
ar
X

iv
:2

40
1.

07
74

9v
1

 [
cs

.L
O

]
 1

5
Ja

n
20

24

Metalevel transformation of strategies

Rubén Rubioa,∗, Narciso Martí-Olieta,b, Isabel Pitaa, Alberto Verdejoa

aFacultad de Informática, Universidad Complutense de Madrid, Spain
bInstituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Spain

Abstract

In the reflective Maude specification language, based on rewriting logic, a strategy lan-
guage has been introduced to control rule rewriting while avoiding complex and verbose
metalevel programs. However, just as multiple levels of reflection are required for some
metaprogramming tasks, reflective manipulation and generation of strategies are conve-
nient in multiple situations. Some examples of reflective strategy transformations are
presented, which implement special forms of evaluation or extend the strategy language
while preserving its advantages.

Keywords: Maude, Rewriting strategies, Reflection, Model checking

1. Introduction

Reflection can be intuitively defined as the capacity of a system for reasoning about
itself, by representing and manipulating its objects in its own language. Classical ex-
amples of reflection can be seen in the coding of first-order arithmetic by Gödel and in
universal Turing machines, but reflective metaprogramming features are also provided by
many modern programming languages [25]. Rewriting logic [29] and its implementation
Maude [10] are reflective languages where important aspects of its own metatheory can
be represented [12]. As a result, manipulating, transforming, and analyzing rewriting
logic theories specified in Maude can be easily done within Maude. Reflection has been
extensively used throughout the history of Maude for specific metalinguistic applications,
to extend and prototype new features of the language, and to design formal tools that
reason about Maude programs. Significant examples are Full Maude [10, Part II] and the
Maude Formal Environment [17]. The former is an extended Maude interpreter written
in Maude itself, and the latter allows checking properties like confluence and termination
on Maude specifications.

Rewriting systems are executed by successive and independent rule applications where
rule and position are chosen nondeterministically. However, it is sometimes convenient to
restrict and control how rules are applied either for semantic or efficiency purposes. This
can be expressed at a higher level and without modifying the original system by means

∗Corresponding author
Email addresses: rubenrub@ucm.es (Rubén Rubio), narciso@ucm.es (Narciso Martí-Oliet),

ipandreu@ucm.es (Isabel Pita), jalberto@ucm.es (Alberto Verdejo)

Accepted authors’ manuscript of the article published in J. Logic. Algebr. Program 124
DOI: 10.1016/j.jlamp.2021.100728 License: CC-BY-NC-ND

http://arxiv.org/abs/2401.07749v1
https://doi.org/10.1016/j.jlamp.2021.100728

of rewriting strategies [1, 5]. Classical examples are the different reduction strategies of
the λ-calculus [3] and those guiding deduction procedures and theorem provers [30, 24].
Moreover, strategies are a useful resource to write compositional rewriting specifications
where the concerns of rules and their control are separate [24], so that the same rules
can yield different algorithms depending on how they are applied. Some languages of
programmable strategies have been developed to express rewriting strategies in an exe-
cutable form like ELAN [4], Stratego [7] for program transformation, TOM [2], ρLog [28],
and Porgy [21] for graph-rewriting. In Maude, the metaprogramming features have been
traditionally used to program the control of rules. Since programming metalevel com-
putations is hard for beginners and verbose, an object-level strategy language has been
proposed, tested, and finally made available in Maude 3 [10]. Although the strategy
language has been introduced to avoid the need for the metalevel, the language itself
and its operations have been metarepresented, and users may still resort to the metalevel
to analyze strategy specifications and construct strategies depending on metatheoretic
information. These transformed strategies can still be used at the object level thanks
to the Maude support for interactive interfaces, and be analyzed using verification tools
like the model checker for systems controlled by strategies [34, 37].

In this paper, we aim to show through three relatively simple examples the interesting
applications and potential of the reflective manipulation and generation of strategies, and
the resources offered by the Maude specification language to do so. Metaprogramming
strategies is useful in multiple situations where they should be adapted to some input
data specification or to the rewriting system being controlled itself. The first example
in Section 3 should be understood as an introduction to the tools and the approach pro-
posed in the paper, which can be applied to many other specific problems like this. In
this case, given a Maude specification where operators are annotated with some restric-
tions, we generate a well-known normalization strategy in context-sensitive rewriting [26]
that can be applied to any term. The second example in Section 4 describes a general
procedure to extend the Maude strategy language with new combinators without losing
any of its advantages. A skeleton is provided in order to simplify the task of the extension
developer and facilitate the interaction of its users. This is illustrated with two families
of operators available in other strategy languages. Finally, the third example in Sec-
tion 5 presents a framework to specify compositional or agent-based strategy-controlled
systems, whose control by a single strategy expression is cumbersome. Separate strate-
gies are assigned to each agent or component, and a global strategy orchestrates their
execution (concurrently, by turns, or as desired). Not only we think that these examples
illustrate the possibilities of reflective transformations, but they are interesting by them-
selves. Although reflective languages featuring strategies are not common, this approach
could be used in other tools apart from Maude, as it consists of applying the advantages
of program transformation to this specific setting.

Section 2 begins by reviewing the basic of rewriting and Maude, before the aforemen-
tioned examples are introduced in Sections 3 to 5. Section 6 presents a discussion on re-
lated work and the conclusions. Maude 3 can be downloaded from maude.cs.illinois.edu,
and its extension with the strategy-aware model checker is available at maude.ucm.es/strategies,
as well as all the different examples appearing here.

2

http://maude.cs.illinois.edu
http://maude.ucm.es/strategies

2. Rewriting logic and Maude

Rewriting logic [29] was proposed as a unified model of concurrency extending mem-
bership equational logic with nondeterministic and possibly conditional rewriting rules.
A rewrite theory R = (Σ, E,R) consists of a signature Σ of order-sorted operators, i.e.
their domains and values are typed with sorts and these sorts are related by a con-
tainment partial order relation, a set of equations E, and a set of rewriting rules R.
Terms and rule applications are considered modulo equations and also structural axioms
like commutativity, associativity, and identity that cannot be naively handled as regular
equations due to their reversible nature. Maude [10] is a specification language based on
rewriting logic, where rewrite systems can be specified compositionally, executed, and
analyzed. Specifications are written in a mathematical-like notation and organized in
modules of different kinds: functional modules (fmod) represent equational theories with
declarations of sorts, subsort relations, and operators. Beside their signatures, operator
declarations may include some attributes between brackets that specify the structural
axioms and other features applied to them. Moreover, functional modules may include
equations of the form:

[c]eq l = r [if
∧

i

li = ri /\
∧

i

l′i := r′i /\
∧

i

ti : si] .

Equations are applied as if they were oriented from left to right on any position where
they match.1 Every variable in r and the condition must occur in the left-hand side l

with some exceptions. Conditions li = ri are satisfied when these terms, instantiated by
the matching substitution, coincide modulo equations and axioms. The same semantics
operates on the l′i := r′i conditions, but the term l′i may contain free variables that
are instantiated by matching and can be used in the following condition clauses. Sort-
membership condition fragments ti : si hold when the instantiated term ti belongs to the
sort si. For example, the following functional module specifies a list of letters:

fmod LLIST-FM i s

p r o t e c t i n g NAT .

s o r t s Letter List .

s u b s o r t Letter < List .

ops a b c d e : -> Letter [ctor] .

op nil : -> List [ctor] .

op __ : List List -> List [ctor assoc comm id: nil] .

va r L : Letter . va r LS : List .

op length : List -> Nat .

eq length(nil) = 0 .

eq length(L LS) = 1 + length(LS) .

endfm

1An unconditional oriented equation or rewriting rule l → r is applied to a term t if there is a
substitution σ assigning terms to the variables of l and a position p in t whose subterm t|p = σ(l). This
subterm is then replaced by σ(r). We say that l matches tp and that σ is the matching substitution.

3

Underscores in operator names mark the holes where arguments are entered, although
symbols in prefix notation may omit them. In LLIST-FM, Letter is made a subsort of
List, the juxtaposition operator __ is declared associative, commutative, and having
nil as identity, and the module NAT is imported. The Maude prelude provides some
modules like NAT that specify integer and floating-point numbers, strings, lists, sets, etc.
Importation can be done with the keywords protecting, extending, or including that
declare whether the definitions of the imported module will be kept unchanged, extended,
or modified arbitrarily, respectively. Functional specifications can be executed with the
reduce command, which applies the equations exhaustively on the given term.

Maude > reduce length(a b c) .

rewrites : 7

result NzNat: 3

System modules (mod) are rewrite theories with the addition of rules

[c]rl l => r [if C /\
∧

i

li => ri] .

Conditional rules may include rewriting conditions in addition to those C available for
equations, where terms matching ri are searched by rewriting from li with the rules
of the module. Every possible match of the left-hand side and the condition yields a
different application of the rule. Like equations, all variables in the right-hand side r

and the condition must occur in the left-hand side l, except those in the left-hand side
of matching conditions and now also in the right-hand side ri of rewriting conditions,
since these are assigned by matching. Continuing with the example, the following module
LLIST-M extends the previous LLIST-FM with two rules.

mod LLIST-M i s

i n c l u d i n g LLIST-FM .

va r LS : List . va r L : Letter .

r l [pop] : LS L => LS .

r l [put] : LS => LS L [nonexec] .

endm

Note that the put rule contains an unbounded variable L in its right-hand side. What
would be a syntax error without the nonexec attribute, which excludes the rule from
being applied, can be useful when combined with a strategy language able to instantiate
this variable. Rules can be executed modulo the equations with the rewrite command in
the Maude interpreter, which will repeatedly apply the pop rule in the previous module.

Maude > rewrite a b c .

rewrites : 3

result List : nil

This command selects which rules to apply and where according to a fixed criterion
described in the Maude manual [10]. This can be seen if the number of consecutive
rewrites is limited to one with the [1] modifier.

Maude > rewrite [1] a b c .

rewrites : 1

result List : b c

4

The result is b c because the pop rule has been applied on the subterm a, extended by
the identity axiom to nil a, but it could have also been applied on (a b) c yielding
a b as a result. With the strategy language discussed in Section 2.2, strategy modules
(smod) can be used to specify different ways of applying these rules.

