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Abstract

Membrane systems are a biologically-inspired computational model based on the struc-
ture of biological cells and the way chemicals interact and traverse their membranes. Al-
though their dynamics are described by rules, encoding membrane systems into rewriting
logic is not straightforward due to its complex control mechanisms. Multiple alternatives
have been proposed in the literature and implemented in the Maude specification lan-
guage. The recent release of the Maude strategy language and its associated strategy-
aware model checker [29] allow specifying these systems more easily, so that they become
executable and verifiable for free. An easily-extensible interactive environment trans-
forms membrane specifications into rewrite theories controlled by appropriate strategies,
and allows simulating and verifying membrane computations by means of them.
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1. Introduction

A membrane system or P system [26] is an unconventional distributed and parallel
computational model inspired on the structure and interactions of biological cells, pro-
posed in 1998 by Gheorghe Păun. Its theoretical study has led to interesting results like
its Turing completeness and the ability to compute NP-complete problems in polynomial
time, albeit at an exponential space growth, and its applications cover both biological
and non-biological fields [11]. Although simulating P systems is complex, due to its
nondeterministic and distributed nature, some simulators have been developed for re-
search and educational purposes [11]. Verification through model checking has also been
addressed [19, 2].

The connection with rewriting logic and rewriting strategies has been explored in sev-
eral papers [2, 4, 3, 5]. These works propose different ways of implementing the membrane
control mechanisms in rewriting logic and its specification language Maude [13]. In partic-
ular, the work in [5] by O. Andrei and D. Lucanu presents a prototype capable of running
single evolution steps using a primitive version of the Maude strategy language and some
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reflective strategy controllers that define the control mechanisms dynamically. In this
paper, we also specify the membrane control using strategies, but expressed in the stable
version of the Maude strategy language, generated at compile-time from the membrane
specifications, and valid to evaluate them from any possible configuration. The inter-
active prototype maintains the compatibility with the membrane specification language
of [5], but it is reimplemented and enhanced with new features like loading specifications
from file using the new external objects of Maude 3, showing the multiset of rules applied,
and computing complete membrane executions. Moreover, we also allow model checking
LTL, CTL*, and µ-calculus properties expressed in a builtin but extensible language of
atomic propositions. Model checking is directly backed by our model checker for systems
controlled by strategies [29, 31], which is able to consider membrane evolution steps as the
transitions of the model. Furthermore, the prototype is easily extensible, as illustrated
in Section 7 with three common variations of membrane systems, and efficient, as seen
in Section 8. The proposed interactive membrane environment and the strategy-aware
model checker can be downloaded from http://maude.ucm.es/strategies.

1.1. Related work
Several surveys have been published since the beginning of P systems to compile

their huge and growing repertory of simulators [20, 27, 33]. The first prototypes were
sequential programs written in Prolog, Lisp, Haskell, or Java that randomly simulate
the most basic class of membrane systems, known as transition P systems, the same we
address in the main part of this paper. Parallel simulators soon appeared to exploit the
intrinsic parallelism of the model, either using multiple threads on the same machine or
multiple computers. In addition to standalone programs, libraries have also been pro-
posed to ease the development of variants of membrane systems for specific applications.
Indeed, many simulators have been written for concrete biological problems, extending
and adapting the formalism to their own features. Probabilistic models, hardware-based
implementations using FPGAs, parallel simulations using GPUs [23], and biochemical
realizations have also been explored. In response to the proliferation of simulators for
specific purposes, other general-purpose projects like P-Lingua [17] have been proposed.
P-Lingua is a programming language and standard for defining P systems, which includes
a Java library and has some associated tools like the MeCoSim simulator. Other signifi-
cant and recent tools are the Infobiotics Workbench [7] and kPWorkbench [18] for kernel
P systems, which support model checking of temporal properties through external soft-
ware like Spin, NuSMV, and PRISM. More details can be found in the surveys cited at
the beginning of this paragraph. These references do not mention the prototypes based
on rewriting logic [2, 4, 3, 5] developed by the group of O. Andrei, D. Lucanu, and G.
Ciobanu at the Alexandru Ioan Cuza University, in which our work is based. Unlike the
prototypes mentioned at the beginning of the section, our goal is showing that strategies
are convenient to express the control mechanisms involved in this kind of systems, rather
that obtaining an efficient prototype for a specific problem or a general framework where
many kinds of P systems can be expressed. However, the flexibility of the rewriting logic
framework and the strategy language allows experimenting with different options and
configurations easily.

Outside the field of membrane systems, there are other related biologically-inspired
or distributed computational models where the simulation and verification techniques are
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r1,1 : aa → (aad, in M2) r1,2 : a → (a, in M2) r1,3 : tic → (tic, in M2)

an tic
M1

r2,1 : da → c r2,3 : tic → tac r2,5 : d tac → d
r2,2 : c → d r2,4 : a tac → a tic r2,6 : tac → δ

r2,4, r2,5 > r2,6 M2

Figure 1: Venn diagram of a divisor-calculator membrane system.

also subject of active research. For example, this is the case of population protocols [6]
and chemical reaction networks [32].

2. Membrane systems

Membrane computing [26] is a biologically-inspired computational model where cells
are parallel and distributed processing units that communicate by passing objects through
their membranes like chemicals traverse that of biological cells. A membrane system or P
system is a collection of cells or membranes populated by a multiset of other nested cells,
objects playing the role of chemicals, and evolution rules describing their reactions and
communication. All of them are assumed to be contained inside a single topmost skin
membrane. Objects are usually opaque identifiers represented by letters, and evolution
rules u → v consist of a multiset u of objects and a multiset v of targets of the form
(w, t) where w is a multiset of objects and t determines whether these must stay in the
membrane (here), or be transferred to the enclosing one (out) or to a nested one (inj).
Moreover, a special symbol δ causes the enclosing membrane to be dissolved. Membrane
configurations are written like ⟨M1 | a b c ⟨M2 | c d⟩⟩ where the membrane M1 contains
the objects a, b and c, and the membrane M2, which in turn contains two objects, c and
d. Formally, the usual definition of a P system with n membranes is a tuple

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, io)

with the set O of objects, the initial contents wi and the set of rules Ri of the n mem-
branes, the index io of a membrane whose contents or cardinality should be considered as
the result of computations, and the initial structure µ of the nested membranes, usually
expressed as a tree or string of paired brackets. Membrane systems are usually repre-
sented graphically as Venn diagrams like Figure 1, which describes a system to compute
divisors of a number, read as the number of d in the skin membrane. However, both the
membrane contents and their structure will likely change during execution, so we will not
usually explicit them aside from the configurations themselves. Note that this is a basic
definition of P systems, and many variants have been proposed, either including special
objects as promoters and inhibitors, allowing membranes to be created or duplicated,
using more complex cell topologies like tissue-like and neural-like ones, etc. Some of
these variants will be addressed in Section 7.

Membrane computations are the successive application of evolution steps. In turn,
evolution steps are the parallel application of as many evolution rules as possible to the
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objects of each membrane, often regulated by priority relations. Irreducible configura-
tions are those in which no evolution step is possible. More precisely, an evolution step
consists of the following phases:

1. Applying the evolution rules to each membrane in a maximal parallel manner (see
below).

2. Sending and receiving the objects contained in out, in, and here targets.
3. Dissolving membranes containing δ, thus dropping its objects and membranes to

the enclosing membrane.

The maximal parallel rewrite step is described by a multiple choice of rules or multiset
Ai : Ri → N for each membrane Mi. A multiset of rules A can be applied to a multiset
of objects W if the union of their left-hand sides with multiplicities is contained in W ,
and the result has that union replaced by the union of the right-hand sides in A. Such
a choice A is maximal if A + {r} cannot be applied to W for no matter which rule r.1
In summary, a maximal parallel rewrite is the application of a maximal multiset of rules
to each membrane (A1, . . . , An) with at least one non-empty Ai. The choice of each Ai

may not be unique, so this phase is nondeterministic.
Moreover, when a priority relation ρi is imposed, not all choices are admissible. Two

ways of understanding rule priorities are considered:

• a weak sense, in which a choice Ai is admissible if for all r ∈ Ri either Ai(r
′) = 0

for all r >ρi
r′ or the choice Ai[r

′/0]r>ρi
r′ + {r} cannot be applied.

• and a strong sense, in which a choice Ai is admissible if it is admissible in the weak
sense and, in addition, Ai(r

′) = 0 for all r >ρi
r′ such that Ai(r) > 0;

Intuitively, the membrane objects present in the configuration at each step should be
distributed among the membrane rules according to their priority relation. A rule should
only be assigned objects if they cannot be used for higher priority rules. Using the objects
left by them is possible in the weak sense, but disallowed in the strong sense. The parallel
application of evolution rules is well-defined as a multiset, because the order in which
they are applied does not matter, since they only subtract chemicals from the membrane
multiset. A relevant consequence is that the maximal parallel application of rule priorities
in the weak sense can be calculated by the exhaustive sequential application of the rules
where priorities are considered locally at each step.

For example, the divisor calculator of Figure 1 is intended to be executed from the
initial configuration ⟨M1 | an tic ⟨M2 | ⟩⟩ where an means n copies of a. The maximal
parallel application of the rules in M1 transfers in a single evolution step all the a and
the tic objects to M2 along with a nondeterministic number of d between 0 and n/2,
which is the divisor candidate. In fact, objects are communicated in the second phase
of the evolution step according to the in M2 targets. The next steps take place in M2,
where the number of as is divided by the number of ds using successive subtractions that
take two evolution steps each. When the tic object is present, r2,1 removes an a for each
d yielding a c, and r2,3 turns the tic into a tac. In the next evolution step, the missing ds

1For multisets, we write (A+B)(r) = A(r)+B(r), (A−B)(r) = max{A(r)−B(r), 0}, A[r/n](r) = n
and A[r/n](r′) = A(r′) if r ̸= r′, and {r} for the multiset with a single r.
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are recovered with r2,2 and the rest of the subtraction is checked. If there are a objects
left from the previous step, the division is not completed yet and r2,4 transforms tac to
tic for a new iteration. If there are d objects left, the number of as was not a divisor
of the number of ds, so the execution is stopped by removing the tac object with r2,5.
Otherwise, there is neither as nor ds in the configuration, so the division is exact and a
true divisor has been found. Then, the rule r2,6 introduces the symbol δ to trigger the
dissolution of M2 in the third phase of the evolution step, whose objects are dropped to
M1. Note that r2,6 can only be applied according to the priorities if r2,4 and r2,5 cannot
be applied, so that the membrane is not dissolved unless a divisor has been found. In
this case, weak and strong priorities would produce the same result, since the application
of r2,4 or r2,5 consumes the tac symbol, which impedes the execution of r2,6.

