously, and asymmetric conflict is treated much the same way as symmetric.
Definition D.3 (EBES morphism). Given EBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1
,⊳1), an EBES-morphism from 0 to 1 is a partial function f ∶ E0 → E1 such that
and for all e, e′ ∈ E0:

1. if f (e) ⊲1 f (e′) then e ⊲0 e′;
2. if f (e) = f (e′) ≠ ⊥ and e ≠ e′ then e ⊲0 e′;
3. for X1 ⊆ E1 if X1 ↦1 f (e) then there exists X0 ⊆ E0 such that X0 ↦0 e,
f (X0) ⊆ X1, and if e′ ∈ X0 then f (e′) ≠ ⊥;

4. for any X0 ⊆ E0, if X0 is a configuration of 0, then f (X0) is a configuration of
1.

Proposition D.4. Given EBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1,⊳1) and EBES
morphism f ∶ E0 → E1, if X ⊆ E0 is a configuration of 0, then f (X) is a configura-
tion of 1.

Proposition D.5. EBES consisting of EBESs and EBES morphisms is a category.

Proof. Composition of partial functions is associative and f (e) = eworks as an identity
arrow, and so we need only show that the morphisms are composable.

If 0 = (E0,↦0,⊳0), 1 = (E1,↦1,⊳1), and 2 = (E2,↦2,⊳2) are EBESs and
f ∶ E0 → E1 and g ∶ E1 → E2 are morphisms, we show that f◦g ∶ E0 → E2 is alsoa morphism:

1. If g(f (e)) ⊲2 g(f (e′)) then f (e) ⊲1 f (e′), and therefore e ⊲0 e′.
2. If g(f (e)) = g(f (e′)) and e ≠ e′, then either f (e) = f (e′), in which case e⊲0 e′,or f (e) ≠ f (e′), in which case f (e) ⊲1 f (e′), and therefore e ⊲0 e′.
3. If X2 ↦2 g(f (e)) then there exist X1 ⊆ E1 and X0 ⊆ E0 such that X1 ↦1 f (e),
X0 ↦0 e, g(X1) ⊆ X2, f (X0) ⊆ X1 and if e1 ∈ X1 then g(e1) ≠ ⊥ and if
e0 ∈ X0 then f (e0) ≠ ⊥. This means that g(f (X0)) ⊆ X2, and if e0 ∈ X0 then
g(f (e0)) ≠ ⊥.

4. If X0 is a configuration of 0 then f (X0) is a configuration of 1, and therefore
g(f (X0)) is a configurations of 2.

We also construct a product of EBESs in Definition D.6. This definition is very
similar to the products in Section 3.
Definition D.6 (EBES product). Given EBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1
,⊳1), we construct 0 × 1 = (E,↦,⊳) with projections �0, �1 where:

1. E = E0×∗E1 = {(e, ∗) ∣ e ∈ E0}∪{(∗, e) ∣ e ∈ E1}∪{(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. for (e0, e1) ∈ E, �i(e0, e1) = ei;
3. for any e ∈ E, X ⊆ E, X ↦ e iff there exists i ∈ {0, 1} and Xi ⊆ Ei such that
Xi ↦ �i(e) and X = {e′ ∈ E ∣ �i(e′) ∈ Xi};
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4. for any e, e′ ∈ E, e ⊲ e′ iff there exists i ∈ {0, 1} such that �i(e) ⊲i �i(e′), or
�i(e) = �i(e′) ≠ ⊥ and �1−i(e) ≠ �1−i(e′).

Proposition D.7. Given EBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1,⊳1), we have
that 0 × 1 = (E,↦,⊳) is their product.

Proof. We first show that �0 and �1 are morphisms:
1. If �i(e) ⊲i �i(e′), then obviously e ⊲ e′.
2. If �i(e) = �i(e′) and e ≠ e′, then �1−i(e) ≠ �1−i(e′), and therefore e ⊲ e′.
3. If Xi ↦ �i(e), then {e′ ∈ E ∣ �i(e′) ∈ Xi} ↦ e. Clearly �i({e′ ∈ E ∣ �i(e′) ∈
Xi}) = Xi, and for all e′ ∈ {e′ ∈ E ∣ �i(e′) ∈ Xi}), �i(e′) ≠ ⊥.

4. If X is a configuration of 0 × 1, then we show that �i(X) satisfies the require-ments of a configuration of i. We show that if the requirements of Definition D.2
hold for e0, ,̇en, then they hold for �i(e0),… , �i(en):
(a) Obviously {�i(e0),… , �i(en)} = �i(X).(b) If �i(ej) ⊲i �i(ej′ ), then as shown above, ej ⊲ ej′ , meaning j < j′.
(c) Whenever Yi ↦ �i(ej+1), we know {e′ ∈ E ∣ �i(e′) ∈ Yi} ↦ ej+1,meaning {e′ ∈ E ∣ �i(e′) ∈ Yi} ∩ {e1,… , ej} ≠ ∅. Therefore, we must get

Yi ∩ {�i(e1),… , �i(ej)} ≠ �i(∅) = ∅.
We then show that for any EBES, 2 = (E2,↦2,⊳2), if there exist morphisms

f0 ∶ 2 → 0 and f1 ∶ 2 → 1, then there exists a unique morphism f ∶ 2 →  ,
such that �0◦f = f0 and �1◦f = f1.Clearly f (e) = (f0(e), f1(e)) is the only partial function for which this commutes,
meaningthat the morphisms clearly commute as described above; we prove it to be a
morphism:

1. If f (e)⊲f (e′) then there exists i ∈ {0, 1} such that either �i(f (e))⊲i�i(f (e′)), inwhich case clearly fi(e)⊲ifi(e′)i, and therefore e⊲2 e′, or �i(f (e)) = �i(f (e′)) ≠
⊥ and �1−i(f (e)) ≠ �1−i(f (e′)), in which case fi(e) = fi(e′) ≠ ⊥, and e ≠ e′,
meaning e ⊲2 e′.

2. If f (e) = f (e′) ≠ ⊥ then f0(e) = f0(e′) ≠ ⊥ or f1(e) = f1(e′) ≠ ⊥, meaning if
e ≠ e′ then e ⊲2 e′.

3. For X ⊆ E, if X ↦ f (e), then there exists i ∈ {0, 1} and Xi ⊆ Ei such that
Xi ↦ �i(e) and X = {e′ ∈ E ∣ �i(e′) ∈ Xi}. And since Xi ↦ fi(e), thereexistsX2 ⊆ E2 such thatX2 ↦2 e, fi(X2) ⊆ Xi, and if e′ ∈ X2 then fi(e′) ≠ ⊥.
Clearly f (X2) ⊆ X.

4. If X is a configuration of 2, then we show that f (X) satisfies the requirements
of a configuration of 0 ×1. We show that if the requirements of Definition D.2
hold for e0, ,̇en, then they hold for f (e0),… , f (en):
(a) Obviously {f (e0),… , f (en)} = f (X).(b) If f (ej) ⊲ f (ej′ ), then as shown above, ej ⊲2 ej′ , meaning j < j′.
(c) Whenever Y ↦ f (ej+1), we know {e′ ∈ E ∣ f (e′) ∈ Y } ↦ ej+1, meaning

{e′ ∈ E ∣ f (e′) ∈ Y } ∩ {e1,… , ej} ≠ ∅. Therefore, we must get Y ∩
{f (e1),… , f (ej)} ≠ f (∅) = ∅.
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Proposition D.8. Given FCEBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1,⊳1), we have
that 0 × 1 = (E,↦,⊳) is an FCEBES.

Proof. Similar to the proof of Proposition 3.11.
We also construct a coproduct of EBESs in Definition D.9.

Definition D.9 (EBES coproduct). Given EBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1
,⊳1), we construct 0 + 1 = (E,↦,⊳) with injections �0, �1 where:

• E = {(0, e) ∣ e ∈ E0} ∪ {(1, e) ∣ e ∈ E1};
• for e ∈ Ej , �j(e) = (j, e) for j ∈ {0, 1};
• X ↦ (j, e) iff for all (j′, e′) ∈ X, j = j′ and �j(X)↦j e;
• (j, e) ⊲ (j′, e′) iff j ≠ j′ or e ⊲j e′.

Proposition D.10. If 0 and 1 are EBESs, then 0 + 1 is their coproduct.

Proof. Similar to that for BES coproduct (Proposition 3.13).
Proposition D.11. Given FCEBESs 0 = (E0,↦0,⊳0) and 1 = (E1,↦1,⊳1), we
have that 0 + 1 = (E,↦,⊳) is an FCEBES.

Proof. Similar to Proposition 3.27.

E. Relating REBES to other categories of reversible event structures

In this appendix we recall the category of reversible asymmetric event structures
and describe how it and stable bundle event structures (Definition A.4) relate to the
category REBES defined in Section 5.
Definition E.1 (RAES [27]). A reversible asymmetric event structure (RAES) is a 4-
tuple  = (E, F, ≺,⊲) where E is the set of events and

1. F ⊆ E is the set of reversible events;
2. ⊲ ⊆ (E ∪ F ) × E is the irreflexive precedence relation;
3. ≺⊆ E × (E ∪ F ) is the causation relation, which is irreflexive and well-founded,

such that for all � ∈ E ∪ F , {e ∈ E ∣ e ≺ �} is finite and has no ⊲-cycles;
4. for all e ∈ F , e ≺ e;
5. for all e ∈ E and � ∈ E ∪ F if e ≺ � then not e ⊳ �;
6. e ≺≺ e′ implies e ⊲ e′, where e ≺≺ e′ means that e ≺ e′ and if e ∈ F then e′ ⊳ e;
7. ≺≺ is transitive;
8. if e ♯ e′ and e ≺≺ e′′ then e′′ ♯ e′, where ♯ = ⊲ ∩ ⊳.

Definition E.2 (RAES morphism [15]). GivenRAESs 0 = (E0, F0, ≺0,⊲0) and 1 =
(E1, F1, ≺1,⊲1), an RAES morphism f ∶ 0 → 1 is a partial function f ∶ E0 → E1such that

1. for all e∗ ∈ E0 ∪ F0, if f (e) ≠ ⊥ then {e1 ∣ e1 ≺1 f (e∗)} ⊆ {f (e′) ∣ e′ ≺0 e∗};
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2. for all e ∈ E0 and e′∗ ∈ E0 ∪ F0, if f (e) ≠ ⊥ ≠ f (e′∗) and f (e′∗) ⊲1 f (e) then
e′∗ ⊲0 e;

3. for all e, e′ ∈ E0, if f (e) = f (e′) ≠ ⊥ and e ≠ e′ then e ♯0 e′;
4. f (F0) ⊆ F1.