Maude specifications are accurately executable under certain requirements [10], like
the confluence and termination of its equations and the coherence of its rules with them,
since rule rewrites take place when the term is exhaustively reduced to a normal form
with the oriented equations. Confluence and coherence can be easily defined for abstract
reduction systems (S,→) where S is a set of states and (→) ⊆ S×S is a binary relation
on them. This relation is confluent if for any states s, s1, s2 ∈ S satisfying s →∗ s1
and s →∗ s2, there is an s′ ∈ S such that s1 →∗ s′ and s2 →∗ s′, where →∗ denotes
the transitive and reflexive closure of →. A state s is irreducible if there is no s′ ∈ S

such that s → s′, and we write s →! s′ if s →∗ s′ and s′ is irreducible. Whenever the
relation is confluent and s →! s′, we say that s′ is a normal form of s and it is unique.
Moreover, the relation is terminating if there is no infinite sequence of states (sk)

∞

k=0

such that sk → sk+1. For confluent and terminating relations, every state has a unique
normal form. Given two relations →1 and →2 on S, →2 is coherent with →1 if for any
s, s′, u ∈ S such that s →!

1 u and s →2 s′, then there are u′, w ∈ S satisfying u →2 u′,
s′ →!

1 w and u′ →!
1 w. In other words, →2 is coherent with →1 if we compute steps of

→2 modulo →1 by first reducing the state to its normal form by →1 and then applying
→2.

2.1. Reflection and metalevel computations

Rewriting logic is a reflective logic, whose objects and operations can be consistently
represented in itself. Maude offers a predefined universal theory [10, §17] to metatheoret-
ically represent terms, equations, rules, modules, and so on. Operations like matching,
reduction, and rule application can be programmed generically using regular operators
and equations. However, Maude provides special operators backed by the object-level im-
plementation in C++ to allow efficient reflective computations. Metarepresentations can
in turn be metarepresented and terms be moved between different levels, thus yielding
arbitrarily high reflective towers if needed.

This universal theory is specified in META-LEVEL and its imported modules, and it
relies on the Qid sort of quoted identifiers, arbitrary words prefixed by an apostrophe.
A variable X of sort Nat is metarepresented as the quoted identifier ’X:Nat, and the
constant ’Nat of sort Qid is ”Nat.Qid. Terms with arguments are represented using
the operator _[_] : Qid NeTermList -> Term, like ’_+_[’X:Nat, ’s_[’0.Zero]] for
X + s 0. Operator declarations, equations, rules, and similar statements are represented
as terms with a syntax similar to the object-level reference. For example, the operator
+ may have a declaration op ’_+_ : ’Nat ’Nat -> ’Nat [comm assoc] . and be
involved in an equation eq ’_+_[’X:Nat, ’0.Zero] = ’X:Nat [none] . where the
trailing brackets enclose the set of operator or statement attributes, or none if there is
none. Metamodules are terms with argument slots like fmod_is_sorts_.____endfm for
each kind of module component. Auxiliary functions getOps, getEqs, getRls, etc., are
defined to obtain these components.

Operations are accessible through some descent functions like metaMatch for match-
ing, metaApply for rule application, metaReduce for equational reduction, metaRewrite,
etc. For instance, metaReduce receives the metarepresentations of a module and a

5

term, and produces a pair containing the metarepresentations of the normal form of
the given term and its calculated sort. Other predefined functions allow obtaining the
metarepresentation of a term (upTerm) or the object-level term from its metarepresen-
tation (downTerm). The metarepresentation of loaded modules can be obtained with
upModule given the module name and a Boolean flag indicating whether a flat version
(with all imports resolved) of the module is required, like in upModule(’NAT, false).
The complete specification of the metalevel is in the Maude prelude and explained in [10,
§17].

2.2. The Maude strategy language

Strategies have been specified since the beginnings of Maude using the reflective fea-
tures just explained. Nevertheless, to control rewriting in a more accessible and under-
standable way, an object-level strategy language was designed, based on that experience
with reflective strategies and other strategy languages like ELAN [4] and Stratego [7].
After being prototyped in Full Maude and tested, the language is finally implemented
at the C++ level in Maude 3 with new features like compositional and parameterized
strategy modules [35]. A strategy expression α in the language restricts the possible next
steps during the rewriting process, and it can be seen as a transformation from an ini-
tial term t to the set of terms that this controlled —but not necessarily deterministic—
rewriting yields as a result. This is what the command srewrite t using α and its
depth-first version dsrewrite show, by exploring all allowed execution paths.

The application of a rule rl[x1 ← t1, . . ., xn ← tn]{α1, . . ., αm} is the basic el-
ement of the strategy language, referred by its label rl and taking an optional initial
substitution. If the rule to be applied includes rewriting conditions, a comma-separated
list of strategies must be given between curly brackets to control all of them. Rules are
applied anywhere within the term by default, but their application can be restricted to
the top with the top(α) combinator. Moreover, the strategy all applies any labeled or
unlabeled rule of the module with the rewrite command semantics. Tests match P s.t.

C discard executions when the subject term does not match the pattern term P or satisfy
the equational condition C. The match keyword can be changed to amatch to match
anywhere within the term, and the condition s.t. C can be omitted if not needed. These
elements can be combined with the concatenation α;β that executes β on the results
of α, the disjunction α|β whose result comprises the executions allowed by any of its
arguments, the iteration α* and normalization α! operators that iterate α any number of
times or until no more iterations are possible, and the conditional α?β:γ that evaluates
α and then β on its results, but if α does not produce any, it executes γ on the initial
term. Two constants idle and fail represent the strategy that produces the initial term as
result and the strategy that does not produce any result, respectively. The combinator
matchrew P s.t. C by x1 using α1, . . ., xn using αn allows rewriting selected subterms
of the term where it is applied: those terms matched by the variables x1, . . . , xn in the
pattern are rewritten in parallel using α1, . . . , αn, respectively, and their results replace
the matched subterms to produce the matchrew results. This initial keyword can also
be changed to amatchrew like for tests. Moreover, for efficiency reasons, the combinator
one(α) evaluates α only until the first solution is found, if any, which is returned as its
result. In addition to these core combinators, the language includes some others that
can be defined in terms of the first, like try(α) ≡ α ? idle : idle, not(α) ≡ α ?

6

fail : idle, and test(α) ≡ not(not(α). For example, using the LLIST-M module at
the beginning of this section, we can execute the following strategy:

Maude > srewrite a b c using top(pop) ; top(put[L <- d]) .

Solution 1

rewrites : 2

result List : a b d

No more solutions .

Remember that L is the name of the unbounded variable of the put rule.
Strategy modules allow declaring and defining strategies with a name and any num-

ber of arguments. Delimited by the smod and endsm keywords, they may import mod-
ules of any kind and include any statement available in functional and system mod-
ules, although a clear separation of the model from its control encourages that only
strategy declaration and definitions statements are used. Named strategies can be de-
clared as strat name : s1 · · · sn @ s . with the signature of its arguments and the
sort s of the terms to which it is intended to be applied. They are defined with
sd name(p1, . . ., pn) := α . or csd name(p1, . . ., pn) := α if C. if they are con-
ditional, which are only executed when their equational condition C is satisfied. Strate-
gies can be called even recursively in strategy expressions as name(t1, · · · , tn). Ex-
tending the example module LLIST-M again, a strategy seq is defined to append a list of
letters to the list on which it is applied:

smod LLIST i s

p r o t e c t i n g LLIST-M .

va r LS : List . v a r s L L’ : Letter .

s t r a t seq : List @ List .

sd seq(nil) := i d l e .

sd seq(L’ LS) := top (put[L <- L ’]) ; seq(LS) .

endsm

Note that L in put[L <- L’] refers to the variable L in the rule that is being instantiated,
while L’ refers to the strategy argument that decides its value.

The strategy language and strategy modules are also represented at the metalevel,
faithfully reproducing the object-level syntax in most cases. Its combinators are specified
as terms of the Strategy sort in the META-STRATEGY module. For instance, a simple rule
application is denoted as ’label[none]{empty} and a strategy call as ’name[[TL]]

with TL a possibly empty list of metarepresented terms. Strategy modules

op smod_is_sorts_._______endsm : Header ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet RuleSet

StratDeclSet StratDefSet -> StratModule [ctor ...] .

as well as strategy declarations and definitions

op sd_:=_[_]. : CallStrategy Strategy AttrSet

-> StratDefinition [ctor ...] .

op csd_ := _if_ [_]. : CallStrategy Strategy EqCondition

AttrSet -> StratDefinition [ctor ...] .

7

are specified too, and the commands srewrite and dsrewrite are accessible through
the metaSrewrite descent function.

op metaSrewrite : Module Term Strategy SrewriteOption Nat

~> ResultPair ? [special (...)] .

s o r t SrewriteOption .

ops breadthFirst depthFirst : -> SrewriteOption [ctor] .

The last argument of the metaSrewrite operator is an index used to enumerate the
potentially multiple solutions, until a failure term is obtained. These solutions are
provided as pairs {_,_} of sort ResultPair containing the metarepresentation of the
term and its calculated sort. Following a common notational pattern in Maude, the
sort ResultPair? designates a supersort of ResultPair with the additional constant
failure to indicate the absence of a result, as explained before.

Another useful descent function for building metalanguage interfaces is metaParse

that parses terms on a given module and sort.

op metaParse : Module VariableSet QidList Type?

~> ResultPair ? [special (...)] .

On success, it returns a pair with the metarepresentation of the parsed term and its least
sort from a list of tokens of sort QidList, which can be obtained from a string using the
tokenize function.

In previous prototypes of the Maude strategy language there was nothing like a met-
alevel of the strategy language, since it was specified within Maude and strategy expres-
sions were directly Maude terms. The language was more easily extensible at the expense
of efficiency, since the execution of strategies was implemented in Maude itself.

More details on the language can be found in [10, §10].

2.3. Interactive interfaces

Writing interactive interfaces in Maude is relatively easy, and it is usually done to offer
a convenient interface to the logic and semantic frameworks specified in the language.
The archetype is Full Maude [10, §15], an extended interpreter written in Maude itself
where many features later implemented in C++ have been first tested. The functionality
of the Core Maude interpreter is replicated there along with additional features like tuple
types and object-oriented modules. Users can also extend Full Maude to include their
own features and commands. Moreover, since Maude 3 [14], the interactive capabilities
of Maude have increased due to new external objects that allow reading and writing
files as well as the standard input and output streams. External objects are an object-
oriented mechanism that allows Maude programs to communicate with the outside world,
already used in previous versions for Internet sockets. The standard CONFIGURATION

module defines an extensible signature for defining objects and messages, which are held
in a common soup or multiset where objects read and introduce messages by means
of rewriting rules. The command erewrite conducts rewriting of these configurations
following an object-fair strategy and handling the messages issued to and by the implicit
external objects. In this case, the STD-STREAM module in the file.maude file of the
Maude distribution declares the stdin and stdout objects, and the getLine/gotLine
and write/wrote messages to read and write to the terminal.

