
ar
X

iv
:2

00
6.

05
46

3v
3

 [
cs

.L
O

]
 1

0
M

ay
 2

02
2

Axiomatizing recursion-free, regular monitors⋆

Luca Acetoa,b, Antonis Achilleosa, Elli Anastasiadia,∗, Anna Ingolfsdottira

aICE-TCS, Department of Computer Science, Reykjavik University, Iceland
bGran Sasso Science Institute, L’Aquila, Italy

Abstract

Monitors are a key tool in the field of runtime verification, where they are
used to verify system properties by analyzing execution traces generated by
processes. Work on runtime monitoring carried out in a series of papers by Aceto
et al. has specified monitors using a variation on the regular fragment of Milner’s
CCS and studied two trace-based notions of equivalence over monitors, namely
verdict and ω-verdict equivalence. This article is devoted to the study of the
equational logic of monitors modulo those two notions of equivalence. It presents
complete equational axiomatizations of verdict and ω-verdict equivalence for
closed and open terms over recursion-free monitors. It is also shown that verdict
equivalence has no finite equational axiomatization over open monitors when the
set of actions is finite and contains at least two actions.

Keywords: Monitors, Formal Verification, CCS, Equational Logic, Processes,
Process Algebra, Axiomatization, Trace Equivalence, Verdicts.

1. Introduction

The search for equational axiomatizations of a notion of equivalence over
some process description language is one of the classic topics in concurrency
theory, as witnessed by the literature on this subject over the last forty years.
(See, for instance, [7, 8, 9, 16, 18, 27, 33, 34, 35, 43, 44] for early references as
well as survey and textbook accounts, and the papers [4, 5, 28, 37] for examples
of the rich body of recent contributions to this field.) This research avenue
has its intellectual roots in the time-honored study of the existence of finite,

⋆This article is based on material presented at the 31st Nordic Workshop on Program-
ming Theory, NWPT 2019, in Tallinn. The authors were supported by the projects ‘Open
Problems in the Equational Logic of Processes’ (OPEL) (grant No 196050-051) and ‘Mode(l)s
of Verification and Monitorability’ (MoVeMent) (grant No 217987) of the Icelandic Research
Fund, and ‘Runtime and Equational Verification of Concurrent Programs’ (ReVoCoP) (grant
No 222021), of the Reykjavik University Research Fund. Luca Aceto’s work was also partially
supported by the Italian MIUR PRIN 2017 project FTXR7S IT MATTERS ‘Methods and
Tools for Trustworthy Smart Systems’.

∗Elli Anastasiadi, Menntavegur 1, 102 Reykjavik, Iceland
Email addresses: luca@ru.is, luca.aceto@gssi.it (Luca Aceto), antonios@ru.is

(Antonis Achilleos), elli19@ru.is (Elli Anastasiadi), annai@ru.is (Anna Ingolfsdottir)

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingMay 11, 2022

http://arxiv.org/abs/2006.05463v3

(conditional) equational proof systems for equality of regular expressions, as
presented in [20, 38, 39, 48, 49].

There are manifold reasons for studying equational axiomatizations of equiv-
alences over processes. For example, the existence of a finite, or at least finitely
specified, equational axiomatization for some notion of process equivalence is
often considered as one of the yardsticks to assess its mathematical tractabil-
ity. Additionally, equational axiomatizations provide a purely syntactic de-
scription of the chosen notion of equivalence over processes and characterize
the essence of a process semantics by means of a few revealing axioms, which
can be used to compare a variety of semantics in a model-independent way (as
done, for instance, in [27]). Moreover, such axiomatizations pave the way to
the use of theorem-proving techniques to establish that two process descrip-
tions express the same behavior modulo the chosen notion of behavioral equiv-
alence [21, 29, 41], and also play an important role in the partial evaluation of
programs [32].

In this paper, we study the equational logic of the monitors studied by Aceto
et al. in, for instance, [1, 2, 26]. Monitors are a key tool in the field of runtime
verification (see [13, 24, 30, 31, 40, 46, 51, 52] and the references therein for an
overview of this active research area), where they are used to check for system
properties by analyzing execution traces generated by processes and are often
expressed using some automata-based formalism. The notion of monitorable
property has been defined in a seminal paper by Pnueli and Zaks [46]. Intu-
itively, a property of finite and infinite system executions is s-monitorable, for
some finite trace of observable events s, if there is an extension of s after which
a monitor will be able to determine conclusively whether the observed system
execution satisfies or violates the property. This means that verdicts issued
by monitors are irrevocable. In that work by Pnueli and Zaks, a property is
described by the set of finite and infinite executions that satisfy it. However,
in the theory and practice of runtime verification, one often specifies properties
finitely using formalisms such as automata or (variations on) temporal logics
and studies what specifications in the chosen formalism are ‘monitorable’ and
with what correctness guarantees—see, for instance, [12, 15, 47]. Since monitors
are part of the trusted computing base, the automated, correct-by-design mon-
itor synthesis from the formal specification of properties has been thoroughly
studied in the literature and is often accompanied by the experimental evalu-
ation of the overhead induced by monitoring—see, for example, the study of
various approaches to the automated monitor synthesis for systemC specifica-
tions given in [52] and the framework for benchmarking of runtime verification
tools presented in [3].

In [1, 2, 26], Aceto et al. specified monitors using a variation on the regular
fragment of Milner’s CCS [42] and studied two trace-based notions of equiv-
alence over monitors, namely verdict and ω-verdict equivalence. Intuitively,
two monitor descriptions are verdict equivalent when they accept and reject
the same finite execution traces of the systems they observe. The notion of
ω-verdict equivalence is the ‘asymptotic version’ of verdict equivalence, in that
it is solely concerned with the infinite traces that are accepted and rejected by

2

monitors. In their work, Aceto et. al. focus on determining the ‘monitorable’
fragment of Hennessy-Milner Logic with recursion [1, 26] and provide monitor-
synthesis algorithms for properties that can be expressed in that fragment. The
key (and non-negotiable) property that the monitor synthesized from a formula
ϕ in the monitorable fragment of that logic should satisfy is soundness, which
means that a verdict issued by the monitor as it examines a system execution
determines whether that execution satisfies ϕ or not correctly. Naturally, sound
monitors cannot produce contradictory verdicts for a given trace.

Our contribution. When monitors are described by expressions in some monitor-
specification language, such as the one employed by Aceto et al. in op. cit.,
it is natural to ask oneself whether one can (finitely) axiomatize notions of
monitor equivalence over (fragments of) that language. This study is devoted
to addressing that question in the simplest non-trivial setting. In particular,
in order to stay within the realm of classic equational logic over total algebras,
we consider a language that allows one to specify unsound monitors. However,
all the results we present in the paper specialize to sub-languages consisting of
(sound) monitors that can only issue either positive or negative verdicts.

The main results we present in this paper are complete equational charac-
terizations of verdict equivalence over both closed (that is, variable-free) and
open, recursion-free regular monitors. More specifically, we first provide an
equational axiomatization of verdict equivalence over closed terms from the lan-
guage of monitors we study that is finite if so is the set of actions monitors
can observe (Theorem 2). The landscape of axiomatizability results for verdict
equivalence over open terms turns out to be more varied. This variety is wit-
nessed by the fact that there are three different axiomatizations, depending on
whether the set of actions is infinite (Theorem 4), finite and containing at least
two actions (Theorem 5) or a singleton (Theorem 6). Only the axiomatization
given in Theorem 6 is finite and we show that this is unavoidable. Indeed, ver-
dict equivalence has no finite equational basis when the set of actions is finite
and of cardinality at least two (Theorem 10).

It turns out that the above-mentioned axiomatizations are also complete for
ω-verdict equivalence if the set of actions that monitors may observe is infinite,
as in that case the two notions of equivalence coincide. On the other hand, if
the set of actions is finite, ω-verdict equivalence is strictly coarser than verdict
equivalence. We also provide a finite, complete axiomatization of ω-verdict
equivalence for closed monitors in the setting of a finite set of actions (Theorem
3). Our Theorem 8 gives a complete axiomatization of ω-verdict equivalence
over open monitors when the set of actions contains at least two actions. If the
set of actions is a singleton, ω-verdict equivalence has a finite equational basis
(Theorem 7).

The equational axiomatizations we present in this article capture the ‘laws
of monitor programming’ [35] for an admittedly rather inexpressive language.
Indeed, recursion-free regular monitors describe essentially tree-like finite-state
automata with distinguished accept and reject states at their ‘leaves’ with self-
loops labeled by every action. (See the operational semantics of monitors in

3

Table 1. Note, however, that those automata may have infinitely many transi-
tions, if the set of actions monitors can observe is infinite. As shown already by
Milner in his classic books on CCS [42, 44], this feature is useful when modeling
system events that carry data values. See, for instance, the paper [11] for one of
the earliest attempts to incorporate data into runtime verification.) However,
as witnessed by our results and their proofs, the study of the equational theory
of monitors modulo the notions of equivalence we consider is non-trivial even
for the minimal language studied in this paper. In our, admittedly biased, opin-
ion, it is therefore worthwhile to map the territory of axiomatizability results
for recursion-free regular monitors, since results for more expressive languages
will have to build upon those we obtain in this article. We remark, in passing,
that the non-finite axiomatizability result in Theorem 10 is obtained over a sub-
stantially more restrictive syntax than classic negative results for the algebra
of regular expressions, which rely on the hardness of expressing the interplay
between Kleene star and concatenation equationally [6, 20, 48].

The contribution of this paper is entirely theoretical and we make no claims
pertaining to the applicability of our current results in the practice of runtime
verification. However, apart from their intrinsic theoretical interest, (extensions
of) the equational axiomatizations we present might be used in the automatic,
syntax-driven synthesis of monitors from specifications of ‘monitorable proper-
ties’, as presented in [1, 2, 25], to rewrite monitor expressions in an ‘equiva-
lent, but simpler’ syntactic form, for instance by eliminating ‘redundant’ sub-
expressions. As witnessed by the study of optimized temporal monitors for
SystemC presented in [52], the investigation of monitor optimizations based on
equational rewriting or other techniques requires a substantial experimental re-
search effort and is outside the scope of this article. We discuss other avenues
for future research in Section 6.

2. Preliminaries

We begin by introducing recursion-free regular monitors (or simply monitors
in this study) and the two notions of verdict equivalence that we study in this
paper. We refer the interested reader to [1, 26] for background motivation and
more information.

Syntax of monitors. Let Act be a set of visible actions, ranged over by a, b.
Following Milner [44], we use τ 6∈ Act to denote an unobservable action. The
symbol α ranges over Act∪{τ}. Let Var be a countably infinite set of variables,
ranged over by x, y, z. We assume that Act ∪ {τ} and Var are disjoint.

We write Actω for the set of infinite sequences over Act . As usual, Act∗

stands for the set of finite sequences over Act . Let A be a set of finite sequences
and B be a set of sequences. We write A ·B for the concatenation of A and B.

The collection MonF of (regular, recursion-free) monitors is the set of terms
generated by the following grammar:

4

m,n ::= v | a.m | m+ n | x

v ::= end | yes | no

where a ∈ Act and x ∈ Var . The terms end , yes and no are called verdicts.
Intuitively, yes stands for the acceptance verdict, no denotes a rejection verdict
and end is the inconclusive verdict, namely the state a monitor reaches when,
based on the sequence of observations it has processed so far, it realizes that it
will not be able to issue an acceptance or rejection verdict in the future. As will
be formalized by the operational semantics of monitors to follow, verdicts are
irrevocable. This means that once a monitor reaches a verdict, it will stick to
it regardless of what further observations it makes. See, for instance, [1, 13, 26]
for a detailed technical discussion.

Intuitively, a monitor of the form a.m can observe action a and behave like
m thereafter. On the other hand, a monitor of the form m+n can behave either
like m or like n.

Remark 1. The work on which we build in this paper considers a setting with
three verdicts, two of which are ‘conclusive.’ There are a number of other ap-
proaches in the field of runtime verification that consider many-valued verdicts.
We refer the interested reader to, for instance, [10, 12, 14, 17, 23] for further
information.

Closed monitors are those that do not contain any occurrences of variables.
A (closed) substitution is a mapping σ from variables to (closed) monitors. We
write σ(m) for the monitor that results when applying the substitution σ to m.
Note that σ(m) is closed, if σ is a closed substitution.

Definition 1 (Notation). We use m [+v] for a verdict v to indicate that v is
an optional summand of m, that is, that the term can be either m or m+ v. In
addition a monitor will be called v-free for a verdict v, when it does not contain
any occurrences of v.

For a finite index set I = {i1, . . . , ik} and indexed set of monitors {mi}i∈I ,
we write

∑

i∈I mi to stand for end if I = ∅ and for mi1 + . . .+mik otherwise.
This notation is justified by the fact that + is associative and commutative, and
has end as a neutral element, in all of the semantics we use in this paper.

We now associate a notion of syntactic depth with each monitor. Intuitively,
the decision a monitor m takes when reading a string s ∈ Act∗ only depends on
the prefixes of s whose length is at most the syntactic depth of m.

Definition 2 (Syntactic Depth). For any closed monitor m ∈ MonF , we
define depth(m) as follows:

• depth(a.m) = 1 + depth(m),

• depth(m1 +m2) = max(depth(m1), depth(m2)) and

• depth(v) = 0 for a verdict v.

5

a.m
a
−→ m

m
α

−−→ m′

m+ n
α

−−→ m′

n
α

−−→ n′

m+ n
α

−−→ n′ v
α

−−→ v

Table 1: Operational semantics of processes in MonF .

Semantics of monitors. For each α ∈ Act∪{τ}, we define the transition relation
α

−−→⊆ MonF × MonF as the least one that satisfies the axioms and rules in

Table 1.
For example, yes + x

τ
−→ yes and a.yes + end

b
−→ end , for each a, b ∈ Act . A

useful fact based on the above operational semantics is that if m
τ
−→ m′, then

m′ = v for some verdict v.
Note that variables have no transitions. They represent under-specification

in monitor behavior. For instance, monitor a.yes + x is one that we know can
reach the verdict yes after having observed an a action. Further information on
the behavior of that monitor can only be gleaned once the variable x has been
instantiated via a (closed) substitution.

For m,m′ in MonF and s = a1 . . . ak in Act∗, k ≥ 0, m
s
−→ m′ holds iff there

are m0, , . . . ,mk such that

m = m0
a1−→ m1 · · ·mk−1

ak−→ mk = m′.

Additionally, for s ∈ Act∗, we use m
s
=⇒ m′ to mean that:

1. m (
τ
−→)∗ m′ if s = ε, where ε stands for the empty string,

2. m
ε
=⇒ m1

a
−→ m2

ε
=⇒ m′ for some m1,m2 if s = a ∈ Act and

3. m
a
=⇒ m1

s′

=⇒ m′ for some m1 if s = a.s′ , for some s′ 6= ε.

If m
s
=⇒ m′ for some m′, we call s a trace of m.

Lemma 1. For all s ∈ Act∗, m, n ∈ MonF , and verdict v, m + n
s
=⇒ v iff

m
s
=⇒ v or n

s
=⇒ v.

Proof. We prove both implications separately, by induction on the length of
s. The details are straightforward and are therefore omitted. Here we limit
ourselves to remarking that, in the proof of the implication from right to left, if
s = ε and m = v, say, then v + n

τ
−→ v by the rules in Table 1.

Remark 2. Note that the implication from right to left in Lemma 1 would not
hold in the absence of rule v

τ
−→ v in Table 1.

6

Verdict and ω-verdict equivalence. Let m be a (closed) monitor. We define:

La(m) = {s ∈ Act∗ | m
s
=⇒ yes} and

Lr(m) = {s ∈ Act∗ | m
s
=⇒ no}.

Intuitively, La(m) denotes the set of traces that are accepted by m, whereas
Lr(m) stands for the set of traces that m rejects. The sets La(m) and Lr(m)
will also be referred to as the acceptance and rejection set of m respectively.
Note that we allow for monitors that may both accept and reject the same
trace. This is necessary to maintain our monitors closed under + and to work
with classic total algebras rather than partial ones. Of course, in practice,
one is interested in monitors that are consistent in their verdicts. One way
to ensure consistency in monitor verdicts, which was considered in [26], is to
restrict oneself to monitors that use only one of the conclusive verdicts yes and
no. All the results that we present in the remainder of this paper apply to such
monitors.