3. Rewriting logic, Maude and its strategy language

Rewriting logic [24] was proposed by J. Meseguer as a unified model of concurrency
where nondeterministic and possibly conditional rewrite rules are defined on top of an
equational logic. A rewrite theory R = (Σ, E,R) consists of a signature Σ of sorts and
operators, a set of equations E, and a set of rewrite rules R. Signature and equations
typically describe the static part of a model, while rules represent the nondeterministic
concurrent changes it may suffer. The executions of a rewriting system are the successive
and independent application of these rules on terms, modulo equations and axioms like
commutativity, associativity, and identity.

Maude [13] is a specification language based on rewriting logic, where rewrite systems
can be specified compositionally, executed, and analyzed. Specifications are written in a
mathematical-like notation and organized in modules of different kinds: functional mod-
ules (fmod) represent equational theories with declarations of sorts, subsort relations,
and operators. Beside their signature, operator declarations may include some attributes
between brackets that specify the structural axioms and other features applied to them.
Moreover, functional modules may include (possibly conditional) equations of the form:

[c]eq l = r [ if
∧
i

li = ri /\
∧
i

l′i := r′i /\
∧
i

ti : si ] .

Equations are applied as if they were oriented from left to right on any position where
they match. Conditional equations are introduced by the ceq instead of eq keyword, and
its condition fragments are satisfied when their term pairs coincide modulo equations and
axioms (potentially instantiating left-hand side variables by matching in the := variant),
and when the terms ti belong to the sorts si. For example, the following functional
module specifies multisets of integer numbers:

fmod MULTISET i s
p r o t e c t i n g INT .
s o r t Multiset .
s u b s o r t Int < Multiset .

op empty : -> Multiset [ctor] .
op __ : Multiset Multiset -> Multiset

[ctor assoc comm id: empty] .
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va r N : Int . v a r s U V : Multiset .

op contains : Multiset Multiset -> Bool .
eq contains(empty , V) = true .
eq contains(N U, N V) = contains(U, V) .
eq contains(U, V) = false [owise] .

endfm

Underscores in operator names mark the gaps where arguments are entered, except in
those written in prefix notation. In the module above, Int is made a subsort of Multiset,
the juxtaposition operator __ is declared associative, commutative, and having empty as
identity, and the module INT is imported. The Maude prelude provides some modules like
INT that specify integer and floating-point numbers, strings, lists, sets, etc. Importation
can be done with the keywords protecting, extending, or including that declare
whether the definitions of the imported module will be kept unchanged, extended, or
modified arbitrarily. The contains predicate is defined using three equations to decide
whether its first argument is contained in the second. Equations marked with owise are
executed only after all equations without this attribute have failed.

System modules (mod) are complete rewrite theories and declare rewrite rules

[c]rl l => r [ if C /\
∧
i

li => ri ] .

Conditional rules may include rewriting conditions in addition to those available for
equations, where terms matching ri are searched by rewriting with rules from li. Every
possible match of the left-hand side and the condition yields a different application of
the rule. Continuing with the example, the following module MULTISET-RLS extends the
previous MULTISET with two rules, sum and add, that respectively take two numbers and
replace them by their sum, or increment a number by a given fixed amount.

mod MULTISET-RLS i s
p r o t e c t i n g MULTISET .

v a r s N M K : Int .

r l [sum] : N M => N + M .
r l [add] : N => N + K [nonexec] .

endm

Note that the add rule contains an unbounded variable K in its right-hand side. What
would be an error without the nonexec attribute, which excludes the rule from being
applied, can be useful when combined with a strategy language able to instantiate this
variable. Using this strategy language, discussed in the next section, strategy modules
(smod) specify alternative ways of applying these rules.

The Maude system offers several commands to reduce terms equationally, to rewrite
a term with the rules modulo equations and axioms, to search terms matching patterns
in the rewriting graph, etc. More information can be found in the Maude manual [13].
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3.1. The Maude strategy language
Rewriting strategies have been used in Maude since its beginnings thanks to its re-

flective features, explained in Section 3.2. However, writing and understanding (usually
verbose) metalevel programs to control rewriting is a complex task, and so an object-
level strategy language inspired on this experience and on previous strategy languages
like ELAN [8] and Stratego [10] has been proposed. After being prototyped in Full
Maude and tested, the language was finally implemented at the C++ level in Maude 3
with new features like compositional and parameterized strategy modules [30]. Expres-
sions of the strategy language restrict the possible evolution of a rewriting system, and
they can be formally seen as transformations from an initial state to the set of terms
yielded by this controlled but not necessarily deterministic rewriting. Two Maude com-
mands srewrite and dsrewrite explore all possible execution paths (the second using
a depth-first search) to show this set of solutions.

The main ingredient of the language is the application of rules rl[x1 ← t1, . . . xn ←
tn]{α1, . . ., αm} referred by their labels rl and taking an optional initial substitution,
which is applied to both sides of the rule and its condition before matching. If the rule
to be applied includes rewriting conditions, a comma-separated list of strategies must be
given between curly brackets to control all of them. Rules are applied anywhere within
the term by default, but its application can be restricted to the top with the top(α)
combinator. Tests match P s.t. C discard executions unless the subject term matches P
and satisfies the condition C. The initial keyword can be changed to amatch to match
anywhere within the term. These elements can be combined with the concatenation α;β
that executes β on the results of α, the disjunction α|β that permits the executions
allowed by any of its arguments, the iteration α* that iterates α any number of times,
and the conditional α?β:γ that evaluates α and then β on its results, but if α does not
produce any, it executes γ on the initial term. Two constants idle and fail represent
the strategy that produces the initial term as result and the strategy that does not
produce any result at all. In general, we say that any strategy α fails in this latter
case. Another combinator allows rewriting selected subterms matchrew P s.t. x1 using
α1, . . ., xn using αn. The terms matched by the variables x1, . . . , xn in the pattern
are rewritten in parallel using α1, . . . , αn respectively, and their results are combined to
produce the global results. In addition to these basic combinators, some other derived
ones are included in the language. The α or-else β combinator will play an important
role for dealing with priorities in this paper, since it evaluates to the results of α except
in case they are none, where it takes the results of β. It is defined as α ? idle : β. The
normalization operator α! is defined by α * ; (α ? fail : idle), so it executes α as
many times as possible.

Moreover, strategies can be given names to be called, receive parameters, and be de-
fined recursively in strategy modules. These modules, declared with the smod keyword,
may import modules of any kind and include strategy declarations strat name : s1 · · · sn @ s .
with the signature of its parameters and the sort s of the intended terms where it will be
applied, and definitions sd name(p1, . . ., pn) := α . where p1, . . . , pn are patterns
containing variables that can be used in the strategy expression. Conditional definitions
are introduced with the csd keyword and support the same conditions as equations.
Strategies are called with name(t1, · · · , tn), and all definitions whose left-hand side
matches the call will be executed. For example, the following strategy module declares
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and defines a strategy increment that increments by the given number all the elements
of the multiset.

smod MULTISET-STRATS i s
p r o t e c t i n g MULTISET-RLS .

s t r a t increment : Nat @ Multiset .

v a r s N K : Int . va r U : Multiset .

sd increment(K) := match empty | matchrew N U
by N u s i n g top (add[K <- K]),

U u s i n g increment(K) .
endsm

Its definition is a disjunction of two exclusive cases: the subject term may be either an
empty multiset matched by the test, or a non-empty one decomposed in an element and
the rest by the recursive matchrew. The srewrite command can then be used to rewrite
using this strategy:

Maude > srewrite 1 2 3 4 5 using increment (1) .

Solution 1
rewrites: 650
result Multiset: 2 3 4 5 6

No more solutions.

More details about the strategy language can be found in [13, §10].

3.2. Reflection and metalanguage interfaces
Rewriting logic is a reflective logic, whose objects and operations can be consistently

represented in itself. Maude offers a predefined universal theory [13, §17] to metatheoret-
ically represent terms, equations, rules, modules, and so on. Operations like matching,
reduction, and rule application can be programmed generically in this theory using equa-
tions, but Maude provides special operators backed by the object-level implementation
in C++ to allow efficient reflective computations. Metarepresentations can in turn be
metarepresented and terms be moved between different levels, thus yielding arbitrarily
high reflective towers.

This universal theory is specified in META-LEVEL and its imported modules, and it
relies on the Qid sort of quoted identifiers, arbitrary words prefixed by an apostrophe,
to represent indivisible elements like names, sorts, variables, and constants. Composite
elements are constructed using Maude operators, like terms are with the operator _[_]
: Qid NeTermList -> Term, so that ’_+_[’X:Nat, ’s_[’0.Zero]] is the representa-
tion of X + s 0. The metarepresentation of strategy expressions faithfully reproduces its
object-level syntax in most cases, and they are specified as terms of the Strategy sort.
For instance, a simple rule application is written ’label[none]{empty}, and a strategy
call ’name[[TL]] with TL a possibly empty list of metarepresented terms. Operator
and strategy declarations, equations, rules, strategy definitions, and similar statements
are also represented as terms with a syntax similar to the object-level reference. They
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usually appear in the metarepresentation of modules, terms with argument slots like
smod_is_sorts_._______endsm for each kind of module component, which can be ob-
tained by some auxiliary functions getOps, getEqs, getRls, etc.

Operations are accessible through some descent functions like metaMatch for match-
ing, metaApply for rule application, metaReduce for equational reduction, metaRewrite
for rule rewriting, etc. The srewrite and dsrewrite commands are accessible through
the metaSrewrite descent function that allows enumerating the results of rewriting a
term using a strategy in certain module, all of them given at the metalevel. Another
useful descent function for building metalanguage interfaces is metaParse that parses
terms on a given module and sort.

op metaParse : Module VariableSet QidList Type?
~> ResultPair? [special (...)] .

On success, it returns a pair with the metarepresentation of the term and its least sort.
Its input should be a list of tokens of sort QidList, which can be obtained from a string
using the tokenize function. Ad-hoc grammars can be expressed as Maude modules to
parse arbitrary languages, with the possibility of including unparsed fragments known as
bubbles within its terms for more complex multilayered parsing. The complete specifica-
tion of the metalevel is included in the Maude prelude and explained in [13, §17].

Moreover, the interactive capabilities of Maude have been enhanced in its 3 version
due to new external objects that allow reading and writing files as well as the standard
input and output streams. External objects are an object-oriented mechanism that allow
Maude programs to communicate with the outside word, already used in previous versions
for Internet sockets. The standard CONFIGURATION module defines an extensible signature
for defining objects and messages, which are held in a common soup or multiset where
objects read and introduce messages by means of rewrite rules. The command erewrite
conducts rewriting of these configurations following an object-fair strategy and handling
the messages issued to and by the implicit external objects. In this case, the STD-STREAM
and FILE modules in the file.maude file of the Maude distribution declare the stdin,
stdout, fileManager, and file(n) objects, and the messages getLine, read, write,
openFile, close, etc., that are sent to and received from them.2 The main representative
of an interactive interface leveraging the reflective features of Maude is Full Maude [13,
Part II], an extensible Maude interpreter where many currently stable features have been
first tested.