8

2.4. Model checking

Model checking is an automated verification technique that explores all possible exe-
cutions of a system to verify whether it meets a given specification. This umbrella term
comprises different algorithms and multiple variations, but its models are essentially
based on annotated transition systems K = (S,→, I, AP, ℓ) known as Kripke structures,
where → is a (sometimes labeled) binary relation and AP is a finite set of atomic propo-
sitions associated to each state by a labeling function ℓ : S → P(AP). Properties are
usually expressed in terms of these atomic propositions (and possibly on the labels of its
transitions) using some temporal logics that include temporal operators describing how
they occur in time. Examples of well-known logics are LTL [32], CTL [8], their superset
CTL* [20], and µ-calculus [6].

Rewriting systems can be naturally seen as Kripke structures whose states are terms
and whose transitions are one-step rule rewrites. Maude specifications can be model
checked against LTL properties since its 2.0 version thanks to a builtin model checker [19,
10, §12]. We have extended it for systems controlled by strategies [34], and for the other
logics mentioned in the previous paragraph [37]. Since strategies describe a subset or sub-
tree of allowed executions of the model, properties are satisfied by a strategy-controlled
model iff they are satisfied on this subset or subtree. The only question remaining is which
are the executions described by a Maude strategy language expression. This is answered
by a small-step operational semantics, respected by the model checker implementations.
For checking properties other that LTL, some external model checkers can be used, in-
cluding LTSmin [22], through an extensible model-checking interface umaudemc [33] that
unifies the interaction and the syntax of the logics. This interface is built over a library
that allows accessing Maude objects and operations from Python and other program-
ming languages. We use this library to adapt umaudemc for the various examples in this
paper.

3. An introductory example

This section is intended as a preface through a simple example to the metaprogram-
ming resources offered by Maude to manipulate and generate strategies from some data,
like the metarepresentation of a Maude module. We will follow the same method that is
applied to the more complex examples of the following sections and that can be applied
in general for other reflective transformations. In this example, a strategy will be gen-
erated to normalize terms while respecting certain constraints that are included in the
specification of a rewriting or functional program.

Context-sensitive rewriting [26] is a restricted form of term rewriting defined by simple
constraints attached to the symbols of the signature that exclude some of their arguments
from being rewritten. Maude has builtin support for this kind of restrictions by means
of the strat and frozen attributes.

op f : s1 · · · sn -> s [strat(i1 · · · ik 0) frozen(j1 · · · jl)] .

Regarding equational reduction, the evaluation strategy attribute strat specifies a zero-
terminated list of argument indices im ∈ {1, . . . , n} that fix the order in which arguments
are reduced before applying equations to the top, while absent arguments are not reduced
at all. By default, the evaluation strategy is 1 2 · · · n 0. Regarding rules, the frozen

9

attribute inhibits rewriting with rules inside a given subset of arguments jm ∈ {1, . . . , n}.
These restrictions may prevent non-terminating evaluations, but their direct application
is not enough to obtain irreducible terms, for which strategies are needed, as we will see
with a lazy programming example. Generating these strategies from the context-sensitive
restrictions is the purpose of our introductory metalevel transformation. Let us present
first the following functional module [15] that attempts to specify a lazy list of integers:2

fmod LAZY-LIST i s

p r o t e c t i n g INT .

s o r t LazyList .

op nil : -> LazyList [ctor] .

op _:_ : Int LazyList -> LazyList [ctor] .

va r E : Int . va r N : Nat . va r L : LazyList .

op take : Nat LazyList -> LazyList .

eq take (0, L) = nil .

eq take (s(N), E : L) = E : take (N, L) .

op natsFrom : Nat -> LazyList .

eq natsFrom (N) = N : natsFrom (N + 1) .

endfm

Even though natsFrom(n) represents an infinite list, containing all natural numbers
from n, we would expect that the lazy evaluation of a term like take(3, natsFrom(0))

leads to 0:1:2:nil. However, Maude’s reduce command eagerly applies equations in an
innermost leftmost manner, so the evaluation of this term will not terminate because of
the continuous reduction of the tails in the natsFrom definition. Fortunately, the Maude
strat attribute can be used on the _:_ operator to avoid reducing the tail of the list, by
changing its [ctor] attribute to [ctor strat(1 0)]. However, this context-sensitive
restriction limits rewriting too much, and no valid result is still produced:

Maude > reduce take (3, natsFrom (0)) .

rewrites : 2

result LazyList : 0 : take (2, natsFrom (0 + 1))

In the vocabulary of context-sensitive rewriting, strat and frozen annotations cor-
respond to replacement maps µ : Σ → P(N) where µ(f) ⊆ {1, . . . , arity(f)} for all f ∈ Σ.
Reduction is only allowed in the µ-replacing positions of any term, defined recursively as

Posµ(f(t1, . . . , tn)) = {ε} ∪
⋃

i∈µ(f)

{i}Posµ(ti),

where ε denotes the top position and the word wi the i-th argument of the subterm
at position w. Exhaustively reducing in these positions yields µ-normal forms, exactly
what the previous command did for take(3, natsFrom(0)) and µ(_:_) = {1}. As that

2Natural numbers are represented in Maude using Peano notation with a constant 0 and a succes-
sor operator s_, although numeric literals can also be written as syntactic sugar. Integers include an
additional constructor -_.

10

take

2 natsFrom

1

:

1 take

1 natsFrom

+

1 1

:

1 :

2 take

0 natsFrom

+

2 1

:

1 :

2 nil

µ-normalization

Figure 1: Layered normalization of take(2, natsFrom(1))

execution shows, µ-normal forms are not necessarily normal forms of the unrestricted
rewrite system, but µ-normalization can be useful to build complete and lazy normaliza-
tion procedures [15]. Normalization can be achieved via µ-normalization using a layered

evaluation that safely resumes reduction on the subterms of non-replacing positions [26,
§9.3], as illustrated in Figure 1 for the term take(2, natsFrom(1)). At each step, the
highlighted subterms at a given level of the term tree are applied µ-normalization, and
this continues to its arguments down to the leaves. This procedure is implemented by
means of a strategy proposed by Salvador Lucas [27], which would need to traverse the
term. Since the Maude strategy language does not offer any resource to do it generically,
a signature-aware strategy must be produced.

The following function csrTransform implements a metalevel module transformation
that extends the metarepresentation of the input module M with strategy declarations
and definitions that normalize terms as described in the previous paragraph. Its global
shape is given by the following equation.3

op csrTransform : Module -> StratModule .

eq csrTransform (M) = smod append(getName(M), ’CSR) i s

getImports (M) *** module importation

s o r t s ’AnyTerm ; getSorts (M) . *** sort decls

getSubsorts (M) *** subsort decls

strat2frozen (getOps(M)) *** operator decls

getMbs(M) *** sort membership axioms

none *** equations

getRls(M) *** rules

eqs2rls(getEqs(M))

getStrats (M) *** strategy decls

(s t r a t ’norm-via-munorm : nil @ ’AnyTerm [none] .)

(s t r a t ’munorm : nil @ ’AnyTerm [none] .)

(s t r a t ’decomp : nil @ ’AnyTerm [none] .)

getSds(M) *** strategy definitions

(sd ’norm-via-munorm [[empty]] :=

’munorm [[empty]] ; ’decomp [[empty]] [none] .)

3Strategy declarations must include the intended sort to which they are applied after the @ sign,
although this is merely informative and reasonable candidates do not always exist. Since the strategies
defined here are somehow polymorphic, we declare AnyTerm just to take its place.

11

(sd ’munorm [[empty]] := one(all) ! [none] .)

(sd ’decomp [[empty]] := makeDecomp (getOps(M)) [none] .)

endsm .

Except for the new strategies, the transformed module is essentially a copy of the original
one. However, since the Maude strategy language can only control rule application, we
translate all equations into rules,4 and all strat attributes to frozen annotations.

eq eqs2rls(none) = none .

eq eqs2rls(eq L = R [Attrs] . Eqs) =

rl L => R [Attrs] . eqs2rls (Eqs) .

eq eqs2rls(ceq L = R if C [Attrs] . Eqs) =

crl L => R if C [Attrs] . eqs2rls(Eqs) .

The transformed module is always a strategy module, regardless of which type of module
M is, where three strategies are declared. The entry point for the layered normalization
procedure is norm-via-munorm, which executes two auxiliary strategies munorm for µ-
normalization, and then decomp for resuming normalization inside frozen arguments.
munorm is implemented by exhaustively (!) applying the rules in the module respecting
the frozen restrictions (all). Assuming the input system is µ-confluent, i.e. confluent
under the context-sensitive restrictions, the order in which rules are applied does not
affect the result, so all is executed for efficiency under the one operator that discards
alternative rewrite orders. For its part, the decomp strategy continues normalization on
the symbol arguments. Strategies can be applied inside subterms in the Maude strategy
language using the matchrew combinator, so one is generated for each f ∈ Σ to apply
norm-via-munorm recursively to every subterm:

matchrew f(x1, . . ., xn) by . . ., xi using norm-via-munorm, . . .

The decomposition strategy decomp is defined as the disjunction of all these combinators.
Only the one for the top symbol of the term where it is applied on each occasion will
match. Since this definition depends on the signature of the module, decomp is reflectively
generated by the makeDecomp function that walks through the operators declared in the
module.

va r Q : Qid . va r Ops : OpDeclSet . va r N : Nat .

va r Ty : Type . va r NeTyL : NeTypeList .

op makeDecomp : OpDeclSet -> Strategy .

eq makeDecomp (none) = fail .

eq makeDecomp (op Q : nil -> Ty [Attrs] . Ops) =

(match qid(string(Q) + "." + string(Ty)) s.t. nil)

| makeDecomp (Ops) .

eq makeDecomp (op Q : NeTyL -> Ty [Attrs] . Ops) =

(matchrew Q[makeVarList (NeTyL , 1)] s.t. nil

by makeUsingPart (NeTyL , 1)) | makeDecomp (Ops) .

4Equations in Maude can be annotated with the owise attribute that cause them to be executed at
a certain position only if equations without this attribute have failed. Respecting the owise semantics
would require specifying strategies to apply their translation as rules likewise, but for simplicity we
assume that there are no owise annotations.

12

Constants (operators with an empty list nil of arguments) do not have arguments in
which normalization should be resumed, but they must also be matched by the decomp

strategy so that it does not fail when any of them is encountered.5 In this case, instead
of a matchrew, a test match is used with the metarepresentation of that constant as
described in Section 2.1. Auxiliary functions like makeVar and makeVarList are used to
generate sequentially-numbered variable metarepresentations of the given sorts for the
matchrew pattern. These variables are mapped to the norm-via-munorm strategy by
the makeUsingPart function.

op makeUsingPart : NeTypeList Nat -> UsingPairSet .

eq makeUsingPart (Ty , N) =

makeVar(N, Ty) using ’norm-via-munorm [[empty]] .

eq makeUsingPart (Ty NeTyL , N) = makeUsingPart (Ty , N),

makeUsingPart (NeTyL , s(N)) .

op makeVar : Nat Type -> Variable .

eq makeVar(N, Ty) =

qid("X" + string(N, 10) + ":" + string(Ty)) .