Remark 3. The reader might wonder about the connection between the lan-
guages that are accepted/rejected by recursion-free regular monitors and star-free
languages [50]. A simple argument by induction on the structure of monitors
shows that every recursion-free regular monitor denotes a pair of star-free lan-
guages, one for its acceptance set and one for its rejection set. Moreover, this
means that recursion-free regular monitors correspond to properties that can
be expressed in LTL [36]. However, there are star-free languages (and therefore
LTL properties) that cannot be described by recursion-free regular monitors. For
example, the language (ab)∗ is star-free (see, for instance, [22, page 267]) but
does not correspond to any recursion-free regular monitor.

The monitors we consider in this paper output a positive or negative verdict
after a finite number of computational steps, if they do so at all. This means that
the linear-time temporal properties to which their acceptance and rejection set
correspond are both ‘Always Finitely Refutable’ and ‘Always Finitely Satisfiable’
in the sense of [45], as proven in [1].

Definition 3. Let m and n be closed monitors.

• We say that m and n are verdict equivalent, written m ≃ n, if La(m) =
La(n) and Lr(m) = Lr(n).

• We say that m and n are ω-verdict equivalent, written m ≃ω n, if
La(m) ·Actω = La(n) ·Act

ω and Lr(m) · Actω = Lr(n) ·Act
ω.

For open monitors m and n, we say that m ≃ n if σ(m) ≃ σ(n), for all closed
substitutions σ. The relation ≃ω is extended to open monitors in similar fashion.

Example 1. It is easy to see that m + end ≃ m holds for each m ∈MonF .
Moreover, since La(end) = ∅ and Lr(end) = ∅, a.end ≃ end holds for each
a ∈ Act.

7

One can intuitively see that the notion of ω-verdict equivalence refers to a
form of asymptotic behavior. Indeed, monitorsm and n are ω-verdict equivalent
if, and only if, they accept and reject the same infinite traces in the sense of [1].
Next we provide a lemma that clarifies the relations between the two notions of
equivalence defined above.

Lemma 2. The following statements hold:

• ≃ and ≃ω are both congruences.

• ≃⊆≃ω and the inclusion is strict when Act is finite.

• If Act is infinite then ≃=≃ω.

Proof. For the first claim, it suffices to prove that ≃ and ≃ω are equivalence
relations and that they are preserved by a. and +. The proof is standard and
is thus omitted.

For the second claim, the inclusion ≃⊆≃ω is easy to check using the defini-
tions of the two relations. The fact that the inclusion is strict when the set of
actions is finite follows from the validity of the equivalence yes ≃ω

∑

a∈Act

a.yes .

However, that equivalence is not valid modulo verdict equivalence since the

first monitor accepts the empty string ε, but
∑

a∈Act

a.yes cannot.

Finally, suppose that Act is infinite. Assume that m and n are ω-verdict
equivalent and that s is a finite trace accepted by m. We will argue that n also
accepts s. To this end, note that, since Act is infinite, there is some action a

that does not occur in m and n. Since m accepts s, the infinite trace saω is in
La(m) · Actω. By the assumption that m and n are ω-verdict equivalent, we
have that saω is in La(n) · Act

ω. As a does not occur in n, it is not hard to
see that n accepts s. Therefore, by symmetry, m and n accept the same traces.
The same argument shows that Lr(m) = Lr(n), and therefore m ≃ n.

Equational logic. An axiom system E over MonF is a collection of equations
m = n expressed in the syntax of MonF . An equation m = n is derivable
from an axiom system E (notation E ⊢ m = n) if it can be proven from the
axioms in E using the rules of equational logic (reflexivity, symmetry, transitiv-
ity, substitution and closure under the MonF contexts). See Table 2. In the
rest of this work we shall always implicitly assume, without loss of generality,
that equational axiom systems are closed with respect to symmetry, i.e., that if
m = n is an axiom, so is n = m.

We say that E is sound with respect to ≃ when m ≃ n holds whenever
E ⊢ m = n. We say that E is complete with respect to ≃ when E can prove all
the valid equations m ≃ n. Similar definitions apply for ω-verdict equivalence.
The notion of completeness, when limited to closed terms, is referred to as
ground completeness.

8

Reflexivity
t = t

Symmetry
t = t′

t′ = t
Transitivity

t1 = t2, t2 = t3
t1 = t3

Congruence (For any n-ary f)
ti = t′i, i = 1, 2, . . . , n

f(t1, . . . tn) = f(t′1, . . . , t
′
n)

Substitutivity (For each substitution σ)
t = t′

σ(t) = σ(t′)

Table 2: Rules of equational logic

3. A ground-complete axiomatization of verdict and ω-verdict equiv-
alence

Our goal in this paper is to study the equational theory of ≃ and ≃ω over
MonF . Our first main result is to give a ground-complete axiomatization of
verdict equivalence over MonF . To this end, consider the axiom system Ev,
whose axioms are listed in Table 3.

(A1) x+ y = y + x

(A2) x+ (y + z) = (x+ y) + z

(A3) x+ x = x

(A4) x+ end = x

(Ea) a.end = end (a ∈ Act)

(Ya) yes = yes + a.yes (a ∈ Act)

(Na) no = no + a.no (a ∈ Act)

(Da) a.(x+ y) = a.x+ a.y (a ∈ Act)

Table 3: The axioms of Ev

Remark 4. Note that Ev is finite, if so is Act.

The subscript v in the naming scheme of the axiom set refers to the kind
of equivalence that it axiomatizes, namely verdict equivalence. It will later be
replaced with ω when we study ω-verdict equivalence and used accordingly from
that point forward.

We provide now the following lemma as an observation on the number of
necessary axioms when Act is finite and as an example proof based on these
axioms.

Lemma 3. When Act is finite, the family of axioms (Ya) can be replaced with

(Y) yes = yes +
∑

a∈Act

a.yes.

9

Similarly the family of axioms (Na) can be replaced with

(N) no = no +
∑

a∈Act

a.no.

Proof. It is not hard to see that the equation Y can be proved by using the
family of equations Ya. For the converse we can use axioms A3 and Y to prove
any equation yes = yes + b.yes of the family {Ya | a ∈ Act}. Indeed, Ev proves

yes = yes +
∑

a∈Act

a.yes = yes +
∑

a∈Act

a.yes + b.yes = yes + b.yes .

Theorem 1. Ev is sound modulo ≃. That is, if Ev ⊢ m = n then m ≃ n, for
all m,n ∈MonF .

Proof. It suffices to prove soundness for each of the axioms separately. The
details of the proof are standard and therefore omitted.

In what follows, we will consider terms up to axioms A1-A4.
A fact that will be proven useful later on is the following: If m

a
−→ n then

A1 − A4, Ea, Ya, Na ⊢ m = m + a.n. This follows easily by induction on the
size of m and a case analysis on its form and it is thus omitted.

We will now prove that the axiom system Ev is ground complete for verdict
equivalence.

Theorem 2. Ev is ground complete for ≃ over MonF . That is, if m,n are
closed monitors in MonF and m ≃ n then Ev ⊢ m = n.

As a first step towards proving that Ev is complete over closed terms, we
isolate a notion of normal form for monitors and prove that each closed monitor
in MonF can be proved equal to a normal form using the equations in Ev.

Definition 4. (Normal Form) A normal form is a closed term m ∈ MonF of
the form:

∑

a∈A

a.ma [+yes] [+no]

for some finite A ⊆ Act, where each ma is a term in normal form that is
different from end.

Note that, by taking A = ∅ in the definition above, we obtain that end is a
normal form. In fact, it is the normal form with the smallest size.

Lemma 4. The only normal form that does not contain occurrences of yes and
no is end.

10

Proof. We proceed by induction on the size of a normal form m. Our base case
is a verdict v. The only such verdict that does not contain an occurrence of
either yes or no is end , which trivially satisfies the lemma. Assume now that

m =
∑

a∈A

a.ma is a normal form satisfying the statement of the lemma. Since

each ma is yes- and no-free, by inductive hypothesis, ma = end . This is only
possible if A = ∅. Thus m = end .

Lemma 5. (Normalization) Each closed term m ∈MonF is provably equal
to some normal form m′ with depth(m′) ≤ depth(m).

Proof. We prove the claim by induction on the lexicographic ordering ≺ over
pairs (depth(m), size(m)) of a monitor m, where size(m) denotes the length of
m in symbols. We proceed with a case analysis on the form m may have. Our
induction basis will be a verdict v. If v = end then the monitor is already in
normal form. Otherwise: If m = v for some verdict v = yes or no then it is
proved equal to v+end (from axiom A4). Indeed this normal form of a non-end
verdict has depth less or equal to that of the initial monitor.

Our induction hypothesis is that, for all monitors m0 ∈ MonF up such that
(depth(m0), size(m0)) ≺ (depth(m), size(m)), we have that Ev ⊢ m0 = m′

0 with
m′

0 in normal form and depth(m′
0) ≤ depth(m0).

Assume that m = a.n then clearly n has depth less than that of m and
therefore by the inductive hypothesis E ⊢ n ≃ n′ where n′ is in normal form
and of depth less or equal than n. If n′ = end then Ev ⊢ m = end (using Ea)
which is a normal form of smaller depth. Otherwise a.n′ is also a normal form.

Assume that m = m1 +m2. By applying the induction hypothesis we have
that

Ev ⊢ m1 =
∑

a∈A1

a.m1a [+yes][+no] and Ev ⊢ m2 =
∑

a∈A2

a.m2a [+yes][+no].

Therefore by applying axioms from Ev we can rewrite m as:

m =
∑

a∈A1\A2

a.m′
1a +

∑

a∈A2\A1

a.m′
2a +

∑

b∈A1∩A2

b.(m′
1b +m′

2b) [+yes][+no].

Where by the statement of the lemma we have:

depth





∑

a∈A1\A2

a.m′
1a



 ≤ depth(m1) ≤ depth(m)

and similarly:

depth





∑

a∈A2\A1

a.m′
2a



 ≤ depth(m2) ≤ depth(m).

11

It remains to show that the summand
∑

b∈A1∩A2

b.(m′
1b+m′

2b) is equal to a normal

form and that it has depth less or equal to that of m. However, this is not trivial
to see, since the terms m′

1a and m′
2b have been rewritten by the normalization

procedure and therefore we cannot guarantee that their summation has size
less of that of m (applying the inductive hypothesis only results in terms of
smaller depth but not size as we saw for instance in the case of normalization
of verdicts). However we have the following:

depth(m′
1b +m′

2b) = max[depth(m′
1b), depth(m

′
2b)]

< max[depth(m′
1), depth(m

′
2)].

The later of the above quantities is guaranteed to be less than or equal to
depth(m) by the inductive hypothesis. Therefore we still have that the monitor
m′

1b + m′
2b appears earlier in the lexicographic ordering and therefore Ev can

prove it equal to a normal form of smaller depth. We will call this normal form
m′

b. We have therefore that that depth(m′
b) ≤ depth(m′

1b +m′
2b). We now have

the necessary result that

Ev ⊢ m = m′ =
∑

a∈A1∪A2

a.ma [+yes][+no],

where each ma is in normal form and of depth strictly less than that of m which
means that depth(m′) ≤ depth(m) and we are done.

Since now we have that each term in MonF is provably equal to a normal
form, we might attempt to prove Theorem 2 by arguing that the normal forms of
two verdict equivalent monitors are identical. However, it turns out that this is
not true. Consider, for example, the case were m = yes and n = yes+a.a.a.yes.
These two monitors are clearly verdict equivalent as La(m) = La(n) = Act∗ and
Lr(m) = Lr(n) = ∅. However, even though they are in normal form they are not
syntactically equal. Intuitively, a.a.a.yes in monitor n is redundant, as it can be
absorbed by yes . In what follows, we will show how to reduce the normal form
of a monitor further using equations in Ev in order to eliminate such redundant
sub-terms.

Lemma 6. The following statements hold for any monitor in MonF :

1. For each action a, if m is a closed no-free term then Ev ⊢ yes+a.m = yes.

2. For each action a, if m is a closed monitor that contains occurrences of
both yes and no then Ev ⊢ yes + a.m = yes + a.n for some yes-free closed
monitor n.

3. For each action a, if m is a closed yes-free term then Ev ⊢ no+a.m = no.

4. For each action a, if m is a closed monitor that contains occurrences of
both yes and no then Ev ⊢ no + a.m = no + a.n for some no-free closed
monitor n.

12

Proof. We only prove statements 1 and 2 as the proofs of 3 and 4 are similar.
We will use structural induction on m.

1. If m is a verdict other than no then the claim follows using axioms Ea, Ya

and A4 appropriately. If m = b.m′ where m′ is no-free then Ev derives:

yes+a.m
Ya= yes+a.yes+a.m

Da= yes+a.(yes+b.m′)
I.H.
= yes+a.yes

Ya= yes .

If m is of the form m1 +m2 where m1,m2 are no-free, then it suffices to
apply axiom Da and the induction hypothesis.

2. Assume that m contains occurrences of both yes and no. We will show
that Ev ⊢ yes + a.m = yes + a.n for some yes-free monitor n.

If m = v for some verdict v then the claim follows vacuously.

If m = b.m′ for some m′ that contains both yes and no then there is some
yes-free n′, such that n = b.n′, and Ev derives :

yes + a.m = yes + a.b.m′ Ya= yes + a.yes + a.b.m′ Da= yes + a.(yes + b.m′)

and for some yes-free n′ s.t. n = b.n′:

I.H
= yes + a.(yes + b.n′)

Da= yes + a.yes + a.b.n′ Ya= yes + a.n.

Finally if m = m1 +m2 then Ev can derive:

yes + a.(m1 +m2)
Da= yes + a.m1 + a.m2.

We now isolate the following cases based on what verdicts the monitors
mi, i ∈ {1, 2} contain. If any mi, i ∈ {1, 2} is both yes- and no-free it
must be equal to end as it is in normal form and therefore Ev ⊢ yes+a.mi =
yes . If mi, i ∈ {1, 2} contains occurrences of both yes and no, then the
induction hypothesis yields that

Ev ⊢ yes + a.mi = yes + a.ni

for some yes-free ni. If mi, i ∈ {1, 2} is yes-free we already have the result
that Ev ⊢ yes + a.mi = yes + a.ni for some yes-free monitor ni (which
in this case coincides with mi). Finally, if some mi is no-free then, by
statement 1 in the lemma,

Ev ⊢ yes + a.mi = yes .

Combining these observations, we have that:

Ev ⊢ yes + a.m = yes + a.n1 + a.n2

where both n1 and n2 are yes-free and therefore by axiom Da:

Ev ⊢ yes + a.m = yes + a.n

for some yes-free monitor n.

13

The above lemma suggests the notion of a reduced normal form.

Definition 5. (Reduced normal form) A reduced normal form is a term

m =
∑

a∈A

a.ma [+yes] [+no]

in normal form, where if v ∈ {yes , no} is a summand of m then each ma is
v-free and in reduced normal form.

Remark 5. Note here that if
∑

a∈A

a.ma + yes + no is in reduced normal form

then A = ∅.

Lemma 7. Each monitor in normal form is provably equal to a monitor in
reduced normal form.

Proof. The claim follows from Lemma 6, using induction on the depth of the
normal form.

We are now ready to complete the proof of Theorem 2.

Proof of Theorem 2. Since each monitor is provably equal to a reduced normal
form (Lemma 7), and by the soundness of Ev (Theorem 1), it suffices to prove
the claim for verdict equivalent reduced normal forms m and n. We proceed
by induction on the sum of the sizes of m and n, and a case analysis on the
possible form m may have.

1. Assume that m = yes + no ≃ n. Since La(m) = Lr(m) = Act∗, it follows
that n has both yes and no as summands. Since n is in reduced normal
form it must be the case that n = yes + no, and we are done.

2. Assume that m =
∑

a∈A

a.ma+yes ≃ n, where, for all a ∈ A, ma is yes-free

and in reduced normal form and n =
∑

b∈B

b.nb[+yes][+no], where each nb

is in reduced normal form and is v-free, if v is a summand of n. Since
ε ∈ La(m) \ Lr(m), we have that yes is a summand of n and no is not.

Thus n =
∑

b∈B

b.nb + yes , and each nb is yes-free. We claim that:

(C1) A = B and

(C2) for all a ∈ A, ma ≃ na.

To prove that A = B, we assume that a ∈ A. Since ma is yes-free
and different from end , there is some s ∈ Act∗ such that a.s ∈ Lr(m).
As m ≃ n, we have that a.s ∈ Lr(n). We conclude that a ∈ B and
s ∈ Lr(na). By symmetry, claim (C1) follows.