Definition E.3 (RAES to REBES). The functor Bar ∶ RAES → REBES is defined
as:

1. Bar((E, F, ≺,⊲)) = (E, F,↦,⊳), where {e′} ↦ e∗ if e′ ≺ e;
2. Bar(f ) = f .

Definition E.4 (FCREBES to SRES). The functor Eer ∶ FCREBES → RES is de-
fined as:

1. Eer((E, F,↦,⊳)) = (E, F,Con, ⊢) where
(a) Con is the set of finite subsets of E with no ⊲-cycles;
(b) For e∗ ∈ E ∪F ,X ⦸ Y ⊢∗ ifX ∈ Con, for allX′ ⊆ E such thatX′ ↦ e∗,

X′ ∩X ≠ ∅, Y = {e′ ∣ e′ ⊳ e∗}, and Y ∩X = ∅;
2. Eer(f ) = f .

Proposition E.5. Given an FCREBES  = (E, F,↦,⊳), we have that Eer((E, F, ≺, ♯
,⊳)) is an SRES.

Proof. If X ⦸ Y ⊢ e∗, X′ ⦸ Y ′ ⊢ e∗, and X ∪ X′ + e∗ ∈ Con then Y = Y ′ and
X ∪X′ has no ⊲-cycles, meaning there must exist an X′′ ⊆ (X ∩X′) such that for all
X′′′ ↦ e∗, there exists e′ ∈ X′′ ∩X′′′. This implies X ∩X′ ⦸ Y ∩ Y ′ ⊢ e∗.

F. Proofs from Section 7

F.1. Proof of Proposition 7.4
Lemma F.1. Given consistent processes P0 and P1 such that ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃P1⦄ = ⟨1, Init1, k1⟩, and 0 ≤ 1, and there exists A ⟨�̃, 
̃⟩ in P0 such that A(�̃, �̃) =
PA andP1 = P0{A⟨�̃,
̃⟩∕PA{�̃,
̃∕�̃,�̃}}, and an action �
 such that

⦃

�
 .P0
⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩

and
⦃

�
 .P1
⦄

=
⟨

 ′1, Init
′
1, k

′
1
⟩

, we get  ′0 ≤  ′1.

Proof. Obviously E′0 ⊆ E′1 and F ′0 = F ′1 ∩ E′0.We then prove that X ↦′
0 e

∗ if and only if X′ ↦′
1 e

∗, X = X′ ∩ E′0, and e∗ ∈
E′0 ∪ F

′
0:

• If X ↦′
0 e then either X ↦0 e, or X = {e�}, e ∈ E0, and �0(e) ≠ roll 
 ′.

– If X ↦0 e then there exists some X1 ⊆ E1 such that X1 ∩ E0 = X0 and
X1 ↦1 e, meaning X1 ↦′

1 e and X1 ∩ E′0 = X0.
– If X = {e�}, e ∈ E0, and �0(e) ≠ roll 
 ′ then e ∈ E1 and �1(e) = �0(e) ≠

roll 
 ′, meaning {e�}↦′
1 e.
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• If X ↦′
1 e and e ∈ E′0 then either X ↦1 e, or X = {e�}, e ∈ E1, and �1(e) ≠

roll 
 ′.
– IfX ↦1 e and e ∈ E′0 thenX∩E0 = X∩E′0 ↦0 e, meaningX∩E′0 ↦0 e.
– If e ∈ E′0, X = {e�}, e ∈ E1, and �1(e) ≠ roll 
 ′, then �0(e) = �1(e) ≠

roll 
 , meaning {e�}↦′
0 e.

• If X ↦′
0 e then either X = {e}, or e = e� and X = {e′ ∈ E0 ∣ {e′ ∣ �0(e′) =

roll 
 and e′ ∈ X′ ↦ e′′ ⇒ �(e′′) = start roll 
}}, or �0(e) ∈ {roll 
 ′ ∣ 
 ′
is a tag } ∪ {start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occurs in �
 .P0} and X ↦0 e, or
�0(e) ∉ {roll 
 ′ ∣ 
 ′ is a tag }∪{start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occurs in �
 .P0},
{e} ≠ X′ ↦0 e, and X = X′ ∪ {e′ ∣ �0(e′) = roll 
}.

– If X = {e} then obviously X ↦′
1 e.

– If e = e� and X = {e′ ∈ E0 ∣ �0(e′) = roll 
} then X = {e′ ∈ E1 ∣
�1(e′) = roll 
} ∩ E0 and {e′ ∈ E1 ∣ �1(e′) = roll 
}↦′

1 e.
– If �0(e) ∈ {roll 
 ′ ∣ 
 ′ is a tag } ∪ {start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occursin �
 .P0} and X ↦0 e then �1(e) ∈ {roll 
 ′ ∣ 
 ′ is a tag} ∪ {start roll 
 ′ ∣
∄�, n.�
′ or �
′ [n] occurs in �
 .P1} and there existsX1 such thatX1 ∩E0 =
X and X1 ↦1 e, meaning X1 ↦′

1 e.
– If �0(e) ∉ {roll 
 ′ ∣ 
 ′ is a tag } ∪ {start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occursin �
 .P0}, {e} ≠ X′ ↦0 e, and X = X′ ∪ {e′ ∣ �0(e′) = roll 
} then
there exists X′

1 ⊆ E1 such that X′
1 ∩ E0 = X′ and X′

1 ↦1 e. This means
X′
1 ∪ {e

′ ∈ E1 ∣ �1(e′) = roll 
} ↦′
1 e, and clearly {e′ ∈ E1 ∣ �1(e′) =

roll 
} ∩ E0 = {e′ ∈ E0 ∣ �0(e′) = roll 
}, meaning (X′
1 ∪ {e

′ ∈ E1 ∣
�1(e′) = roll 
}) ∩ E′0 = X.

• If X ↦′
1 e and e ∈ E′0 then either X = {e}, or e = e� and X = {e′ ∈ E1 ∣

�1(e′) = roll 
}, or �1(e) ∈ {roll 
 ′ ∣ 
 ′ is a tag }∪{start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n]occurs in �
 .P1} and X ↦1 e, or �1(e) ∉ {roll 
 ′ ∣ 
 ′ is a tag } ∪ {start roll 
 ′ ∣
∄�, n.�
′ or �
′ [n] occurs in �
 .P1}, {e} ≠ X′ ↦1 e, andX = X′∪{e′ ∣ �1(e′) =
roll 
}.

– If X = {e} then obviously X ↦′
0 e.

– If e = e� and X = {e′ ∈ E1 ∣ �1(e′) = roll 
} then {e′ ∈ E0 ∣ �0(e′) =
roll 
}↦′

0 e and obviously X ∩ E′0 = {e
′ ∈ E0 ∣ �0(e′) = roll 
}.

– If �1(e) ∈ {roll 
 ′ ∣ 
 ′ is a tag} ∪ {start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occursin �
 .P1} and X ↦1 e then �0(e) ∈ {roll 
 ′ ∣ 
 ′ is a tag} ∪ {start roll 
 ′ ∣
∄�, n.�
′ or �
′ [n] occurs in �
 .P0}, andX ∩E0 ↦0 e, meaningX ∩E0 ↦′

0
e.

– If �1(e) ∉ {roll 
 ′ ∣ 
 ′ is a tag} ∪ {start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occursin �
 .P1}, {e} ≠ X′ ↦1 e, and X = X′ ∪ {e′ ∣ �1(e′) = roll 
} then
X′ ∩ E0 ↦0 e, meaning (X′ ∩ E0) ∪ {e′ ∣ �0(e′) = roll 
} ↦′

0 e, andobviously X ∩ E0 = (X′ ∩ E0) ∪ {e′ ∣ �0(e′) = roll 
}.
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We then prove that e ⊳′0 e′∗ if and only if e ⊳′1 e′∗, e ∈ E′0, and e′ ∈ E′0 ∩ F ′0.
• If e ⊳′0 e′∗ then either �0(e) ∈ {roll 
 ′ ∣ 
 ′ is a tag} ∪ {start roll 
 ′ ∣ ∄�, n.�
′ or
�
′ [n] occurs in �
 .P0} and e′∗ = e� , or e = e� , e′∗ = e′ and �0(e′) = roll 
 , or
�0(e) = roll 
 and e′∗ = e� , or �0(e) = roll 
 , e′∗ = e′, and �0(e′) ∉ {roll 
 ′ ∣ 
 ′is a tag } ∪ {start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occurs in �
 .P0}.

– If �0(e) ∈ {roll 
 ′ ∣ 
 ′ is a tag } ∪ {start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occursin �
 .P0} and e′∗ = e� , then �1(e) ∈ {roll 
 ′ ∣ 
 ′ is a tag } ∪ {start roll 
 ′ ∣
∄�, n.�
′ or �
′ [n] occurs in �
 .P1}, and therefore e ⊳′1 e� .

– If e = e� , e′∗ = e′ and �0(e′) = roll 
 then �1(e′) = roll 
 , and therefore
e� ⊳′1 e

′.
– If �0(e) = roll 
 and e′∗ = e� , then �1(e) = roll 
 , and therefore e ⊳′1 e� .
– If �0(e) = roll 
 , �0(e′) ∉ {roll 
 ′ ∣ 
 ′ is a tag } ∪ {start roll 
 ′ ∣ ∄�, n.�
′or �
′ [n] occurs in �
 .P0}, and e′∗ = e′, then �1(e) = roll 
 and �1(e′) ∉
{roll 
 ′ ∣ 
 ′ is a tag } ∪ {start roll 
 ′ ∣ ∄�, n.�
′ or �
′ [n] occurs in �
 .P0},meaning e ⊳′1 e′.

• If e ⊳′1 e′∗ for e, e′ ∈ E0 then the argument is similar.
Obviously �′0 = �′1 ↾E′0 and Act = ran(�′0).

Lemma F.2. Given consistent processes P0 and P1 such that ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃P1⦄ = ⟨1, Init1, k1⟩, and 0 ≤ 1, and an action �
 such that

⦃

�
 [m].P0
⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩

and
⦃

�
 [m].P1
⦄

=
⟨

 ′1, Init
′
1, k

′
1
⟩

, we get  ′0 ≤  ′1.

Proof. Follows from Lemma F.1 and the definitions of ⦃�
 [m].P0
⦄ and ⦃�
 [m].P1

⦄.

Lemma F.3. Given consistent processes P0 ∣ P2, P1 ∣ P2 with ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃P1⦄ = ⟨1, Init1, k1⟩, ⦃P0 ∣ P2⦄ =

⟨

 ′0, Init
′
0, k

′
0
⟩

, ⦃P1 ∣ P2⦄ =
⟨

 ′1, Init
′
1, k

′
1
⟩

, and
0 ≤ 1, we get  ′0 ≤  ′1.