Finally, the term csrTransform(upModule(’LAZY-LIST, true)) can be reduced to
obtain the transformed ’LAZY-LIST module. Remember that upModule(

’name, true) evaluates to the flat metarepresentation of the module name where all
importations have been resolved. Then, the norm-via-munorm strategy can be applied
to a term using the metaSrewrite function, whose inputs and results are written at the
metalevel:

red metaSrewrite (csrTransform (upModule (’LAZY -LIST , true)),

’take [’s_ ^3[’0. Zero], ’natsFrom [’0. Zero]],

’norm -via -munorm [[empty]],

breadthFirst , 0) .

rewrites : 3123

result ResultPair : {’_:_[’0. Zero ,’_:_[’s_[’0. Zero],

’_:_[’s_ ^2[’0. Zero],’nil.LazyList]]],’ LazyList }

Alternatively, Full Maude can be used with terms and strategies at the object level:6

(select CSR -TRANSFORM .)

(load csrTransform (upModule (’LAZY -LIST , true)) .)

(select LAZY -LIST -CSR .)

(srewrite take (3, natsFrom (0)) using norm -via -munorm .)

Solution 1

result LazyList : 0 : 1 : 2 : nil

No more solutions

5Instead of including constants in the disjunction of the decomp strategy, we could have surrounded
the call to decomp with the try combinator so that it does not fail when no pattern matches.

6Full Maude commands are typed between parentheses, once the full-maude.maude file is loaded. Its
latest version can be downloaded from maude.cs.illinois.edu .

13

http://maude.cs.illinois.edu

The evaluation now terminates with a meaningful result. When the rewrite system is
confluent and terminating under the restrictions, as in this case, any search strategy,
breadthFirst or depthFirst, srewrite or dsrewrite, would produce the same result
since there is a single solution and a finite state space. The norm-via-munorm strategy
can be used to normalize any term in the module without computing the transformation
again. However, since it explicitly refers to the signature of that module, its definition is
not applicable to any other module.

The following section shows an extension of the Maude strategy language adding new
combinators based on the subject module in which strategies are to be applied. Using
that extended language the norm-via-munorm strategy will be defined directly and more
succinctly.

4. Theory-dependent extensions of the strategy language

When the Maude strategy language was designed, the objective was not to offer
a vast repertory of operators to concisely express a wide range of tasks, like in the
case of Stratego [7], but to be compact and expressive enough. Thanks to reflection,
the language can be extended to better suit a specific purpose or to incorporate a new
feature. In this section, we apply this principle and describe a general schema to construct
strategy language extensions by some module transformations without losing any of the
advantages of the strategy language, like the interaction at the object level and with
the strategy-aware model checker. In particular, the language is extended with the so-
called congruence operators from ELAN [4] and Stratego, and the generic traversals from
Stratego. Both operator families depend on the signature of the subject module where
strategies are applied, so a module transformation is required to implement them.

The procedure we will follow is directly applicable to other extensions, and it is
supported by a collection of helper modules that save work to the extension developer
and avoid writing boilerplate code for each extension. It consists of the following steps
illustrated in Figure 2:

1. Extending the universal theory of the META-LEVEL module with the metarepre-
sentation of the new strategy combinators, probably depending on the module M

where strategies are to be applied. This is similar to what we did in Section 3.

2. Since the builtin metaSrewrite function does not support the new combinators
and in order to execute them, extended expressions are translated to the standard
language by extending the skeleton of a transform function. Moreover, the trans-
lation allows using the strategy-aware model checker on extended strategies and all
other strategy-related machinery of the interpreter for free.

3. In order to write extended strategies at the object level, an extensible grammar
SLANG-GRAMMAR of the strategy language can be added productions for the new
operators. Strategies are parsed as terms with the builtin metaParse function, and
transformed to their metarepresentations by an extensible stratParse function.

4. A parameterized interactive Maude interface is provided to operate with extended
strategies completely at the object level. It admits extended strategies in its
srewrite command and in the strategy definitions of strategy modules. A umaudemc-
based program for model checking LTL, CTL*, and µ-calculus with these strategies
and modules is available too (see Section 2.4).

14

META-LEVEL SLANG-GRAMMAR

ext(M) extGram(M)

M

tα

β

metaParse

metaSrewrite

stratParse

transform

Figure 2: Typical structure of a strategy language extension

As a result, extended strategy expressions can be used almost anywhere an original
expression could have been used, although not directly in the commands of the Maude
interpreter. Since strategies are translated to the standard strategy language, some
extensions are not easily implemented using this approach, as we discuss at the end of
the section.

As said, we will exemplify this procedure with two families of operators that are
not available in the Maude language. Congruence operators f(α1, . . . , αn) are strategy
combinators that reproduce the data constructors of the target module f(t1, . . . , tn) with
their arguments replaced by strategies, which are applied to the corresponding arguments
of the subject term’s top symbol if they coincide. In other words, they are semantically
equivalent to a matchrew construct of the form

f(α1, . . ., αn) ≡ matchrew f(x1, . . ., xn) by x1 using α1, . . ., xn using αn.

On the other hand, generic traversals are operators that allow applying a strategy along
the structure of any term without explicitly mentioning it: gt-all(α) applies α to all
arguments of the top symbol, gt-one(α) applies α to the first argument from left to
right in which it succeeds, and gt-some(α) applies α to as many children as possible
and at least to one, so it is equivalent to test(gt-one(α)) ; gt-all(try(α)).7

Congruence operators. First, we extend the metalevel with the metarepresentations of
congruence operators: a homonym symbol of sort Strategy is introduced for each data
constructor of M taking as many Strategy arguments as the arity of the original one:

op generateCongOps : OpDeclSet -> OpDeclSet .

eq generateCongOps (none) = none .

eq generateCongOps (op Q : TyL -> Ty [ctor Attrs] . Ops) =

(op Q : repeatType (’Strategy , size (TyL))

-> ’Strategy [ctor removeId (Attrs)] .)

generateCongOps (Ops) .

eq generateCongOps (Op Ops) = generateCongOps (Ops) [owise] .

The auxiliary function repeatType builds a list with the given number of repetitions
of its first argument, and removeId removes identity axiom attributes of the original
operators, which are meaningless in the congruence operators. Overloaded symbols may

7The original names of generic traversal operators in Stratego do not include the gt- prefix, which is
used here to avoid confusion with the one and all operators of the strategy language.

15

produce different conflicting declarations if their attributes do not coincide, so generated
operators are given a second pass to remove potential conflicts.

Extended strategies can now be expressed at the metalevel, but since the builtin
metaSrewrite is unaware of these new operators and we do not want to implement the
strategy language from scratch, we should translate them to the standard subset. This
translation is defined in the extended META-LEVEL as a function transform between terms
of sort Strategy. The complete recursive definition of this function would be large and
repetitive, so an extendable and generic one is supplied to facilitate the task of defining
extensions. This is provided by the SLANG-EXTENSION-STATIC module to be included in
the transformed module, where equations are given for the standard constructors and
the user only has to provide equations for the new elements.

fmod SLANG-EXTENSION-STATIC i s

p r o t e c t i n g META-LEVEL .

op transform : Strategy Nat -> Strategy .

va r N : Nat . va r S : Strategy .

eq transform (idle , N) = idle .

eq transform (top(S), N) = top(transform (S, N)) .

...

endfm

The transform operator takes a natural number as a second argument, used as an index
to generate fresh variables in nested matchrews, since their bindings are permanent.
Some helper functions like makeVar and makeConstant that already appear in the previ-
ous example are included in the module too. Note that the equations defining transform

are generated by the module transformation, so they must metarepresent Strategy terms
and involve two levels of reflection.

op generateCongOpsDefs : OpDeclSet -> EquationSet .

eq generateCongOpsDefs (none) = none .

eq generateCongOpsDefs (op Q : NeTyL -> Ty [ctor Attrs] . Ops) =

(eq ’transform [Q[makeStratVars (size (NeTyL))], ’N:Nat] =

’matchrew_s.t._by_ [

’_‘[_‘][upTerm(Q), ’makeOpVars [upTerm(NeTyL), ’N:Nat]],

’nil.EqCondition ,

’makeUsingPairs [upTerm(NeTyL),

wrapStratList (makeStratVars (size (NeTyL))),

’_+_[’N:Nat , upTerm(size (NeTyL))], ’N:Nat]

] [none] .)

generateCongOpsDefs (Ops) .

eq generateCongOpsDefs (op Q : nil -> Ty [ctor Attrs] . Ops) =

(eq ’transform [qid(string(Q) + ".Strategy "), ’N:Nat] =

’match_s.t._ [makeConstant (Q, Ty), ’nil.EqCondition] [none] .)

generateCongOpsDefs (Ops) .

eq generateCongOpsDefs (Op Ops) =

generateCongOpsDefs (Ops) [owise] .

16

The second equation generates the matchrew constructs described at the beginning of
the section, and again, simpler match tests are used for constants. Variable names are
generated from the index passed as the second argument of transform, which is increased
in recursive calls to ensure that the index is not used again in a subterm. Just like when
declaring them, the same congruence operator may receive multiple transform equations
for different overloaded data constructors, so they are combined afterwards in a strategy
disjunction.

eq combineCongOpsDefs (Eqs

(eq ’transform [T, ’N:Nat] = T1 [none] .)

(eq ’transform [T, ’N:Nat] = T2 [none] .)) =

combineCongOpsDefs (Eqs

eq ’transform [T, ’N:Nat] = ’_|_[T1 , T2] [none] .) .

eq combineCongOpsDefs (Eqs) = Eqs [owise] .

Generic traversals. Since the strategy language does not provide the means to perform
generic traversals of terms, and since we have chosen to translate extended strategies to
standard ones, we should implement generic traversals using module-specific strategies.
Namely, we can translate the strategy gt-all(α) to the disjunction of f(α, . . ., α) for
all f ∈ Σ, and gt-one(α) using the disjunction for all f of

f (α, i d l e , . . ., i d l e) o r - e l s e · · · o r - e l s e f (i d l e , i d l e , . . ., α).