14

We now show that ma ≃ na for each a ∈ A. Since ma and na are yes-
free, La(ma) = La(na) = ∅. We pick now some arbitrary s ∈ Lr(ma)
(Lr(ma) 6= ∅ because ma 6= end). This means that a.s ∈ Lr(m) =
Lr(n) and therefore s ∈ Lr(na). The claim follows by symmetry. By the
induction hypothesis, Ev ⊢ ma = na for each a ∈ A = B. Therefore

m =
∑

a∈A

a.ma + yes =
∑

b∈B

b.nb + yes = n

is provable from Ev and we are done.

3. We are left with the case where m =
∑

a∈A

a.ma + no ≃ n and the case

m =
∑

a∈A

a.ma. The proofs for those cases are similar to the one for case

2 and are thus omitted.

3.1. Axiomatizing ω-verdict equivalence

When Act is infinite, by Lemma 2 and Theorem 2, Ev gives a ground-
complete axiomatization of ω-verdict equivalence as well. However, when Act is
finite, Ev is not powerful enough to prove all the equalities between closed terms
that are valid with respect to ω-verdict equivalence. The new axioms needed to
achieve a ground complete axiomatization in this setting are:

(Yω) yes =
∑

a∈Act

a.yes (Nω) no =
∑

a∈Act

a.no.

The resulting axiom system is called Eω.

Remark 6. The soundness of the new axioms is trivially shown since

La(yes) ·Act
ω = Act∗ · Actω = Act+ · Actω = La(

∑

a∈Act

a.yes) · Actω

while Lr(yes) = Lr(
∑

a∈Act

a.yes) = ∅ (and symmetrically for the Nω equation).

Theorem 3. Eω is ground complete for ≃ω over closed terms when Act is finite.
That is if m,n are closed monitors in MonF and m ≃ω n then Eω ⊢ m = n.

Proof. By Lemma 7 we may assume that m and n are in reduced normal form.
We will prove the claim by induction on the sizes of m and n for two ω-verdict
equivalent monitors m,n in reduced normal form.

We will proceed by a case analysis of the formmmay have and limit ourselves
to presenting the proof for a few selected cases that did not arise in the proof
of Theorem 2.

• Assume that m = yes + no ≃ω

∑

a∈A

a.na = n. First of all note that A =

Act . Indeed if a ∈ Act \A then aω ∈ (La(m) ·Actω)\ (La(n) ·Act
ω) which

contradicts our assumption that m ≃ω n. Moreover, it is not hard to see

15

that, for each a ∈ Act , La(na) ·Act
ω = Lr(na) ·Act

ω = Actω. This means
that, for each a ∈ Act , na ≃ω yes + no. By induction, for each a ∈ Act ,

we have that Eω ⊢ na = yes + no. Thus, Eω ⊢ n =
∑

a∈Act

a.(yes + no).

From axiom Da, Eω ⊢ n =
∑

a∈Act

a.yes +
∑

a∈Act

a.no which from our two

new axioms Yω , Nω yields Eω ⊢ n = yes + no = m, and we are done.

• Assume that m = yes + no ≃ω

∑

a∈A

a.na + yes , with each na being yes-

free and different from end . Again, reasoning as in the previous case, we
have that A = Act . Moreover for each a ∈ Act , Lr(na) · Act

ω = Actω.
Following the same argument as above only for the no verdict we arrive

at the conclusion that Eω ⊢ n = yes +
∑

a∈Act

a.no = yes + no = m.

• The case m = yes+no ≃ω

∑

a∈A

a.na+no is symmetrical to the one above.

• Assume that m = yes +
∑

a∈A

a.ma ≃ω

∑

b∈B

b.nb where both m and n are in

reduced normal form. First of all, we follow an argument similar to the

first case analyzed above, to the point where Eω ⊢ n = yes +
∑

b∈B′

b.n′
b for

some yes-free monitors n′
b. For the proof of this final case we will use the

following facts, whose validity can be easily established:

(S1) B = Act ,

(S2) for all b ∈ Act , La(nb) = Actω , and

(S3) for all a ∈ A, Lr(ma) = Lr(na).

So, for each a ∈ A, yes +ma ≃ω na. Since both of these monitors have
smaller depth that the original ones, we have that by induction:

Eω ⊢ yes +ma = na, ∀ a ∈ A. (1)

For each b ∈ Act \ A, we have that yes ≃ω nb (because Lω
r (nb) = ∅).

Again, we have that, by induction:

Eω ⊢ yes = na, ∀ b ∈ Act \B. (2)

So:
Eω ⊢ n =

∑

b∈Act

b.nb =
∑

a∈A

a.na +
∑

b∈Act\A

b.yes

By equations (1) and (2):

Eω ⊢ n =
∑

a∈A

a.(yes +ma) +
∑

b∈Act\A

b.yes

16

=
∑

a∈A

a.yes +
∑

a∈A

a.ma +
∑

b∈Act\A

b.yes

=
∑

a∈Act

a.yes +
∑

a∈A

a.ma = yes +
∑

a∈A

a.ma,

using axiom Yω , and we are done.

The above analysis can be applied symmetrically for the cases:

– m = no +
∑

a∈A

a.ma ≃ω

∑

b∈B

b.nb = n and

– m =
∑

a∈A

a.ma ≃ω

∑

b∈B

b.nb = n.

This completes the proof.

4. Open Terms

Thus far, we have only studied the completeness of equational axiom systems
for ≃ and ≃ω over closed terms. However, in our grammar we allow for variables
and it is natural to wonder whether the ground-complete axiomatizations we
have presented in Theorems 2 and 3 are also complete for verdict equivalence
and ω-verdict equivalence over open terms. Unfortunately, this turns out to be
false. Indeed, the equation

(O1) yes + no = yes + no + x

is valid with respect to ≃ (as both sides trivially accept and reject all traces), but
cannot be proved using the equations in Eω. This is because all the equations in
that axiom system have the same variables on their left- and right-hand sides.
Our goal in the remainder of this section is to study the equational theory of
≃ and ≃ω over open terms. Subsection 4.1 will present our results when Act
is infinite as this case turns out to be more straightforward. We consider the
setting of a finite set of actions in Subsection 4.2. In what follows, we use E ′

v

for the axiom system that results by adding O1 to Ev. The superscript ′ will be
used in the name of an axiom set to denote that the axiom set is complete for
one notion of equivalence over open terms. The absence of a superscript refers
respectively to a ground complete axiom set.

Towards a completeness theorem, we modify the notion of normal form, to
take variables into account. To that end we define:

Definition 6. A term m ∈ MonF is in open normal form if it has the form:

m =
∑

a∈A

a.ma +
∑

i∈I

xi [+yes] [+no]

where {xi | i ∈ I} is a finite set of variables, A is a finite subset of Act and
each ma is an (open) term in open normal form that is different from end.

17

Lemma 8. Each open term m ∈MonF is provably equal to some open normal
form m′ with depth(m′) ≤ depth(m).

The proof of the above result follows the lines of the one for Lemma 5 for
closed terms and is thus omitted.

As in the case of closed terms, we now proceed to characterize a class of
open normal forms for open terms whose verdict equivalence can be detected
“structurally”. The following example highlights the role that equation (O1)
plays in that characterization.

Example 2. Consider the following monitor in open normal form:

m = x+ yes + a.b.(no + b.a.x).

Monitor m contains two occurrences of the variable x. However, because of the
interplay between the two verdicts, one of them is redundant and can be removed
thus:

E ′
v ⊢ m = x+ yes + a.b.(no + b.a.x)

Ya= x+ yes + a.yes + a.b.(no + b.a.x)

Yb= x+ yes + a.(yes + b.yes) + a.b.(no + b.a.x)

Da= x+ yes + a.(yes + b.yes + b.(no + b.a.x))

Db= x+ yes + a.(yes + b.(yes + no + b.a.x))

O1= x+ yes + a.(yes + b.(yes + no))

Db= x+ yes + a.(yes + b.yes + b.no)

Yb= x+ yes + a.(yes + b.no)

Da= x+ yes + a.yes + a.b.no

Ya= x+ yes + a.b.no.

The above example motivates the following notion of reduced normal form
for open terms.

Definition 7. An open reduced normal form is a term

m =
∑

a∈A

a.ma +
∑

i∈I

xi [+yes] [+no]

where if v ∈ {yes, no} is a summand of m then each ma is v-free, different from
end and in open reduced normal form. In addition:

• if both yes and no are summands of m then m is equal to yes + no,

18

• if yes is a summand of m and m
s
−→ no +m′, for some s and m′ then m′

is equal to end,

• if no is a summand of m and m
s
−→ yes +m′, for some s and m′ then m′

is equal to end.

In what follows we will omit the word “open” when referring to the normal
form of a term that contains variables.

Lemma 9. For each open monitor m ∈ MonF , its normal form is provably
equal to a reduced normal form.

Proof. By Lemma 8 we may assume that m is in in normal form. The proof is
by induction on the size of m and we isolate the following cases, depending on
the verdicts v ∈ {yes , no} m has as summands:

1. Case m =
∑

a∈A

a.ma +
∑

i∈I

xi. In this case we use the induction hypothesis

on the ma monitors. These are different from end and have smaller size
than m and therefore they are provably equal to a reduced normal form,
i.e E ′

v ⊢ ma = m′
a where m′

a is in reduced normal form. Thus E ′
v proves

m =
∑

a∈A

a.m′
a +

∑

i∈I

xi, and we are done since
∑

a∈A

a.m′
a +

∑

i∈I

xi is in

reduced normal form.

By applying the congruence closure equational law we have that E ′
v ⊢ m =

m′, where m′ is in reduced normal form.

2. Case m = yes+
∑

a∈A

a.ma+
∑

i∈I

xi. In this case by the induction hypothesis

each ma is provably equal to a reduced normal form. The extra step here
is that if m

s
−→ no + m′, for some s and m′ then m′ is equal to end . In

such a scenario we have that:

If s = ε, then the claim follows trivially from O1. Otherwise s = a.s′ for

some action a ∈ Act and m
a
−→ ma

s′

−→ no+m′. We now apply our axioms
as follows:

m = yes +
∑

a∈A

a.ma +
∑

i∈I

xi
Ya= yes +

∑

b∈A\{a}

b.mb + a.yes + a.ma +
∑

i∈I

xi

Da= yes +
∑

b∈A\{a}

b.mb + a.(yes + a.ma) +
∑

i∈I

xi.

This means that since yes+ma has size smaller than m it is provably equal
to a reduced normal form. Additionally, since it contains a yes summand

and ma
s′

−→ no+m′, by the induction hypothesis we have that m′ is equal
to end and we are done.

19

3. Case m = no +
∑

a∈A

a.ma +
∑

i∈I

xi. The proof of this case is symmetrical

to Case 2 and therefore omitted.

4. Case m = yes + no +
∑

a∈A

a.ma +
∑

i∈I

xi. In this case we use the following

simple argument. Starting for axiom O1 we use the substitution σ(x) =
∑

a∈A

a.ma +
∑

i∈I

xi and we get:

yes + no = yes + no +
∑

a∈A

a.ma +
∑

i∈I

xi,

and by applying the equational law of transitivity we have that E ′
v ⊢ m =

yes + no.

The normal form defined above for open terms is adjusted over the closed
terms case. This is because now our syntax is allowing for variables and therefore
it is convenient for proofs to take these variables into account in a controlled
and consistent manner. The further reducing that occurred towards defining the
open reduced normal forms was possible due to the existence of the new axiom
O1, which gave us the option to remove variable occurrences. The new axiom
O1 is the only axiom we have currently available that does not contain every
variable occurrence in both of its sides and it is therefore the only rule we have
available that can help us remove variables from equations. In the presence of
other axioms with this property we can further reduce our normal forms, as we
will see later on.

In the following subsections, we will study the full equational theory of ver-
dict and omega-verdict equivalence over open terms.

4.1. Infinite set of actions

We begin by considering the equational theory of open monitors when the
set of actions is infinite. Apart from its theoretical interest, this scenario has
also some practical relevance. Indeed, as shown already by Milner in [42, 44],
infinite sets of uninterpreted actions are useful when modeling system events
that carry data values. Runtime monitoring of systems with data-dependent
behavior has been an active field of research for over 15 years—see, for instance,
the paper [11] for an early reference.

When the set of actions Act is infinite, it is easy to define a one-to-one
mapping from open to closed terms that will help us prove completeness of the
axiom system E ′

v.

Theorem 4. (Completeness for open terms modulo ≃) E ′
v is complete for ≃

over open monitors in MonF when Act is infinite. That is, for all m,n ∈
MonF , if m ≃ n, then E ′

v ⊢ m = n.

Proof. Assume m ≃ n. By Lemma 9, we may assume that m and n are in
reduced normal form.

20

Let
m =

∑

a∈A

a.ma +
∑

i∈I

xi [+yes] [+no]

and
n =

∑

b∈B

b.nb +
∑

j∈J

yj [+yes] [+no].

We will show that E ′
v ⊢ m = n by induction on the sum of the sizes of m and

n. To this end, we will establish a strong structural correspondence between m

and n. Consider a substitution σ defined as follows: σ(x) = ax.(yes+no) where

• for all variables x and y, ax = ay implies x = y, and

• {ax | x ∈ Var} is disjoint from the set of actions occurring in m or n.

Note that such a substitution σ exists because Act is infinite. By induction
on the sizes of m and n, we will prove that if σ(m) ≃ σ(n) then:

(C1) v is a summand of m iff v is a summand of n, for v ∈ {yes , no},

(C2) {xi | i ∈ I} = {yj | j ∈ J},

(C3) A = B and

(C4) for each a ∈ A, σ(ma) ≃ σ(na).

In what follows, we first show that E ′
v proves m = n assuming claims

(C1)-(C4) and then we prove those claims. To prove that E ′
v proves m = n

follows from σ(m) ≃ σ(n) for reduced normal forms m and n, we proceed by
induction on the sum of the sizes of m and n. By claim C4, we have that
σ(ma) ≃ σ(na) and, from the induction hypothesis, E ′

v ⊢ ma = na. By C1-3 we

also have that E ′
v ⊢

∑

i∈I

xi =
∑

j∈J

yj and that
∑

a∈A

a.ma =
∑

b∈B

b.nb, which means

that by using the equational law of closure under summation we also have that
E ′
v ⊢ m = n.
We present now the proofs of (C1)-(C4).
C1: Assume yes is a summand of m. Then ε ∈ La(σ(m)). Since σ(m) ≃

σ(n), we have that ε ∈ La(σ(n)). Note that ε 6∈ La(σ(x)) for each x. Thus yes
must be a summand of n. The case for v = no is similar. By symmetry the
claim follows.

C2: Assume that x ∈ {xi | i ∈ I}. By the definition of σ, it follows that
σ(m) both accepts and rejects the trace ax. Since m ≃ n, we have that σ(n)
also accepts and rejects the trace ax. As n does not contain any occurrence of
ax and has at most one of the verdicts yes and no as a summand, it follows
that x ∈ {yj | j ∈ J}. Therefore, by symmetry, {xi | i ∈ I} = {yj | j ∈ J} and
we are done.

C3: Assume, towards a contradiction, that a ∈ A \B. Then m cannot have
both yes and no as summands, since m is in reduced normal form.

21

If m has none of the verdicts as a summand, we know that ma is different
from end since m is in reduced normal form. Therefore σ(ma) will either accept
or reject some trace s, which implies that σ(m) will also accept or reject as.

However, σ(n) cannot do the same because a 6∈ B, σ(x) 6
a
=⇒ for each x, and

neither yes nor no are summands of n. This contradicts our assumption that
m ≃ n.

Assume now, without loss of generality, that m has only the verdict yes
as summand. Observe that ma is yes-free and different from end , since m is
in reduced normal form. This means that σ(ma) can reject some trace s and,
therefore, that σ(m) will reject a.s. On the other hand, σ(n) cannot do the

same because a 6∈ B, σ(x) 6
a
=⇒ for each x and no is not a summand of n. Again,

this contradicts our assumption that m ≃ n.
The above analysis yields that A ⊆ B. By symmetry, A = B follows.
C4: Our final claim (and the one with the most involved proof) is that

σ(ma) ≃ σ(na), for each a ∈ A.
If the reduced normal forms of the monitors do not contain any verdict

v ∈ {yes, no} as a summand, then the argument is simplified significantly.
Therefore, we limit ourselves to presenting here the most complicated case,
where m and n both contain exactly one verdict v ∈ {yes, no} as a summand.
Without loss of generality, we assume that this verdict is yes , namely that

m = yes +
∑

a∈A

a.ma +
∑

i∈I

xi

and
n = yes +

∑

b∈B

b.nb +
∑

j∈J

yi.