Proof. We first prove that E′0 ⊆ E′1. For all e ∈ E′0 we know either e ∈ E0 ×∗ E2 and
�′0(e) ∈ {roll 
, start roll 
}, or e = (X, e′) for some e′ ∈ E0 ×∗ E2 andX ∈ causes(e′).
If e ∈ E0 ×∗ E2 and �′0(e) ∈ {roll 
, start roll 
} then obviously e ∈ E′1. If e = (X, e′)then if e′ = (e0, ∗) then for each (e′0, e′2) ∈ X there exists X0 such that e′0 ∈ X0 and
X0 ↦0 e0. This means there existsX1 ⊆ E1 such thatX1 ↦1 e0 andX0 = X1∩E0. Inaddition, for any X′

1 ⊆ E1 such that X′
1 ↦1 e0, we have X′

1 ∩ E0 ↦0 e0, and therefore
(X′

1 × E2) ∩ X ≠ ∅. We therefore get e ∈ E′1. If e′ = (∗, e2) then obviously e2’scauses are the same in  ′1 and therefore e′ ∈ E′1. If e′ = (e0, e2) then the argument is a
combination of the first two cases.

Obviously F ′0 = E′0 ∩ F ′1.We then prove that X ↦′
0 e

∗ if and only if X′ ↦′
1 e

∗, X = X′ ∩ E′0, and e∗ ∈
E′0 ∪ F

′
0:
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• If X ↦′
0 e then either e = (X′, e′), X = {(X′′, e′′) ∣ X′′ ⊆ X′}, and e′′ ∈

X′, or e = (e0, e2) and there exists X′ such that X′ ↦0×2 e and X = {e′ ∣
(�0(e′), �2(e′)) ∈ X′}.

– If e = (X′, e′), X = {(X′′, e′′) ∣ X′′ ⊆ X′}, and e′′ ∈ X′ then clearly
X ↦′

1 e.
– If e = (e0, e2) and there exists X′ such that X′ ↦0×2 e and X = {e′ ∣
(�0(e′), �2(e′)) ∈ X′} thenX′ ↦1×2 e, and obviously {e′ ∣ (�0(e′), �2(e′)) ∈
X′} = {e′ ∣ (�1(e′), �2(e′)) ∈ X′} ∩ E′0.

• If X ↦′
1 e and e ∈ E′0 then either e = (X′, e′), X = {(X′′, e′′) ∣ X′′ ⊆ X′},

and e′′ ∈ X′, or e = (e1, e2) and there exists X′ such that X′ ↦1×2 e and
X = {e′ ∣ (�1(e′), �2(e′)) ∈ X′}.

– If e = (X′, e′), X = {(X′′, e′′) ∣ X′′ ⊆ X′}, and e′′ ∈ X′ then since
e ∈ E0, for all e′′′ ∈ X′, �1(e′′′) ∈ E0, meaning X ⊆ E′0, and ↦′

0 e.
– If e = (e1, e2) and there exists X′ such that X′ ↦1×2 e and X = {e′ ∣
(�1(e′), �2(e′)) ∈ X′} then e1 ∈ E0 ∪ {∗}, and X′ ∩ (E0 ×∗ E2) ↦0×2 e,meaning X ∩ E′0 = {e

′ ∣ (�0(e′), �2(e′)) ∈ X′ ∩ (E0 ×∗ E2)}↦ e.

• If X ↦′
0 e then X =

⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {0, 2}, Xi ∈ Ei.Xi ↦ �i(e)
or ∃e× ∈ X′.Xi ↦ �i(e×)
and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

and e =

(X′, (e0, e2)), or e = (e0, e1) and there exists X′ such that X′ ↦×0 e and X =
{e′ ∣ (�0(e′), �1(e′)) ∈ X′}, or X = {e}.

– If X = {e} then obviously X ↦′
1 e.

– If e = (X′, (e0, e2)) and X =

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {0, 2}, Xi ∈ Ei.Xi ↦i �i(e)
or ∃e× ∈ X′.Xi ↦i �i(e×)
and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

then (1) for eachX0 such thatX0 ↦0 e0, there existsX1 such thatX1 ↦1 e0
andX1 ∩E0 = X0, and (2) for eachX0 such that there exists (e′0, e′2) ∈ X′,
such thatX0 ↦′

0 e0, there existsX1 such thatX1 ↦1 e′0 andX1∩E0 = X0,
meaning

⋃

⎧

⎪

⎨

⎪

⎩

X′′
|

|

|

|

|

|

|

∃i ∈ {1, 2}, Xi ∈ Ei.Xi ↦i �i(e)
or ∃e× ∈ X′.Xi ↦i �i(e×)
and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

∩ E0 = X

– If e = (e0, e1) and there exists X′ such that X′ ↦0×2 e and X = {e′ ∣
(�0(e′), �1(e′)) ∈ X′}, then by Lemma 4.10, there existsX′′ such thatX′ =
X′′∩(E0×∗E2) andX′′ ↦1×2 e, meaning {e′ ∣ (�1(e′), �1(e′)) ∈ X′′}↦′

1
e.
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• IfX ↦′
1 e and e ∈ E′0 thenX = {e}, or e = (X′, (e1, e2)) andX =

⋃

{X′′ ∣ ∃i ∈
{0, 1}.�i(X′′) ↦ ei or ∃e′ ∈ X′.�i(X′′) ↦i �i(e′)}. If X = {e} then obviously
X ↦′

0 e.

If e = (X′, (e1, e2)) and X =
⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {1, 2}, Xi ∈ Ei.Xi ↦i �i(e)
or ∃e× ∈ X′.Xi ↦i �i(e×)
and e′ ∈ X′′ iff �i(e′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

then for each X1 such that X1 ↦ e1, we know X1 ∩ E0 ↦ e1, and for each X1
such that there exists (e′1, e′2) ∈ X′ such that X1 ↦′

1 e1, since e ∈ E′0, e′1 ∈ E0,
meaning X1 ∩ E0 ↦ e1. Therefore X ∩ E′0 ↦

′
0 e1.

We then prove that e ⊳′0 e′∗ if and only if e ⊳′1 e′∗, e ∈ E′0, and e′ ∈ E′0 ∩ F ′0.
If e ⊳′0 e′∗ then there exists i ∈ {0, 2} such that either (1) �i(e) ⊳i �i(e′)∗, or (2)

�i(e) = �i(e′) ≠ ⊥, or (3) e′∗ = e′, e ≠ e′, and e ∈ X ↦ e′, or (4) and there exist 
 ,

 ′ such that �(e) = roll 
 and �(e′) = roll 
 ′. In all these cases it is clear that the same
conditions will apply in  ′1.Similar logic applies if e ⊳′1 e′∗ and e, e′ ∈ E′0.Obviously �′0 = �′1 ↾E′0 and Act = ran(�′0).
F.2. Proof of Lemma 7.6
Proof. We prove this by structural induction on P :

• Suppose P = 0. Then there are no events and the lemma is trivially true.
• Suppose P = roll 
 . Then e ∈ X ↦ e′ means e = es and e′ = er, and obviously
�(e′) = roll 
 .

• Suppose P = rolling 
 . Then the argument is the same as the previous case.
• Suppose P = �
′ .P ′. Then ⦃P ′⦄ = ⟨ ′, Init, k⟩ and eitherX ↦′ e′ orX = {e�}.IfX ↦′ e′ then e′ ≠ e� and by induction if e′ ̸⊳′e then �(e′) ∈ {roll 
, start roll 
}.If X = {e�} then, e′ ⊳ e� unless �(e′) ∈ {roll 
, start roll 
}.
• Suppose P = �
′ .[m]P ′. Then the argument is the same as the previous case.
• Suppose P = P0+P1. Then e = (i, ei), e′ = (i, e′i), ei ↦i e′i, and e′i ̸⊳iei, meaning
�i(e′i) ∈ {roll 
, start roll 
}, and therefore �(e′) ∈ {roll 
, start roll 
}.

• Suppose P = P0 ∣ P1. Then if e′ = (Y ′, e′′), e = (Y , e′′′) and e′′′ ∈ Y ′, meaning
there exists i ∈ {0, 1} such that �i(e) ∈ Xi ↦i �i(e′). By induction we get
that, if e′i ̸⊳iei, then there exists 
 such that �i(e′i) ∈ {roll 
, start roll 
}, meaning
e′1−i =∗ and �(e′) ∈ {roll 
, start roll 
}, and if e′i ⊳i ei then e′ ⊳ e. If e′ ∈ E×
then �(e′) ∈ {roll 
, start roll 
}

• Suppose P = P ′ ⧵ A. Then the result follows from induction.
• Suppose P = A ⟨ã, 
̃⟩ and A(b̃, �̃) = PA. Then the result holds if it holds for
PA.
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F.3. Proof of Lemma 7.7
Proof. We prove this by structural induction on P :

• Suppose P = 0. Then there are no events and the lemma is trivially true.
• Suppose P = roll 
 . Then no X,X′, e, e′ exist such that X ↦ e ∈ X′ ↦ e′.
• Suppose P = rolling 
 . Then the argument is the same as the previous case.
• Suppose P = �
′ .P ′. Then ⦃P ′⦄ = ⟨ ′, Init, k⟩,X′ ↦′ e′, and eitherX = {e�},or X ↦′ e. If X = {e�}, then X ↦ e′ whenever �(e′) ≠ roll 
 ′. If X ↦′ e and
X′ ↦′ e′ then by induction, X ↦ e′.

• Suppose P = �
′ .[m]P ′. Then the argument is the same as the previous case.
• Suppose P = P0 + P1. Then there exists an i ∈ {0, 1} such that e = (i, ei),
e′ = (i, e′i), {e′′i ∣ (i, e′′i ) ∈ X′} ↦i e′i, and {e′′i ∣ (i, e′′i ) ∈ X} ↦i ei, meaning by
induction {e′′i ∣ (i, e′′i ) ∈ X}↦i e′i, and therefore X ↦ e′.

• Suppose P = P0 ∣ P1. Then e′ = (Y ′, (e′0, e′1)) or there exists a 
 such that �(e′) =
roll 
 . If e′ = (Y ′, (e′0, e′1)) then e = (Y , (e0, e1)) and (e0, e1) ∈ Y ′, meaning there
exists i ∈ {0, 1} such that ei ∈ Xi ↦i e′i. Similarly, X = {(Y ′′, e′′) ∣ (Y ′′, e′′) ∈
E} for some e′′ ∈ Y . Since Y ∈ cause(e) and e ∈ Y ′ ∈ cause(e′), there exists
Y ′′ ∈ cause(e′) such that Y ⊆ Y ′′. This means X ↦ e.

• Suppose P = P ′ ⧵ A. Then the result follows from induction.
• Suppose P = A ⟨ã, 
̃⟩ and A(b̃, �̃) = PA. Then the result holds if it holds for
PA.