These still extended strategies are translated to the standard language as explained
before. For instance, the strategies in the disjunction to which gt-all is translated can
be built with the following equations:

op generateGTAll : OpDeclSet -> TermList .

eq generateGTAll (none) = empty .

eq generateGTAll (op Q : NeTyL -> Ty [ctor Attrs] . Ops) =

Q[repeatTerm (’S:Strategy , size (NeTyL))],

generateGTAll (Ops) .

eq generateGTAll (op Q : nil -> Ty [ctor Attrs] . Ops) =

makeConstant (Q, ’Strategy), generateGTAll (Ops) .

eq generateGTAll (Op Ops) = generateGTAll (Ops) [owise] .

The final shape of the extended metalevel with congruence operators and generic traver-
sals is given by the equation below. Generic traversals are defined directly with equations
instead of using transform, because they do not explicitly mention any variable indices.

eq extendCongOps (M) = fmod append(’META-LEVEL , getName (M)) i s

(ex t end i ng ’SLANG-EXTENSION-STATIC .)

s o r t s none .

none *** subsorts

combineCongOps (generateCongOps (getOps(M)))

(op ’gt-all : ’Strategy -> ’Strategy [none] .)

(op ’ gt -one : ’Strategy -> ’Strategy [none] .)

(op ’gt-some : ’Strategy -> ’Strategy [none] .)

none *** membership axioms

combineCongOpsDefs (generateCongOpsDefs (getOps(M)))

(eq ’gt-all[’S:Strategy] =

17

’_|_[generateGTAll (getOps(M))] [none] .)

(eq ’ gt -one [’S:Strategy] =

’_|_[generateGTOne (getOps(M))] [none] .)

(eq ’gt-some[’S:Strategy] =

’_|_[generateGTSome (getOps(M))] [none] .)

endfm .

The META-LEVELmodule is imported transitively via the already-known module SLANG-EXTENSION-STATIC.
The complete specification is available in the strategy language example collection [18].

Object-level usage. Writing extended strategies like f(r1[none]{empty}, gt-all(match

’0.Zero s.t. nil)) at the metalevel and executing them with metaSrewrite is pos-
sible with what we have introduced so far. However, we want to be able to write them
at the object level, like f(r1, gt-all(match 0)), and to use them anywhere a standard
strategy can be used, namely, as arguments of the srewrite commands and in strategy
definitions within modules. This kind of extensions cannot be directly handled by the
Core Maude interpreter, but they can be supported through Full Maude or by custom
interactive interfaces [9, 11, §17]. The second option has been chosen.

As stated at the beginning of the section, a parser for the extended strategy lan-
guage at the object level is required, for which an extensible grammar of the standard
strategy language is provided as the SLANG-GRAMMAR in Figure 2. The developer of the
extension should complement it with the productions for the new strategy combinators.
Moreover, some module-dependent productions available in the standard strategy lan-
guage (rule labels for their application, sort membership tests, . . .) can be added with
a function provided in the skeleton. Thus, we should extend SLANG-GRAMMAR as we did
with META-LEVEL. Using the predefined parsing function metaParse, extended strategy
expressions can be parsed and then translated to their representations in the extended
metalevel. The skeleton of a stratParse function to convert the terms parsed by this
grammar to the Strategy sort is declared and defined for the standard combinators, like
the previous transform, so that its definition only has to be completed for the new ones.
This closes the procedure depicted in Figure 2. In addition to the grammar of expres-
sions, a limited grammar of strategy modules is already specified to parse those with
extended strategies in their definitions, which are translated to the builtin subset in the
transformed module. A parametric object-oriented module specifies an interactive inter-
face with an adapted srewrite command, where extended modules can be entered. The
interface uses the external objects of Maude 3 for standard input/output communication
and the above procedure to parse and execute the strategies.

For example, the layered normalization strategy norm-via-munorm of Section 3 can
be specified using a short recursive definition with generic traversals that resumes µ-
normalization in all arguments of the term. The translation from equations (and from
strat annotations to frozen annotations) in LAZY-LIST, which was automatically done
by the previous transformation, has been manually done here.

smod LAZY-LIST-STRAT i s

p r o t e c t i n g LAZY-LIST-RLS .

s t r a t norm-via-munorm @ LazyList .

sd norm-via-munorm := one(a l l) ! ; g t - a l l (norm-via-munorm) .

endsm

18

The strategy definition is completely generic, although it is parsed in the particular
LAZY-LIST-RLS module and translated to the standard subset according to it. In fact,
the transformed strategy is essentially the same obtained in Section 3.

** Strategy language extensions playground **

SLExt > smod LAZY -LIST -STRAT is ... endsm

Module LAZY -LIST -STRAT is now the current module.

SLExt > srew take (3, natsFrom (0)) using norm -via -munorm .

Solution 1: 0:1:2: nil

No more solutions .

Another example, where congruence operators are used, is the following module that
defines two constants a and b, a binary function f, a rule swap that swaps the entries of
f, and another rule next that rewrites a to b.

mod FOO i s

s o r t Foo .

ops a b : -> Foo [ctor] .

op f : Foo Foo -> Foo [ctor] .

v a r s X Y : Foo .

r l [swap] : f(X, Y) => f(Y, X) .

r l [next] : a => b .

endm

The extended strategy f(swap, gt-all(next)) can then be executed:

SLExt > select FOO .

Module FOO is now the current module.

SLExt > srew f(f(a,b), f(a,a)) using f(swap , gt -all(next)) .

Solution 1: f(f(b, a), f(b, b))

No more solutions .

Model checking. In addition to the ability of writing strategy expressions at the object
level, another feature of the strategy language we want to preserve is the possibility of
model checking systems controlled by strategies. Since extended strategies are finally
translated into a strategy expression in the standard strategy language of the original
module, model checking with extended strategies is straightforward. In the distribution
of the language extension skeleton, a simple Python script makes Maude parse and
translate the strategies according to the procedure of Figure 2 before passing the problem
data to the unified model-checking library umaudemc, where the internal and external
model checkers are used to verify LTL, CTL*, and µ-calculus properties (see Section 2.4).
However, this procedure could have been done entirely in Maude, if we only want to check
LTL properties using the builtin model checker.

Limitations of the approach. This extension procedure can be easily generalized to allow
modifications on the subject module where strategies are applied, or to be parametric also
on the strategy expression to be evaluated. For example, inline strategy definitions like
let st(t1, . . ., tn) := β in α can be implemented by pulling the strategy definition

19

in the expression to the target module. However, strategy combinators that are not
expressible in the Maude strategy language could not be handled with this approach.
Various executable semantics of the strategy language are available to implement other
lower-level extensions [18].

5. Multistrategies

The strategy-controlled system model proposed in Maude is the combination of a
rewrite system and a strategy expression that controls it as a whole. However, many
systems are better specified compositionally. Typical examples are object- or agent-
oriented systems, in which each object or agent would follow its own strategy. Likewise,
describing the interaction of players in games with a single sequential strategy control
flow is cumbersome. Hence, we propose the following model transformation to facilitate
this specification problem. Instead of a single strategy expression α, the system control
will be specified by a multistrategy: an undetermined number of strategies α1, . . . , αn and
a global strategy γ that describes how they are combined. Two builtin γ are provided: a
concurrent one, in which the next strategy to take a step can be any one of them, and a
turn-based one, in which strategies are executed in a fixed order. For example, we could
provide each agent of an agent-based system with its own strategy αk that defines its
behavior autonomously. Each strategy can be understood as the program of a concurrent
thread of execution, which is interrupted and resumed to allow the interleaved interaction
of the agents after every rewrite. Alternatively, we could fix an order and make them
be executed in turns, as if they were players in a game. A fundamental question is the
amount of atomic work done by a strategy αi when it is given control, in other words,
the granularity of their interleaving in the global execution. A single rule application is a
reasonable atomic step, but a few more strategies are executed atomically like matchrews
with a non-trivial pattern and conditions in the conditional operator, since they assume
a particular structure or invariant of the term that may not be preserved if another
strategy thread modifies the term in the meantime.

Multistrategies are implemented using strategies at the metalevel and an augmented
execution environment. Essentially, to evaluate the strategies α1, . . . , αn on the subject
term t, they are transformed into the term { t :: < 1 % α1 > · · · < n % αn >, M

} that includes the metarepresentation t of the subject term, of the strategies αi, and
of the module M where they are evaluated. The evolution of this execution context
is defined by some rules, which modify the strategy representations and execute them
according to their semantics, governed by the global strategy γ. The rules that do not
alter the subject term (but choose alternatives, expand iterations. . .) are called control

rules, and those modifying the term with rules of the underlying system are called system

rules. These rules and their two categories are directly based on a small-step operational
semantics proposed for the strategy language [34]. With control(N) and system(N)

being the disjunction of all control and system rules applied to the thread N, global
control strategies, like turn(N, M) for executing M strategies in turns starting from the
Nth one and freec to execute them concurrently, can be specified as follows:

v a r s N M K : Nat . va r T : Term . va r : Strategy .

va r Mod : Module .

20

sd =>>(N) := control (N) * ; system(N) .

sd turns(N, M) := =>>(N) ? turns(s(N) rem M, M) : i d l e .

sd freec := (matchrew C s . t . { T :: < N by C u s i ng =>>(N)) ? freec : i d l e .

The =>> strategy specifies the atomic step of a strategy thread execution as explained
before.8 The definitions of the γ strategies turns and freec apply this atomic step =>>

with indices that are respectively increased cyclically or selected nondeterministically by
matching. Note that the turns strategy stops when the current strategy is unable to
continue, while freec halts when all threads are stuck. Custom global strategies can be
easily defined for other general or specific purposes. For example, the freec strategy can
also be bound on the number of steps:

sd freec (0) := i d l e .

sd freec(s(K)) := (matchrew C s . t . { T :: < N := C by C u s i ng =>>(N)) ? freec(K) : i d l

Further details on the transformation are discussed in Section 5.2, and the complete
commented Maude code is available at [18].

Auxiliary operations and an interactive environment have been prepared to easily
execute multistrategies at the object level, and to obtain meaningful counterexample
traces when model checking these systems. The interactive environment is similar to
that used for the language extensions in Section 4, with a command for rewriting with
multistrategies srewrite t using α1, . . . , αn by γ, where γ can be the words turns

or concurrent for the predefined strategies, or custom followed with an arbitrary ex-
pression. Another command check ϕ from t using α1, . . . , αn by γ checks the LTL
property ϕ on the given multistrategic model. Branching-time properties can also be
checked using an external umaudemc-based command line tool.

Let us illustrate the execution of multistrategies with the simple LLIST example of Sec-
tion 2.2, which specifies a list of letters (a, b, c, . . .) that can be appended with a put

rule, and a strategy seq that does so with a list of them in order. After loading that mod-
ule and the interactive interface in multistrat-iface.maude, we can execute multiple
seq calls by turns or concurrently:

** Multistrategies playground **

MStrat > select LLIST .