Since the claims C1-3 have already been proven, we know for m and n that:

m = yes +
∑

a∈A

a.ma +
∑

i∈I

xi and n = yes +
∑

a∈A

a.na +
∑

i∈I

xi .

We remind the reader that our purpose is to prove that σ(ma) ≃ σ(na),
for each a ∈ A, so that we can apply our induction hypothesis to infer that
E ′
v ⊢ ma = na.
We first prove that the rejection sets of σ(ma) and σ(na) are equal. To this

end, assume that s ∈ Lr(σ(ma)). It follows that a.s ∈ Lr(σ(m)) = Lr(σ(n)).
By the form of n and from the definition of σ, we conclude that s ∈ Lr(σ(na)).
Therefore, Lr(σ(ma)) ⊆ Lr(σ(na)). By symmetry we have that Lr(σ(ma)) =
Lr(σ(na)) and we are done.

It remains to prove that the acceptance sets of σ(ma) and σ(na) are also
identical. (It is important here to point out that, since both m and n contain a
yes verdict as a summand, the acceptance sets of σ(m) and σ(n) are both equal
to Act∗. However, for our inductive argument to work, we need to be able to
prove that La(σ(ma)) = La(σ(na)).) To that end and towards a contradiction,

22

consider a shortest trace s that is accepted by monitor σ(ma), but not by σ(na).
Consequently, monitor σ(m) accepts the trace a.s.

Since monitors ma and na are yes-free, as a result of m and n being in
reduced normal form, the acceptance of s must be the result of a variable x

mapped to ax.(yes + no) through the substitution σ. Since s is a shortest trace
that is accepted by monitor σ(ma), but not by σ(na), none of its prefixes is
accepted by σ(ma) and therefore the last action that is in s must be the action
ax stemming from σ(x). This means that monitorma can perform the transition

ma
s′

=⇒ m′
a, where m′

a contains x as a summand and s = s′.ax. Therefore the

monitor σ(ma) can perform the transitions:

σ(ma)
s′

=⇒ σ(m′
a)

ax−→ yes + no
τ
−→ yes .

Since s′.ax is accepted by σ(ma), it must also be rejected by it because ax
is an action that can only be observed after the substitution of the variable x

in ma. We have already argued that the rejection sets of σ(ma) and σ(na) are
equal and therefore σ(na) also rejects the trace s′.ax. Since the action ax is a
unique action corresponding to the variable x, there are only two ways in which
σ(na) could reject the trace s′.ax. The first case is that σ(na) can also perform
the transitions

σ(na)
s′

=⇒ σ(n′
a)

ax−→ yes + no

wfor some n′
a. However, this would guarantee that σ(na) accepts s, whereas we

assumed that it does not.
The most complicated case is when σ(na) can reject a prefix s0 of s′. By

the already proven equality of the rejection sets of the two sub-monitors, σ(ma)
would also reject s0. This can only happen if both na andma rejected that prefix
independently of the substitution σ, since every action preceding ax along the
trace s′ is not an action corresponding to the mapping of a variable through σ as
explained above. This means that both ma and na can perform the transitions
ma

s0==⇒ no +m′
a and na

s0==⇒ no + n′
a, for some m′

a and n′
a. However, since m

and n are in reduced normal form, this implies that m′
a and n′

a are equal to
end . This leads us to a contradiction, as we assumed that σ(ma) accepts the

trace s which can no longer be the case if ma
s0−→ no + end where s0 is a prefix

of s.
Therefore every trace accepted by σ(ma) is also accepted by σ(na). By

symmetry, we have that the acceptance sets of ma and na are equal.
This means that σ(ma) ≃ σ(na), which completes the proof of C4 and

consequently of the whole theorem.

Corollary 1. E ′
v is complete for ≃ω over open monitors in MonF when Act is

infinite. That is, for all m,n ∈ MonF , if m ≃ n, then E ′
v ⊢ m = n.

Proof. The claim follows from Lemma 2.

23

4.2. Finite set of actions

The study of the equational theory of ≃ when Act is finite turns out to be
more interesting and complicated. In this setting, we can identify equations
whose validity depends on the cardinality of Act , which is not the case for any
of the axioms we used so far. To see this, consider the equation

(V1) x = x+ a.x,

which is sound when Act = {a} but cannot be derived by the equations in E ′
v,

as it is not sound when Act 6= {a}.
As a first step in our study of the equational theory of ≃ when Act is finite,

we characterize some properties of sound equations.

Lemma 10. Let m ≃ n be a sound equation, where m,n ∈ MonF and m is in
reduced normal form. Assume that

• m
s
−→ x+m′, for some s in Act∗, variable x and m′ in MonF , and

• m 6
sp
−→ x+msp , for each proper prefix sp of s and msp ∈ MonF .

Then, n
s
−→ x+ n′ for some n′ in MonF .

Proof. Consider the substitution

σ(y) =

{

yes + no, if y = x

end , if y 6= x.

Since m
s
−→ x + m′ by one of the assumptions of the lemma, we have that

σ(m) will both accept and reject s. Since m ≃ n is sound we have that σ(n)

must do the same. If n 6
s
−→ x + n′ for every n′ then it is not hard to see that

there are two ways in which n could accept and reject s:

1. n
s′

=⇒ yes and n
s′

=⇒ no where s′ is a prefix of s (including s itself), or

2. n
s′

−→ x+n′ where s′ is a prefix of s (so that σ(n) would accept and reject

s′ and therefore s).

In the first case, consider the substitution σe that maps all variables to end .

Since n
s′

=⇒ yes and n
s′

=⇒ no, we have that σe(n) accepts and rejects s′. From

m ≃ n, we have that σe(m) also accepts and rejects s′. It is not hard to see that

this means that m
s′

=⇒ yes and m
s′

=⇒ no However, this is impossible because m

is a reduced normal form and m
s
−→ x+m′ by the proviso of the lemma.

In the second case, even though both monitors accept and reject s, we also
have that σe(n) also accepts and rejects s′. Again, since the two monitors

24

are verdict equivalent, we know that σe(m) must do the same. Since m is in

reduced normal form and m 6
sp
==⇒ x + m′ for any prefix sp of s (and therefore

neither for s′) we have that σ(m) can only accept and reject s′ by performing

the transitions m
s′′
1==⇒ yes and m

s′′
2==⇒ no, for s′′1 and s′′2 prefixes of s′. This

however is not allowed since it contradicts the fact that m is in reduced normal
form and m

s
−→ x + m′. Since both cases have led to a contradiction, we can

infer that there is some n′ such that n
s
=⇒ x+ n′, which was to be shown.

Corollary 2. Let m ≃ n be a sound equation, where m,n ∈ MonF and m is
in reduced normal form. Assume that

• m
s
−→ x+m′, for some s in Act∗, variable x and m′ in MonF , and

• n 6
s
−→ x+ n′, for any n′ ∈ MonF .

then we have that there exists an sp prefix of s such that

• m
sp
−→ x+msp and n

sp
−→ x+ nsp for some msp and nsp in MonF , and

• for any prefix s0 of sp we have that m 6
s0==⇒ x +m′ and n 6

s0==⇒ x + n′ for

any m′ and n′ in MonF .

Proof. Assume a sound equation m ≃ n for witch we have m
s
−→ x + m′, for

some s in Act∗, variable x and m′ in MonF . If this is the first occurrence of

x along the trace s in m (i.e. m 6
sp
−→ x + msp , for each proper prefix sp of s

and msp ∈ MonF), then by Lemma 10, we would have that n must be able to

perform the transitions n
s
−→ x+ n′, for some n′ in MonF . Since this cannot be

the case as the proviso of the corollary forbids it we have that there must be a

prefix sp of s such that m
sp
−→ x+msp .

Without loss of generality we assume sp to be the shortest such trace, which
means there are no other occurrences of the variable x along the trace sp. We
can therefore see that now for the trace sp, Lemma 10 holds and therefore

n
sp
−→ x+nsp for some nsp in MonF . Additionally since we assumed sp t be the

shortest trace of the necessary property we already have that m 6
s0==⇒ x+m′ for

any m′ in MonF .
It remains to show that the same must hold for n. This can be easily seen

to be the case since if we assumed the opposite where for some prefix s0 of sp
we had n

s0−→ x + n0 for some n0 then by the symmetric analysis and by using

the previous lemma and this corollary we would arrive at a contradiction of sp

being the shortest prefix of s for witch m
sp
−→ x+msp .

25

Remark 7. In what follows, when studying open equations, we will refer to
occurrences of variables such as the one mentioned in the above corollary, where
only one of the monitors involved in the equation can reach a term of the form
x+mx after observing a trace s, as “one-sided” variable occurrences.

Intuitively Lemma 10 states that on each sound equation (including axioms)
of which at least one side is in reduced normal form, the first occurrence of each
variable per distinct trace leading to the variable is common for both sides of the
equation.This gives us some handy intuition on what restrictions an equation
that is sound must satisfy.

The following example shows Lemma 10 in action.

Example 3. The equation

x+ a.(x+ a.(yes + no) + b.(yes + no)) = x+ a.(a.(yes + no) + b.(yes + no))

is sound over the set of actions Act = {a, b}, but

x+ a.(x+ a.(yes + no) + b.(yes + no)) = a.(x+ a.(yes + no) + b.(yes + no))

is not since the first occurrence of the variable x in the second example happens
after the prefix ε on the left-hand side but after the prefix a on the right. In the
second equation, the earliest occurrence of the variable x (after the prefix ε) is
one-sided.

Also notice here the importance of the sub-term a.
∑

a∈Act

a.(yes+no). We will

see that this type of sub-term is crucial for the soundness of the open equations
with one-sided variable occurrences we encounter later on.

The following notation will be used in what follows to describe a family of
sound equations that generalize the one given in Example 3.

Definition 8. (Notation) Let s ∈ Act∗.

1. We use pre(s) to denote the set of prefixes of s (including s).

2. We use si, i ≥ 1, to denote the trace s if i = 1 and ssi−1 otherwise.

3. We use s.m to stand for a monitor that can perform exactly the actions
along the finite trace s and then become m.

4. We define s≤(m) =
∑

|s′|≤|s|,
s′ 6∈pre(s)

s′.m . The monitor s≤(m) is one that behaves

like m after having observed any trace of length at most |s| that is not a
prefix of s.

5. The term s(m) is defined thus: s≤(m) + s.
∑

a∈Act

a.m .

26

Intuitively s(yes + no) stands for the monitor that accepts and rejects all
traces that do not cause the acceptance or rejection of the string s. Those
are exactly the traces that are shorter than s but not its prefixes, and also
the ones extending s.

6. With the term s(k)(m), for k ≥ 1, we will mean the summation:

s(m) if k = 1 and
∑

1≤i<k−1

si.s≤(m) + sk−1.s(m) if k ≥ 2.

Intuitively s(k)(yes + no) stands for a monitor that, after observing the
fixed trace s, accepts and rejects everything except the trace sk (and its
prefixes).

We now present an example of the usage of the above notation in order to
help the reader understand the equations presented later involving these new
notions.

Example 4. For a set of actions Act = {a, b}, the monitor m = yes + no and
a trace s = ab we have that:

• pre(s) = {ε, a, ab}

• s≤(m) = b.(yes + no) + a.a.(yes + no) + b.b.(yes + no) + b.a.(yes + no)

• s(m) = b.(yes + no) + a.a.(yes + no) + b.b.(yes + no) + b.a.(yes + no) +

a.b.
∑

c∈Act

c.(yes + no)

• and for k = 3 we get

s(3)(m) = s.s≤(m) + s2.s(m) =

a.b.(b.(yes + no) + a.a.(yes + no))+

a.b.a.b.(b.(yes + no) + a.a.(yes + no) + b.b.(yes + no)+

b.a.(yes + no) + a.b.
∑

c∈Act

c.(yes + no))

This notation defined and presented above is very useful once one under-
stands a very particular form equations among open monitors take when they
involve one-sided variable occurrences. Consider, for instance, the following
sound equation (for a fixed constant k):

x+ ak.x+ ak
3
(yes + no) ≃ x+ ak

3
(yes + no) .

We will formally prove the soundness of (a more general form of) this equa-
tion later on. We can intuitively see from the examples above that when an
equation contains a one-sided variable occurrence, then the rest of the terms
involved in the equation must have some specific form as well so that the equa-
tion will stay sound under all possible substitutions. This means that certain

27

traces must always be accepted and rejected by both sides independently of a
substitution.

The following lemma formalizes this intuition.

Lemma 11. Assume m ≃ n, where m,n are in reduced normal form. If m
s
−→

x+m′ for some m′ but n 6
s
−→ x+ n′ for any n′, then there exist s′, s′′ such that

s = s′s′′ and, for all sb = ssp where sp 6∈ pre(s′′), either:

• m
sb==⇒ yes, m

sb==⇒ no, n
sb==⇒ yes and n

sb==⇒ no or

• ∃s0,m′′, n′′ such that m
s0−→ x+m′′ and n

s0−→ x+n′′ and s0.sb ∈ pre(s.sb).

Proof. We have an equation m ≃ n, with m and n in reduced normal form, for
which we assume that: m

s
−→ x + m′ but n 6

s
−→ x + n′ for any n′. Let s be the

shortest trace meeting the proviso of the lemma. It is not hard to see that s 6= ε

because m ≃ n and m and n are in reduced normal form. This means that
indeed in the monitors m,n all other earlier occurrences of x happen at both
sides. By Corollary 2 we know that there is a prefix of s called s′ (s = s′.s′′) such

that both m and n can perform the transitions m
s′

−→ x+m′
0 and n

s′

−→ x+ n′
0,

and in addition for every prefix of s′ we have that n 6
s′

−→ x+n′ and m 6
s′

−→ x+m′

for every m′ and n′.
This means that there are no other one-sided occurrences of the variable x

“between” s′ and s′′ (otherwise s would not be the shortest trace). Since m ≃ n

is sound, we know that under any substitution the resulting monitors are verdict
equivalent.

Consider the set of traces

A = {t | (|t| ≤ |s′′| ∧ t 6∈ pre(s′′)) ∨ t = s′′.t′, t′ ∈ Act+} .

We now associate with this set of traces the class SA of substitutions σ as the

ones that for at least one trace sp ∈ A we have that σ(x)
sp
==⇒ yes or σ(x)

sp
==⇒ no.

Note that the class of substitution SA contains many substitution for each trace
sp and, additionally, since the set A is infinite, SA is infinite as well.

Fix now a sp and a substitution σ ∈ SA such that σ(x)
sp
==⇒ yes . We have

therefore that σ(m)
s′sp
===⇒ yes , σ(n)

s′sp
===⇒ yes and σ(m)

ssp
==⇒ yes . By the

construction of A, s′sp is not a prefix of ssp and therefore it is not necessary

that σ(n)
ssp
==⇒ yes . However, since m ≃ n is sound we have that σ(n) must

also be able to accept s.sp. One way this could happen is if both monitors, m
and n accept and reject the trace sb = s.sp where sp ∈ A independently of a

substitution, i.e. m
sb=⇒ yes , m

sb=⇒ no, n
sb=⇒ yes and n

sb=⇒ no. Note that

if one monitor can perform these transitions independently of a substitution
then the other one must do so as well since they are verdict equivalent. If this

28

is the case then for the traces s′, s′′ with s = s′s′′ an for all sb = ssp where
sp 6∈ pre(s′′) the first bullet of the lemma holds.

If this is not the case however we have that for a trace sp and a substitution

σ ∈ SA such that σ(x)
sp
==⇒ yes the monitor n must somehow accept the trace

ssp and this is not done because n
sb=⇒ yes .

We remind to the reader here that s is the shortest we could find that satis-
fied the proviso of the lemma. Therefore there are no other one-sided variable
occurrences along the trace s.

This means that the only way than n could accept sb is another variable
occurrence (not one-sided as s is the shortest trace satisfying the proviso of

the the lemma) happening after some other prefix s0 of s. I.e. n
s0−→ x + n1,

m
s0−→ x + m1 for some monitors n1 and m1 and trace s0.sp is a prefix of

s′.s′′.sp = s.sp. Note here that by Corollary 2 we know that s′ is the shortest
trace after which the variable x occurs. Therefore our only options for the trace
s0 would be the trace s′ and its extensions which falls in the second case of the
lemma as s0.sp is a prefix of s.sp.