4. Representing membrane systems in Maude

Membrane systems have already been specified in rewriting logic and in Maude [4, 5,
2, 1]. Multisets of objects and the nested membrane structure are naturally represented
by terms with commutative and associative operators, but the challenge is applying
evolution rules locally and in a maximal parallel way. This has been solved in previous
works by

• representing evolution rules as rewrite rules and controlling their application with
the Maude reflective features [2],

2In previous versions, Maude offered a different input/output facility called LOOP-MAUDE, which is
currently deprecated in favor of this more flexible method.
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• by representing evolution rules as data and computing the steps at the object
level [4],

• or even using a particular combination of reflection and a primitive version of the
Maude strategy language [5].

In either case, the specification of membrane configurations is very similar, and ours only
slightly differs from those:

mod P-SYSTEM-CONFIGURATION i s
i n c l u d i n g QID-LIST .

s o r t s Obj Membrane MembraneName Target TargetMsg .
s o r t s EmptySoup MembraneSoup ObjSoup TargetSoup Soup .

s u b s o r t Obj < ObjSoup .
s u b s o r t Membrane < MembraneSoup .
s u b s o r t TargetMsg < TargetSoup .
s u b s o r t s EmptySoup < MembraneSoup ObjSoup TargetSoup < Soup .

op <_|_> : MembraneName Soup -> Membrane [ctor] .
op delta : -> Obj [ctor] .

op empty : -> EmptySoup [ctor] .
op __ : Soup Soup -> Soup [ctor assoc comm id: empty] .

A membrane is identified by a name and contains a multiset of juxtaposed objects,
membranes, and targets of sort Soup. Each component defines a subsort, ObjSoup,
MembraneSoup, TargetSoup, to facilitate operating with them. Several omitted operator
declarations specify how these subsorts combine with the __ operator. Target messages
are expressed as pairs:

ops here out : -> Target [ctor] .
op in_ : MembraneName -> Target [ctor] .
op ‘(_,_‘) : Soup Target -> TargetMsg [ctor frozen (1)] .

Rewriting is proscribed in the first argument of the message with the frozen (1) anno-
tation, since objects in messages have been generated by evolution rules and must not
be used until the next evolution step. Messages with the same target are combined into
a common pair by an equation, and three rules are defined to resolve the communication
between cells:

v a r s MN MN’ : MembraneName .
v a r s W W’ CW : Soup .
va r T : Target .

eq (W, T) (W’, T) = (W W’, T) .

r l [here] : (W, here) => W .
r l [in] : (CW, in MN) < MN | W > => < MN | W CW > .
r l [out] : < MN | W (CW, out) > => < MN | W > CW .
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Finally, another rule dis triggers the effect of the δ symbol by dissolving the non-skin
membrane where it is contained. The skin or outermost membrane is never dissolved, as
enforced by the nested pattern in the rule.

r l [dis] : < MN | W < MN’ | W’ delta > > => < MN | W W’ > .
endm

This P-SYSTEM-CONFIGURATION module is the common and generic base of the rewriting
theories that will specify concrete membrane systems, where the MembraneName and Obj
sorts are populated, and the evolution aspects are defined.

Evolution rules are represented as identical rewrite rules, delegating their controlled
application to strategies. These strategies are partially generic and partially dependent on
the rules and priorities of the membrane system, but not on any particular configuration.
For a membrane M with rules r1, . . . , rn and without priorities, its specific strategy
definition will be3

sd membraneRules(M ) := r1 | · · · | rn .

The generic part is specified in the following module P-SYSTEM-STRATEGY, where the
strategy mpr defines the maximal parallel step, in terms of the system-specific handleMembrane.

smod P-SYSTEM-STRATEGY i s
p r o t e c t i n g P-SYSTEM-CONFIGURATION .

s t r a t handleMembrane : MembraneName @ Soup .
s t r a t s mpr visit-mpr communication @ Soup .
s t r a t nested-mpr : MembraneSoup @ Soup .

va r MN : MembraneName . va r TM : TargetMsg .
va r S : ObjSoup . va r TS : TargetSoup .
va r MS : MembraneSoup . va r K : Nat .

sd mpr := visit-mpr ; amatch TM ;
communication ; (dis !) .

sd communication := (in | out | here) ! .

sd visit-mpr := matchrew < MN | S MS >
by S u s i n g handleMembrane(MN),

MS u s i n g nested-mpr(MS) .

sd nested-mpr(empty) := i d l e .
sd nested-mpr(M MS) := (matchrew M MS

by M u s i n g visit-mpr) ; nested-mpr(MS) .

The three phases of an evolution step (see Section 2) are concatenated in the main strat-
egy mpr: (1) visit-mpr applies the evolution rules to the membranes, (2) communication
transmits all targeted objects through the membranes, and (3) dis ! dissolves them ex-
haustively. The visit-mpr strategy executes the parameter handleMembrane on the ob-
jects of the topmost membrane, and then continues with the nested ones using nested-mpr.

3Another possibility to limit the locality of evolution rules is adding a membrane context: the rule
v → w for the membrane M could also be transformed into < M | v S:Soup > ⇒ < M | w S:Soup >.
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The requirement that at least an evolution rule must be applied in the whole system is
enforced by the amatch TM test that discards an execution if no target has been gener-
ated in the whole configuration.4 nested-mpr receives the full nested membrane soup
and recursively processes the membranes one at a time. Note that the nested-mpr strat-
egy is not efficient, since all possible matches of the set-like argument will be tried at
each call, hence unnecessarily processing the membranes in all possible orderings. This
will be prohibitive when dealing with exponential-size membranes in Section 7.2, where
alternatives are discussed.

The handleMembrane strategy can be accommodated to different situations, depend-
ing on the rule priorities and their interpretation. The case without priorities or with
their weak sense can be handled by the following strategy inner-mpr:

s t r a t inner-mpr : MembraneName @ Soup .
sd inner-mpr(MN) := membraneRules(MN) ! .

For a membrane name MN, it calls membraneRules repeatedly until it cannot be applied
again. Since the multiset argument of target messages is declared frozen, i.e. it is
excluded from rewriting, products of the evolution rules are not used in the same step.5
With membraneRules being a disjunction of rules, as above, the mpr strategy implements
a maximal parallel step.

Proposition 1. The strategy mpr executes a maximal parallel evolution step without
priorities when membraneRules(M) is defined as the disjuntion of all rules for M , i.e.,
under these conditions, a configuration C ′ is obtained by an evolution step from C iff C ′

is a result of the strategy mpr applied on C.

Priorities in the weak sense can also be handled by adding a lattice of or-else com-
binators to the membraneRules definition. Assuming that P ⊆ R ×R is a generator set
for this priority relation, the following recursive procedure is able to generate a strategy
respecting the priorities at each application:

1. consider the disjunction r1 | · · · | rn of the minimal elements in P ,
2. replace each such r by (r′1 | · · · | r′n) or-else r where r′1, . . . , r

′
n are all rules

satisfying (r′i, r) ∈ P , and
3. iterate (2) on the newly introduced rules up to the maximal elements.

The algorithm can be optimized by simplifying α or-else β | α or-else γ on the fly to
α or-else (β | γ). The correctness of this procedure follows from the fact that a rule
will only be applied when its predecessors in the order have failed, due to the semantics
of the or-else combinator, and that all rules appear in the expression because they must
be reachable from the minimal elements of the order relation. The size of the strategy
is bounded by the number of rules and the relation pairs in P . An example is shown
in Figure 2.

4In previous versions, visit-mpr and their auxiliary strategies take care themselves of whether at
least a rule has been applied by using conditional operators and observing whether rules succeeded.
However, looking at the presence of a target message is equivalent and simpler.

5An alternative to exclude rule products from being used again in the same step is separating loose
objects from targets with a matchrew pattern OS TS. However, this is slower.
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or-else r8

Figure 2: Strategy generation for an example weak priority relation.

Proposition 2. The strategy mpr executes a maximal parallel evolution step with weak
priorities when membraneRules(M) is defined as indicated above.

When the priority of the rules is understood in the strong sense, the skeleton of
inner-mpr cannot be exploited since it executes each rule independently in the sequence,
and respecting strong priorities requires knowing which rules have already been applied.
However, a variation of the previous procedure can be used. In this case, the parameter
handleMembrane is defined using a new recursive strategy strong-mpr that receives a
set of labels of the rules that have already been applied:

s t r a t strong-mpr : MembraneName QidSet @ Soup .
sd handleMembrane(MN) := strong-mpr(MN , empty) .

The definition of strong-mpr(M, AR) for a membrane M whose priority is generated
by P is given recursively as:

1. Take the disjunction of αr := r ; strong-mpr(M, (r, AP)) for every minimal el-
ement of P . The recursive call adds r to the comma-separated set AP of applied
rules.

2. Replace each element αr in the disjunction by

(αr1 | · · · | αrn ) o r - e l s e
(match S s . t . {r′ ∈ Ri | r′ >ρi r} intersect AP = empty ; αr)

where S is a variable of sort Soup, and r1, . . . , rn are all the elements that satisfy
(ri, r) ∈ P . The test prevents the rule r from being applied if a rule with higher
priority has already been used.

3. Iterate (2) on the newly introduced elements up to the maximal ones.
4. Take α or-else idle where α is the result of (3).

Because of the guards, the previous construction guarantees that rules are executed only
if no rule with higher precedence has been applied.
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Proposition 3. The strategy mpr executes a maximal parallel evolution step with strong
priorities when handleMembrane is instantiated to the strong-mpr strategy described
above.

Finally, executions up to irreducible configurations are described by the following
strategy mcomp. Unlike mcomp2, used to define it, trivial executions that do not take any
step are excluded.

s t r a t s mcomp mcomp2 @ Soup .
sd mcomp := mpr ; mcomp2 .
sd mcomp2 := mpr ? mcomp2 : i d l e .

Computations up to a maximum number of steps or until a given number of objects is
reached can also be specified with definitions like

sd mcomp (0) := i d l e .
sd mcomp(s(K)) := mpr ? mcomp(K) : i d l e .
sd mcomp-obj(K) := match S s . t . numObjsRec(S) >= K

o r - e l s e (mpr ? mcomp-obj(K) : i d l e ) .
endsm

where numObjsRec recursively counts the number of objects in the given soup.
Fortunately, the interactive environment in Section 6 will make the manual instanti-

ation of these strategies unnecessary: membraneRules and strong-mpr are constructed
equationally at the metalevel following the above procedures from the membrane pro-
grams read from file.

5. Model checking

Model checking is an automated verification technique that explores all possible ex-
ecutions of a system to check whether it meets a given specification, involving different
techniques and multiple variations. Model-checking models are traditionally based on
annotated transition systems known as Kripke structures K = (S,→, I, AP, ℓ) and con-
sist of a set of states S, a binary relation (→) ⊆ S × S,6 a finite set of initial states
I ⊆ S, a finite set of atomic propositions AP , and a labeling function ℓ : S → P(AP )
that associates them to each state. Properties are usually expressed in terms of these
atomic propositions using some temporal logics endowed with operators to specify how
they occur in time. Well-known examples are CTL* [16] and its sublogics LTL (Linear
Temporal Logic) [25] and CTL (Computational Tree Logic) [12], and µ-calculus [9].