F.4. Proof of Lemma 7.8
Proof. We prove this by structural induction on P :

• Suppose P = 0. Then E = ∅ and the case is trivial.
• Suppose P = roll 
 . Then e′ = es and e = er.
• Suppose P = rolling 
 . Then e′ = es and e = er.
• Suppose P = �
 .P ′. Then by induction, if X ↦P ′ e, then there exists an e′ suchthat X = {e′}. If X ̸↦P ′ e, then X = {e�}.
• Suppose P = �
 [m].P ′. Then by induction, if X ↦P ′ e, there exists an e′ suchthat X = {e′}. If X ̸↦P ′ e, then X = {e�}.
• Suppose P = P0 + P1. Then, by induction if e = (i, ei) and Xi ↦i ei, then
Xi = e′i, and e′ = (i, e′i).
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• Suppose P = P0 ∣ P1. Then either e = (Y , e×) or there exists a 
 such that
�(e) = roll 
 . If e = (Y , e×) then X = {(Y ′′, e′′) ∣ (Y ′′, e′′) ∈ E} for some
e′′ ∈ Y . We therefore need to show that given an event e′′ ∈ Y , there exists
exactly one Y ′′ ∈ cause(e′′) such that Y ′′ ⊆ Y . This follows naturally from
items 2 and 3 of Definition 7.1.

• Suppose P = P ′ ⧵ A. Then the lemma obviously follows from the definition of
� (Definition 7.3).

• Suppose P = A ⟨ã, 
̃⟩ and A(b̃, �̃) = PA. Then the lemma holds if it holds for
PA.

F.5. Proof of Lemma 7.9
Proof. We prove this by structural induction on P :

• Suppose P = 0. Then E = ∅ and the case is trivial.
• Suppose P = roll 
 . Then e′ = er and e = es.
• Suppose P = rolling 
 . Then e′ = er and e = es.
• Suppose P = �
 .P ′. Then either e = e� and X = {e′′ ∣ �′P ′ (e

′′) = roll 
},
or �P ′ (e) = roll 
 ′ and X ↦P ′ e, or �′P ′ (e′′) ≠ roll 
 ′, {e} ≠ X′ ↦P ′ e, and
X = X′ ∪ {e′′ ∣ �′P ′ (e

′′) = roll 
}.
In either case, it is clear that e′ ⊳ e.

• Suppose P = �
 [m].P ′. Then the argument is similar to the previous case.
• Suppose P = P0 + P1. Then, by induction if e = (i, ei) and e′i ∈ Xi ↦i ei, then
e′i ⊳ ei, and e′ = (i, e′i), meaning e′ ⊳ e.

• Suppose P = P0 ∣ P1. Then the lemma holds by definition.
• Suppose P = P ′ ⧵ A. Then the result follows from induction.
• Suppose P = A ⟨ã, 
̃⟩ and A(b̃, �̃) = PA. Then the result holds if it holds for
PA.

F.6. Proof of Lemma 7.10
Proof. We prove this by structural induction on P :

• Suppose P = 0. Then E = ∅ and the case is trivial.
• Suppose P = roll 
 . Then X = {er} and e = es.
• Suppose P = rolling 
 . Then X = {er} and e = es.
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• Suppose P = �
 .P ′. Then either e = e� and X = {e′′ ∣ �′P ′ (e
′′) = roll 
},

or �P ′ (e) = roll 
 ′ and X ↦P ′ e, or �′P ′ (e′′) ≠ roll 
 ′, {e} ≠ X′ ↦P ′ e, and
X = X′ ∪ {e′′ ∣ �′P ′ (e

′′) = roll 
}.
In either case, it is clear that there exists only one X.

• Suppose P = �
 [m].P ′. Then the argument is similar to the previous case.
• Suppose P = P0 + P1. Then, by induction if e = (i, ei) then there exists at most

one Xi such that e′i ∈ Xi ↦i ei, meaning {i} ×Xi ↦ e.
• Suppose P = P0 ∣ P1. Then either e = (X′, e′), in which case the lemma obvi-

ously holds, or there existsX′ such thatX′ ↦× e andX = {e′ ∣ (�0(e′), �1(e′)) ∈
X′}. By induction, since there exists an i ∈ {0, 1} such that �i(e) = ⊥, there canonly exist one such X′.

• Suppose P = P ′ ⧵ A. Then the result follows from induction.
• Suppose P = A ⟨ã, 
̃⟩ and A(b̃, �̃) = PA. Then the result holds if it holds for
PA.

F.7. Proof of Lemma 7.11
Proof. We prove this by structural induction on P :

• Suppose P = 0. Then E = ∅ and the case is trivial.
• Suppose P = roll 
 . Then there does not exist any e such that �(e) = �.
• Suppose P = rolling 
 . Then there does not exist any e such that �(e) = �.
• Suppose P = �
 .P ′. Then either X ↦P ′ e or X = {e�} and e ∈ EP ′ .

If X ↦P ′ e then there exists an XP ′ such that XP ′ ↦P ′ e and X′ = XP ′ ∪ {e′′ ∣
�P ′ (e′′) = roll 
}. Thismeans there existsX′

P ′ such thatX′
P ′ ↦P ′ e′,XP ′ ⊆ X′

P ′ ,and X′
P ′ ∪ {e

′′ ∣ �P ′ (e′′) = roll 
} = X′′ ↦ underlinee.
If X = {e�} and e ∈ EP ′ then X′ = {e′′ ∣ �P ′ (e′′) = roll 
} and there exists an
XP ′ such that XP ′ ↦P ′ e and X′′ = XP ′ ∪ {e′′ ∣ �P ′ (e′′) = roll 
}, meaning
clearly X′ ⊆ X′′.

• Suppose P = �
 [m].P ′. Then the argument is similar to the previous case.
• Suppose P = P0 + P1. Then, if e = (i, ei) and e′ = (i, e′i) then there exists X′

isuch that X′ = {i} ×X′
i and X′

i ↦ e′i, meaning there exists X′′
i ⊇ X′

i such that
X′′
i ↦ ei and therefore {i} ×X′′

i = X
′′ ↦ e.

• Suppose P = P0 ∣ P1. Then either e = (Y , e×), or there exists X′ such that
X′ ↦× e and X = {e′ ∣ (�0(e′), �1(e′)) ∈ X′}.
If e = (Y , e×) then e′ = (Y ′, e′×) and Y ′ ∪ {e′×} ⊆ Y , and
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X′ =
⋃

⎧

⎪

⎨

⎪

⎩

X′′′

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ Ei.Xi ↦i �i(e′)
or ∃e′′× ∈ Y ′.Xi ↦i �i(e′′×)
and e′′ ∈ X′′′ iff �i(e′′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

.

We define X′′ =
⋃

⎧

⎪

⎨

⎪

⎩

X′′′

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ Ei.Xi ↦i �i(e)
or ∃e′′× ∈ Y .Xi ↦i �i(e′′×)
and e′′ ∈ X′′′ iff �i(e′′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

and show that

X′ ⊆ X′′. By definition, since e× ∈ Y ′, whenever Xi ↦ �i(e′) we get �(e′′) ∈
Xi iff e′′ ∈ X′′. And if there exists e′′× ∈ Y ′ such that Xi ↦ �i(e′′×) then, since
Y ′ ⊆ Y , e′′× ∈ Y and therefore �(e′′) ∈ Xi iff e′′ ∈ X′′.

• Suppose P = P ′ ⧵ A. Then the lemma obviously follows from induction.
• Suppose P = A ⟨ã, 
̃⟩. Then the lemma holds if it holds for PA.

F.8. Proof of Proposition 7.12
Proof. We say that  = (E, F,↦,⊳, �,Act) and  ′ = (E′, F ′,↦′,⊳′, �′,Act′) and
do a case analysis on the structural congruence rules, describing how  and  ′ are
constructed and defining isomorphisms for each rule:
P = Q ∣ R and P ′ = R ∣ Q: Then there exist Q and R such that for i ∈ {Q,R},

⦃Pi⦄ = ⟨i, Initi, ki⟩ and ⟨ , Init, k⟩ is composed of them as defined in the event
structure semantics.
And there exist  ′Q and  ′R such that for i ∈ {Q,R}, ⦃Pi⦄ =

⟨

 ′i , Init
′
i, k

′
i
⟩ and

⟨

 ′, Init′, k′
⟩ is composed of them as defined in the event structure semantics.

And by induction we have isomorphisms fQ ∶ Q →  ′Q and fR ∶ R →  ′Rfulfilling the conditions.
We first define a helper function

f ′(e) =

⎧

⎪

⎨

⎪

⎩

(fR(eR), fQ(eQ)) if e = (eQ, eR)
(fR(eR), ∗) if e = (∗, eR)
(∗, fQ(eQ)) if e = (eQ, ∗)

and then our isomorphism
f (e) =

{({f ′(e′′) ∣ e′′ ∈ X}, f ′(e′)) if e = (X, e′)
f ′(e) otherwise

Since the definition of parallel composition treats both parts the same way, this
clearly fulfils the conditions.

P = P0 ∣ (P1 ∣ P2) and P ′ = (P0 ∣ P1) ∣ P2: Then there exist 0, 1, 2, and 12 suchthat ⦃P0⦄ = ⟨0, Init0, k0⟩, ⦃P1⦄ = ⟨1, Init1, k1⟩, ⦃P2⦄ = ⟨2, Init2, k2⟩,
⟨12, Init12, k12⟩ is composed of ⟨1, Init1, k1⟩ and ⟨2, Init2, k2⟩ as described inthe parallel rule, and ⟨ , Init, k⟩ is composed of ⟨0, Init0, k0⟩ and ⟨12, Init12, k12⟩as described in the parallel rule.
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Additionally, there exist event structures  ′0,  ′1,  ′2, and 01 generated as fol-
lows: ⦃P0⦄ =

⟨

 ′0, Init
′
0, k

′
0
⟩, ⦃P1⦄ =

⟨

 ′1, Init
′
1, k

′
1
⟩, ⦃P2⦄ =

⟨

 ′2, Init
′
2, k

′
2
⟩,

⟨01, Init01, k01⟩ is composed of ⟨0, Init0, k0⟩ and ⟨1, Init1, k1⟩ as described
in the parallel rule. Then ⟨

 ′, Init′, k′
⟩ is composed of ⟨01, Init01, k01⟩ and

⟨2, Init2, k2⟩ as described in the parallel rule. And there exist isomorphisms
f0 ∶ 0 →  ′0, f1 ∶ 1 →  ′1, and f2 ∶ 2 →  ′2 satisfying the conditions of the
proposition.
We define a helper function f01(e0, e1) = (f0(e0), f1(e1)) if e0 ∈ E0 and e1 ∈ E1and define the morphism

f (e) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(f01(e0, e1), f2(e2)) if e = (e0, (e1, e2))
(Y , ((Y ′, e01), f2(e2)) if e = (X, (e0, (X′, (e1, e2)))),

e01 = f01(e0, e1)
Y ′ = {f01(e′0, e

′
1) ∣ ∃e

′
2, X

′′.