MStrat > srew nil using seq(a b), seq(c d) by turns .

Solution 1: a c b d

No more solutions .

MStrat > srew nil using seq(a b), seq(c d) by concurrent .

Solution 1: a b c d

...

Solution 6: c d a b

No more solutions .

More interesting examples have been specified using multistrategies [18], including the
specification of the Lamport’s bakery algorithm and the tic-tac-toe game, where relevant
properties are model checked using different combinations of process or player strategies.
This latter example is studied in the following section.

8The concepts of control transition, system transition, and the composed relation =>> are already
present in the small-step operational semantics used to define model checking for systems controlled by
the Maude strategy language [34], as both pursue the similar purpose of isolating rule applications.

21

5.1. Multistrategies playing games: the tic-tac-toe

Tic-tac-toe or noughts and crosses is a popular game in which two players, circles and
crosses, take turns putting their symbols in a 3x3 grid to complete a vertical, horizontal,
or diagonal sequence of cells. The first player to achieve the goal is the winner. Tic-
tac-toe is a solved game that always ends in a draw if no player makes a mistake. In
this section, we will specify a flawless strategy for a player, and use the model checker to
prove that it actually is. But before that, the representation of the board and the rules
should be specified.

fmod TICTACTOE i s

p r o t e c t i n g NAT .

p r o t e c t i n g EXT-BOOL .

s o r t s Position Player Grid .

ops O X - : -> Player [ctor] .

op [_,_,_] : Nat Nat Player -> Grid [ctor] .

op empty : -> Grid [ctor] .

op __ : Grid Grid -> Grid [ctor assoc comm id: empty] .

The Grid sort’s elements are sets of triples that map a coordinate on the game board to
the player that occupies that position, O for circles, X for crosses, and - to mean an empty
position. In order to decide whether a game is finished, some predicates are defined in
order to detect complete rows in every possible direction.

ops hasHRow hasVRow hasDRow : Player Grid -> Bool .

v a r s I1 I2 I3 J : Nat . va r G : Grid . va r P : Player

eq hasHRow(P, [I1 , J, P] [I2 , J, P] [I3 , J, P] G) = true .

eq hasHRow(P, G) = false [owise] .

As a commutative and associative operator, the grid matches the definition pattern if
the entire row J belongs to player P for some J. Predicates for the other directions are
defined similarly. Using them, winning is defined by the following disjunction:

op hasWon : Player Grid -> Bool .

eq hasWon(P, G) = hasHRow(P, G) or-else hasVRow (P, G)

or-else hasDRow (P, G) .

endm

where or-else is a short-circuit version of the logical disjunction provided by the prede-
fined module EXT-BOOL. The game module also defines a constant initial for the initial
grid of empty positions [k, l, -] for all 1 ≤ k, l ≤ 3.

In the system module TICTACTOE-RULES, the player movements are represented by
two rules putO and putX that simply place its symbol on an empty position.

mod TICTACTOE-RULES i s

p r o t e c t i n g TICTACTOE .

v a r s I J : Nat .

22

r l [putO] : [I, J, -] => [I, J, O] .

r l [putX] : [I, J, -] => [I, J, X] .

endm

In these terms, we can define strategies for playing the game in a strategy module
TICTACTOE-STRAT. The simplest and most unconscious strategy is the free application of
the put rules, but stopping when the game is over. This is what the following random

strategies do:

smod TICTACTOE-STRAT i s

p r o t e c t i n g TICTACTOE-RULES .

s t r a t s randomO randomX @ Grid .

v a r s G R : Grid . v a r s I1 I2 I3 I J : Nat . va r P : Player .

sd randomO := (match G s . t . not hasWon(X, G) ; putO)

? randomO : i d l e .

sd randomX := (match G s . t . not hasWon(O, G) ; putX)

? randomX : i d l e .

Note that random does not mean that the positions are chosen randomly, but that any
of them can be chosen, and so the strategy search commands will explore all possible
selections. Moreover, randomX and randomO are not mutually recursive, since each rep-
resents the strategy of a different player and turns are handled by the multistrategies
framework. These strategies can be improved with certain easy intuitions about more
clever movements. For example, if the current player already has two positions in a row
and the third one is empty, the symbol should be put there to win immediately. Other-
wise, if that situation occurs for the opponent, the active player should occupy the empty
position to prevent the other player from winning in its next turn. This is specified by
the following betterO strategy for the player O (similarly for the X player).

s t r a t s betterO betterX @ Grid .

sd betterO := (match G s . t . not hasWon(X, G) ;

((matchrew G s . t . [I, J, -] R := winningPos (O, G)

by G u s i ng putO [I <- I, J <- J])

o r - e l s e

(matchrew G s . t . [I, J, -] R := winningPos (X, G)

by G u s i ng putO [I <- I, J <- J])

o r - e l s e

putO)) ? betterO : i d l e .

The winningPos(P, G) function returns a set of sort Grid with all the positions where
player P can complete a row. These are calculated equationally, by pattern matching
again.

ops winningPos winningHPos winningVPos winningD1Pos

winningD2Pos : Player Grid -> Grid .

eq winningPos (P, G) = winningHPos (P, G) winningVPos (P, G)

23

winningD1Pos (P, G) winningD2Pos (P, G) .

eq winningHPos (P, [I1 , J, P] [I2 , J, P] [I3 , J, -] G) =

[I3 , J, -] winningHPos (P, G) .

eq winningHPos (P, G) = empty [owise] .

Functions to find vertical and diagonal rows are defined similarly. At this point, we can
then ask ourselves whether this strategy is perfect, i.e. whether it always leads to the best
possible outcome: not losing the game no matter how the other player behaves. Using
the integrated model checker, we can formally verify it. Making X play with better and
O play with random, i.e. trying all possible moves for O, the property �¬Owins tells us
whether better is optimal.

MStrat > select TICTACTOE -CHECK .

Module TICTACTOE -CHECK is now the current module.

MStrat > check [] ~ Owins from initial

using betterX , randomO by turns .

| initial

∨ 0 does putX

| [1, 1, -] .. [3, 2, -] [3, 3, X]

∨ 1 does putO

| [1, 1, -] [3, 1, -] [3, 2, O] [3, 3, X]

∨ 0 does putX

| [1, 1, -] [2, 3, -] [3, 1, X] ... [3, 3, X]

∨ 1 does putO

| [1, 1, -] ... [1, 3, -] ... [2, 3, O] [3, 3, X]

∨ 0 does putX

| [1, 1, -] ... [1, 3, X] ... [2, 2, -] [3, 3, X]

∨ 1 does putO

| [1, 1, -] [2, 1, -] [2, 2, O] [3, 3, X]

∨ 0 does putX

| [1, 1, -] [1, 2, -] ... [2, 1, X] [3, 3, X]

∨ 1 does putO

X [1, 1, -] [1, 2, O] .. [3, 3, X]

And it is not, since the counterexample (where we have removed the positions that have
not changed) shows an execution in which the circles win even if the crosses play the
better strategy. In fact, the only situation where the intelligence of the strategy is
actually used is the last move for X, when O has two winning positions in the middle
vertical and horizontal row that X cannot block at the same time.

Hence, better is not a perfect strategy, and further precautions should be taken not
to make mistakes. In Table 1 of [13], we can find a script of a perfect strategy for playing
tic-tac-toe, which is similar to the algorithm used by the Newell and Simon’s tic-tac-toe
program in 1972. This script includes various rules to play, which we will call actions not
to confuse them with rewriting rules, that are not necessarily exclusive. For the strategy
to be effective, these actions must be executed in order, applying at each step the first
possible one. The first two are those included in better, (1) Win that completes the row
where there are already two positions of the current player, and (2) Block that prevents
the opponent from doing so in the next turn.

s t r a t s perfectO perfectX @ Grid .

s t r a t perfect-step : Player @ Grid .

24

sd perfectO := (match G s . t . not hasWon(X, G) ;

perfect-step (O)) ? perfectO : i d l e .

sd perfectX := (match G s . t . not hasWon(O, G) ;

perfect-step (X)) ? perfectX : i d l e .

sd perfect-step (P) :=

*** Win

(matchrew G s . t . [I, J, -] R := winningPos (P, G)

by G u s i ng put(P, I, J))

o r - e l s e

*** Block

(matchrew G s . t . [I, J, -] R := winningPos (opponent (P), G)

by G u s i ng put(P, I, J))

o r - e l s e

*** Fork

(put(P) ; hasFork (P))

o r - e l s e

*** Blocking an opponent ’s fork

(t e s t (put(opponent (P)) ; hasFork (opponent (P))) ; put(P) ;

*** The opponent cannot fork

(not (put(opponent (P)) ; hasFork (opponent (P)))

*** The opponent is forced to block rather that fork

| (matchrew G s . t . [I, J, -] R := winningPos (P, G)

by G u s i ng not (put(opponent (P), I, J) ;

hasFork (opponent (P)))))

)

o r - e l s e

*** Center

put(P, 2, 2)

o r - e l s e

*** Opposite corner

((matchrew [I, I, Q] G s . t . I =/= 2 /\ Q = opponent (P)

by G u s i ng put(P, sd (4, I), sd (4, I)))

| (matchrew [I, J, Q] G s . t . I =/= 2 /\ J =/= 2

/\ Q = opponent (P) by G u s i ng put(P, J, I)))

o r - e l s e

*** Empty corner

(put(P, 1, 1) | put(P, 3, 3) |

put(P, 1, 3) | put(P, 3, 1))

o r - e l s e

*** Empty side

(match G s . t . P == O ? (putO [I <- 2] | putO[J <- 2])

: (putX [I <- 2] | putX [J <- 2]))

The or-else combinator guarantees that actions are applied in order. So as not to
define the same strategy twice for each player, as we have done with the previous shorter
strategies, the perfect-step strategy takes the player as an argument, and the put

strategy and the opponent function have been specified.

s t r a t put : Player Nat Nat @ Grid .

sd put(X, I, J) := putX [I <- I, J <- J] .

25

sd put(O, I, J) := putO [I <- I, J <- J] .

s t r a t put : Player @ Grid .

sd put(X) := putX .

sd put(O) := putO .

op opponent : Player ~> Player .

eq opponent (X) = O .

eq opponent (O) = X .

After the actions already present in better, the strategy tries (3) Fork to obtain
two winning positions for the next turn, so that winning is guaranteed unless the other
player completes a row immediately. Instead of calculating these positions equationally,
our strategy puts a symbol randomly and then checks whether there is a fork, with the
following strategy:

s t r a t hasFork : Player @ Grid .

sd hasFork(P) := match G s . t . size (winningPos (P, G)) >= 2 .