This concludes the case analysis for the shortest s leading to a one-sided
variable occurrence of a variable. We continue with a trace s1 as the immediately
longer than s. For this s1 with |s1| ≥ |s| we can generalize the result as follows:

If s ∈ pre(s1) then the trace s′ we identified with the case analysis s is also
a prefix of s1 (i.e. s1 = s′.s′′1) and the same transitions we proved for the traces
sb are also enough for the result to hold for the trace s1. Assume now that
s 6∈ pre(s1). Then Corollary 2 still holds and the one-sided variable occurrence
after the trace s1 also does not have any other one-sided variable occurrences
between itself and the prefix guaranteed by the corollary which means we can
apply the same analysis.

4.2.1. Completeness of verdict equivalence

In this section we will present our axiom system for open monitors over a
finite number of actions. We start by providing an axiom set, which we prove
to be sound and complete for verdict equivalence over MonF . In order to do
so, we first use these axioms to further reduce a normal form of a term. Then,
by utilizing this new reduced normal form we use structural induction to prove
the completeness of our axiom set. The axiom set we provide is infinite. It is
therefore natural to ask whether ≃ is finitely axiomatizable over MonF . We
answer this question negatively by proving that no complete finite axiom set
exists for this algebra. This final part follows a different type of argument
which we will present in Section 5.

When studying open equations over a finite set of actions one would hope
that one of the axiom systems presented already would be complete. However,
we can guarantee that the equations provided in E ′

v are definitely unable to
prove every sound open equation. To see this consider the equation used in

29

Example 4 (where k is a constant):

x+ ak.x+ ak
(3)

(yes + no) ≃ x+ ak
(3)

(yes + no) .

We can clearly see that one of the sides of this equations contains a one-sided
variable occurrence (remember that we are considering terms up to A1 − A4).
The only axiom which has a similar behavior is O1. However for axiom O1
to be applied it must be the case that a variable is occurring simultaneously
with a yes and a no verdict. Since this does not apply for the equation we are
examining it is easy to see that no proof involving only the axioms of E ′

v could
prove it.

Towards proving this kind of equations and when Act is finite, we consider
the family of axioms

O = {O2s,k | s ∈ Act∗, k ≥ 0}

where

(O2s,k) x+ s.x+ s(k)(yes + no) = x+ s(k)(yes + no) .

We extend our finite axiom set E ′
v for open terms to the infinite E ′

v ∪ O,
which we will call E ′

v,f. The subscript f in the naming scheme states that the
action set for which the axiom system is complete is finite. When the action set
is a singleton, we will replace it with the subscript 1. If the cardinality of the
action set is not important, or if it is infinite, then we use no subscript. Based
on the naming scheme we have defined, the name of the axiom set E ′

v,f denotes
that we are studying verdict equivalence (v), over open terms (′) and for a finite
set of actions (f).

Lemma 12. E ′
v,f is sound. That is, if E ′

v,f ⊢ m = n then m ≃ n, for all
m,n ∈MonF .

Proof. We have to prove soundness only for the new family of equations O as
the other equations are sound by Theorem 1.

First of all, note that σ(x+s.x+s(k)(yes+no)) accepts every trace accepted
by σ(x+s(k)(yes+no)), and rejects every trace rejected by σ(x+s(k)(yes+no)).
We are therefore left to show that

• if σ(s.x) accepts some trace then so does σ(x+ s(k)(yes + no)), and

• if σ(s.x) rejects some trace then so does σ(x+ s(k)(yes + no)).

We only detail the proof for the latter claim, as that of the former one is similar.
To this end, assume that σ(s.x) rejects some trace s′. Then s′ = ss′′ for some s′′

that is rejected by σ(s.x). If s′′ is a prefix of sk, then it is not hard to see that
σ(x) rejects s′ too, and thus so does σ(x+ s(k)(yes + no)). On the other hand,
if s′′ is not a prefix of sk, then s′ = ss′′ is not a prefix of sk either. Therefore,
σ(s(k)(yes + no)) rejects s′. It follows that σ(x+ s(k)(yes + no)) rejects s′, and
we are done.

30

We provide here some examples of how to use the above to derive some
simpler and more intuitive sound equations.

Lemma 13. The following equations are derivable from O for each s, s1 ∈ Act∗:

1. x+ s.x+ s.s0(yes + no) = x+ s.s0(yes + no), with s0 a prefix of s,

2. yes + x+ s1.s2(no) = yes + x+ s1.s2(no) + s1.x, where s2 is any prefix of
s1,

3. no + x+ s1.s2(yes) = no + x+ s1.s2(yes) + s1.x, where s2 is any prefix of
s1,

4. x+ s.
∑

a∈Act

a.(no + yes) = x+ s.(x+
∑

a∈Act

a.(no + yes)).

Proof. We first show how to derive the first equation and then we derive the
rest from it. We start by picking the equation O2s,1 i.e.

x+ s.x+ s.s≤(yes + no) + s.s.
∑

a∈Act

a.(yes + no) =

x+ s.s≤(yes + no) + s.s.
∑

a∈Act

a.(yes + no) .

In addition we have the tautology

s.s0.
∑

a∈Act

a.(yes + no) = s.s0.
∑

a∈Act

a.(yes + no) ,

for the specific prefix s0 of s. On the two valid above equations we apply the
congruence rule for + and have:

x+ s.x+ s.s≤(yes + no) + s.s.
∑

a∈Act

a.(yes + no) + s.s0.
∑

a∈Act

a.(yes + no)

= x+ s.s≤(yes + no) + s.s.
∑

a∈Act

a.(yes + no) + s.s0.
∑

a∈Act

a.(yes + no) .

The first simplification that we perform now is by observing that the sum-

mand s.s0.
∑

a∈Act

a.(yes+no) accepts and rejects a prefix of the whole summand

s.s.
∑

a∈Act

a.(yes + no) and therefore we can eliminate the latter from the sum-

mation:
x+ s.x+ s.s≤(yes + no) + s.s0.

∑

a∈Act

a.(yes + no)

= x+ s.s≤(yes + no) + s.s0.
∑

a∈Act

a.(yes + no) .

31

In addition the term s.s≤ can be rewritten as s.s0
≤(yes+no)+s.s0.s1(yes+no)

with s = s0.s1. To see this, consider that the traces up to length |s| that do not
cause a rejection of the trace s are the ones that do not cause a rejection of its
prefix s0 and the ones that start with s0 but do not cause the rejection of its
continuation s1. Thus we have:

x+ s.x+ s.s0
≤(yes + no) + s.s0.

∑

a∈Act

a.(yes + no) + s.s0.s1(yes + no)

= x+ s.s0
≤(yes + no) + s.s0.

∑

a∈Act

a.(yes + no) + s.s0.s1(yes + no) .

Now we have again that the summand s.s0.
∑

a∈Act

a.(yes + no) accepts and

rejects a prefix of the whole summand s.s0.s1(yes + no) and therefore we can
omit the latter. This gives us the equation:

x+ s.x+ s.s0
≤(yes + no) + s.s0.

∑

a∈Act

a.(yes + no) =

x+ s.s0
≤(yes + no) + s.s0.

∑

a∈Act

a.(yes + no) ,

which can be rewritten using our notation as

x+ s.x+ s.s0(yes + no) = x+ s.s0(yes + no) ,

giving us the target equation.
Having presented the proof for the first family of equations in detail we give a

short description for the rest. For the equations (2) and (3) it suffices to use the
congruence rule for + with the equations yes = yes and no = no respectively
and then simplify the equations by using the distribution axiom for +. For the
latter equation (4) it is enough to instantiate the prefix s0 in the the family of
equations (1) as the empty string ε. This is, of course, allowed since the empty
string is a prefix of any string.

Now that we have discussed the family of axioms O, we proceed to use them
in defining a notion of reduced normal form that is suitable for monitors over a
finite action set.

Definition 9. A finite-action-set reduced normal form is a term

m =
∑

a∈A

a.ma +
∑

i∈I

xi [+yes] [+no]

where each ma is different from end and if v ∈ {yes , no} is a summand of m
then each ma is v-free, and in reduced normal form. If both yes and no are

32

summands of m then m is equal to yes + no. In addition for every trace s, if
there exists a k such that for all the traces s0

s(k)(yes + no)
s0−→ yes + no, implies: m

s0==⇒ yes and m
s0==⇒ no

then m 6
s
−→ xi +m′ for all i ∈ I and m′.

In order to use the above form of the monitors in MonF we need to prove
that any term can be rewritten in a reduced normal form using the axioms in
E ′
v,f. Before doing so we will prove the following useful lemma, which only uses

axioms form Ev.

Lemma 14. For a monitor m ∈ MonF :

• if m
s
=⇒ yes then Ev ⊢ m = m+ s.yes and

• if m
s
=⇒ no then Ev ⊢ m = m+ s.no.

Proof. We prove both statements by induction on the length of the trace s and
limit ourselves to presenting the proof for the first one.

• If s is the empty trace, then m accepts the empty trace. Therefore it must
contain a yes syntactic summand and we are done.

• Assume now that s = a.s′. Then m
a
−→ ma

s′

−→ yes for some ma. By
induction E ′

v,f ⊢ ma = ma + s′.yes .

Now,

E ′
v,f ⊢ m = m+ a.ma = m+ a.(ma + s′.yes) = m+ a.ma + a.s′.yes

= m+ a.s′.yes

We will also need a similar result, this time involving syntactic summands
that contain occurrences of variables.

Lemma 15. For a monitor m ∈ MonF , where m is in normal form for open
terms, if m

s
−→ x +ms then Ev ⊢ m = m′ + s.x where m′ 6

s
−→ x +m′′ for every

m′′.

Proof. We prove the claim by induction on the length of the trace s.

• If s is the empty trace then m
ε
−→ x + ms = m. This means that x is

a summand of m. Since m is in normal form, ms does not have x as a
summand and we are done.

• Assume now that s = a.s′. Since m is in normal form and m
a.s′

−−→ s+m′,
we have that m = m′ + a.ma for some m′ 6

a
−→ and ma in formal form such

33

that ma
s′

−→ x + m′. By the induction hypothesis, Ev ⊢ ma = m′
a + s′.x

where m′
a 6

s′

−→ x+m′
s′ for every m′

s′ .

Therefore we have:

m = m′ + a.ma = m+ a.(m′
a + s′.x) = m′ + a.m′

a + a.s′.x ,

and since m′
a 6

s′

−→ x + m′
s′ for every m′

s′ and m′ 6
a
−→ we have that m =

s.x+mrest with mrest 6
s
−→ x+m′′ for every m′′ and we are done.

Lemma 16. Each open monitor m ∈ MonF , is provably equal to a reduced
normal form using E ′

v,f.

Proof. From Lemma 8 we can start from a monitor m already in open normal
form, as given in Definition 6. Therefore we have the following cases:

• m = yes + no.

• m = yes +
∑

a∈A

a.ma +
∑

i∈I

xi, where each ma is yes-free.

• m = no +
∑

a∈A

a.ma +
∑

i∈I

xi, where each ma is no-free.

• m =
∑

a∈A

a.ma +
∑

i∈I

xi.

We begin our analysis from the second case. A similar analysis can be applied
to the third one and the fourth one follows by a simpler version of the same

inductive argument. We have therefore a monitor m = yes +
∑

a∈A

a.ma +
∑

i∈I

xi.

The extra claim for these reduced normal forms is that if for some trace s, and
a k0, for all traces s0,

s(k0)(yes + no)
s0−→ yes + no, implies: m

s0==⇒ yes and m
s0==⇒ no

then m 6
s
−→ xi +mx for all i ∈ I and mx. In order to prove this extra constraint

we assume the premise is true. We will show that we can reduce m to mred

with Efin ⊢ m = mred and mred 6
s
−→ xi +mx for every i ∈ I and every mx.

Since m accepts and rejects all the traces that s(k0)(yes + no) accepts and

rejects, we have that m ≃ m + m′ and that m′ s0−→ yes + no for all of the

traces s0 that s(k0)(yes + no)
s0−→ yes + no. We call this set of traces S which

is finite since k0 is fixed. Therefore by Lemma 14 we have that E ′
v,f ⊢ m =

m+
∑

s0∈S

s0.(yes + no). Since the term
∑

s0∈S

s0.(yes + no) is verdict equivalent

to s(k0)(yes + no) and both terms are closed, we have that by Theorem 2, Ev ⊢

34

∑

s0∈S

s0.(yes + no) = s(k0)(yes + no). Therefore E ′
v,f ⊢ m = m+ s(k0)(yes + no),

which means

E ′
v,f ⊢ m = yes +

∑

a∈A

a.ma +
∑

i∈I

xi + s(k0)(yes + no).

For the same monitor m we now want to argue that if m
s
−→ xi for one of the

variables in {xi | i ∈ I} then we can eliminate this occurrence.
Since m is in reduced normal form we have by Lemma 15 that m = m′+s.xi

wherem′ 6
s
−→ xi. Additionally we have shown that m = m+s(k0)(yes+no) which

implies m = m′ + s.xi + s(k0)(yes + no) with m′ 6
s
−→ xi. Since xi is one of the

variables that appear as summands of m we can successfully apply the axiom
O2s,k0

for each variable and we have the that indeed m reduces to a monitor

mred such that mred 6
s
−→ xi +mxi

for every i ∈ I and every mxi
.

Lemma 17. If monitor m ∈ MonF , with |Act | ≥ 2 is in reduced normal form

and contains an x summand and m
s
−→ x+m′ for some m′ then there is at least

one trace sbad such that for every k,

s(k)(yes + no)
sbad===⇒ yes and s(k)(yes + no)

sbad===⇒ no

but
m 6

sbad===⇒ yes or m 6
sbad===⇒ no.

Proof. We can easily show that for each k there exists an sk such that s(k)(yes+

no)
sk−→ yes + no but m 6

sk==⇒ yes or m 6
sk==⇒ no. This follows since if this were

not the case then for some k0, no such trace sk0
exists. Thus the monitor would

contain a summand m′ ≃ s(k0)(yes + no) for this k0 and still it would be able

to perform the transition m
s
−→ x +m′ which contradicts the assumption that

m is in reduced normal form.
We will now show that one trace sbad suffices for all k. To that end, consider

the term s(1)(yes+no). If there is an s1, which is not a prefix of ss andm 6
s1==⇒ yes

or m 6
s1==⇒ no then for sbad = s1 we have that for all k, s(k)(yes + no)

sbad===⇒

yes and s(k)(yes + no)
sbad===⇒ no and we are done. If this is not the case and

since the trace s1 is guaranteed to exist (by the previous paragraph) then it must
be an extension of ss. Again if s1 is not prefix of sss then again for sbad = s1
we have the necessary conclusion.

Otherwise m 6
s1==⇒ yes or m 6

s1==⇒ no for the trace s1 = ssa, where a is the

first action of s. Therefore by the definition of s(k)(yes + no) we have that for

all sb such that s(k)(yes + no)
sb−→ yes + no and k > 1 we have that m 6

sb=⇒ yes

or m 6
sb=⇒ no. This allows us to look for an sbad which will also cover the case

k = 1 in larger terms.

35

We then apply the same reasoning for k = 2, . . . up to a certain kb. If at any
point in the process we encounter a trace si which fulfills our premise then we
can stop. We are just left to show that this process will eventually terminate.

This can be shown as follows. Recall that every monitor m has a finite depth
depth(m) (see Def. 2). We now take a kb large enough so that skb > depth(m). If

the iterative procedure described above reaches this kb we have that m 6
sbad===⇒ yes

or m 6
sbad===⇒ no for the trace skb+1a where a is the first action of s. However

since the depth of the monitor m is smaller that the length of this trace we also
have that the monitor cannot accept or reject any of its extensions.

Therefore for the extension sbad = skb+1ac where c is not the second action of
s we have that for all k > kb, s

(k)(yes+no)
sbad===⇒ yes and s(k)(yes+no)

sbad===⇒ no

while m

not
sbad===⇒ yes or m 6

sbad===⇒ no. Additionally since the iterative procedure we

described above reached this kb we have that for all i ≤ j ≤ kb, it is true that

s(k)(yes+no)
sj
=⇒ yes and s(k)(yes+no)

sj
=⇒ no, which concludes the proof.

The two lemmata above play a key role in the completeness proof we will
present now.