Rewriting systems can be naturally seen as Kripke structures whose states are terms
and whose transitions are one-step rule rewrites. For their part, the natural model for P
systems has membrane configurations as states and evolution steps as transitions. Map-
ping membrane configurations to terms is straightforward, as we have seen in Section 4,
but matching evolution steps and rewrite rules is not. In fact, this is related to the gen-
eral problem of describing parallel with sequential rewriting. However, strategies and the
possibility to consider them as atomic transitions in our strategy-aware model checker
will solve this problem.

6For simplicity, it is usually assumed that all executions of a Kripke structure are non-terminating,
and so either → has a successor for every state, or finite executions are stutter-extended by repeating
their final state forever, like in Spin [21] and other verification tools.
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Strategy-aware model checking. Maude includes an on-the-fly LTL model checker [15]
since its 2.0 version, which we have recently extended to support systems controlled by
strategies [29]. Looking at a strategy as a subset E ⊆ S∗ ∪Sω of allowed executions of a
model K, the satisfaction of a linear-time property (K, E) ⊨ φ can be understood as its
satisfaction K, π ⊨ φ for all allowed executions π ∈ E. The question of which are the exe-
cutions described by a Maude strategy language expression is given answer by a small-step
operational semantics, which is respected by the model-checker implementations. This
can be easily extrapolated to branching-time properties [31], whose allowed executions
can be seen as a restricted execution tree. CTL, CTL*, and µ-calculus properties can
be checked using external model checkers through an extensible interface umaudemc that
unifies the interaction and the syntax of the logics [28]. This interface is built over a
library that allows accessing Maude objects and operations from Python and other pro-
gramming languages, which can be used to make these model checkers directly available
to Maude-based frameworks like the one for membrane systems presented here.

Model preparation and atomic properties. In both the original and the strategy-aware
Maude model checkers, users should specify the atomic propositions as regular operators
of a predefined sort Prop, and its satisfaction relation by equations on a predefined symbol
_|=_ [13, §12]. For membrane systems, we provide a general set of predefined properties
that include, among others:

mod P-SYSTEM-PREDS i s
p r o t e c t i n g P-SYSTEM-CONFIGURATION .
i n c l u d i n g SATISFACTION .
p r o t e c t i n g EXT-BOOL .

s u b s o r t Soup < State .

op isAlive : MembraneName -> Prop [ctor] .
op contains : MembraneName Soup -> Prop [ctor] .

op {_} : BoolExpr -> Prop [ctor] .
op _=_ : NatExpr NatExpr -> BoolExpr [ctor] .
op _+_ : NatExpr NatExpr -> NatExpr [ctor] .
op count : MembraneName Soup -> NatExpr [ctor] .

*** [...]
endm

The property isAlive checks whether a membrane is present in the configuration, and
contains whether it contains some objects. More complex properties can be built with
Boolean and integer expressions of sorts BoolExpr and NatExpr between curly brackets.
The multiplicities of any multiset in any membrane, designated with the count operator,
can be combined with the arithmetical operators and relations supported by Maude. For
example, the property { count(M1, a) = 2 * count(M2, b) } says that the number
of as in M1 doubles the number of bs in M2. The evaluation of these expressions and the
satisfaction of these propositions is defined equationally in the same module.

Finally, the model checker is accessed through a special modelChecker operator de-
clared in the predefined STRATEGY-MODEL-CHECKER module.
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op modelCheck : State Formula Qid QidList Bool
~> ModelCheckResult [special (...)] .

Its arguments are the initial state, the LTL formula to be checked, and the name of a
strategy to control the system, plus two other optional arguments. The fourth one is
very useful for membrane systems: a list of named strategies whose executions must be
considered as atomic steps of the verified system. Like this, the executions of an mpr step
can be automatically seen as the steps of the model, making the next operator of the
temporal logics work as expected and hiding the intermediate states in which the rules
that are supposed to be executed in parallel are being applied. Thus, issuing

red modelCheck(< M1 | a b < M2 | a > >,
[] contains(M1 , a), ’mcomp , ’mpr) .

will check the property that M1 always contains an a in all membrane executions from the
given initial one. The interactive environment of the next section will do all this behind
the scenes.

6. The membrane system environment

The executable rewriting logic framework proposed to represent membrane systems
can be directly instantiated with the specification of a particular system in Maude itself:
extending P-SYSTEM-STRATEGY with the declaration of its objects and its membranes,
their evolution rules as rewrite rules, and their ascription to a membrane with strategies.
However, dealing with priorities or other extensions is not so simple, and can be au-
tomatically done by convenient program transformations. The interactive environment
described in this section implements these manipulations and allows simulating and ver-
ifying membrane systems easily. These should be specified in an extended version of the
membrane description language of a previous prototype in [5], on which ours was initially
based.

After downloading the membrane example from maude.ucm.es/strategies and load-
ing the memrun.maude file into Maude, the following command will execute the interactive
environment:7

Maude > erewrite initREPL(repl) < repl : MemREPL | none > .

** Membrane system environment in Maude **

Membrane >

The environment offers different commands that are listed by typing help. The load
command reads a membrane specification from a file and runs the commands in it. For
example, load divisor.memb loads the membrane system of Figure 1.

Membrane > load divisors.memb
File divisors.memb has been loaded.

7In Maude 3.1, file operations are disabled by default for security reasons, so -allow-files must be
given as a command line argument to Maude in order to use the environment.

16

http://maude.ucm.es/strategies


In that file, evolution rules (introduced by ev) and priorities (introduced by pr) are
specified as shown below for the membrane M2:

membrane M2 i s
ev r21 : d a -> c . ev r22 : c -> d .
ev r23 : tic -> tac . ev r24 : a tac -> a tic .
ev r25 : d tac -> d . ev r26 : tac -> delta .
pr r24 > r26 .
pr r25 > r26 .

end

Loading the file implies generating the strategies described in Section 4 for later use by
the various supported commands. They can be shown with the show strats command
followed by the membrane name.

Membrane > show strats M2 .
Weak priority: (r24 | r25 or -else r26) | r21 | r22 | r23
Strong priority: r21 ; mpr -strong(M2, (’r21 , AR))

| r22 ; mpr -strong(M2 , (’r22 , AR))
| r23 ; mpr -strong(M2 , (’r23 , AR))
| (r24 ; mpr -strong(M2 , (’r24 , AR))

| r25 ; mpr -strong(M2 , (’r25 , AR))
or -else match H s.t. intersection ((’r24 , ’r25), AR) =

empty ; r26 ; mpr -strong(M2, (’r26 , AR)))

If the command omits the strats word, the membrane definition is shown instead, and
show membranes displays the names of all loaded membranes.

The trans and compute commands allow simulating evolution steps and computa-
tions. The first one executes a single step, indicating the multiset of rules applied for
each membrane.

Membrane > trans < M1 | a a a tic < M2 | d tac > > .
Solution 1 with r11 r12 r13 in M1, r25 in M2 :

< M1 | c c c < M2 | a a a d d tic > >
Solution 2 with r12 r12 r12 r13 in M1, r25 in M2 :

< M1 | c c c < M2 | a a a d tic > >
No more solutions.

The compute command shows all irreducible states that can be found by successive
transitions.

Membrane > compute < M1 | a a a a a a a a tic < M2 | empty > > .
Solution 1: < M1 | d d d d >
Solution 2: < M1 | < M2 | d d d > >
Solution 3: < M1 | d d >
Solution 4: < M1 | d >
No more solutions.

For this divisors calculator, the solutions tell us that 2 and 4 are the non-trivial divisors
of 8, after reading their number of ds in M1. The interpretation of rule priorities, either
weak or strong, can be set globally with the set priority command that changes the
definition of the handleMembrane strategy mentioned in Section 4. By default, strong
priorities are used.
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Temporal properties of the membrane executions can be checked with the check
command. These properties are expressed in LTL for the predefined language of atomic
propositions described in Section 5, which can anyhow be extended by modifying the
environment source code. For example, the following command checks that the number
of ds in the membrane M1 is either 0 or a divisor of 12 in all reachable configurations
from an initial membrane with 12 as. Thus, a false divisor is never generated.

Membrane > check < M1 | a a a a a a a a a a a a tic
< M2 | empty > > satisfies [] ({ count(M1 , d) = 0 }
\/ { count(M1 , d) divides 12 }) .

The property is satisfied.

When the property is not satisfied, the output shows a counterexample describing the
intermediate steps and the rules that have been applied. This is the case of the following
property claiming that every state containing tac in M2 is followed by a state containing
tic.

Membrane > check < M2 | a a d d tic >
satisfies [] (contains(M2 , tac) -> O contains(M2, tic)) .

| < M2 | a a d d tic >
∨ with r21 r21 r23 in M2
| < M2 | c c tac >
∨ with r22 r22 r26 in M2
X < M2 | delta d d >

The check command admits bounded model checking on the number of objects in the
configuration, where the bound may be indicated between brackets after the check key-
word. This is useful for membrane systems that, unlike this example, have an unbounded
configuration space. For instance, the following membrane system calculates the squares
⟨M1 | dn en2⟩ of all natural numbers n ≥ 1 starting from ⟨M1 | ⟨M2 | ⟨M3 | a f⟩⟩⟩.

membrane M1 i s end

membrane M2 i s
ev r21 : b -> d . ev r22 : d -> d e .
ev r23 : f f -> f . ev r24 : f -> delta .

pr r23 > r24 .
end

membrane M3 i s
ev r31 : a -> a b .
ev r32 : a -> b delta .
ev r33 : f -> f f .

end

The membrane M3 nondeterministically produces a number n ≥ 1 of bs along with 2n

fs in n steps, and then spills its contents into M2. Then M2 generates one e for each d
in every one of the n steps required to reduce the exponential number of fs with r23,
hence calculating n2.

Membrane > load nsquare.memb
File nsquare.memb has been loaded.
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Membrane > compute [3] < M1 | < M2 | < M3 | a f > > > .
Solution 1: < M1 | d e >
Solution 2: < M1 | d d e e e e >
Solution 3: < M1 | d d d e e e e e e e e e >
No more solutions requested.

The (not so) atomic proposition { count(M1, d) ^ 2 = count(M1, e) } claims that the
number of es is the square of the number of ds in M1. This property cannot be checked as
an invariant on the whole infinite state space, but it can be, for instance, in the reachable
portion of the model where the number of objects is always below 70.

Membranes > check [70] < M1 | < M2 | < M3 | a f > > >
satisfies [] { count(M1 , d) ^ 2 = count(M1, e) } .

The property is satisfied.