(e′0, (X
′′, (e′1, e

′
2))) ∈ X and

e′0 ∈ X0 ∈ cause(e0) or e′1 ∈ X1 ∈ cause(e1)},
and
Y = {((f01(Y ′′), f01(e′0, e

′
1)), e

′
2) ∈ E01×2 ∣

∃X′′.(e′0, (X
′′, (e′1, e

′
2))) ∈ X and

(f01(Y ′′), f01(e′0, e
′
1)) ∈ Y

′}

We first show that for any e = (X, (e0, (X′, (e1, e2)))), there exists at most one
possible f (e) ∈ E′: Since causes must be conflict-free, there can at most exist
one e′2 andX′′ for each e′0 and e′1 such that (e′0, (X′′, (e′1, e

′
2)) ∈ X, meaning there

can only exist one Y ′ and Y fulfilling the conditions.
We then show that for any e = (X, (e0, (X′, (e1, e2)))), there exists f (e′) =
(Y , ((Y ′, (e′0, e

′
1)), e

′
2)) ∈ E′: By induction, e′0 ∈ E′0, e′1 ∈ E′1, and e′2 ∈ E′2,so we show that (Y ′, (e′0, e′1)) ∈ E01. We know there exists X1 ∈ cause(e1)such that X1 ⊆ �1(X′) = �1(�12(X)), and there exists X0 ∈ cause(e0) suchthat X0 ⊆ �0(X). And since for all e ∈ Y ′, either e′0 ∈ X0 ∈ cause(e0)

or e′Y ∈ XY ∈ cause(e1), we get that Y ′ ∈ cause(f0(e0), f1(e1)), and there-
fore we have an event (Y ′, (f0(e0), f1(e1))) ∈ E01. And for similar reasons
we also get Y ∈ cause((Y ′, (f0(e0), f1(e1))), f2(e2)), meaning we have an event
(Y , ((Y ′, (f0(e0), f1(e1))), f2(e2))) ∈ E′.
We then show that for any e′ = (X, ((X′, (e′0, e

′
1)), e

′
2)) ∈ E′, there exists e =

(Y , (e0, (Y ′, (e1, e2)))) ∈ E such that f (e) = e′. By induction, there obvi-
ously exist e0, e1, e2 such that f0(e0) = e′0, f1(e1) = e′1, and f2(e2) = e′2. We
also know there exist X0 ∈ cause(e′0), X1 ∈ cause(e′1), and X2 ∈ cause(e′2)such that (1) whenever ((X′′, (e′′0 , e

′′
1 )), e

′′
2 ) ∈ X, either e′′0 ∈ X0 or e′′1 ∈ X1

or e′′2 ∈ X2, and for each (e′′′0 , e′′′1 ) ∈ X′′, there exists X′′′ ⊆ X′′ and e′′′2such that ((X′′′, (e′′′0 , e
′′′
1 )), e

′′′
2 ) ∈ X; and (2) whenever ei ∈ Xi, there exists

((X′′, (e′′0 , e
′′
1 )), e

′′
2 ) ∈ X such that ei ∈ {e′′0 , e′′1 , e′′2 }.
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For i ∈ {0, 1, 2}, since fi is an isomorphism, f−1i (Xi) ∈ cause(ei), meaning if
we set
Y ′ = {(f−11 (e′′1 ), f

−1
2 (e′′2 )) ∣ ((X

′′, (e′′0 , e
′′
1 )), e

′′
2 ) ∈ X and e′′1 ∈ X1 or e′′2 ∈ X2}

and

Y =
{

(f−10 (e′′0 ), (Y
′′, (f−11 (e′′1 ), f

−1
2 (e′′2 ))))

|

|

|

|

|

∃X′′.((X′′, (e′′0 , e
′′
1 )), e

′′
2 ) ∈ X and

(Y ′′, (f−11 (e′′1 ), f
−1
2 (e′′2 ))) ∈ Y

′

}

we have e = (Y , (e0, (Y ′, (e1, e2)))) ∈ E and f (e) = e′.
We then show that f is a morphism, meaning for e, e′ ∈ E:

• Obviously �(e) = �′(f (e)).
• If f (e) = f (e′) then one of the following holds: (1) e = (e0, (e1, e2)) = e′,or (2) e = (X, (e0, (Y , (e1, e2)))) and e′ = (X′, (e0, (Y ′, (e1, e2)))), and
(e′′0 , (Y

′′, (e′′1 , e
′′
2 ))) ∈ X if and only if there exists (e′′0 , (Y ′′′, (e′′1 , e′′2 ))) ∈

X′. However, since Y ′′, Y ′′′ ∈ cause(e′′1 , e
′′
2 ), either Y ′′ = Y ′′′, or there ex-ist y′′ ∈ Y ′′ and y′′′ ∈ Y ′′′ such that y′′ ♯12 y′′′. And in addition, there exist

e′′′0 , e
′′′′
0 , Yy′′ , and Yy′′′ such that (e′′′0 , (Yy′′ , y′′)) ∈ X and (e′′′′0 , (Yy′′′ , y′′′)) ∈

X′. Since X and x′ must be conflict-free, X = X′.
• If X ↦ f (e)∗, then either e∗ = (e0, (e1, e2)), e∗ = (Y , (e0, (Y ′, (e1, e2)))),
e∗ = (e0, (e1, e2)), or e∗ = (Y , (e0, (Y ′, (e1, e2)))).
If e = (e0, (e1, e2)) then there exists i ∈ 0, 12 andXi such thatXi ↦i �i(e),and X = {e′′ ∣ �i(e′′) ∈ Xi}, meaning if i = 0, then {e′′ ∣ �0(e′′) ∈
Xi} ↦ (e0, e1) and therefore {e′′ ∣ �0(�01(e′′)) ∈ Xi} ↦ ((e0, e1), e2), andobviously f ({e′′ ∣ �0(�01(e′′)) ∈ Xi}) = X. If i = 12 then there exists
j ∈ 1, 2 and Xj such that Xj ↦j �j(e), and X = {e′′ ∣ �j(�12(e′′)) ∈ Xj},and by similar logic if j = 1 then {e′′ ∣ �1(�01(e′′)) ∈ Xj}↦ ((e0, e1), e2),and f ({e′′ ∣ �1(�01(e′′)) ∈ Xj}) = X and if j = 2 then {e′′ ∣ �2(e′′) ∈
Xj} ↦ ((e0, e1), e2), and f ({e′′ ∣ �2(e′′) ∈ Xj}) = X.
If e = (Y , (e0, (Y ′, (e1, e2)))) and f (e) = (Z, ((Z′, (f0(e0), f1(e1))), f2(e2)))then there exists e′ = ((Z′′, (e′0, e

′
1)), e

′
2) ∈ Z such that X = {(X′, e′) ∣

X′ ⊆ X}, and obviously
P = P ′ ∣ 0: Then there exists  and  ′ such that ⦃P ′⦄ =

⟨

 ′, Init′, k′
⟩, ⦃P⦄ =

⟨ , Init, k⟩, and  is composed of  ′ and the empty LREBES, 0 as describedin the parallel composition rule.
We define f (e) =

{

e′ if e = (X, (e′, ∗))
e′ if e = (e′, ∗)

And show that f ∶  →  ′ is a morphism, meaning for all e0, e1 ∈ E:
• Clearly �(e0) = �′(f (e0)).
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• If f (e0) = f (e1) then there exists e such that either e0 = (e, ∗) = e1 or thereexist X0 and X1 such that e0 = (X0(e, ∗)) and e1 = (X1(e, ∗)). However,by Lemma 7.8, we know that whenever X′
0 ↦ e, X′

0 contains exactly one
event, e′0. Since that event cannot synchronise with anything from E0, e′0must be in every possible cause of e, and similarly for the causes of e′′0 ,meaning e can only have one cause in  ′||0, and therefore e0 = e1.

• For X′ ⊆ E′, if X′ ↦′ f (e0)∗ then f (e0) = e′0 and either e0 = (e′0, ∗) or
e0 = (X0, (e′0, ∗)).
If e∗0 = (e′0, ∗), then {e ∣ ∃e′ ∈ X′.e = (X, (e′, ∗)) or e = (e′, ∗)} ↦ e0.Clearly {e ∣ ∃e′ ∈ X′.e = (X, (e′, ∗)) or e = (e′, ∗)} = {e ∣ f (e) ∈ X′}
If e∗0 = (X0, (e′0, ∗)) then by Lemma 7.8 there exists e such that X′ = {e}.
Clearly this requires that (e, ∗) ∈ X0, which means {(X′

0, (e, ∗)) ∣ X
′
0 ⊆

X0}↦ e0, and clearly f ({(X′
0, (e, ∗)) ∣ X

′
0 ⊆ X0}) = {e}.

If e∗0 = (e′0, ∗) then {e ∣ e = (X, (e′, ∗)) or e = (′, ∗) for e′ ∈ X′} ↦ e∗0.
If e∗0 = (X0, (e′0, ∗)) then

⋃

{X′′ ∣ ∃X′′′ ∈ E′.X′′′ ↦′ e′0 or ∃(e′, ∗) ∈
X0.X′′ ↦′ e′, and e′′ ∈ X′′ iff f (e′′) ∈ X′′′} ↦ e∗0, by Lemmas 7.10 and
7.11, we know that for all e ∈ X0, ifX′′ ↦ e, thenX′′ ⊆ X′, meaningX′ =
⋃

{X′′ ∣ ∃X′′′ ∈ E′.X′′′ ↦′ e′0 or ∃(e′, ∗) ∈ X0.X′′ ↦′ e′, and e′′ ∈
X′′ iff f (e′′) ∈ X′′′}.