We distinguish two cases separately, namely when |Act | ≥ 2 and when Act
is a singleton. This is necessary because equations such as x = x+ a.x are only
sound when Act = {a}. For the proof when |Act | ≥ 2 it is necessary to utilize
at least two actions a, b ∈ Act , which is the reason why when only one action is
available new cases arise.

Action set with at least two actions. We have already shown the soundness
of the axiom system E ′

v,f. We now proceed to show completeness.
For each such completeness theorem we follow a similar general strategy

in order to prove that two arbitrary verdict equivalent monitors have identical
reduced normal forms. To that end, we prove that they have identical variables
as summands, that the sets of initial actions that each one can perform are
equal and that after a common action they reach monitors that are also verdict
equivalent. Unfortunately, for a finite set of actions, we were not able to define
a substitution that would cover all the three above-mentioned steps like we did
when the set of actions was infinite. We therefore adopted a proof strategy that
focuses on each part of the proof separately.

Theorem 5. E ′
v,f is complete for open terms for finite Act with |Act | ≥ 2. That

is, if m ≃ n then E ′
v,f ⊢ m = n.

Proof. By Lemma 16 we may assume that m and m are in reduced normal
form. We prove the claim by induction on the sum of the sizes of m and n, and
proceed with a case analysis on the form m may have.

In the case where m contains both a yes and a no summand then both m

and n must be equal to yes + no as they are in reduced normal form.

36

Assume now that

m = yes +
∑

a∈A

a.ma +
∑

i∈I

xi ,

where {xi | i ∈ I} is the set of variables occurring as summands of m and each
ma is yes-free and different from end (as a reduced normal form). Since σ(m)
accepts ε for each σ and m ≃ n, monitor n is bound to have a similar form since
it must contain the verdict yes as a summand (but not a no one). Therefore:

n = yes +
∑

b∈B

b.nb +
∑

j∈J

yj

and we need to show that there is a way to apply our axioms to show that
monitor n is provably equal to m.

We start by proving that {xi | i ∈ I} = {yj | j ∈ J}. By symmetry, it suffices
to show that {xi | i ∈ I} ⊆ {yj | j ∈ J}. To this end, assume x ∈ {xi | i ∈ I}.
Consider the substitution σ mapping x to no and every other variable to end ,
i.e:

σ(y) =

{

no, if y = x

end , otherwise.

Then, σ(m) rejects the empty trace ε. Since σ(m) ≃ σ(n), we have that σ(n)
must also reject ε. By the form of n and the definition of σ, this is only possible
if n has x as a summand, and we are done. Therefore the set of variables of m
is a subset of the variables of n.

Next, we prove that the action sets A,B are identical. Assume that a ∈ A.
Since Act contains at least two actions, there is some action b 6= a. Consider
the substitution σ1 defined by σ1(x) = b.no for each x ∈ Var . Since a ∈ A

and ma is yes-free and different from end , it is easy to see that there exists an
s ∈ Act∗ such that as ∈ Lr(σ1(m)). Since m ≃ n we have that σ1(m) ≃ σ1(n)
and therefore σ1(n) must also reject as. By the form of n and the definition

of σ, this is only possible if n
a
−→ na for some na and therefore a ∈ B. Hence,

A ⊆ B and the claim follows by symmetry.
For the final part of the proof we must show that ma ≃ na for each a ∈ A,

which is enough to complete the proof, by the induction hypothesis. Towards
a contradiction we will assume that the two monitors ma, na are not verdict
equivalent. Therefore there exists a substitution σ0 that separates them, that
is without loss of generality, there is a trace s0 such that s0 ∈ Lr(σ0(ma)), s0 6∈
Lr(σ0(na)) or there is some s0 ∈ La(σ0(ma)), s0 6∈ La(σ0(na)) .

We will analyze first the case of rejection of the string s0. The substitution
σ0 must be a closed one for ma, na i.e. it must map to a closed monitor all
variables in (V ar(ma)∪V ar(na)). We will use this substitution to create a new
one σbad that would also separate the original monitors m,n.

The first step towards this is:

σbad(x) =

{

end , if x ∈ V ar(m) \ (V ar(ma) ∪ V ar(na)),

σ0(x), otherwise.

37

Now since s0 ∈ Lr(σ0(ma)) and σbad(ma) = σ0(ma) we also know that
a.s0 ∈ Lr(σbad(a.ma)). Our aim is to show that a.s0 6∈ Lr(σbad(n)). Following
the definition σbad(na) = σ0(na) and therefore s0 6∈ Lr(σbad(na)).

Hence, the only way for σbad(n) to reject a.s0, like σbad(m) does, is if it was
rejected by the mapping of one the variables contained in the set {xi | i ∈ I}.

It is useful to make here apparent that in order for σbad(n) to reject a.s0,
it must do so completely independently of the summand σbad(a.na), since the
latter cannot reject any of the prefixes of a.s0 as well. Even in the case where s0
starts with a, and σ0(na) rejects some a.s1.s2. . . . sn−i it would still be impossible
for σ0(n0) to reject a.s0 since the assumption that a.s0 = a.a.s1.s2. . . . sn−1

would automatically imply that σ0(na) rejects some prefix of s0 which is a
contradiction.

σbad(m)

no

s ′′

σbad(ma) σbad(ms + x) no
s′′s′

a

Figure 1: Transitions the monitor σbad(m) can perform

By the definition of σbad, the variables that did not appear at all in na or ma

were mapped to end and therefore cannot reject any string. Therefore the only
way for n to reject a.s0 is for one of the variables appearing in V ar(na)∪V ar(ma)
to have been mapped to a closed term that can reject a.s0. (Note that this
does not contradict the fact that σbad(na) does not reject s0). Therefore there
is at least one x0 ∈ V ar(ma) ∪ V ar(na) and x0 ∈ {xi | i ∈ I} such that
as0 ∈ Lr(σbad(x0)).

This leads to the case werem,n reject a prefix of as0 because of the mapping
of x0. However this implies that we have the following situation:

m = yes + x0 + a.ma +
∑

b∈A\{a}

b.mb +
∑

i∈I\{0}

xi ≃

yes + x0 + a.na +
∑

b∈A\{a}

b.nb +
∑

i∈I\{0}

xi = n

and that the monitor ma can perform the transitions: ma
s′

−→ m′
a + x0 and the

monitor σ0(x0) = σbad(x0) respectively can perform the transitions: σbad(x0)
s′′

−→

no , where s′ is a prefix of s0 (i.e. s0 = s′.s′′) and in addition na 6
s′

−→ x+ n′ for

any n′. This means respectively that m
as′

−−→ m′
a+x0 and σbad(m

′
a+x0)

s′′

−→ no .

By Lemma 17 we have that there exists at least one trace sb such that

m 6
sb=⇒ yes or m 6

sb=⇒ no but sb ∈ Lr(as′
(k)

(yes + no)) for all k ≥ 0. Since m

38

contains a yes summand we have that it must be the case that m 6
sb=⇒ no. We

now, further modify σbad to map the variable x0 to sb.no and any other variable
y 6= x0 to end . We have then that sb and as′.sb ∈ Lr(σbad(m)). In addition

sb ∈ Lr(σbad(n)). However the traces that are rejected by the term as′
(k)

,
by definition, are exactly the traces such that their rejection does not cause
a rejection of the as′ trace. This means that under the modified substitution
σbad, monitor n cannot reject the trace as′.sb. This deems the monitors m,n

not verdict equivalent, which contradicts our assumption. We conclude then
that the rejection set of ma is equal to the rejection set of na for each a ∈ A.

It remains to show that ma and na also have identical acceptance sets.
Towards a contradiction, assume they do not and take a trace s that under
some substitution σ0 separates them, i.e. s ∈ La(σ0(ma)) and s 6∈ La(σ0(na)).
In addition, assume that s is of minimum length, meaning that no prefix of s
(under any substitution) has the property of separating the acceptance sets of
ma and na. This fact in addition to ma and na being yes-free (as a result of m
and n being in reduced normal form) means that the acceptance of s by ma is

the result of a variable x occurring in ma as ma
s
−→ x +m′ for some m′. Since

however the assumption is that s 6∈ La(σ0(na)) we have that na 6
s
−→ x + n′ for

any n′. We know that this is exactly the case since if the variable x occurred
earlier in ma then by mapping it to yes we would have a shorter trace being
accepted by σ0(ma) but not σ0(na).

We are sure now that monitor σ0(na) cannot perform the transition σ0(na)
s

==⇒

yes , which means that not only it does not arrive at the variable x after reading
the trace s, but also does not arrive to the yes verdict for any of its prefixes
(say s′) as that would imply that it can reach the yes verdict for s as well.

Finally, by n being in reduced normal form, and by ma not arriving at a no
verdict for any of the prefixes s′ of s (as this would mean that if becomes a no

and therefore cannot perform the transitions ma
s

−−→ x) we know that na does

not arrive to the no verdict after reading the trace s or any of its prefixes either.
Given all of the above we can now construct the substitution σbad that would

separate the rejection sets of na,ma which is enough to prove the contradiction
as the case where such a substitution exists and separates the rejection sets of
the two sub-monitors has already been covered. The situation we have at hand
is as follows:

Monitor σ0(ma) can arrive to the verdict yes after reading the trace s while
σ0(na) cannot and also neither na nor ma can produce a no verdict for the trace
s. Therefore if we switch the mapping of x to no in σ′ and the verdicts of all
other variables that where mapped to a no verdict to end we have produced a
substitution that causes s to be rejected by σ′(ma) but not from σ′(na). By
utilizing our previous construction there exists another one that separates the
monitors n,m as well which is a contradiction.

We have concluded then that the La(ma) = La(na) and Lr(ma) = Lr(na)
which means that they are verdict equivalent. Therefore we can apply the

39

inductive hypothesis and have that E ′
v,f ⊢ ma = na. Using now congruence

rules we have that E ′
v,f ⊢ m = n. All other possible forms of monitors m,n are

sub-cases that the relative analysis can be applied symmetrically and therefore
they are omitted.

Singleton Action Set. We proceed now with the analysis of the completeness
result when Act = {a}.

As we mentioned earlier, when a is the only action, the equation

(V1) x = x+ a.x

is sound, but cannot be proved from the equations in E ′
v,f over {a}. Indeed,

unlike V1, all the equations in Ev are sound regardless of the cardinality of the
action set and those in the family O introduce subterms of the form yes + no,
which can never be removed in equational derivations.

Theorem 6. The finite axiom system E ′
v,1 = E ′

v ∪ {V1} is complete for verdict
equivalence over open monitors when Act = {a}. That is, if m ≃ n then
E ′
v,1 ⊢ m = n. Hence, verdict equivalence is finitely based when Act = {a}.

Proof. Before we start the main proof we note that the new axiom V1 can prove
the equation x = an.x+ x for each n ≥ 0. This is done as follows: if n = 0 then
this is the axiom A3. Assume we can prove that equation for n. Then we can
show it for n+ 1 thus:

x
V1= x+ a.x

I.H.
= x+ a.(an.x+ x)

Da= x+ a.x+ an+1.x
V1= x+ an+1.x .

Note here that this means that E ′
v ∪ {V1} proves all the equations in O over

{a}, which means that even though E ′
v ∪ {V1} is finite, it can prove the infinite

family E ′
v,f over {a}.

Let m ≃ n. By Lemma 16, we can assume that m and n are in reduced
normal form. We will present the argument only for the case where m = yes +

a.ma +
∑

i∈I

xi, where each ma is yes-free, as every other case is either trivial or

a sub-case of this one.
By following the reasoning of previous proofs, we have that n = yes [+a.na]+

∑

i∈I

xi.

Let us first consider the case that a.na is not a summand of n. (Note that
this is possible, as witnessed by axiom V1.) That is

m = yes + a.ma +
∑

i∈I

xi ≃ yes +
∑

i∈I

xi = n .

Observe that, for each s ∈ Act∗, we have ma 6
s
=⇒ no. Indeed, ma

s
=⇒ no

would imply that m and n are not verdict equivalent under the substitution
σend (x) = end for all x. This means thatma is both yes- and no-free. Moreover,

40

note that the set of variables occurring in ma is included in {xi | i ∈ I}. To see
this, assume that x occurs in ma, but is not contained in {xi | i ∈ I}. Consider
the substitution that maps x to no and all the other variables to end . Again,
we have that m rejects some trace starting with a while n cannot reject any
trace, which contradicts our assumption that m ≃ n.

For each monitor m′, we define V(m′) as the set of pairs (s, x) such that

m′ s
−→ x+m′′ for some m′′. By structural induction on m′ and Lemma 15, one

can easily prove that, whenm′ is yes- and no-free, Ev provesm′ =
∑

(s,x)∈V(m′)

s.x.

Therefore m = yes + a.
∑

(s,x)∈V(ma)

s.x +
∑

i∈I

xi. Since the only available

action in Act is a and the variables occurring in ma also occur in {xi | i ∈ I},
we have that by applying the equations we proved earlier by using axiom V1 we

can prove m = yes +
∑

i∈I

xi = n, and we are done.

Assume now that a.na is a summand of n. We proceed to prove that that
ma ≃ na. In this case we have

ma =
∑

(s,x)∈V(ma)

s.x [+ah.no] and na =
∑

(s,x)∈V(na)

s.x [+ak.no] ,

for some h, k.
By mapping all variables to end we can see that h = k. Additionally, for

each variable s and by using the axiom V1 we can reduce both of the above
summations so that only the shortest s leading to x is kept. By Lemma 10,
we have that, for each variable, this s is identical for both sides of the equality
m ≃ n and we are done.

4.2.2. Completeness of ω-verdict equivalence

This section presents a complete axiomatization for ω-verdict equivalence
over MonF . We have already presented the necessary axioms that capture
ω-verdict equivalence over closed terms, as well as the necessary ones to cap-
ture equivalence of terms that include variables. We will show here that the
combination of the two axiom systems is enough for completeness of ω-verdict
equivalence over open terms and there is no need for extra axioms to be added.
First we look at the case for a singleton action set, i.e. Act = {a}. In this case,
the equation

(V1ω) x = a.x

is sound and we therefore we can shrink the axiom system to:

E ′
ω,1 = {A1−A4} ∪ {V 1ω} ∪ {O1},

for which we prove:

Theorem 7. E ′
ω,1 is complete for ω-verdict equivalence for open terms for a

finite Act, with |Act | = 1. That is, if m ≃ω n then E ′
ω,1 ⊢ m = n.

41

Proof. The proof of the above follows easily since, by using those equations,

every term can be proved equal to one of the form
∑

i∈I

xi [+yes] [+no], where

I is empty if both yes and no are summands, and two terms of that form are
ω-verdict equivalent iff they are equal modulo A1−A4. Note that, in this case,
there are only four congruence classes of terms, namely the ones asymptotically
equivalent to subsets of yes and no, so the quotient algebra is very small and
equationally well behaved.

In the case where there the action set contains more than one action but is
still finite we have a more interesting situation. We therefore define:

E ′
ω,f = Eω ∪ E ′

v,f ,

for which we prove:

Theorem 8. E ′
ω,f is complete for ω-verdict equivalence over open terms when

Act is finite and |Act | ≥ 2. That is, if m ≃ω n then E ′
ω,f ⊢ m = n.

The rest of this section is devoted to the proof of the above theorem. We start
by showing a lemma that tells us that if two monitors are ω-verdict equivalent
then they can only disagree on finitely many finite traces.

Lemma 18. For two monitors in MonF , we have that m ≃ω n if and only if,
for any substitution σ, the set

Sm,n,σ = (La(σ(m)) \ La(σ(n))) ∪ (Lr(σ(m)) \ Lr(σ(n)))

∪ (La(σ(n)) \ La(σ(m))) ∪ (Lr(σ(n)) \ Lr(σ(m)))

is finite.

Proof. We prove both implications separately by establishing their contrapos-
itive statements. For the implication from left to right, assume that Sm,n,σ is
infinite. It follows that there are some σ and trace s such that s ∈ Sm,n,σ with

|s| > max{depth(σ(m)), depth(σ(n))}.

Assume, without loss of generality, that σ(m) accepts s, but σ(n) does not.
Let a ∈ Act . Then saω is in La(σ(m)) · Actω. We claim that saω is not in
La(σ(n)) ·Act

ω. Indeed, σ(n) does not accept any prefix of s, since it does not
accept s itself, and it does not accept sai for any i ≥ 0 because |s| > depth(σ(n)).
For the implication from right to left, assume, without loss of generality, that
there are some substitution sigma and some t ∈ Act{omega such that t is in
La(σ(m)) · Actω, but not in La(σ(n)) · Act

ω. Since t is in La(σ(m)) · Actω, we
have that there are some s ∈ La(σ(m)) and u in Actω such that t = su. It
follows that ss′ ∈ La(σ(m)) for each finite prefix s′ of u, but none of the ss′ is
contained in La(σ(n)). Therefore, Sm,n,σ is infinite, and we are done.