Moreover, membrane systems can also be checked against CTL* and µ-calculus prop-
erties, using the external model checkers for strategy-controlled systems [31]. Since these
are not integrated in the Maude interpreter, they should be used through an external
tool instead of the membrane environment. For instance, resuming the divisor calculator
example, we can check the µ-calculus property νZ. isAlive(M2)∧ [·](¬ isAlive(M2)∨ [·]Z)
asserting that the membrane M2 is only dissolved in odd steps.

$ ./ membranes.py -v divisors.memb \
’< M1 | a a a a a a a a a a a a tic < M2 | empty > >’ \
’nu Z . (isAlive(M2) /\ [.] (~ isAlive(M2) \/ [.] Z))’

Rewriting model generated in 4101 rewrites.
The property is satisfied (70 states , 76884 rewrites ).

In fact, the first clause isAlive(M2) claims that M2 is present in the configuration, and
the second one requires that after any possible step ¬ isAlive(M2) ∨ [·]Z is satisfied,
meaning that either M2 is no longer present or in the next step the property holds again,
as mandated by the fixed point ν. This property cannot be expressed in CTL*. Checking
whether at least a divisor of 12 is found can be done with the following CTL property,
although this is also possible by simulating with the compute command.

$ ./ membranes.py divisors.memb \
’< M1 | a a a a a a a a a a a a tic < M2 | empty > >’ \
’E <> { count(M1, d) divides 12 }’

The property is satisfied (70 system states , 91136 rewrites ).

Model checking in a bounded subset of the state space is also possible with this interface,
both on the number of objects and on the number of evolution steps.

6.1. Implementation notes
This prototype is based on the Maude specification of membrane systems in Section 4,

and uses Maude reflection to construct the rules and strategies of the specific membrane
systems parsed from the input. The external objects introduced in Maude 3 are used
to read commands and write their results to the terminal, and also to read membrane
specifications from external files. In either case, text is read as a string, and parsed
using the metaParse descent function in specific modules describing the grammar of the
different elements.
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Evolution rules are directly translated to rewrite rules, but loose objects in the right-
hand side are enclosed into a here target, because targets are used to exclude consumed
terms from being rewritten twice in the same evolution step. For some commands, the
right-hand side of rules is appended a log object with its label to get track of the rules
that have been applied, without interfering with the execution of the system. This allows
showing them in the trans command and the model-checking counterexamples.

For example, the following equation is the actual translation from parsed evolution
rules (containing unparsed fragments, known as bubbles) in the membrane specification
to Maude rewrite rules at the metalevel.

ceq makeRules(M, ’ev_:_->_.[’token[Q], ’bubble[LHS],
’bubble[RHS]]) =

(rl PLHS => PRHS [label (downTerm(Q, ’UNNAMED ))] .)
i f PLHS := getTerm(metaParse(M, none ,

downTerm(LHS , (nil).QidList), ’ObjSoup ))
/\ T := getTerm(metaParse(M, none ,

downTerm(RHS , (nil).QidList), ’Soup))
/\ PRHS := getTerm(metaReduce(M, ’wrapHere[T])) .

The module M would be an extension of P-SYSTEM-CONFIGURATION (see Section 4) pop-
ulated with the inferred signature of objects for the particular membrane system. The
left-hand side is parsed in the ObjSoup sort of this module, while the right-hand side is
a Soup allowed to contain targets. The function wrapHere wraps the free objects of the
right-hand side into a here target, as explained before.

After the membrane specification is parsed, strategies are generated for the prior-
itized versions of the maximal parallel step. For instance, the procedure to generate
the weak priority strategy explained in Section 4 is executed by a fixed-point equational
computation that starts with the minimal elements of the relation

op genPriorityStrat : QidSet PriorityRelation -> Strategy .
op genPriorityStrat : Strategy PriorityRelation -> Strategy .

eq genPriorityStrat(Rs , PR) =
genPriorityStrat(genRuleApps(minimal(Rs , PR)), PR) .

op genRuleApps : QidSet -> Strategy .
eq genRuleApps(none) = f a i l .
eq genRuleApps(R ; Rs) = (R[none]{empty }) | genRuleApps(Rs) .

and iterates extending the newly introduced rules until the strategy is stabilized.

eq genPriorityStrat(S, PR) =
if orElseSimplify(extendPrec(S, PR)) == S
then S else genPriorityStrat(

orElseSimplify(extendPrec(S, PR)), PR) fi .

op extendPrec : Strategy PriorityRelation -> Strategy .

eq extendPrec(S1 o r - e l s e S2 , PR) =
extendPrec(S1, PR) o r - e l s e S2 .

ceq extendPrec(S1 | S2, PR) = extendPrec(S1 , PR)
| extendPrec(S2, PR)
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i f S1 =/= f a i l /\ S2 =/= f a i l .
eq extendPrec(R[none]{empty}, PR) = if pred(R, PR) == none

then R[none]{ empty}
else genRuleApps(pred(R, PR)) o r - e l s e R[none]{ empty} fi .

where pred returns the predecessors of a rule in the priority relation PR. The strategy
for strong priorities is generated similarly. Reflective module transformations assign the
adequate handleMembrane definition depending on how rule priorities are understood.

The command-line utility to model check against branching-time properties generates
the membrane system theory using the same equational infrastructure of the interactive
environment. However, instead of using Maude external objects for reading files and
printing messages, the standard Python library is used, in which it is programmed. Once
the model is set up, it is a strategy-controlled Maude specification that is directly passed
to the unified model-checking tool umaudemc [31] via its Python API.

7. Variations of membrane systems

Many variants of membrane systems have been proposed to better address different
applications and problems [26, 11]. The flexibility of the Maude language and its strate-
gies makes modifying the prototype to support and experiment with these variations a
relatively easy task. In this section, we illustrate this extensibility with three widespread
features. Each subsection starts by describing and motivating one of the variants, then
explains how it is implemented in the prototype, and finally shows the feature in action
with an example. In Section 7.2, we also discuss how to fix the order in which membranes
are processed to avoid redundant calculations, as anticipated in the previous sections.

7.1. Structured objects
Standard membrane systems operate on multisets of unstructured opaque objects, but

chemicals in a cell are usually complex molecules (DNA, proteins, . . . ) which are better
described by structured data like strings or trees. String rewriting P systems [14, 11]
are membrane systems whose objects are strings made out of terminal and nonterminal
symbols, and whose evolution rules have the form A → w where A is a nonterminal
symbol and w is a word. Targets are expressed similarly. Evolution rules are applied
like in the standard P systems, but only one rule can be applied to each string in the
membrane soup at each evolution step.

A generalization of this possibility has been implemented in the rewriting logic frame-
work presented here, where the language of objects of the membrane system consisted
of some plain identifiers, implicitly declared as they are used in the membrane speci-
fication. In this section, the user will be allowed to explicitly declare the signature of
objects, which may include arbitrary Maude terms in their arguments to be considered
modulo equations and axioms. Specific syntax in the membrane specification language
is devoted to the definition of objects. For instance, the following lines declare string
objects on some constants a, b, and c. The associative binary operator _·_ stands for
string concatenation, which is associative, and eps is the empty word.

s i g n a t u r e i s
ob _·_ : Obj Obj [assoc id: eps prec 30] .
obs a b c eps .

end
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Object-declaration statements are similar to regular Maude operator declarations except
that the range sort is omitted and that they are introduced by the ob or obs keywords.
The sort Obj of objects is the implicit range of all object declarations. Maude functional
modules may be imported with the import statement, as shown in the example of the
following section. Orthodox string rewriting P systems can be defined on top of this
signature by using only evolution rules of the form A → u, but different signatures and
other types of rules can be tried instead.

The technical difficulty of applying rules in structured objects is ensuring that each ob-
ject is only rewritten once in each step, as required for strings. Moreover, if evolution rules
were translated as in the basic model, they could get applied on the arguments of struc-
tured objects with undesired results, like targets appearing inside objects. Hence, the
different types of rules have to be considered carefully. Rules r : u → (v1,m1) · · · (vn,mn)
with multiple targets mk can only be applied at the top multiset, so they are executed
with the strategy

matchrew O R by O u s i n g top (r)

where O and R are variables of sorts Obj and Soup. This precaution is unnecessary if u is
a multiset of objects or a single object that would never appear in a nested context, so
this wrapper can be avoided in these cases. Any rule with a single target r : t → (t′,m)
can in principle be applied anywhere, either at the top multiset or at any position p of
an object o. If t matches o in p with substitution σ, then the object o must become
the target (o[p/σ(t′)],m). This is achieved by transforming the evolution rule r to the
rewriting rule r′ : t → t′, and wrapping the object with the appropriate target once
rewritten using an auxiliary rule wrapMsg.

matchrew O R by O u s i n g r′ ; wrapMsg[M <- m]
r l [wrapMsg] : R => (R, M) [nonexec] .

Extending the membrane specification language, we add the declaration statement
xev for those rules that are meant to be applied inside objects, which can have at most
one target.

xev lbl : t -> (t′, m) .

Rules declared with ev are applied only at the top even if they can match inside an
object. Rules whose left-hand side is a multiset are not wrapped for efficiency, because
object multisets are assumed to only appear at the top level.

The following simple membrane system defines three evolution rules on the object
string signature presented before.

membrane M1 i s
xev s1 : a · a -> a .
xev s2 : b -> c · c .
ev s3 : a -> c .

end

The rule s1 removes duplicated as in strings, while s2 transforms each b in a pair of cs.
The last rule s3 transforms loose a objects into c, but it is not applied on the characters
of a string because it uses the ev instead of the xev keyword.

Membrane > load strings.memb
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File strings.memb has been loaded.
Membrane > trans < M1 | (a · a · b · a) b (a · a) > .
Solution 1 with s1 s1 s2 in M1 :

< M1 | (a · b · a) (c · c) a >
Solution 2 with s1 s2 s2 in M1 :

< M1 | (a · a · c · c · a) (c · c) a >
No more solutions.
Membrane > compute < M1 | (a · a · b · a) b (a · a) > .
Solution 1: < M1 | (a · c · c · a) (c · c) c >
No more solutions.

The show strats command lets us observe that the membraneRules strategy is generated
as explained above.

Membrane > show strats M1 .
Weak priority: matchrew O R by O using top(s3)

| matchrew O R by O using(s1 ; top(wrapMsg[T <- here ]))
| matchrew O R by O using(s2 ; top(wrapMsg[T <- here ]))

Another example with structured objects, but without subterm rewriting, is shown in
the following section.

7.2. Membrane division
Another important and popular extension of membrane systems is membrane divi-

sion, inspired on the cellular mitosis, that allows membrane systems to grow and take
advantage of the parallelism of its computation model. In our realization, membrane
division is triggered by a new target that replaces the affected cell by two copies of itself
with all of its contents, plus a different set of objects for each copy included in the target
triple. The following declaration and rule should be added to P-SYSTEM-CONFIGURATION:

op ‘(_,_,div ‘) : ObjSoup ObjSoup
-> TargetMsg [ctor frozen (1 2)] .

r l [div] : < MN’ | EW < MN | CW (W, W’, div) > >
=> < MN’ | EW < MN | CW W > < MN | CW W’ > > .