• If f (e0) ⊳ f (e1)∗ then by definition, e0 ⊳ e1 ∗.
We then prove f is bijective: We already showed above, that f is injective, and
it is clear that it is also surjective.
In order to show f is an isomorphism, we therefore only need to show that f−1
is a morphism, meaning for e′0, e′1 ∈ E′:

• Again, clearly �(f−1(e′0)) = �′(e′0).
• If f−1(e′0) = f−1(e′1) then we already know f is a bijection, so e′0 = e′1.
• For X ⊆ E, if X ↦ f−1(e′0)

∗ then f−1(e′0) = e0 and either e0 = (e′0, ∗) or
e0 = (X0, (e′0, ∗)).
If e∗0 = (e′0, ∗), then {e ∣ (e, ∗) ∈ X or ∃X′.(X′, (e, ∗)) ∈ X} ↦ e′0.
If e∗0 = (X0, (e′0, ∗)) then by Lemma 7.8 we know there exists an e such
that X = {e}. This means there exists X′ such that e = (X′, (e′, ∗)) and
(e′, ∗) ∈ X0, meaning {e′}↦′ e′0.
If e∗0 = (e′0, ∗) then either X = {e0}, and obviously {e′0} ↦ e′0, or there
exists an X′ such that X′ ↦ e0 and X = {e ∣ ∃e′ ∈ X′.e = (e′, ∗) or e =
(X′′, (e′, ∗))}.
If e∗0 = (X0, (e′0, ∗)) then either X = {e0}, and obviously {e′0} ↦ e′0, or
X =

⋃

{X′′ ∣ f (X′′) ↦′ e′0 or ∃(e′, ∗) ∈ X0.f (X′′) ↦′ e′}. Clearly any
of these X′′s can be used to fulfil the condition.
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• If f−1(e′0) ⊳ f−1(e′1)∗ then either (1) e′0 ⊳ e′∗1 , (2) e′0 = e′1 and f−1(e′0) ≠
f−1(e′1)

∗, (3) e′∗1 = e′1, f−1(e′0) ≠ f−1(e′1)
∗, and f−1(e′0) ∈ X ↦ f−1(e′1),

or (4) e′∗1 = e′1 and there exist 
0 and 
1 such that �(f−1(e′0)) = roll 
0 and
�(f−1(e1)) = roll 
1.
In case 1, the condition is trivially fulfilled. Case 2 will never occur. In case
3, as shown above, e′0 ∈ f (X)↦ e′1, and by Lemma 7.9, this means e′0⊳e′1.
In case 4, since the e′0 and e′1 must both have been caused by a rollback at
the end of a subprocess, they were either in parallel or different option in a
choice, and in either case clearly e′0 ⊳′ e′1.

And obviously from Lemma 7.7 and the definition of Init, we see that f (Init) =
Init′ and f◦k′ = k.

P = X + Y and P ′ = Y +X: Selection works the same in Roll-CCSK as in CCSK,
so this case is the same as in Proposition 4.15.

P = (X + Y ) +Z and P ′ = (X + Y ) +Z: Selection works the same in Roll-CCSK
as in CCSK, so this case is the same as in Proposition 4.15.

P = P ′ + 0: Selection works the same in roll-CCSK as in CCSK, so this case is the
same as in Proposition 4.15.

P = Q ⧵ A, P ′ = Q′ ⧵ A, and Q ≡ Q′: Then we have ⦃Q⦄ =
⟨

Q, InitQ, kQ
⟩, and

⦃Q′⦄ =
⟨

Q′ , InitQ′ , kQ′
⟩, there exist an isomorphism fQ ∶ Q → Q′ such that

fQ(InitQ) = InitQ′ and for all e ∈ InitQ, kQ(e) = kQ′ (fQ(e)), and by applying
the restriction we get

⟨ , Init, k⟩ =
⟨

Q ↾ �(A ∪ A), InitQ ∩ �(A ∪ A), kQ ↾ �(A ∪ A)
⟩

and
⟨

 ′, Init′, k′
⟩

=
⟨

Q′ ↾ �(A ∪ A), InitQ′ ∩ �(A ∪ A), kQ′ ↾ �(A ∪ A)
⟩

We now show that e ∈ �(A ∪ A) if and only if f (e) ∈ �(A ∪ A).
For any e ∈ EQ, obviously �Q(e) ∈ A ∪ A iff �Q′ (f (e)) ∈ A ∪ A. We show that
for any X ⊆ EQ, X ∈ causes(e) if and only if f (X) ∈ cause(f (e)) by induction
in the size of X.
If X = ∅ then there does not exist x ⊆ EQ such that x ↦Q e, and by definition
of an morphism, there cannot exist x′ ⊆ EQ′ such that x′ ↦ f (e), meaning
∅ ∈ cause(e). And since f is an isomorphism the same argument can be used for
f−1.
If X contains n events, and for all events e′ and X′ ∈ cause(e′) such that X′

contains less that n events,X′ ⊆ �(A∪A) if and only if f (X′) ∈ cause(f (e′)) then
whenever x′ ↦Q′ f (e), there exists x ⊆ EQ such that x ↦Q e and f (x) ⊆ x′,
meaning there exists e′′ such that x∩X = {e′′}, and x′ ∩ f (X) ⊇ {f (e′′)}. And
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by induction ifX′′ ↦ e′′ ∈ X thenX′′ ⊂ X and therefore f (X′′) ∈ causes(e′′).
And since X is conflict-free, obviously f (X) is conflict-free. And since f is an
isomorphism the same argument can be used for f−1.

P = A ⟨ã, 
̃⟩ and P ′ = (� 
̃)PA{ã,
̃∕b̃,�̃} where A
⟨

b̃, �̃
⟩

= PA: Follows fromProposi-
tion 7.4.

F.9. Proof of Theorem 7.13
Proof. We say that the inverse of f is g ∶  ′ →  and prove the result by induction on
the transition P �[m]

←←←←←←←←←←←←←←←←←←→ P ′ by constructing  ,  ′, f and g for each case:
• Suppose P = �
 .Q, P ′ = �
 [m].Q, � = �, and std(Q). Then there exist Q and
e� such that ⦃Q⦄ = ⟨

Q, Init, k
⟩ and ⟨ , Init, k⟩ is constructed based on this as

described in the prefix rule.
And there exist Q′ and e′� such that ⦃Q⦄ =

⟨

Q′ , InitQ′ , kQ′
⟩ and ⟨ ′, Init′, k′⟩

is constructed from this a described in the past prefix rule.
By induction, there must exist isomorphisms fQ ∶ Q → Q′ and gQ ∶ Q′ →
Q, and we define f = fQ∪{(e� , e′�)} and g = gQ∪{(e′� , e�)}, which are clearlyisomorphisms.
Since std(Q), meaning Init = ∅, and since noX exists such thatX ↦ e� , Init

e�
←←←←←←←←←←→

{e�}, and the rest of the conditions are obviously satisfied.

• Suppose that P = �
 [n].Q, P ′ = �
 [n].Q′, Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′, and n ≠ m.

Then there exist Q and e� such that ⦃Q⦄ = ⟨

Q, InitQ, kQ
⟩ and ⟨ , Init, k⟩ is

constructed based on this as described in the past prefix rule.
And there exist Q′ and e′� such that⦃′Q⦄ =

⟨

Q′ , InitQ′ , kQ′
⟩ and⟨ ′, Init′, k′⟩

is constructed from this a described in the past prefix rule.
By induction, we get isomorphisms fQ ∶ Q → Q′ and gQ ∶ Q′ → Q and a
transition InitQ

{e}
←←←←←←←←←←←←←→ XQ in Cre(Q) such that �Q(e) = �, kQ′ (fQ(e)) = m, and

fQ(XQ) = InitQ′ .
We define f = fQ ∪ {(e� , e′�)} and g = gQ ∪ {(e′� , e�)}. Since InitQ and XQ are
conflict-free in Q, InitQ ∪{e�} = Init andXQ ∪{e�} = X are configurations of
Cre(), and clearly Init

{e}
←←←←←←←←←←←←←→ X.

• Suppose P = P0 ∣ P1, P ′ = P ′0 ∣ P1, P0
�[m]
←←←←←←←←←←←←←←←←←←→ P ′0 , and fsh[m](P1). Then there

exist 0 and 1 such that for i ∈ {0, 1}, ⦃Pi⦄ = ⟨i, Initi, ki⟩, and ⟨ , Init, k⟩ isconstructed as described in the parallel composition rule.
And there exist  ′0 and  ′1 such that⦃P ′0⦄ =

⟨

 ′0, Init
′
0, k

′
0
⟩, ⦃P1⦄ =

⟨

 ′1, Init
′
1, k

′
1
⟩,

and ⟨ ′, Init′, k′⟩ is constructed as described in the parallel composition rule.
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We have isomorphisms f0 ∶ 0 →  ′0, g0 ∶  ′0 → 0, f1 ∶ 1 →  ′1, and
g1 ∶  ′1 → 1, and there exists a transition Init0

e�
←←←←←←←←←←→ X in Cre(0) such that

�0(e�) = �, k′0(f0(e)) = m and f0(X) = Init′0.
We define functions

f ′(e) =

⎧

⎪

⎨

⎪

⎩

(f0(e0), ∗) if e = (e0, ∗)
(∗, f1(e1)) if e = (∗, e1)
(f0(e0), f1(e1)) if e = (e0, e1)

and

g′(e) =

⎧

⎪

⎨

⎪

⎩

(g0(e0), ∗) if e = (e0, ∗)
(∗, g1(e1)) if e = (∗, e1)
(g0(e0), g1(e1)) if e = (e0, e1)

and our isomorphisms as:

f (e) =
{(f ′(X), f ′(e′)) if e = (X, e′)
f ′(e) otherwise

and
g(e) =

{(g′(X), g′(e′)) if e = (X, e′)
g′(e) otherwise

It is clear that f◦g = I and g◦f = I ′ .
We show that f ∶  →  ′ is a morphism, meaning for all e, e′ ∈ E:

– Obviously �(e) = �′(f (e))
– If f (e) = f (e′) then since f0 and f1 are injective, e = e′.
– For X′ ⊆ E′, if X′ ↦′ f (e)∗ then either e∗ = (Y , e× and there exists
e×′ ∈ f (Y ) such that X′ = {(Y ′, e×′ ) ∣ Y ′ ⊆ f ′(Y )}, or e∗ ∈ E× and there
existsX′′ such thatX′′ ↦′

× f (e) andX′ = {e′ ∣ (�′0(e
′), �′1(e

′)) ∈ X′′}, or
e∗ = (Y , e×) and X′ = {f (e)}, or e∗ = (Y , e×) and

X′ =
⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ E′i . X
′
i ↦

′
i �

′
i (f (e))

or ∃e×′ ∈ f (Y ) . X′
i ↦

′
i �

′
i (e×′ )

and e′′ ∈ X′′ iff �′i (e′′) ∈ X′
i

⎫

⎪

⎬

⎪

⎭

or e∗ ∈ E× and there exists X′′ such that X′′ ↦′
× f (e) and X′ = {e′ ∣

(�′0(e
′), �′1(e

′)) ∈ X′′}.
If e∗ = (Y , e× and there exists e×′ ∈ f (Y ) such that X′ = {(Y ′, e×′ ) ∣
Y ′ ⊆ f (Y )} then there exists an e′× ∈ Y such that f (e′×) = e×′ and clearly
{(Y ′, e′×) ∣ Y

′ ⊆ Y } ↦ (Y , e×).
If e∗ ∈ E× and there exists X′′ such that X′′ ↦′

× f (e) and X′ = {e′ ∣
(�′0(e

′), �′1(e
′)) ∈ X′′} then by induction and since || is an REBES product,
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there existsX′′′ ⊆ E× such thatX′′′ ↦× e, f (X′′′) ⊆ X′′, and if e′ ∈ X′′′

then f (e′) ≠ ⊥. This means {e′ ∣ (�0(e′), �1(e′)) ∈ X′′′} ↦ e.
If e∗ = (Y , e×) and X′ = {f (e)}, or e∗ = (Y , e×) and