The next actions are (4) Block fork that prevents the opponent’s fork, (5) Center that
occupies the center position, (6) Opposite corner that fills the diagonally-opposite corner
of an opponent’s position, (7) Empty corner that puts the symbol in any corner, and
finally (8) Empty side that uses a side instead. Note that the Empty side action is
the only remaining possibility when the previous actions have been discarded, so it is
equivalent to write simply put(P) instead of the specific strategy we have used in the
perfect-step definition.

Using the check command and the same property again, we discover that perfect

is actually perfect no matter which player starts.

MStrat > check [] ~ Owins from initial

using perfectX , randomO by turns .

The property is satisfied .

MStrat > check [] ~ Owins from initial

using randomO , perfectX by turns .

The property is satisfied .

However, the strategy does not ensure that X eventually wins. The game may end in a
draw, as shown by the following counterexample, which has been drawn in Figure 3.

MStrat > check <> Xwins from initial

using perfectX , randomO by turns .

| initial

∨ 0 does perfect -step

| [1, 1, -] [2, 2, X] [3, 3, -]

∨ 1 does putO

| [1, 1, -] .. [3, 3, O]

∨ 0 does perfect -step

| [1, 1, X] .. [3, 1, -] ... [3, 3, O]

∨ 1 does putO

| [1, 1, X] [3, 1, O] [3, 2, -] [3, 3, O]

∨ 0 does perfect -step

| [1, 1, X] [1, 2, -] [3, 2, X] [3, 3, O]

∨ 1 does putO

26

Center Opposite corner

Block Empty corner Empty side

Figure 3: Game where perfectX does not win against randomO.

| [1, 1, X] [1, 2, O] [1, 3, -] [3, 3, O]

∨ 0 does perfect -step

| [1, 1, X] [1, 3, X] [2, 3, -] [3, 3, O]

∨ 1 does putO

| [1, 1, X] [2, 1, -] ... [2, 3, O] [3, 3, O]

∨ 0 does perfect -step

X [1, 1, X] [2, 1, X] [3, 3, O]

In particular, both players can play the perfect strategy, and then no one wins.

MStrat > check [] (~ Owins /\ ~ Xwins) from initial

using perfectX , perfectO by turns .

The property is satisfied .

Finally, we wonder whether the perfect strategy we have adopted from [13] is concise
or it can be simplified. Repeating the check commands with variations of the strategy, we
can see that the last three actions, Opposite corner, Empty corner, and Empty side, can
be replaced by the unrestricted put(P), and so this distinction is superfluous. However,
this simplification cannot be extended to the Center action without losing perfection.
Other combinations of rules can be safely removed too.

Not only the check command is useful in this example, but the srewrite command
allows obtaining, for instance, all final configurations of the game using certain strategies.

MStrat > srew initial using perfectX , randomO by turns .

Solution 1: [1, 1, -][1, 2, -][1, 3, X]

[2, 1, -][2, 2, X][2, 3, -]

[3, 1, X][3, 2, O][3, 3, O]

...

Solution 134: [1, 1, O][1, 2, X][1, 3, O]

[2, 1, O][2, 2, X][2, 3, X]

[3, 1, X][3, 2, O][3, 3, X]

No more solutions

27

5.2. A deeper look into the implementation

Unlike the previous metalevel transformations, multistrategies are not handled by
an equational static manipulation of the original module and its strategies. Instead,
the term to be rewritten and the multiple strategies that act on it are operated at the
metalevel during their execution. The execution context for the multistrategies is not
strictly parametric on the subject system, but contains it as data while being rewritten
in the system module MULTISTRAT. The already-seen context { t :: < 1 % α1 > · · ·
< n % αn >, M } is specified as:

s o r t s MSContext MSThread MSThreadSet .

s u b s o r t MSThread < MSThreadSet .

op <_op none : -> MSThreadSet [ctor] .

op __ : MSThreadSet MSThreadSet -> MSThreadSet

[ctor assoc comm id: none] .

op {_::_,_} : Term MSThreadSet Module -> MSContext [ctor] .

The key fact that lets us follow the execution of the multiple strategies on the subject
term is that contexts are univocally associated to terms, and their transitions to their
transformations, as we will see.

op getTerm : MSContext -> Term .

eq getTerm ({ T :: TS , M }) = T .

The multiple strategy threads are run on these contexts by several rules that reim-
plement at some extent the execution of strategies. As said before, some rules only
manipulate and decompose strategies, while others may modify the term being rewrit-
ten. For example, the following are control transitions for the iteration and disjunction
combinators:

r l [ms-reduct] : < N r l [ms-reduct] : < N

c r l [ms-choose] : < N i f S1 =/= f a i l /\ S2 =/= f a i l .

System transitions are performed by the following rule that executes the strategy S:

c r l [ms-run] : { T :: < N => { T’ :: < N i f S =/= idle

/\ atomicStrategy (S)

/\ T’ ; Ts := allSuccs (M, T, S) .

Among the strategies considered atomicStrategy there are not only rule applications,
but also matchrew strategies with multiple patterns, as we have said, since they assume
a fixed structure of the term along all its execution, which may otherwise be broken by
another thread acting on the term. The successors of atomic strategies are calculated
using the builtin Maude engine via metaSrewrite. However, to nondeterministically
select one of the possible successors, we have to collect all of them in a set with the
allSuccs function, and let the rule be instantiated with each by matching the E’ ; Es

pattern on that set of terms. Another atomic action is the evaluation of conditions in
conditional operators by the following rule:

c r l [ms-cond] : { T :: < N => { T’ :: < N i f T’ ; Ts := allSuccs (M, T, S1) .

Finally, all these rules are gathered in the strategies control and system that lead
us to the overview at the beginning of this example.

28

s t r a t s control system : Nat @ MSContext .

sd system(N) := ms-cond [N <- N] o r - e l s e ms-run[N <- N] .

sd control(N) := ms-reduct [N <- N] | ... | ms-def[N <- N] .

The Maude-based interactive interface and the command-line program to verify branching-
time properties are programmed similarly to that for the strategy language extensions
seen in Section 4.

Unlike the previous examples in Sections 3 and 4, the reflective implementation of
multistrategies just explained operates with the metarepresentation of the strategies at
run time, instead of producing or compiling a new module that is then executed by Maude
at the object level. Hence, a sometimes noticeable performance penalty is to be expected
when executing and model checking with multistrategies. For example, in the Lamport’s
bakery algorithm mentioned before and available in the example collection [18], generat-
ing the entire state space requires 50 seconds with multistrategies but only 200 ms using
a less natural alternative strategy that is also included in this specification. However, a
more efficient and complex transformation of the first style or a direct implementation
could be developed if multistrategies need to scale for more complex applications.

6. Related work and conclusions

As we have indicated throughout the paper, the reflective capabilities of Maude have
widely been used to build extensions of Maude and frameworks for specific languages
and utilities. In addition to Full Maude and the Maude Formal Environment [17], other
relevant examples are Real Time Maude [31] for specification and verification of real-
time systems, and the mobile agents extension Mobile Maude [16]. On the other hand,
the strategy language was introduced to control rewriting at the object level without
the conceptual difficulties of reflective computations and the intricate shape of metalevel
programs. However, some tasks still require resorting to the metalevel, like writing these
interactive interfaces or generating strategies depending on the specification or some input
data. While Maude has a singular support for reflection and strategies, other strategy
languages can also benefit from manipulating and programatically generating strategies
as proposed in this paper. The pioneer strategy language ELAN does not originally
come with reflective support, but a reflective extension was proposed [23] where these
transformations can be implemented. However, its universal theory does not apparently
represent the strategy language combinators themselves, so manipulating strategies could
not be straightforward. Partially based on the experience of ELAN, the Porgy graph-
rewriting language [21] is reflective since its rewrite rules are graphs themselves that can
also be rewritten, but this does not cover its strategy language. Since the Stratego [7]
toolset is designed for program transformation, what has been done in this paper could
be naturally achieved there. Moreover, some reflective transformations used as examples
in this paper would not be necessary in Stratego, since its strategy language is more
flexible and supports all the operators we have implemented in Section 4. In a broader
sense, programmable strategies are only general programs whose atomic actions are rule
applications, so what is proposed here does not differ much of what could be done in
other reflective programming languages.

With the examples provided in this paper, we aim to show that manipulating, trans-
forming, and generating strategies is accessible and has useful applications. The reflective

29

representation of the object-level strategy language provides the means to easily do this
within Maude, while having strategies executed by the efficient builtin engine. The
first example in Section 3 shows that strategies can be readily generated to solve specific
problems related to program evaluation; the second one in Section 4 allows extending the
strategy language with new operators and experiment with them; and the multistrate-
gies of Section 5 can be useful to specify, simulate, and verify systems with distributed
control like agent-based or object-oriented systems and games. Another interesting exam-
ple involving strategy generation is a framework for simulating and verifying membrane
systems [36].

Declaration of competing interest. The authors declare that they have no known com-
peting financial interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements. Research partially supported by MCI Spanish projects TRACES

(TIN2015-67522-C3-3-R) and ProCode-UCM (PID2019-108528RB-C22). Rubén Rubio
is partially supported by MU grant FPU17/02319.

References

[1] Baader, F., Nipkow, T., 1998. Term Rewriting and All That. Cambridge University Press.
doi:10.1017/CBO9781139172752 .

[2] Balland, E., Brauner, P., Kopetz, R., Moreau, P., Reilles, A., 2007. Tom: Piggybacking
rewriting on Java, in: Baader, F. (Ed.), Term Rewriting and Applications, 18th International
Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings, Springer. pp. 36–47.
doi:10.1007/978-3-540-73449-9_5 .

[3] Barendregt, H., 2014. The Lambda Calculus: Its Syntax and Semantics. volume 131. 2 ed., North
Holland.

[4] Borovanský, P., Kirchner, C., Kirchner, H., Ringeissen, C., 2001. Rewriting with strategies in ELAN:
A functional semantics. Int. J. Found. Comput. Sci. 12, 69–95. doi:10.1142/S0129054101000412 .

[5] Bourdier, T., Cirstea, H., Dougherty, D.J., Kirchner, H., 2009. Extensional and intensional strate-
gies, in: Fernández, M. (Ed.), Proceedings Ninth International Workshop on Reduction Strate-
gies in Rewriting and Programming, WRS 2009, Brasilia, Brazil, 28th June 2009, pp. 1–19.
doi:10.4204/EPTCS.15.1.

[6] Bradfield, J.C., Walukiewicz, I., 2018. The mu-calculus and model checking, in: Clarke, E.M.,
Henzinger, T.A., Veith, H., Bloem, R. (Eds.), Handbook of Model Checking. Springer, pp. 871–919.
doi:10.1007/978-3-319-10575-8_26 .