Division is done by the new rule div above, which prevents duplicating the outermost
membrane. This rule should be applied exhaustively in the third phase of the evolution
steps, just after object communication has been completed, but before membranes are
dissolved. This involves changing the mpr strategy definition:

sd mpr := visit-mpr ; amatch TM ;
communication ; (div !) ; (dis !) .

Other cell operations like creation, merge, endocytosis (introducing a membrane into
another one), exocytosis (expelling a membrane), and gemmation could be implemented
similarly.

Combining both membrane division and structured objects, the following membrane
system implements a Boolean satisfiability (SAT) solver that runs in a polynomial number
of evolution steps on the size of the formula. Each logical variable triggers a membrane
duplication where each copy evaluates a possible value of the variable, making the mem-
brane grow exponentially to evaluate in parallel all possible valuations. Formulae are
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specified using acyclic graphs indexed by natural numbers from the Maude’s NAT mod-
ule, with 0 being the root of the formula. Each node is given by a symbol whose first
argument is its own identifier, followed by the values or identifiers of the node arguments.
The role of the splitoken object will be explained later.

s i g n a t u r e i s
impor t NAT .

ob const : Nat Bool . *** Logical constant
ob var : Nat . *** Variable
ob not : Nat Nat . *** Negation
obs and or : Nat Nat Nat . *** Binary operators

ob splitoken . *** Token to limit splitting
end

For example, x∧¬x can be written and(0, 1, 2) var(1) not(2, 1). The skin mem-
brane M1 is the output membrane of the SAT solver, where the presence of an object
const(0, true) indicates the satisfaction of the formula. However, we define it empty
membrane M1 is end as a mere receptor of the objects from M2. The M2 membrane
includes several rules to simplify the expressions, a rule split to fork the membrane
with two copies where a variable takes alternatively the true and false values, and a
rule end that dissolves the membrane when the evaluation has finished. Variables can
be declared with the var statement as in Maude and used in the evolution rules. In this
case, they match the integer indices and Boolean constants in the nodes.

membrane M2 i s
v a r H M N : Nat .
va r B : Bool .

ev split : var(H) splitoken -> splitoken
(const(H, true), const(H, false), div) .

ev not : not(H, N) const(N, B)
-> const(H, not B) const(N, B) .

ev and1 : and(H, M, N) const(M, false)
-> const(H, false) const(M, false) .

ev and2 : and(H, M, N) const(N, false)
-> const(H, false) const(N, false) .

ev and3 : and(H, M, N) const(M, true) const(N, true)
-> const(H, true) const(M, true) const(N, true) .

ev or1 : or(H, M, N) const(M, true)
-> const(H, true) const(M, true) .

ev or2 : or(H, M, N) const(N, true)
-> const(H, true) const(N, true) .

ev or3 : or(H, M, N) const(M, false) const(N, false)
-> const(H, false) const(M, false) const(N, false) .

ev end : const(0, B) -> const(0, B) delta .

pr not and1 and2 and3 or1 or2 or3 end > split .
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end

Note that the split rule requires the object splitoken to be applied. This way, the
number of cell divisions in each evolution step is limited to the number of such tokens, and
some unnecessary cell divisions can potentially be avoided thanks to the simplification
rules applied in the meanwhile.

The specification of this membrane system can be improved in many ways. For ex-
ample, the and and or connectives are commutative, and so they can be described using
a Maude-defined commutative pair that would reduce the number of rules. Moreover,
each constant can only be used once in each evolution step as they are consumed by
the evolution rule. This can be improved using promoters, which are introduced in Sec-
tion 7.3. Finally, and more importantly, the election of the next variable to be assigned
is nondeterministic. Since the order in which variables are assigned does not affect the
satisfaction of the formula, this unnecessarily and exponentially increases the size of the
state space of the strategic execution. The depth-first variant of the compute command
dfs compute is more convenient for evaluating this system than the default breadth-first
search variant.

As advanced in Section 4, the strategy in charge of visiting the nested membranes
of the configuration structure, nested-mpr, evaluates them in all possible orders, since
all possible matches of the set-like argument will be tried at each call. These orders are
factorially-exponentially many in the last example while the order in which membranes
are processed is irrelevant (at least for the classes of membrane systems here considered).
Hence, we must avoid it by fixing an order on the membranes, even at the expense of
clarity.

op orderMembranes : MembraneSoup -> MembraneList .
eq orderMembrane(empty) = nil .
eq orderMembrane(M MS) = insert(orderMembrane(MS), M) .

op insert : MembraneList Membrane -> MembraneList .
eq insert(nil , M) = M .
eq insert(M1 ++ ML , M) = if lt(M, M1) then M ++ M1 ++ ML

else M1 ++ insert(ML, M) fi .

Using the orderMembranes function, nested-mpr can take a list of membranes (here
assembled with the ++ symbol) instead of a set, and so process the membranes in a single
fixed order. Membranes are ordered here using the lt operator of the TERM-ORDER module
included in the Maude distribution that allows comparing arbitrary terms. However,
this sorting algorithm is not really efficient and it is executed each time a membrane
is processed. Sacrificing the due confluence modulo axioms of equational specifications,
orderMembrane can be defined by the sole equation below, which will operationally fix
the order in which the implementation visits the set.

eq orderMembrane(M MS) = M ++ orderMembranes(MS) .

Unfortunately, while this situation is frequent and the Maude strategy language includes
an operator one that stops when the first solution is found, there is no builtin support
for stopping at the first match in strategy calls or matchrews.

For example, the SAT membrane system can be used to check the formulae x ∧ ¬x
and (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2). The const(0, true) will not be found in the solution of
the first one because it is unsatisfiable, but it will be for the second formula.

25



Membrane > load sat.memb
File sat.memb has been loaded.
Membrane > compute < M1 | < M2 | splitoken and(0, 1, 2)

var (1) not(2, 1) > > .
Solution 1: < M1 | const(0, false) ... >
No more solutions.
Membrane > dfs compute [1] < M1 | < M2 | splitoken

and(0, 5, 6) var (1) var(2) not(3, 1) not(4, 2)
or(5, 1, 2) or(6, 3, 4) > > .

Solution 1: < M1 | const(0, true) ... >
No more solutions.

The second formula is evaluated quickly but not immediately with compute, so dfs
compute [1] is used to find the first solution by depth. Additional evolution rules
could be defined in M1 and M2 to clean the irrelevant objects and to allow recovering the
valuation.

7.3. Promoters and inhibitors
Standard evolution rules only depend on the objects appearing in their left-hand side,

which are consumed in its application. However, inspired in biochemical reactions, some
processes may only take place in the presence of certain objects that are not part of the
reaction. Conversely, some objects may act as inhibitors that impede a reaction to take
place. This leads to rules with promoters and inhibitors [22, 11]. The general form of
these rules is u → v |z and u → v |¬z, meaning that the usual evolution rule u → v can
only be applied if the objects z distinct from u are present (respectively not present) in
the membrane. The objects z are not consumed and can be used in the same evolution
step.

Promoters and inhibitors have already been considered in rewriting logic and Maude [1].
The authors distinguish two semantics depending on whether promoters and inhibitors
are allocated statically or dynamically. Static allocation corresponds to the description
of this feature in the previous paragraph, and to the theoretical simultaneity of rule ap-
plication. Dynamic allocation is more easily expressed in rewriting logic, where evolution
rules are applied sequentially, since it checks the presence of promoters and inhibitors on
the intermediate state when some rules have already been applied and consumed part of
the membrane contents. Their executable implementation in Maude only supports the
latter, but we will implement the more widespread static allocation.

Given a rule u → v with promoters p and inhibitors h, we will generate a conditional
rewriting rule of the form

c r l u => v i f u p SRest := S0
/\ not contains(u h, S0) [nonexec] .

where the free variable S0 occurs. This variable will be instantiated by providing an
initial substitution to the rule application strategy with the contents of the membrane
where the rule is applied at the beginning of the evolution step. Promoters are han-
dled by a matching condition := that matches into the initial membrane multiset a
soup containing both the rule left-hand side, the promoters, and possibly something
else. In case the promoter objects contain free variables, these will be instantiated
and the rule will be executed for all their possible matches. Inhibitors cannot bind
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new variables, being objects that are not present in the configuration, so they are han-
dled by the equationally-defined contains predicate. This function decides whether its
first argument is contained in the second argument, i.e. whether both the rule left-
hand side and the inhibitors are included in the initial contents. A more strategic
solution would have defined u → v directly and preceded its application by the tests
match W s.t. contains(u p, W0) /\ not contains(u h, W0), but u may contain variables
that must take the same values in the test and the rule application, thus complicating
the correct definition of the strategy. Changes need also be made to strategies, which
should pass the initial membrane contents to the evolution rule applications.

sd visit-mpr := matchrew < MN | S MS > by S
u s i n g handleMembrane(MN , S), MS u s i n g nested-mpr(MS) .

sd handleMembrane(MN , S0) := inner-mpr(MN, S0) .
sd inner-mpr(MN, S0) := (matchrew S TS by S

u s i n g membraneRules(MN, S0)) ! .
sd membraneRules(Mi, S0) := r1 | . . . | rn

| r′1[S0 <- S0] | r′m[S0 <- S0] .

The initial multiset is matched by the S variable of the matchrew operator in the
visit-mpr strategy, and then, it is passed through strategy arguments to the defini-
tions where rules with promoters and inhibitors are applied using the [S0 <- S0] initial
substitution. Similar modifications are suffered by the strategies implementing the pri-
oritized application of rules.

In order to allow expressing rules with promoters and inhibitors, the membrane spec-
ification language has been extended: these rules start with the cev keyword and finish
with the specification of those multisets after the with or without keyword (both or only
one can be used). The multisets p and h may contain any variable that occurs in the
left-hand side of the rule.

cev lbl : u -> v with p wi thout h .

Moreover, this syntax and the transformation described before can be easily extended to
support more complex conditions or guards for evolution rules, like those used in kernel
P systems [18] that include integer expressions on the multiplicity of arbitrary subsets
in the initial multiset, in which promoters and inhibitors can be expressed.

Using this new feature, the SAT solver system of the previous section can be simplified
and made more efficient. While the signature and the overall structure of the rules is kept
unchanged, the common terms in both sides of evolution rules are placed as promoters,
so that they can be used more than once in each step. In addition, the rule split on
the variable H is inhibited by the object var(s(H)), hence forcing the variables to be
assigned in decreasing index order (assuming they are numbered consecutively), and so
limiting nondeterminism.

membrane M1 i s end

membrane M2 i s
v a r H M N : Nat .
va r B : Bool .

cev split : var(H) splitoken -> splitoken
(const(H, true), const(H, false), div)
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wi thout var(s(H)) .

cev not : not(H, N) -> const(H, not B) with const(N, B) .
cev and1 : and(H, M, N) -> const(H, false)

with const(M, false) .
cev and2 : and(H, M, N) -> const(H, false)

with const(N, false) .
cev and3 : and(H, M, N) -> const(H, true

with const(M, true) const(N, true) .
cev or1 : or(H, M, N) -> const(H, true)

with const(M, true) .
cev or2 : or(H, M, N) -> const(H, true)

with const(N, true) .
cev or3 : or(H, M, N) -> const(H, false)

with const(M, false) const(N, false) .

ev end : const(0, B) -> const(0, B) delta .

pr not and1 and2 and3 or1 or2 or3 end > split .
end

This membrane specification can be executed to check that the propositional formula
(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4) is satisfiable:

Membrane > load sat_promoters.memb
File sat_promoters.memb has been loaded.
Membrane > dfs compute [1] < M1 | < M2 | splitoken

var (1) var(2) var (3) var(4)
not(5, 3) not(6, 2) not(7, 4)
or(8, 1, 5) or(9, 6, 3) or(10, 9, 7)
and(0, 8, 10) > > .