X′ =
⋃

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

|

∃i ∈ {0, 1}, X′
i ∈ E

′
i .X

′
i ↦

′
i �

′
i (f (e))

or ∃e×′ ∈ f (Y ).X′
i ↦

′
i �

′
i (e×′ )

and e′′ ∈ X′′ iff �′i (e′′) ∈ X′
i

⎫

⎪

⎬

⎪

⎭

then by induction, since g = f−1 is a morphism for each Xi ↦i �i(e),
f (Xi) ⊂ X′

i ↦
′
i �

′
i (f (e)), and for each Xi ↦i �i(e′×) ∈ Y , f (Xi) ⊂ X′

i ↦
′
i

�′i (f (e
′
×)) meaning

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ Ei . Xi ↦i �i(e)
or ∃e′× ∈ Y .Xi ↦i �i(e′×)
and e′′ ∈ X′′ iff �′i (e′′) ∈ Xi

⎫

⎪

⎬

⎪

⎭

⊆

⎧

⎪

⎨

⎪

⎩

X′′

|

|

|

|

|

|

|

|

∃i ∈ {0, 1}, Xi ∈ E′i .X
′
i ↦

′
i �

′
i (f (e))

or ∃e×′ ∈ f (Y ) . X′
i ↦

′
i �

′
i (e×′ )

and e′′ ∈ X′′ iff �′i (e′′) ∈ X′
i

⎫

⎪

⎬

⎪

⎭

If e∗ ∈ E× and there exists X′′ such that X′′ ↦′
× f (e) and X′ = {e′ ∣

(�′0(e
′), �′1(e

′)) ∈ X′′} then by induction and because || is an REBES prod-
uct, there exists X′′′ ⊆ E× such that f (X′′′) ⊆ X′′ and X′′′ ↦× e. Thismeans {e′ ∣ (�0(e′), �1(e′)) ∈ X′′′} ↦ e.

– If f (e) ⊳′ f (e′)∗ then there exists i ∈ {0, 1} such that either �′i (f (e)) ⊳′i
�′i (f (e

′))∗, or �′i (f (e)) = �′i (f (e
′)) ≠ ⊥, and f (e) ≠ f (e′), or f (e′)∗ =

f (e′), f (e) ≠ f (e′), and f (e) ∈ X ↦′ f (e′), or f (e′)∗ = f (e′) and there
exist 
 , 
 ′ such that �′(f (e)) = roll 
 and �′(f (e′)) = roll 
 ′.
If �′i (f (e))⊳′i �′i (f (e′))∗ then by induction �i(e)⊳i �i(e′)∗, meaning e∗ ⊳ e.
If �′i (f (e)) = �′i (f (e′)) ≠ ⊥, and f (e) ≠ f (e′) then �i(e) = �i(e′) ≠ ⊥ and
e ≠ e′, meaning e ⊳ e′∗.
If f (e′)∗ = f (e′), f (e) ≠ f (e′), and f (e) ∈ X ↦′ f (e′) then, since, by
similar arguments to the previous case, g(X)↦ f (e′), and e ∈ g(X), e⊳e∗.
If f (e′)∗ = f (e′) and there exist 
 , 
 ′ such that �′(f (e)) = roll 
 and
�′(f (e′)) = roll 
 ′, then �(e) = roll 
 and �(e′) = roll 
 ′, meaning e ⊳ e′∗.

By similar arguments, g is a morphism too.
We now show that there exists an (Y , (e�, ∗)) ∈ E such that {e′ ∣ (�0(e′), �1(e′)) ∈
Y } ⊆ Init. Since Init0

{e�}
←←←←←←←←←←←←←←←←←←→, for everyX0 ↦0 e�,X0∩ Init0 = X0 = {e0}, and if

X′
0 ↦0 e0 then by Lemma 7.7,X′

0 ↦0 e�, and thereforeX′
0∩Init0 ≠ ∅. Thereforethere must exist one (Y , (e�, ∗)) ∈ E such that {e′ ∣ (�0(e′), �1(e′)) ∈ Y } ⊆ Init.

We use this (Y , (e�, ∗)) as our e and show that Init {e}
←←←←←←←←←←←←←→: Since Y ⊆ Init, for every
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X ↦ e,X ∩ Init ≠ ∅. And if e′ ⊳ e then it must that either �0(e′)⊳0 e�, in whichcase �0(e′) ∉ Init0, and therefore e′ ∉ Init, or �0(e′) = e� and e ≠ e′, in which
case, since Init0

{e�}
←←←←←←←←←←←←←←←←←←→, e′ ∉ Init0, and therefore e′ ∉ Init, or e′ ∈ X ↦ e and

e′ ≠ e, in which case �0(e′) ∈ X0 ↦ e� or �0(e′) ∈ X0 ↦ �0(e′′) for e′′ ∈ Y ,
and by Lemmas 7.9 and 7.11, �0(e′) ⊳ e�, meaning �0(e′) ∉ Init0, and e′ ∉ I .
We therefore have Init

{e}
←←←←←←←←←←←←←→ I ∪ {e}, and obviously �(e) = �0(e�) = � and

f◦k′ = k∪{(e, m)}, and since f0(Init0 ∪{e�}) = Init′0 and f1(Init1) = Init′1, andthere only exists one (Y , (e�, ∗)) ∈ E such that {e′ ∣ (�0(e′), �1(e′)) ∈ Y } ⊆ Init,
f (Init ∪ {e}) = Init′.

• Suppose P = P0 ∣ P1, P ′ = P ′0 ∣ P ′1 , P0
�[m]
←←←←←←←←←←←←←←←←←→ P ′0 , P1

�[m]
←←←←←←←←←←←←←←←←←→ P ′1 , and � = �.

Then the construction of ⟨ , Init, k⟩ and ⟨ ′, Init′, k′⟩ and the isomorphisms are
similar to the previous case. And by induction we have transitions Init0

{e0}
←←←←←←←←←←←←←←←←←→ and

Init1
{e1}
←←←←←←←←←←←←←←←←←→ fulfilling the conditions.

For similar reasons to the previous case there exists exactly one (Y , (e0, e1) suchthat {e′ ∣ (�0(e′), �1(e′)) ∈ Y } ⊆ Init, and we use this (Y , (e0, e1)) as e, and the
rest of the proof follows similarly.

• Suppose P = P0 +P1, P ′ = P ′0 +P1, P0
�[m]
←←←←←←←←←←←←←←←←←←→ P ′0 , and std(P1). Then the rule forselection is the same in roll-CCSK as in CCSK, and the case is therefore identical

to Theorem 4.18.
• Suppose P = Q⧵A, P ′ = Q′⧵A,Q �[m]

←←←←←←←←←←←←←←←←←←→ Q′, and � ∉ A∪A. Then there exist Q
and  ′Q such that ⦃Q⦄ = ⟨

Q, InitQ, k
⟩, ⦃Q′⦄ =

⟨

 ′Q, Init
′
Q, k

′
Q

⟩

, and  and  ′
are constructed from Q and  ′Q as described in the restriction rule, and there exist
isomorphisms fQ ∶ Q →  ′Q and g ∶  ′Q → Q and a transition InitQ

{eQ}
←←←←←←←←←←←←←←←←←←←→

where �Q(eQ) = �, fQ◦k′Q = kQ ∪ {(eQ, m)}, and fQ(InitQ ∪ {eQ}) = Init′Q.
Since there exists a standard process P ′′ such that P ′′ →∗ P , there cannot exist
e′ ∈ Init such that �(e′) ∈ A∪A or for all x ∈ cause(e′), there exists e′′ ∈ x such
that �(e′′) ∈ A ∪ A, meaning Init ∩ �(A ∪ A) = Init, and, since eQ ∈ �(A ∪ A),
Init

eQ
←←←←←←←←←←←→.

• Suppose P = Q[f ], P ′ = Q′[f ], Q �[m]
←←←←←←←←←←←←←←←←←→ Q′, and f ′(�) = �. Then the rule for

functions is the same in roll-CCSK as in CCSK, and the case is therefore identical
to Theorem 4.18.

• Suppose P ≡ Q, P ′ ≡ Q′, and Q �[m]
←←←←←←←←←←←←←←←←←←→ Q′. Then the result follows from

induction and Proposition 7.12.

82



F.10. Proof of Theorem 7.14
Proof. We say that the inverse of f is g ∶  ′ →  and prove this result by induction on
P by constructing  ,  ′, f and g for each case:

• Suppose P = 0. Then E = ∅, and obviously no transitions exist in Cbr().
• Suppose P = roll 
 . Then there does not exist e ∈ E such that �(e) = �.
• Suppose P = rolling 
 . Then there does not exist e ∈ E such that �(e) = �.
• Suppose P = �
 .P ′′. Then {e�} ↦ e′ for all e′ ∈ E ⧵ {e�} such that �(e) =
�, meaning by definition e = e� . In addition, by Lemma 7.6, whenever e′ ∈
Init, �(e′) ∈ {roll 
 ′, start roll 
 ′} meaning std(P ). This means we get P �[m]

←←←←←←←←←←←←←←←←←→
�[m].P ′′ for some fresh m, and the isomorphisms are similar to this case in the
proof of Theorem 4.18.

• Suppose P = �[n].P ′′ and ⦃P ′′⦄ = ⟨

 ′′, Init′′, k′′
⟩. Then e� ∈ Init, and clearly

Init′′
e
←←←←←→ X′′, meaning there exists a key m and a transition P ′′ �(e)[m]

←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′′′,
such that ⦃P ′′′⦄ = ⟨

 ′′′, Init′′′, k′′′
⟩ and there exist isomorphisms f ′′ ∶  ′′ →

 ′′′ and g′′ ∶  ′′′ →  ′′ such that k′′′(f ′′(e)) = m and f ′′(X′′) = Init′′′.
If m ≠ n, then P �(e)[m]

←←←←←←←←←←←←←←←←←←←←←←←←←←→ �[m].P ′′′. Otherwise, we can chose a fresh m and
still get a transition. We define our isomorphisms as f = f ′′ ∪ {(e� , e′�)} and
g = g′′ ∪ {(e′� , e�)} and the rest of the proof is straightforward.

• Suppose P = P0 + P1. Then the proof is similar to the same case in CCSK, as
the choice semantics is the same.