[7] Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E., 2008. Stratego/XT 0.17.
A language and toolset for program transformation. Sci. Comput. Program. 72, 52–70.
doi:10.1016/j.scico.2007.11.003 .

[8] Clarke, E.M., Emerson, E.A., 1981. Design and synthesis of synchronization skeletons using
branching-time temporal logic, in: Kozen, D. (Ed.), Logics of Programs, Workshop, Yorktown
Heights, New York, USA, May 1981, Springer. pp. 52–71. doi:10.1007/BFb0025774.

[9] Clavel, M., 2003. Strategies and user interfaces in Maude at work, in: Gramlich, B., Lu-
cas, S. (Eds.), Proceedings of the 3rd International Workshop on Reduction Strategies in
Rewriting and Programming, WRS 2003, Valencia, Spain, June 8, 2003, Elsevier. pp. 570–592.
doi:10.1016/S1571-0661(05)82612-X .

[10] Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martí-Oliet, N.,
Meseguer, J., Rubio, R., Talcott, C., 2020-10. Maude Manual v3.1. URL:
http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html.

[11] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L., 2007a.
All About Maude - A High-Performance Logical Framework, How to Specify, Program and Ver-
ify Systems in Rewriting Logic. volume 4350 of Lecture Notes in Computer Science. Springer.
doi:10.1007/978-3-540-71999-1 .

30

http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1007/978-3-540-73449-9_5
http://dx.doi.org/10.1142/S0129054101000412
http://dx.doi.org/10.4204/EPTCS.15.1
http://dx.doi.org/10.1007/978-3-319-10575-8_26
http://dx.doi.org/10.1016/j.scico.2007.11.003
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1016/S1571-0661(05)82612-X
http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html
http://dx.doi.org/10.1007/978-3-540-71999-1

[12] Clavel, M., Meseguer, J., Palomino, M., 2007b. Reflection in membership equational logic, many-
sorted equational logic, Horn logic with equality, and rewriting logic. Theor. Comput. Sci. 373,
70–91. doi:10.1016/j.tcs.2006.12.009 .

[13] Crowley, K., Siegler, R.S., 1993. Flexible strategy use in young children’s tic-tac-toe. Cogn. Sci.
17, 531–561. URL: 10.1016/0364-0213(93)90003-Q .

[14] Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Rubio, R., Talcott, C., 2020.
Programming and symbolic computation in Maude. J. Log. Algebraic Methods Program. 110,
1–58. doi:10.1016/j.jlamp.2019.100497 .

[15] Durán, F., Escobar, S., Lucas, S., 2004. New evaluation commands for Maude within Full Maude,
in: Martí-Oliet, N. (Ed.), Proceedings of the Fifth International Workshop on Rewriting Logic and
its Applications, WRLA 2004, Barcelona, Spain, March 27-April 4, 2004, Elsevier. pp. 263–284.
doi:10.1016/j.entcs.2004.06.014 .

[16] Durán, F., Riesco, A., Verdejo, A., 2007. A distributed implementation of Mobile Maude, in:
Denker, G., Talcott, C. (Eds.), Proceedings of the 6th International Workshop on Rewriting
Logic and its Applications, WRLA 2006, Vienna, Austria, April 1-2, 2006, Elsevier. pp. 113–131.
doi:10.1016/j.entcs.2007.06.011 .

[17] Durán, F., Rocha, C., Álvarez, J.M., 2011. Towards a Maude Formal Environment, in: Agha,
G., Danvy, O., Meseguer, J. (Eds.), Formal Modeling: Actors, Open Systems, Biological Systems -
Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th Birthday, Springer. pp. 329–351.
doi:10.1007/978-3-642-24933-4_17 .

[18] Eker, S., Martí-Oliet, N., Meseguer, J., Pita, I., Rubio, R., Verdejo, A., 2020. Strategy language
for Maude. URL: http://maude.ucm.es/strategies .

[19] Eker, S., Meseguer, J., Sridharanarayanan, A., 2004. The Maude LTL model checker, in: Gad-
ducci, F., Montanari, U. (Eds.), Proceedings of the Fourth International Workshop on Rewriting
Logic and its Applications, WRLA 2002, Pisa, Italy, September 19-21, 2002, Elsevier. pp. 162–187.
doi:10.1016/S1571-0661(05)82534-4 .

[20] Emerson, E.A., Halpern, J.Y., 1986. “Sometimes” and “not never” revisited: on branching versus
linear time temporal logic. J. ACM 33, 151–178. doi:10.1145/4904.4999.

[21] Fernández, M., Kirchner, H., Pinaud, B., 2019. Strategic port graph rewriting: an in-
teractive modelling framework. Mathematical Structures in Computer Science 29, 615–662.
doi:10.1017/S0960129518000270 .

[22] Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T., 2015. LTSmin:
High-performance language-independent model checking, in: Baier, C., Tinelli, C. (Eds.), Tools
and Algorithms for the Construction and Analysis of Systems, 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings, Springer. pp. 692–707.
doi:10.1007/978-3-662-46681-0_61 .

[23] Kirchner, H., Moreau, P., 1996. A reflective extension of ELAN, in: Meseguer, J. (Ed.),
First International Workshop on Rewriting Logic and its Applications, WRLA 1996, Asilo-
mar Conference Center, Pacific Grove, CA, USA, September 3-6, 1996, Elsevier. pp. 149–168.
doi:10.1016/S1571-0661(04)00038-6 .

[24] Lescanne, P., 1990. Implementations of completion by transition rules + control: ORME,
in: Kirchner, H., Wechler, W. (Eds.), Algebraic and Logic Programming, Second Interna-
tional Conference, Nancy, France, October 1-3, 1990, Proceedings, Springer. pp. 262–269.
doi:10.1007/3-540-53162-9_44 .

[25] Lilis, Y., Savidis, A., 2020. A survey of metaprogramming languages. ACM Comput. Surv. 52,
113:1–113:39. doi:10.1145/3354584.

[26] Lucas, S., 2020. Context-sensitive rewriting. ACM Comput. Surv. 53. doi:10.1145/3397677.
[27] Lucas, S., 2021. Applications and extensions of context-sensitive rewriting. J. Log. Algebraic

Methods Program. 121. doi:https://doi.org/10.1016/j.jlamp.2021.100680 .
[28] Marin, M., Kutsia, T., 2006. Foundations of the rule-based system ρLog. J. Appl. Non Class. Logics

16, 151–168. doi:10.3166/jancl.16.151-168 .
[29] Meseguer, J., 1992. Conditional rewriting logic as a unified model of concurrency. Theor. Comput.

Sci. 96, 73–155. doi:10.1016/0304-3975(92)90182-F .
[30] Nieuwenhuis, R., Oliveras, A., Tinelli, C., 2006. Solving SAT and SAT modulo theories: From

an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53, 937–977.
doi:10.1145/1217856.1217859 .

[31] Ölveczky, P.C., 2014. Real-Time Maude and its applications, in: Escobar, S. (Ed.), Rewrit-
ing Logic and Its Applications - 10th International Workshop, WRLA 2014, Held as a Satellite

31

http://dx.doi.org/10.1016/j.tcs.2006.12.009
10.1016/0364-0213(93)90003-Q
http://dx.doi.org/10.1016/j.jlamp.2019.100497
http://dx.doi.org/10.1016/j.entcs.2004.06.014
http://dx.doi.org/10.1016/j.entcs.2007.06.011
http://dx.doi.org/10.1007/978-3-642-24933-4_17
http://maude.ucm.es/strategies
http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://dx.doi.org/10.1145/4904.4999
http://dx.doi.org/10.1017/S0960129518000270
http://dx.doi.org/10.1007/978-3-662-46681-0_61
http://dx.doi.org/10.1016/S1571-0661(04)00038-6
http://dx.doi.org/10.1007/3-540-53162-9_44
http://dx.doi.org/10.1145/3354584
http://dx.doi.org/10.1145/3397677
http://dx.doi.org/https://doi.org/10.1016/j.jlamp.2021.100680
http://dx.doi.org/10.3166/jancl.16.151-168
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1145/1217856.1217859

Event of ETAPS, Grenoble, France, April 5-6, 2014, Revised Selected Papers, Springer. pp. 42–79.
doi:10.1007/978-3-319-12904-4_3 .

[32] Pnueli, A., 1977. The temporal logic of programs, in: 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, IEEE Computer
Society. pp. 46–57. doi:10.1109/SFCS.1977.32.

[33] Rubio, R., 2020. Unified Maude model-checking tool (umaudemc). FaDoSS. URL:
https://github.com/fadoss/umaudemc .

[34] Rubio, R., Martí-Oliet, N., Pita, I., Verdejo, A., 2019a. Model checking strategy-controlled rewriting
systems, in: Geuvers, H. (Ed.), 4th International Conference on Formal Structures for Computation
and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik. pp. 34:1–34:18. doi:10.4230/LIPIcs.FSCD.2019.31 .

[35] Rubio, R., Martí-Oliet, N., Pita, I., Verdejo, A., 2019b. Parameterized strategies specification in
Maude, in: Fiadeiro, J., T

,
ut

,
u, I. (Eds.), Recent Trends in Algebraic Development Techniques,

Springer. pp. 27–44. doi:10.1007/978-3-030-23220-7_2 .
[36] Rubio, R., Martí-Oliet, N., Pita, I., Verdejo, A., 2020a. Simulating and model checking membrane

systems using strategies in Maude, in: 7th International Workshop on Rewriting Techniques for
Program Transformation and Evaluation, WPTE 2020, Paris, France, pp. 1–10.

[37] Rubio, R., Martí-Oliet, N., Pita, I., Verdejo, A., 2020b. Strategies, model checking and branching-
time properties in Maude, in: Escobar, S., Martí-Oliet, N. (Eds.), Rewriting Logic and Its Appli-
cations - 13th International Workshop, WRLA 2020, Virtual Event, October 20-22, 2020, Revised
Selected Papers, Springer. pp. 156–175. doi:10.1007/978-3-030-63595-4_9 .

32

http://dx.doi.org/10.1007/978-3-319-12904-4_3
http://dx.doi.org/10.1109/SFCS.1977.32
https://github.com/fadoss/umaudemc
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
http://dx.doi.org/10.1007/978-3-030-23220-7_2
http://dx.doi.org/10.1007/978-3-030-63595-4_9

	Introduction
	Rewriting logic and Maude
	Reflection and metalevel computations
	The Maude strategy language
	Interactive interfaces
	Model checking

	An introductory example
	Theory-dependent extensions of the strategy language
	Multistrategies
	Multistrategies playing games: the tic-tac-toe
	A deeper look into the implementation

	Related work and conclusions