42

We are now ready to present the proof of the main theorem of this section
(Theorem 8).

Proof. By Lemma 16 we may assume without loss of generality that the monitors
m and n are in finite-action-set reduced normal form (Definition 9).

We proceed by a case analysis on the form m and n might have and by
induction on the sum of the sizes of m and n.

• Assume that m = yes + no ≃ω

∑

a∈A

a.na +
∑

j∈J

yj = n. First of all, note

that A = Act . Indeed, assume a 6∈ A. Then, under a substitution that
maps every variable to end , all infinite traces starting with a are neither
accepted nor rejected by n since n cannot take an a transition and it
also does not accept and reject ε. However all infinite traces (including
those starting from a) are both accepted and rejected by m, which is a
contradiction as we have assumed that the two monitors are ω-verdict
equivalent.

Moreover, it is not hard to see that na ≃ω yes+no holds for each a ∈ Act .
By the induction hypothesis, E ′

ω,f proves na = yes +no, for each a ∈ Act .
Therefore,

E ′
ω,f ⊢ n =

∑

a∈Act

a.(yes + no) +
∑

j∈J

yj
Da=

∑

a∈Act

a.yes +
∑

a∈Act

a.no +
∑

j∈J

yj

Yω,Nω
= yes + no +

∑

j∈J

yj
O1
= yes + no ,

and we are done.

• Now, we assume that m = yes + no ≃ω

∑

a∈A

a.na +
∑

j∈J

yj + yes = n, with

each na being yes- and end-free. As above A = Act . Moreover, for each
a ∈ Act , Lr(na) · Act

ω = Actω. Following the same argument as above
only for the no verdict we conclude that

E ′
ω,f ⊢ n = yes +

∑

a∈Act

a.no +
∑

j∈J

yj = yes + no = m.

• The case m = yes + no ≃ω

∑

a∈A

a.na +
∑

j∈J

yj + no = n is symmetrical to

the previous one.

• The final case whose proof we present in detail is when

m = yes +
∑

a∈A

a.ma +
∑

i∈I

xi ≃ω

∑

b∈B

b.nb +
∑

j∈J

yj [+yes] [+no] = n ,

43

where each side is in reduced normal form. To deal with this case, we
note, first of all, that by mimicking the argument in the first case of the

proof, we can prove that E ′
ω,f ⊢ n = yes +

∑

b∈B′

b.n′
b +

∑

j∈J

yj, where now

each n′
b is yes-free. By the same argument as for the verdict equivalence

case (Proof of Theorem 5) and by defining the appropriate substitutions
σ we can infer that A = B′ and {xi | i ∈ I} = {yj | j ∈ J}. In other
words, we have:

m = yes +
∑

a∈A

a.ma +
∑

i∈I

xi ≃ω yes +
∑

a∈A

a.n′
a +

∑

i∈I

xi ,

wherem and n are in finite-action-set reduced normal form for open terms.
It remains to show that under every substitution σ we have that σ(ma) ≃ω

σ(n′
a) so that we can apply our induction hypothesis and complete the

proof.

Towards a contradiction assume that this is not the case. Therefore there
exists a substitution σ for which there is at least one infinite trace s such
that, without loss of generality, s ∈ Lr(σ(ma)) · Act

ω but s 6∈ Lr(σ(n
′
a)) ·

Actω or s ∈ La(σ(ma)) · Act
ω but s 6∈ La(σ(n

′
a)) · Act

ω. We examine
first the case of the rejection sets. Since σ(ma) rejects the infinite trace
s, there is some finite prefix s0 of s that is rejected by σ(ma). Note that
σ(ma) will also reject all the finite prefixes of s that extend s0. On the
other hand, σ(n′

a) does not reject any of those because it does not reject
s.

As we saw in the proof of Theorem 5 this substitution and any such trace
s0 can be modified to a new substitution σ′ such that σ′(m) 6≃ σ′(n) and
consequently m is not verdict equivalent to n. Specifically from the proof
of Theorem 5 we have that:

– Under the substitution σ′, all variables except x are mapped to end .

– ma
s′

−→ x+m′
a for some m′

a and a trace s′ that is a prefix of s0.

– n′
a 6

s′

−→ x+ n′′
a for any n′′

a

– The variable x is mapped to sb.no for a trace sb such that m rejects
the trace as′sb, but n does not.

By Lemma 18 we have that the only way m can be ω-verdict equivalent
to n is if the number of traces they disagree on, under any substitution
(including σ′), is finite. Since monitor m is ω-verdict equivalent to n, both
monitors must disagree on finitely many extensions of as′sb. This however
can be done only if ma and n′

a also disagree on finitely many extensions of
s′sb. This is because we have seen that under σ′, only the variable x can
contribute to the rejections sets of the monitors and it does so by being
mapped to sb.no. However, as sb is not a prefix of as′sb we know that

44

also none of its extensions are prefixes of as′sb. Therefore the rejection
of sb does not cause the rejection of any of the prefixes and extensions of
as′sb. This implies that the infinite trace s is only rejected by σ′(ma) but
not σ′(n′

a), which implies that the monitors ma and n′
a still disagree on

infinitely many extensions of s0 under the new substitution σ′ which is a
contradiction.

It is now easy to see that for each a ∈ A and for each substitution σ we have
that Lr(a.σ(ma)) · Act

ω = Lr(a.σ(n
′
a)) · Act

ω which implies Lr(σ(ma)) ·
Actω = Lr(σ(n

′
a)) · Act

ω. It remains to see that La(σ(ma)) · Act
ω =

La(σ(n
′
a)) ·Act

ω.

To this end, assume, towards a contradiction, that there exist a sub-
stitution σ and an infinite trace s such that s ∈ La(σ(ma)) · Act

ω but
s 6∈ La(σ(n

′
a)) · Act

ω. Following the argument for the rejection sets, we
can infer that there is a finite trace s0 accepted by σ(ma) but not by
σ(n′

a). Again by using the proof of Theorem 5 , we can transform σ into
a σ′ that causes a disagreement over the rejection of a trace s′0 for σ(ma)
and σ(n′

a) i.e. s
′
0 ∈ Lr(σ

′(ma)) but s
′
0 6∈ Lr(σ

′(n′
a)). This, in turn, means

we can apply the same reasoning as before for the rejection of a trace to
reach a contradiction, namely that m and n are not ω-verdict equivalent.

We can therefore conclude that σ(ma) ≃ω σ(n′
a) under any substitution

σ and therefore we can apply our induction hypothesis to obtain E ′
ω,f ⊢

ma = n′
a. Using the congruence rules, we have E ′

ω,f ⊢ m = n, and we are
done.

Table 4 summarizes the equational axiom systems we have obtained.

5. A non-finite-axiomatizability result

Observe that the family of axioms O = {O2s,k | s ∈ Act∗, k ≥ 0}, which
is included in E ′

v,f, is infinite. Thus it is natural to wonder whether verdict
equivalence has a finite equational axiomatization overMonF . In the remainder
of this section, we will provide a negative answer to that question by showing
that no finite subset of E ′

v,f is enough to prove all the equations in O.
Intuitively, the proof of the above claim proceeds as follows. Let E be an

arbitrary finite subset of E ′
v,f. First of all, we isolate a property of equations

that is satisfied by all the equations that are provable from E . We then show
that there are equations in the family O that do not have the given property.
This means that those equations are not provable from E and, therefore, that E
cannot be complete for verdict equivalence.

An arbitrary finite axiom set vs. a finite subset of E ′
v,f. In Section 4.2.1, in

Theorem 5, we proved that E ′
v,f is complete for open terms over a finite action

set modulo verdict equivalence. Therefore, without loss of generality, we can
assume that this basis is in fact a subset of the equations in E ′

v,f. To see this,
consider any sound equation that could be involved in an arbitrary axiom set.

45

(A1) x+ y = y + x

(A2) x+ (y + z) = (x+ y) + z

(A3) x+ x = x

(A4) x+ end = x

(Ea) a.end = end (a ∈ Act)

(Ya) yes = yes + a.yes (a ∈ Act)

(Na) no = no + a.no (a ∈ Act)

(Da) a.(x+ y) = a.x+ a.y (a ∈ Act)

The axioms of Ev, which are ground complete for ≃ (Theorem 2).

(Yω) yes =
∑

a∈Act

a.yes (Nω) no =
∑

a∈Act

a.no

The axiom system Eω = Ev ∪ {Yω, Nω} is ground complete for ≃ω when Act is
finite (Theorem 3).

(O1) yes + no = yes + no + x

The axiom system E ′
v = Ev ∪ {O1} is complete for ≃ when Act is infinite

(Theorem 4).

O = {O2s,k | s ∈ Act∗, k ≥ 0} where

(O2s,k) x+ s.x+ s(k)(yes + no) = x+ s(k)(yes + no)

The axiom system E ′
v,f = E ′

v ∪O is complete for ≃ when Act is finite and
|Act | ≥ 2 (Theorem 5).

(V1) a.x+ x = x

The axiom system E ′
v,1 = E ′

v ∪ {V1} is complete for ≃ when |Act | = 1
(Theorem 6).

(V1ω) x = a.x

The axiom system E ′
ω,1 = {A1, . . . , A4, V 1ω, O1} is complete for ≃ω when

|Act | = 1 (Theorem 7).

The axiom system E ′
ω,f = Eω ∪ E ′

v,f is complete for ≃ω when Act is finite and
|Act | ≥ 2 (Theorem 8).

Table 4: Our axiom systems

46

Since E ′
v,f is complete this equation is derivable from it. In addition, since every

proof is finite, there is a finite number of axioms of E ′
v,f involved in this proof.

Therefore, any finite family of equations is derivable from a finite subset of the
equations in E ′

v,f. This means that if another finite family of equations was
complete, there would also be a finite subset of equations from E ′

v,f which would
also be complete. From now on, when considering a finite equational basis we
will always mean a subset of the equations in E ′

v,f.
We remind our readers that we assume that all axiom systems that we con-

sider are closed under symmetry. This preserves finiteness and allows us to
simplify our arguments, since the symmetry rule does not need to be used in
equational proofs.

Definition 10 (Notation). For a finite, non empty set of equations E we
denote as depth(E) the quantity:

max{depth(m) | m = n ∈ E}.

The depth of an axiom system turns out to be a very important aspect of
it when proving open equations. We refer the reader to all the axioms we have
defined so far (Figure 4) and particularly to the family O. Take an instance of
the family of equations O, namely

x+ ak.x+ ak
3
(yes + no) ≃ x+ ak

3
(yes + no) ,

for some k. What we will focus on for equations like this one is the fact that
every trace starting with sk followed by any trace of length larger than 3k + 1
(which is the depth of this equation), is both accepted and rejected by both sides
of the equation for any closed substitution. This fact is exactly the intuition
behind the property that we will use. We now proceed to formulate this property
formally:

Lemma 19. Let E be a finite subset of E ′
v,f and let m = n be an equation in E.

Assume that for some string s:

• m
s
−→ m′ + x, for some monitor m′ and variable x and

• n 6
s
−→ n′ + x for any n′.

Then, for every trace of the form s.s′ where |s′| ≥ depth(E), we have that
ss′ ∈ La(σ(m)) and ss′ ∈ Lr(σ(m)) for every substitution σ.

Proof. It suffices to examine each member of E ′
v,f separately.

• Each axiom in Ev does not have any one-sided occurrence of a variable as
the ones stated and therefore the lemma holds vacuously.

• For the axiom O1 we have that both sides accept and reject all traces for
each σ and therefore the claim follows trivially.

47

• We are left to discuss the family of equations O. Let us select an arbitrary
member of this family, i.e. for some s0 ∈ Act∗ and some k ≥ 0, the
equation

x+ s0.x+ s0
(k)(yes + no) = x+ s0

(k)(yes + no) .

We see that the depth of x is 1, the depth of s0.x is |s0|+1 and the depth
of the term s0

k(yes+no) is (k+1)|s0|+1 (which follows by the definition
of the term sk(m)). We can also see that the term s0

k(yes + no) accepts
and rejects all traces of the form s0s

′, where the length of s′ is strictly
bigger than (k − 1)|s0|, which is enough for the statement to hold.

Now that we have defined the property we were looking for over a finite
subset E of E ′

v,f, we proceed to show that the property itself is preserved by
equational proofs from E .

Theorem 9. Let E be a finite subset of E ′
v,f and let m = n be an equation such

that E ⊢ m = n. Assume that:

• m
s
−→ m′ + x for some string s, monitor m′ and variable x and

• n 6
s
−→ n′ + x for any n′.

Then, for every trace of the form s.s′ where |s′| ≥ depth(E), we have that
ss′ ∈ La(σ(m)) and ss′ ∈ Lr(σ(m)) for every substitution σ.

Proof. We will use induction over the length of the proof that results in an
arbitrary equation m = n. Our base case is a proof of length one, where the
the only equations we can prove are the axioms themselves and therefore the
property holds by Lemma 19.

Assume now we have shown that all proofs of length up to ℓ preserve the
property. We will show that proofs of length up to ℓ+1 do so as well. The final
step of a proof can be performed by applying:

• The congruence rule for +,

• The congruence rule for action prefixing a. ,

• A variable substitution (for an open substitution σ), or

• Transitivity.

Note here that, as we mentioned earlier, the axiom system E ′
v,f is closed with

respect to symmetry and therefore there is no need to use the symmetry rule in
proofs. We proceed by considering each of the above-mentioned proof steps.

48

• The congruence rule for + must be applied as so: Assume two equations
m1 = n1 and m2 = n2, two already proven equations for which the state-
ment of the theorem holds (inductive hypothesis). By applying the congru-
ence rule for + we have proven the equation m = m1+m2 = n1+n2 = n.
Assume that m

s
−→ m′ + x for some string s, monitor m′ and variable x

and n 6
s
−→ n′ + x for any n′. By the operational semantics of MonF we

have that either m1
s
−→ m′+x or m2

s
−→ m′+x. Without loss of generality

assume m1
s
−→ m′ + x. Moreover we have that n1 6

s
−→ n′

1 + x for any n′
1

since n 6
s
−→ n′ + x for any n′. By inductive hypothesis then for every trace

of the form s.s′ where |s′| ≥ depth(E) we have that s.s′ ∈ La(σ(m1))
and s.s′ ∈ Lr(σ(m1)) for every substitution σ. This in turn implies that
s.s′ ∈ La(σ(m)) and s.s′ ∈ Lr(σ(m)) for every substitution σ and we are
done.

• We now consider the case of applying the congruence rule for action pre-
fixing. Assume a proven equation m0 = n0 on which we apply the axiom
prefixing congruence rule for an action a ∈ Act, that is, m = a.m0 =
a.no = n. Assume now that m

s
−→ ms + x for some string s, monitor ms

and variable x and n 6
s
−→ ns + x for any ns. Since m = a.m0, it follows

that s = as0 and m0
s0−→ m′

0 + x for some m′
0 and n0 6

s0−→ n′
0 + x for any

n′
0. Therefore by inductive hypothesis we have that all traces of the form

s0.s
′ where |s′| ≥ depth(E) are accepted and rejected by m0 under any

substitution. Consequently all traces of the form as0.s
′ = ss′ are both

accepted and rejected by m under any substitution and we are done.