Solution 1: < M1 | const(0, true) ... >

It can be observed using the trans command that the evolution of the membrane
system is deterministic, finishes in 8 evolution steps, and uses up to 16 simultaneous
M2 membranes. The whole execution can be seen with the check command and the
[] ~ contains(M1, const(0, true)) property.

8. Performance considerations

In this strategy-controlled rewriting framework for membrane systems, evolution steps
are executed by exhaustively applying rules on each membrane, freely or according to
some priorities. This involves visiting potentially many intermediate states for every
admissible multiset of the membrane rules. Although computing maximal parallel steps
cannot completely avoid this, more efficient algorithms are feasible by better planning
the use of objects and compatible rules. For example, if the left-hand sides of two rules
are disjoint multisets, all their interleaved applications will produce the same result, and
so one can be executed exhaustively before the other.

We have compared other Maude-based simulators and model checkers for membrane
systems with ours. First, the prototype of the work Strategy-based proof calculus for
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membrane systems by O. Andrei, and D. Lucanu [5] has been adapted to work with the
current version of Full Maude, and the examples included in its distribution have been
executed several times and measured with both prototypes. The only available command
at their prototype is trans, and there are some bugs in its implementation that do not
affect our comparison but prevent us from testing it with the other examples in this
paper. On average, the new prototype is 9.47 times faster than the older, or 8.8 times if
the initialization time of Maude and the prototypes is subtracted. Table 1 shows their
execution times and their quotients for each example.

Time (ms)

Prototype ex1 ex2 ex3 ex4 divisors nsquare

SPCMS [5] 897 824 1014 851
ESPS [2] 1786 2945
This one 119 45 235 72 166 124

Speed-up 9.45 9.07 10.45 8.9 10.76 26.47
Without init 9.12 5.14 15.65 5.29 20.76 77.03

Table 1: Comparison with previous Maude-based prototypes.

Moreover, our prototype has also been compared with that of the work Executable
Specifications of P Systems by O. Andrei, G. Ciobanu, and D. Lucanu [2] with support
for model checking. In this case, the divisors and nsquare examples have been checked
against the mentioned properties discussed in Section 6. The divisor calculator was
translated to the language of their prototype, and the square number generator is the
example included in their distribution. This latter example is model checked in a bounded
state space, which was fixed to 15 objects in their example and to 70 in Section 6. Since
a limit of 70 takes much time in their prototype (it has been canceled after 5 minutes,
while ours finishes in 2.5 seconds), a bound of 35 objects was fixed for both.

Nevertheless, if only the limit of 70 objects is increased to 71 in the previous property,
the check command in our prototype does not finish within an hour. Similarly, we have
pushed the capabilities of our prototype to the limit with the other examples in this
paper. For the divisors calculator, we have checked the µ-calculus property in Section 6,
computed all irreducible configurations with compute, and a single solution by depth
with dfs compute from the initial term ⟨M1 | an tic ⟨M2 | ⟩⟩ on increasing n. As shown
in Figure 3, the execution time and the memory usage grow exponentially.8 The only
exception is the constant memory usage of the depth-first search compute command.
Within an hour, results are obtained by compute and check for n ≤ 25, and by the
depth-first search of a single solution for n ≤ 33. However, the results for n ≤ 23 and
n ≤ 28 respectively have already been obtained in five minutes. For the SAT solver with
promoters and inhibitors in Section 7.3, the depth-first search can stand up to 15 distinct
variables in 5 minutes and to 17 in an hour.

8Figure 3 shows as check the execution time and memory usage of the membranes.py script using
the Python-based builtin model checker (see [31]). Since the measure of the builtin backend does not
include the interface initialization time, their results for reduced sizes are notably smaller.
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Figure 3: Execution time and memory usage for different commands on the divisor calculator.

Regarding the different extensions in Section 7, the performance penalty caused by
them respect to the functionality of the basic prototype is relatively small, since these
features only produce an additional cost when they are effectively used. As mentioned
in Section 7.3, we cannot compare the known implementation of promoters and inhibitors
in Maude [1] with ours, since they use a different dynamic interpretation of this feature.
We have also tried to compare the prototype with the kPWorkbench tool [19] based
on kernel P systems. However, the graph-like structure of these systems is not directly
translatable to the nested structure of those used in this paper, its simulator randomly
chooses an alternative for each evolution step while our command considers all of them,
and the concepts of model used for model checking apparently do not coincide.

9. Conclusions and future work

In this work, a rewriting logic framework controlled by rewriting strategies is pro-
posed to express, simulate, and verify membrane systems. Strategies are used to bridge
the gap between sequential rule rewriting and the parallel evolution of these systems
by describing their particular control mechanisms. This approach is implemented as a
metalanguage tool in the Maude specification language and its strategy language, which
has been recently incorporated as an official feature. Rewriting strategies and even a
primitive version of this language have already been used to represent membrane sys-
tems [5, 3], but these prototypes have been less evolved than other encodings of membrane
systems in rewriting logic [4, 2]. The main advantage of our approach is that it trans-
forms a membrane specification to a full-fledged strategy-controlled rewriting system
with clearly generated strategy expressions that can be used to faithfully simulate and
analyze the evolution of any configuration of the system. In particular, the authors of the
first strategy-based prototype pointed out the difficulty to apply analysis tools to it like
the model checker, already used in their first work [2]. This is solved for free in our case
by using the model checkers for strategy-controlled systems and its opaque strategies fea-
tures. Other advantages are a wider temporal logic support for model checking including
LTL, CTL*, µ-calculus, and in general any other logic that would be implemented for
strategy-controlled Maude programs; its efficiency shown in Section 8, since they are now
executed by the Maude C++ engine; and its extensibility and adaptability, illustrated
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in Section 7. As mentioned in Section 1.1, there are other examples of model-checking
tools for membrane systems not based on rewriting, like kPWorkbench [19] supporting
LTL and CTL properties of kernel P systems. In fact, this tool lets the user express
priorities and other control mechanisms with ad-hoc strategies.

As future work, other well-known extensions of membrane systems can be imple-
mented like antiport rules, nonintegral object multiplicities, etc. Tissue-like, neural-like,
or probabilistic P systems could also be implemented with broader changes. Moreover,
the simulation and verification capabilities can be enhanced with other symbolic tech-
niques supported by Maude like narrowing and SMT solving.
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Appendix A. Proofs

In the following, we will write t →α t′ to mean that t′ is a result of applying the
strategy α on the term t, w →Ak

w′ to say that the multiset w is rewritten to the
multiset w′ by the multiset of rules Ak (typically in a membrane Mk), and C →A C ′ to
state that the membrane configuration C ′ follows from C by an evolution step with a
choice A = (Ak)

n
k=1 for each membrane Mk.

Lemma 1. Given a membrane system Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, io) and its
rewriting logic representation R = (Σ, E,R) with strategies described in Section 4, there
is a bijective mapping T between (1) objects O and ground Obj terms, (2) multisets
of objects and ground terms of sort ObjSoup, (3) target messages and ground terms
of sort TargetMsg, (4) multisets of targets and ground terms of sort TargetSoup, (5)
membrane configurations, multisets of membrane configurations, and heterogeneous mul-
tisets (including objects, targets, and membranes) and ground terms of sort Membrane,
MembraneSoup. and Soup, respectively, and (5) evolution rules and ground rewrite rules
from ObjSoup to TargetSoup. Moreover, the multiset w is rewritten to w′ by an evo-
lution rule r iff T (w) is rewritten to T (w′) by its corresponding rewrite rule T (r). And
w is rewritten to w′ by a multiset A of evolution rules iff T (w) is rewritten to T (w′) by
applying the translation of the rules in A in any order.

Assuming that handleMembrane is terminating, and for 1 ≤ k ≤ n and for any
multisets w and w′ of objects

w →Ak
w′ iff T (w) →handleMembrane(Mk) T (w′), (A.1)

then mpr is terminating and for any configurations C and C ′, C →A C ′ iff T (C) →mpr

T (C ′).

Proof. The specification described in Section 4 consists of a common infrastructure and
some user-defined additions for the particular Π. These include:
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• A name for each membrane is defined as a constant of sort MembraneName. While
the definition of membrane system in Section 2 does not refer to membrane names,
membranes are still numbered from 1 to n, so a simple bijection k ↔ Mk relates
both nomenclatures.

• Each object o ∈ O of the membrane system is represented as a term of sort Obj,
which also includes the predefined symbol delta for δ. In principle, a constant
should be defined for each object, but using terms with more complex structure is
not a problem. Hence, O is in bijection with the set TΣ,Obj(∅) of all ground terms
of sort Obj by construction.

The generic part of the rewriting logic representation includes a sort ObjSoup with
Obj as subsort, empty as constant, and the commutative and associative yuxta-
position operator __ as data constructor. Ground terms of this sort are exactly
multisets of objects, since they are strings of objects identified regardless of their
order, with the identity element empty in the role of the empty multiset. Similarly,
there is also a bijection between target messages, which are pairs with a multiset
of objects and a target annotation, and ground terms of the TargetMessage sort.
TargetSoup terms are made out of TargetMessage terms as ObjSoup terms were
built from Obj terms, so they are also in bijection with multisets of targets.

• Each evolution rule is defined as a labeled rewrite rule from a term of sort ObjSoup
to a term of sort TargetSoup. Since there is a bijection between the sets of ground
terms of these sorts and the multisets of objects and targets, respectively, evolution
rules and rewrite rules of that form are also in one-to-one correspondence. More-
over, applying an evolution rule to a multiset of objects is equivalent to applying
the corresponding rewrite rule to a Soup term, because the matching objects will
be removed from the Soup-multiset and the new targets will be added. When a
multiset of evolution rules is applied, the union of their left-hand sides is replaced
in the multiset by the union of their right-hand sides. Although their equivalent
rewrite rules are applied sequentially, they will produce the same result, since they
will replace their disjoint left-hand sides by a TargetSoup term that cannot be
modified by other any such rewrite rule. Indeed, even though these messages con-
tain multisets of objects, they have been declared as frozen so that rules cannot
be applied inside them. We have also required that here targets should always be
used instead of spare objects in the right-hand side to achieve this effect. Since
they operate on disjoint parts of the Soup term, the order in which they are applied
is irrelevant.