• Suppose P = P0 ∣ P1, ⦃P0⦄ = ⟨0, Init0, k0⟩, Cbr(0) = (E0, F0,C0,→0
), ⦃P1⦄ = ⟨1, Init1, k1⟩, and Cbr(1) = (E1, F1,C1,→1). Then either e =
(Y , (e0, ∗)), e = (Y , (∗, e1)), or e = (Y , (e0, e1)).
If e = (Y , (e0, ∗)), then whenever X′

0 ↦0 e0, there exists e′ ∈ Y such that
�0(e′) ∈ X0 and {e′} ↦ e. And whenever �0(e′) ⊳0 �0(e), we get e′ ⊳ e. This
means Init0 is conflict-free, �0(X) is conflict-free, and Init0

e0
←←←←←←←←←→0 �0(X). There

therefore exists a key m and a transition P0
�0(e0)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 , such that ⦃P ′0

⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩ and there exist isomorphisms f0 ∶ 0 →  ′0 and g0 ∶  ′0 → 0

such that k′0(f0(e0)) = m and f0(�0(X)) = Init′0.
We chose an m, which is fresh for P1, and we get P

�0(e0)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 ∣ P1. We define

our isomorphisms similarly to the corresponding case in Theorem 7.13, and the
proof of them being isomorphisms is similar.
If e = (Y , (∗, e1)), the argument is similar.
If e = (Y , (e0, e1)), then for i ∈ {0, 1}, whenever X′

i ↦i ei, there exists e′ ∈ Y
such that �i(e′) ∈ X′

i and {e′} ↦ e. And whenever �i(e′) ♯i �i(e), we get
e′ ♯ e. This means Initi is conflict-free, �i(X) is conflict-free, and Initi

e0
←←←←←←←←←→i
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�i(X). There therefore exists a key mi and a transition Pi
�i(ei)[mi]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′i , suchthat ⦃P ′i

⦄

=
⟨

 ′i , Init
′
i, k

′
i
⟩ and there exist isomorphisms fi ∶ 0 →  ′i and

gi ∶  ′i → i such that k′i(fi(ei)) = mi and fi(�i(X)) = Init′0.
We say that m0 = m1 is a fresh m, and then since �0(e0) = �1(e1) and �(e) = �,
we get P �(e)[m]

←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′0 ∣ P
′
1 . We define our isomorphisms similarly to the cor-

responding case in Theorem 7.13, and the proof of them being isomorphism is
similar to that case. The rest of the case is straightforward.

• Suppose P = P ′′ ⧵ A, ⦃P ′′⦄ = ⟨ ′′, Init, k⟩, and Cbr( ′′) = (E′′, F ′′,C′′,→′′).
Then �(e) ∉ A ∪A and there exists at least one Y ∈ cause(e) such that if e′ ∈ Y
then �(e′) ∉ (A∪A). And since P is reachable, for all e′ ∈ Init, �(e′) ∉ (A∪A).
We therefore know Init′′ = Init

e
←←←←←→
′′
X, meaning there exists a key n and a

transition P ′′ �′′(e)
←←←←←←←←←←←←←←←←←←←←→ P ′′′ such that ⦃P ′′′⦄ = ⟨

 ′′′, Init′′′, k′′′
⟩, and there exist

isomorphisms f ′ ∶  ′′ →  ′′′ and f ′ ∶  ′′′ →  ′′ such that f ′◦k′′′ = ∪{(e, n)}
and f ′(X) = Init′′′.
This means P �′′(e)

←←←←←←←←←←←←←←←←←←←←→ P ′′′ ⧵A and the morphisms f ↾ E and g ↾ E′′′ ∩ �(A ∪A)
clearly fulfil the remaining conditions.

• Suppose P = P ′′[f ], ⦃P ′′⦄ = ⟨ ′′, Init, k⟩. Then the case is similar to the
corresponding case of Theorem 4.19.

F.11. Proof of Theorem 7.22

Proof. We prove this through induction on the derivation of P roll n
P ′ by constructing

 ,  ′, f and g for each case:

(act ROLL): Suppose P = �
 [n].R, R
roll n

R′, and P ′ = �
 .R {n′∣n≤P n′}, with
⦃R⦄ = ⟨R, InitR, kR⟩ and

⦃

R {n′∣n≤P n′}
⦄

= ⟨R′ , InitR′ , kR′⟩. Then {n′ ∣
n ≤P n′} is n and all n′s for which �
′ [n′] occurs in P . It is clear from the
semantic rules that this means Init′ = {e ∣ �(e) ∈ {start roll 
 ′ ∣ rolling 
 ′
occurs in P and ∄�, n.�
′ or �
′ [m] occurs in P } and there exists an isomorphism
f ∶  →  ′.
In addition we have e, er ∈ E such that �(e) = �, k(e) = n, �(er) = roll 
 ,
N(er) = roll n, and {er} ↦ e. By Lemmas 7.6, 7.10, and 7.11. we then get
Init

{er}
←←←←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→ X1⋯

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone fulfilling the conditions.

(par ROLL): Suppose P = Q ∣ R, P ′ = (Q ∣ R) {n′∣n≤P n′}, Q
roll 


Q′, and we gen-
erate event structures as follows: ⦃Q⦄ = ⟨

Q, InitQ, kQ
⟩, ⦃R⦄ = ⟨R, InitR, kR⟩,

⦃

Q {n′∣n≤P n′}
⦄

=
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

,
⦃

R {n′∣n≤P n′}
⦄

=
⟨

 ′R, Init
′
R, k

′
R
⟩, and we
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construct ⟨ , Init, k⟩ from ⟨

Q, InitQ, kQ
⟩ and ⟨R, InitR, kR⟩ and

⟨

 ′, Init′, k′
⟩

from
⟨

 ′Q, Init
′
Q, k

′
Q

⟩

and ⟨ ′R, Init′R, k′R
⟩ as described in the semantics.

It is clear from the semantics that there exists an isomorphism f ∶  →  ′.
By induction we have InitQ

{er}
←←←←←←←←←←←←←←←←→ X(0,Q)

{e0}
←←←←←←←←←←←←←←←←←→ X(1,Q)⋯

{em}
←←←←←←←←←←←←←←←←←←→ X(m+1,Q)

{er}
←←←←←←←←←←←←←←←←→

X(done,Q), {e0, e1,… en} = {e′ ∣ n ≤Q kQ(e′)}, and there exists an isomorphism
fQ ∶ Q →  ′Q such that f (X(done,Q)) = Init′Q.
From this we get that (er, ∗) ∈ E, and for eachX ↦ (er, ∗), we have anXQ ↦ ersuch that X = {e ∈ E ∣ �Q(e) ∈ XQ}, and therefore X ∩ Init ≠ ∅. Additionally,
if e ⊳ (er, ∗), then either �Q(e) ⊳ er, or �(e) = roll 
 ′, meaning e ∉ Init. We
therefore get Init {(er,∗)}

←←←←←←←←←←←←←←←←←←←←←←←←←←←←→. Since by Lemma 7.17 ∄e′ ∈ I.�(e′) = roll 
 ′, we get
that by Lemma 7.18 for ei, 0 ≤ i ≤ n, whenever Xi ↦ ei, either Xi = {ei},or er ∈ Xi, meaning for any e ∈ E such that �Q(e) ∈ {e0, e1,… en}, whenever
X ↦ e, either X = {e} or (er, ∗) ∈ X. The rest follows from Lemma 7.11 and
Proposition 7.19.

(prop ROLL Key 1): Suppose P = �′
 [m].R, P ′ = �′
 [m].R
′, m′ ≠ n, R roll n

R′, ⦃R⦄ = ⟨R, InitR, kR⟩, and ⦃R′⦄ = ⟨R′ , InitR′ , kR′⟩. Then by induction
InitR

{er}
←←←←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→ X1⋯

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, and there exists an iso-

morphism fR ∶ R → R′ fulfilling the conditions. Then it is clear from the
semantics that the result holds using the isomorphism f = fR ∪ {(e� , e′�)}.

(prop ROLL Key 2): SupposeP = �′
 .R, P ′ = �′
 .R′, ⦃R⦄ = ⟨R, InitR, kR⟩, ⦃R′⦄ =
⟨R′ , InitR′ , kR′⟩, and R

roll n
R′. Then InitR

{er}
←←←←←←←←←←←←←←←←→ X0

{e0}
←←←←←←←←←←←←←←←←←→ X1⋯

{en}
←←←←←←←←←←←←←←←←←→

Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, and there exists an isomorphism fR ∶ R → R′ such that

fR(Xd) = InitR′ . Then it is clear from the semantics that the result holds using
the isomorphism f = fR ∪ {(e� , e′�)}.

(prop ROLL Key 3): Suppose P = P0 + P1, P ′ = P ′0 + P1, ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃P1⦄ = ⟨1, Init1, k1⟩

⦃

P ′0
⦄

=
⟨

 ′0, Init
′
0, k

′
0
⟩, and P0

roll n
P ′0 . Then by induc-

tion Init0
{e(r,0)}
←←←←←←←←←←←←←←←←←←←←←←←←←→ X(0,0)

{e(0,0)}
←←←←←←←←←←←←←←←←←←←←←←←←←←→ X(1,0)⋯

{e(n,0)}
←←←←←←←←←←←←←←←←←←←←←←←←←←→ X(n+1,0)

{e(r,0)}
←←←←←←←←←←←←←←←←←←←←←←←←←→ X(done,0), andthere exists an isomorphism f0 ∶ 0 →  ′0 fulfilling the conditions. Then, since

P is consistent, std(P1), and therefore {0}×Init0
{(0,e(r,0))}
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ {0}×X(0,0)

{(0,e(0,0))}
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

{0} × X(1,0)⋯
{(0,e(n,0))}
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ {0} × X(n+1,0)

{(0,e(r,0))}
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ {0} × X(done,0), and the rest

obviously holds.
(prop ROLL Key 4): Suppose P = R ⧵ A, P ′ = R′ ⧵ A, ⦃R⦄ = ⟨R, InitR, kR⟩,

⦃R′⦄ = ⟨R′ , InitR′ , kR′⟩, and R
roll n

R′. Then by induction InitR
{er}
←←←←←←←←←←←←←←←←→
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X0
{e0}
←←←←←←←←←←←←←←←←←→ X1⋯

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, and there exists an isomorphism fR ∶

R → R′ such that fR(Xd) = InitR′ . Then, since P is consistent, if �
 [n] oc-
curs in R, � ∉ A ∪ A, and by Theorem 7.13, whenever e ∈ InitR, there exists
X ∈ cause(e) such that X ⊆ �(A ∪ A), and the result follows.

(prop ROLL Key 5): Suppose P = R[f ], P ′ = R′[f ], ⦃R⦄ = ⟨R, InitR, kR⟩,
⦃R′⦄ = ⟨R′ , InitR′ , kR′⟩, 
 ′ ≠ 
 , andR roll n

R′. Then by induction InitR
{er}
←←←←←←←←←←←←←←←←→

X0
{e0}
←←←←←←←←←←←←←←←←←→ X1⋯

{en}
←←←←←←←←←←←←←←←←←→ Xn+1

{er}
←←←←←←←←←←←←←←←←→ Xdone, and there exists an isomorphism fR ∶

R → R′ fulfilling the conditions, and the result follows.

(prop ROLL Key 6): Suppose P ≡ Q, Q roll n
Q′, and Q′ ≡ P . Then the result

follows from Proposition 7.12.
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