• Every rewrite rule r ∈ Rk defined as in the previous item is assigned to its mem-
brane Mk by including it in the definition of the strategy membraneRules(Mk).

The structure µ and the initial contents wk of the membrane system are not specified
within the Maude module, but as part of the initial term t on which the strategies are
to be applied. This term of sort Membrane is built with the <_|_> constructor from a
membrane name and a multiset of objects, targets, and nested membranes represented
by a Soup term. Reasoning inductively, we can simultaneously prove that Membrane and
MembraneSoup terms are in one-to-one correspondence to membrane configurations and
multisets of them. The initial contents wk of the membrane k can be obtained as the
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restriction to O of the Soup-multiset within the pair for Mk. Moreover, the structure of
the membrane µ (as a tree) can be obtained inductively by looking at the multiset of
membranes while adding their labels as children.

At this point, we have to check that applying the mpr strategy to the Membrane term
T (C) yields all possible evolution steps from the membrane configuration C. Remember
that mpr is defined as (visit-mpr ; amatch TM ) ; communication ; (dis !) and
that an evolution step consists of three consecutive phases. We claim that these phases
match the three concatenated strategies in the mpr definition, which are executed con-
secutively (the results of any of them are continued by the next one) by the semantics of
the strategy composition operator. Let us first look at the second and third phases:

2. In the second phase, out messages are transferred to the enclosing membrane, in
M messages are moved to the nested membrane M , and here messages are left
in the current one. For a single message, this is clearly the meaning of the out,
in, and here rules. The communication strategy applies them repeatedly until no
more can be applied, so it fulfills the requirements of the second phase. In effect,
the strategy is defined as (in | out | here) !, where ! means the successive
application of its argument until it fails, and its argument in | out | here is
the nondeterministic application of any of these rules. This disjunction will only
fail when none is applicable, and this only happens when no valid target is in the
configuration.

3. In the third phase, membranes containing the δ symbol are dissolved. The seman-
tics of the dis rule is clearly the dissolution of a non-skin membrane, and the !
operator repeats dis until it fails, i.e., until no more δ symbols are present in a
non-skin configuration.

Finally, we must prove the correctness of the first step visit-mpr ; amatch TM. The
test with the variable TM of sort TargetMsg as pattern is a way of checking that at least
a rule has been applied in the whole system, as required by the definition. Since the test
variant is amatch, it will try to match TM everywhere, so it will succeed iff there is a
target message in the configuration, or equivalently, whenever a rule has been applied.
Remember that we assume that explicit here targets are used in the encoding of evolution
rules instead of spare objects. On the other hand, visit-mpr applies handleMembrane to
the multiset of objects in the membrane, and the strategy nested-mpr to the multiset of
nested membranes, which it takes as argument. These are the semantics of the matchrew
combinator, which matches the pattern on the subject term, and rewrites the subterms
matched by some of the pattern variables with some given strategies. The nested-mpr
strategy does nothing (idle) if there are no nested membranes in its argument, and oth-
erwise takes one M out of the multiset, applies visit-mpr to it, and continues recursively
with the rest MS. In summary, the strategy visit-mpr applies handleMembrane to its
object multiset and visit-mpr to every nested membrane, so that handleMembrane is
applied to the multiset of objects of every membrane. Since the assumption A.1 tells that
handleMembrane executes a maximal parallel rewriting step when applied to the multiset
of objects of a membrane, we conclude that visit-mpr applies a maximal parallel step
on every membrane, as required for the first stage of the evolution step.

With regard to termination, take into account that the execution of the arguments of
the ! operator in the second and third phases decreases the number of targets or δ symbols
in the configuration, which are finite. Hence, these arguments will eventually fail and
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the normalization operator ! will eventually stop. Similarly, the number of membranes
in the nested-mpr argument decreases with each call, until zero when no action is taken.
For visit-mpr, handleMembrane is applied only once per call, and visit-mpr itself is
only called recursively as many times as membranes are in the system, but this number
is finite.

After this lemma, we will usually identify the elements of the membrane system and
the rewriting-logic entities that represent them, since they are in one-to-one correspon-
dence.

Proposition 1. The strategy mpr executes a maximal parallel evolution step without
priorities when membraneRules(M) is defined as the disjuntion of all rules for M , i.e.,
under these conditions, C →A C ′ iff T (C) →mpr T (C ′) for any configurations C and C ′.

Proof. Thanks to Lemma 1, we only have to prove that handleMembrane(Mk) behaves
as expected for every membrane Mk. Remember that this strategy is defined in this case
as:

sd handleMembrane(MN) := inner-mpr(MN) .
sd inner-mpr(MN) := membraneRules(MN) ! .
sd membraneRules(Mk) := r1 | · · · | rn .

where r1, . . . , rn are all the rules belonging to Mk. According to the semantics of the
disjunction combinator, an execution of membraneRules(Mk) is the application of one
of the ri rules nondeterministically chosen. The meaning of inner-mpr is the repeated
application of membraneRules until it fails, as follows from the semantics of the normal-
ization operator !. Only the rules belonging to Mk will be applied since the membrane
name is given as an argument to the membraneRules strategy and only the definition for
the given name will be executed. The strategy inner-mpr is terminating since the rules
ri remove at least one object in the multiset, they do not introduce any object without a
target, and the number of objects is finite. Let A : Rk → N be the multiset of evolution
rules whose equivalent rewrite rules have been applied by inner-mpr. We claim that A
can be applied and is maximal. We already know from the lemma that the result of the
parallel application is the result of the strategy, and that the order in which the rules
have been applied is immaterial.

It is clear that A can be applied because the union of the left-hand sides of its rules
must have been present in the multiset to trigger the execution of the rewrite rules. Sup-
pose A is not maximal, then we could add an extra rule r to the multiset, or equivalently
apply r after all other rules in A have been applied. However, membraneRules(MN) has
failed after executing the last rule in A, meaning that no rule in the disjunction could
have been applied. Hence, by contradiction, A is maximal.

Proposition 2. The strategy mpr executes a maximal parallel evolution step with weak
priorities when membraneRules(M) is defined as indicated above this statement in Sec-
tion 4.

Proof. Like in the previous proposition, we have to prove that handleMembrane satisfies
the requirements of Lemma 1. In this case, membraneRules is also repeated until it fails,
but now it has a different definition. Given a generator set of priorities Pk ⊆ Rk×Rk for
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the membrane Mk, and being ρk its transitive closure, the strategy is defined recursively
from Rk as indicated in Section 4. Remember that A is admissible in this case if for
every r ∈ Rk either A(r′) = 0 for all r >ρk

r′ or A[r′/0]r>ρk
r′ + {r} cannot be applied.

First, we claim that w′ is a result of handleMembrane(Mk) on w iff there is a rule
r ∈ Rk such that no rule r′ >ρk

r can be applied and w′ is the result of applying r to w.
According to the procedure for constructing the weak-priority strategy, every occurrence
of a rule r is preceded by its immediate predecessors in the order as (r1| · · · |rn) or-else r.
Hence, by the semantics of the operator α or-else β ≡ α ? idle : β, r cannot be applied
if any one of these r1 to rn are applicable. Inductively, these ri are also guarded by
their predecessors, so if any one of them can be applied, ri cannot be executed, but
neither can r. Indeed, the solution of the ancestor is a solution of the or-else ending
in ri, and this is a solution of the left-hand side of the or-else whose right-hand side
is r, so that r is not executed. Every rule in Rk is included in handleMembrane(Mk),
because every one is reachable from the minimal elements of the order, and so it should
have been inserted by the first or second points of the procedure. If it is a maximal
element it will be executed immediately; otherwise, after the rules with greater priority
have been discarded. Moreover, the strategy applies a single rule, because only one of the
branches in the multiple disjunction combinators is chosen on each occasion, and once
the left-hand side of an or-else succeeds, all enclosing or-else will finish with the idle of
the positive branch of the equivalent conditional expression without executing any other
rule.

Using the arguments already given for the proof of the case without priorities in the
previous proposition, we know that handleMembrane is terminating, A can be applied,
and the results of the parallel application of A and handleMembrane(Mk) coincide,
regardless of the order in which rules have been applied. We should then prove that
A is admissible and maximal. Suppose it is not admissible, so for some r ∈ Rk there is
r′ such that r >ρk

r′ and A(r′) > 0, and the choice A[r′′/0]r>ρk
r′′ + {r} can be applied.

Since the rules in the multiset can be applied in any order, we could have executed r′

after A[r′′/0]r>ρk
r′′ , but at this moment r can be applied too. This contradicts the

claim in the previous paragraph, which says that r′ cannot be applied if r >ρk
r′ can

be applied, so A is admissible. In order to prove the maximality, suppose that A + {r}
can be applied, then the rule r should be applicable just after the rules of A. However,
handleMembrane has failed, and this means that either r cannot be applied or there is an
r′ with r′ >ρk

r that can be applied. In the first case we have arrived to a contradiction.
In the second, we can repeat the argument until we arrive to the maximal element, where
the contradiction is unavoidable. Hence, A is maximal.

Proposition 3. The strategy mpr executes a maximal parallel evolution step with strong
priorities when handleMembrane is instantiated to the strong-mpr strategy described
above this statement in Section 4.

Proof. According to Lemma 1, it is enough to prove that strong-mpr is terminating
and satisfies A.1. First, the strategy strong-mpr is terminating as follows from taking
the number of objects in the multiset where it is applied as a rank function. Every
recursive call is preceded by a rule application, and the former is only executed if the
latter succeeds. Rules always reduce the number of objects in the multiset, so the rank
function always decreases between recursive calls. This is clear in the basic strategies
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αr where the application of r is concatenated with the recursive call. According to the
semantics of this combinator, the first one must have succeeded for the second one to
be applied. The transformation does not introduce any additional recursive calls, except
through basic strategies, so this property is preserved.

Let A be the set of rules applied by strong-mpr, which coincides with the argument
of its deepest recursive call. Remember that A is admissible in the strong sense if it is
admissible in the weak sense and A(r) > 0 implies A(r′) = 0 for all r >ρk

r′. The choice
clearly satisfies the second condition for any pair of rules r >ρk

r′, because r is added to
the argument AP of strong-mpr just after r is applied, it is never removed in a recursive
call, and so the match test that guards the application of r′ will fail and impede its
execution. The recursive call that applies r as well as the previous calls, which may not
have r in its argument AP, will not execute any rules after the recursive call for r has
returned, because the success of r will finish the enclosing or-else and strategy calls in
cascade, as mentioned in the previous proposition. The execution of strong-mpr always
succeeds because of the idle added in the fourth step of the procedure. The proof that
the choice obtained with the strategy is admissible in the weak sense and maximal is the
same as in the previous case, taking into account that their strategies share the same
structure, even though the next iteration is repeated by inner-mpr in the first case and
by a recursive call in this case.
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