• Consider now variable substitution. Note that we will consider open sub-
stitutions, in order to capture the more general case. The case of closed
substitutions is of course trivial as after one of them is applied there are
no variable occurrences left in any equation and therefore the result holds
vacuously. We have now that E ⊢ m′ = n′ for some open monitors m′ and
n′ and that we apply the open substitution σ0 in order to prove the open
equation m = σ0(m

′) = σ0(n
′) = n. Assume now that σ0(m)

s
−→ ms + x

for some string s, monitor ms and variable x and σ0(n) 6
s
−→ ns + x for any

ns. We can easily see that every such one-sided occurrence of a variable in
the new equation must have resulted from a one-sided variable occurrence
in m′ = n′. This is because if there were no one-sided variable occurrences
in the old equation, then under no substitution could one have introduced
a variable in only one side without also introducing it on the other side.
This means that there exists some variable y (which could be the same

as x) such that m′ s0−→ m′
s0

+ y for some string s0 where s0 a prefix of s,

monitor m′
s0

and variable y and n′ 6
s0−→ n′

s0
+ y for any n′

s0
. The reason

why s0 must be a prefix of s is that an open substitution can only expand
the traces that lead to a variable occurrence in the original term. By ap-
plying our inductive hypothesis on m′ = n′, we have that both m′ and n′

must accept and reject all traces of the form s0.s
′ where |s′| ≥ depth(E)

under any substitution σ. This, in turn, implies that σ0(m
′) = m accepts

49

and rejects traces of the form ss′ under any closed substitution σ. In fact
σ(σ0(m

′)) = σ0(σ0(m
′)) which means that m and n reject the traces of the

form s0.s as well. Since s0 is a prefix of s we have that for every extension
of s of length at least depth(E) there exists an extension of s0 of length
at least depth(E) that is a prefix of it. Since all traces s0.s

′ of this length
are both accepted and rejected under any substitution, the same applies
for the traces s.s′ and we are done.

• The case of transitivity is also straightforward though the following induc-
tive argument. We start by E ⊢ m = m′ and E ⊢ m′ = n and we apply the
transitivity rule to prove m = n. Assume that m

s
−→ ms+x for some trace

s, variable x and monitor ms, while n 6
s
−→ ns + x for any ns. We have that

either: m′ s
−→ m′

s+x for somem′
s orm

′ 6
s
−→ m′

s+x. In the first case we have
that the equation m′ = n which has already been proven by E satisfies the
premises of the theorem and therefore by induction hypothesis all traces
of the form s.s′ where |s′| ≥ depth(E) are both accepted and rejected by
both m′ and n. Since n ≃ m by the soundness of E ′

v,f and thus E , we have
that m also accept and rejects all of these traces and we are done. In the
second case and via a similar argument we have the same result.

This concludes the case analysis for our inductive proof and we are done.

As we can see, if we start from any finite subset E of E ′
v,f, we are bound to

only prove equations that have the property in the statement of Theorem 9. We
now argue that for each E there will always exist sound equations in E ′

v,f that
do not satisfy the above property and therefore the axiom set E is not enough
to prove them.

Lemma 20. Let E be a finite subset of E ′
v,f. There exists a sound equation

m = n in O such that m
s
−→ m′ + x for some string s, monitor m′ and variable

x and n 6
s
−→ n′ + x for any n′ and there is at least one trace of the form s.s′

where |s′| ≥ depth(E) and s.s′ 6∈ La(σ(m)) and s.s′ 6∈ La(σ(m)) for the one
substitution σend = end, for every x.

Proof. It suffices to give an example from the members of the family O. Namely
we consider the equation:

x+ an.x+ (an)
3
(yes + no) = x+ (an)

3
(yes + no) ,

where n > depth(E).
We can clearly see that first of all the occurrence of x after the trace an is

one-sided in the left hand side of the equation. However there is a substitution
(namely σ(x) = end) under which the trace a2n+1 is neither accepted nor re-
jected by the two monitors even though the length of a(n+1) is strictly larger
than depth(E).

Theorem 10. There is no finite complete set of axioms for verdict equivalence
over MonF over a finite, non-unary set of actions.

50

Proof. Let E be a finite subset E ′
v,f. Then, by the above lemma, E cannot prove

the sound equation

x+ an.x+ (an)
3
(yes + no) = x+ (an)

3
(yes + no) ,

for n > depth(E) and we are done.

6. Conclusions

In this article, we have studied the equational theory of recursion-free, regu-
lar monitors from [1, 2, 26] modulo two natural notions of monitor equivalence,
namely verdict and ω-verdict equivalence. We have provided complete axiomati-
zations for those equivalences over closed and open terms. The axiomatizations
over closed terms are finite when so is the set of actions monitors can pro-
cess. On the other hand, even when the set of actions is finite, whether those
equivalences have finite bases over open terms depends on the cardinality of the
action set. For instance, we have shown that verdict equivalence has no finite
equational axiomatization when the set of actions contains at least two actions.

Since verdict and ω-verdict equivalence are trace-based behavioral equiva-
lences, our axiomatizations, which are summarized in Table 4, share a number of
equations with those for trace and completed trace equivalence over BCCSP [27]
and for equality of regular expressions [20, 38, 49]. However, the presence of
the yes , no and end verdicts yields a number of novelties and technical compli-
cations, which are most evident in the axiomatization results over open terms
and in the negative result we present in Section 5. By way of example, we
remark here that, as mentioned in [19], trace and completed trace equivalence
are finitely based over BCCSP when the set of actions is finite, unlike the no-
tions we study in this paper over monitors. Moreover, unlike the one given in
this paper, proofs of non-finite-axiomatizability results for regular expressions
rely on families of equations that exploit the interplay between Kleene star and
concatenation, such as

a∗ = (an)∗(1 + a+ · · ·+ an−1) (n > 0).

See, for instance, [6, 20, 48].
The results presented in this article deal with a minimal language for moni-

tors that is mainly of theoretical interest and set the stage for further research.
An interesting and natural avenue for future work is to study the complexity of
the equational theory of verdict and ω-verdict equivalence. Moreover, one could
investigate axiomatizations of those behavioral equivalences over extensions of
recursion-free monitors with the parallel operators considered in [1] and/or with
recursion [26]. As shown in [1](Proposition 3.8), every ‘reactive parallel moni-
tor’ is verdict equivalent to a regular one. This opens the tantalizing possibility
that verdict equivalence affords an elegant equational axiomatization over such
monitors. However, the proof of Proposition 3.8 in [1] relies on a non-trivial
automata-theoretic construction, which would have to be simulated equation-
ally to transform ‘reactive parallel monitors’ into regular ones. We leave this
interesting problem for further study.

51

References

[1] Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., & Lehti-
nen, K. (2019). Adventures in monitorability: from branching to lin-
ear time and back again. Proc. ACM Program. Lang., 3 , 52:1–52:29.
doi:10.1145/3290365.

[2] Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., & Lehtinen,
K. (2019). An operational guide to monitorability. In P. C. Ölveczky, &
G. Salaün (Eds.), Software Engineering and Formal Methods - 17th Inter-
national Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019,
Proceedings (pp. 433–453). Springer volume 11724 of Lecture Notes in
Computer Science. doi:10.1007/978-3-030-30446-1_23.

[3] Aceto, L., Attard, D. P., Francalanza, A., & Ingólfsdóttir, A. (2021).
On benchmarking for concurrent runtime verification. In E. Guerra, &
M. Stoelinga (Eds.), Fundamental Approaches to Software Engineering -
24th International Conference, FASE 2021, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2021, Lux-
embourg City, Luxembourg, March 27 - April 1, 2021, Proceedings (pp.
3–23). Springer volume 12649 of Lecture Notes in Computer Science.
doi:10.1007/978-3-030-71500-7_1.

[4] Aceto, L., Castiglioni, V., Fokkink, W. J., Ingólfsdóttir, A., & Luttik, B.
(2021). Are two binary operators necessary to finitely axiomatise par-
allel composition? In C. Baier, & J. Goubault-Larrecq (Eds.), 29th
EACSL Annual Conference on Computer Science Logic, CSL 2021, Jan-
uary 25-28, 2021, Ljubljana, Slovenia (Virtual Conference) (pp. 8:1–8:17).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik volume 183 of LIPIcs .
doi:10.4230/LIPIcs.CSL.2021.8.

[5] Aceto, L., Castiglioni, V., Ingólfsdóttir, A., Luttik, B., & Pedersen, M. R.
(2020). On the axiomatisability of parallel composition: A journey in
the spectrum. In I. Konnov, & L. Kovács (Eds.), 31st International
Conference on Concurrency Theory, CONCUR 2020 (pp. 18:1–18:22).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik volume 171 of LIPIcs .
doi:10.4230/LIPIcs.CONCUR.2020.18.

[6] Aceto, L., Fokkink, W. J., & Ingólfsdóttir, A. (1998). On a question of
A. Salomaa: The equational theory of regular expressions over a singleton
alphabet is not finitely based. Theoretical Computer Science, 209 , 163–178.
doi:10.1016/S0304-3975(97)00104-7.

[7] Aceto, L., Fokkink, W. J., Ingólfsdóttir, A., & Luttik, B. (2005). Fi-
nite equational bases in process algebra: Results and open questions. In
A. Middeldorp, V. van Oostrom, F. van Raamsdonk, & R. C. de Vrijer
(Eds.), Processes, Terms and Cycles: Steps on the Road to Infinity, Essays
Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday (pp.

52

http://dx.doi.org/10.1145/3290365
http://dx.doi.org/10.1007/978-3-030-30446-1_23
http://dx.doi.org/10.1007/978-3-030-71500-7_1
http://dx.doi.org/10.4230/LIPIcs.CSL.2021.8
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2020.18
http://dx.doi.org/10.1016/S0304-3975(97)00104-7

338–367). Springer volume 3838 of Lecture Notes in Computer Science.
doi:10.1007/11601548_18.

[8] Baeten, J. C. M., Basten, T., & Reniers, M. A. (2009). Process Algebra:
Equational Theories of Communicating Processes volume 50 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press.
doi:10.1017/CBO9781139195003.

[9] Baeten, J. C. M., & Bergstra, J. A. (1990). Process algebra with a zero
object. In J. C. M. Baeten, & J. W. Klop (Eds.), CONCUR ’90, Theories
of Concurrency: Unification and Extension, Amsterdam, The Netherlands,
August 27-30, 1990, Proceedings (pp. 83–98). Springer volume 458 of Lec-
ture Notes in Computer Science. doi:10.1007/BFb0039053.

[10] Barringer, H., Falcone, Y., Havelund, K., Reger, G., & Rydeheard,
D. E. (2012). Quantified event automata: Towards expressive and ef-
ficient runtime monitors. In D. Giannakopoulou, & D. Méry (Eds.),
FM 2012: Formal Methods - 18th International Symposium (pp. 68–
84). Springer volume 7436 of Lecture Notes in Computer Science.
doi:10.1007/978-3-642-32759-9_9.

[11] Barringer, H., Goldberg, A., Havelund, K., & Sen, K. (2004). Rule-based
runtime verification. In B. Steffen, & G. Levi (Eds.), Verification, Model
Checking, and Abstract Interpretation, 5th International Conference, VM-
CAI 2004 (pp. 44–57). Springer volume 2937 of Lecture Notes in Computer
Science. doi:10.1007/978-3-540-24622-0_5.

[12] Barringer, H., Rydeheard, D. E., & Havelund, K. (2010). Rule systems for
run-time monitoring: From Eagle to RuleR. Journal of Logic and Compu-
tation, 20 , 675–706. doi:10.1093/logcom/exn076.

[13] Bartocci, E., & Falcone, Y. (Eds.) (2018). Lectures on Runtime Verifica-
tion - Introductory and Advanced Topics volume 10457 of Lecture Notes in
Computer Science. Springer. doi:10.1007/978-3-319-75632-5.

[14] Bauer, A., Küster, J., & Vegliach, G. (2015). The ins and outs of first-
order runtime verification. Formal Methods in System Design, 46 , 286–316.
doi:10.1007/s10703-015-0227-2.

[15] Bauer, A., Leucker, M., & Schallhart, C. (2011). Runtime verification
for LTL and TLTL. ACM Trans. Softw. Eng. Methodol., 20 , 14:1–14:64.
doi:10.1145/2000799.2000800.

[16] Bergstra, J. A., & Klop, J. W. (1984). Process algebra for syn-
chronous communication. Information and Control , 60 , 109–137.
doi:10.1016/S0019-9958(84)80025-X.

[17] Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D. A., &
Travers, C. (2016). Decentralized asynchronous crash-resilient runtime ver-
ification. In J. Desharnais, & R. Jagadeesan (Eds.), 27th International

53

http://dx.doi.org/10.1007/11601548_18
http://dx.doi.org/10.1017/CBO9781139195003
http://dx.doi.org/10.1007/BFb0039053
http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-540-24622-0_5
http://dx.doi.org/10.1093/logcom/exn076
http://dx.doi.org/10.1007/978-3-319-75632-5
http://dx.doi.org/10.1007/s10703-015-0227-2
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1016/S0019-9958(84)80025-X

Conference on Concurrency Theory, CONCUR 2016 (pp. 16:1–16:15).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik volume 59 of LIPIcs .
doi:10.4230/LIPIcs.CONCUR.2016.16.

[18] Brookes, S. D. (1983). A semantics and proof system for communicat-
ing processes. In E. M. Clarke, & D. Kozen (Eds.), Logics of Programs
(pp. 68–85). Springer volume 164 of Lecture Notes in Computer Science.
doi:10.1007/3-540-12896-4_356.

[19] Chen, T., Fokkink, W. J., Luttik, B., & Nain, S. (2008). On finite al-
phabets and infinite bases. Information and Computation, 206 , 492–519.
doi:10.1016/j.ic.2007.09.003.

[20] Conway, J. H. (1971). Regular Algebra and Finite Machines . London:
Chapman and Hall.

[21] Cranen, S., Groote, J. F., Keiren, J. J. A., Stappers, F. P. M., de Vink,
E. P., Wesselink, W., & Willemse, T. A. C. (2013). An overview of
the mCRL2 toolset and its recent advances. In N. Piterman, & S. A.
Smolka (Eds.), Tools and Algorithms for the Construction and Analy-
sis of Systems - 19th International Conference, TACAS 2013 (pp. 199–
213). Springer volume 7795 of Lecture Notes in Computer Science.
doi:10.1007/978-3-642-36742-7_15.

[22] Diekert, V., & Gastin, P. (2008). First-order definable languages. In
J. Flum, E. Grädel, & T. Wilke (Eds.), Logic and Automata: History and
Perspectives [in Honor of Wolfgang Thomas] (pp. 261–306). Amsterdam
University Press volume 2 of Texts in Logic and Games .

[23] Falcone, Y., Fernandez, J., & Mounier, L. (2012). What can you verify and
enforce at runtime? International Journal on Software Tools for Technology
Transfer , 14 , 349–382. doi:10.1007/s10009-011-0196-8.

[24] Falcone, Y., Havelund, K., & Reger, G. (2013). A tutorial on runtime
verification. In M. Broy, D. A. Peled, & G. Kalus (Eds.), Engineering
Dependable Software Systems (pp. 141–175). IOS Press volume 34 of NATO
Science for Peace and Security Series, D: Information and Communication
Security. doi:10.3233/978-1-61499-207-3-141.

[25] Francalanza, A., Aceto, L., Achilleos, A., Attard, D. P., Cassar, I.,
Della Monica, D., & Ingólfsdóttir, A. (2017). A foundation for runtime
monitoring. In S. Lahiri, & G. Reger (Eds.), Runtime verification. RV
(pp. 8–29). Springer volume 10548 of Lecture Notes in Computer Science.
doi:10.1007/978-3-319-67531-2_2.

[26] Francalanza, A., Aceto, L., & Ingolfsdottir, A. (2017). Monitorability for
the Hennessy–Milner Logic with recursion. Formal Methods in System De-
sign, 51 , 87–116. doi:10.1007/s10703-017-0273-z.

54

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.16
http://dx.doi.org/10.1007/3-540-12896-4_356
http://dx.doi.org/10.1016/j.ic.2007.09.003
http://dx.doi.org/10.1007/978-3-642-36742-7_15
http://dx.doi.org/10.1007/s10009-011-0196-8
http://dx.doi.org/10.3233/978-1-61499-207-3-141
http://dx.doi.org/10.1007/978-3-319-67531-2_2
http://dx.doi.org/10.1007/s10703-017-0273-z

[27] van Glabbeek, R. J. (2001). The linear time - branching time spectrum
I. In Handbook of Process Algebra (pp. 3–99). North-Holland / Elsevier.
doi:10.1016/b978-044482830-9/50019-9.

[28] Grabmayer, C., & Fokkink, W. (2020). A complete proof system
for 1-free regular expressions modulo bisimilarity. In H. Hermanns,
L. Zhang, N. Kobayashi, & D. Miller (Eds.), LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science (pp. 465–478).
ACM. doi:10.1145/3373718.3394744.

[29] Groote, J. F., & Reniers, M. A. (2001). Algebraic process verifica-
tion. In J. A. Bergstra, A. Ponse, & S. A. Smolka (Eds.), Hand-
book of Process Algebra (pp. 1151–1208). North-Holland / Elsevier.
doi:10.1016/b978-044482830-9/50035-7.

[30] Havelund, K., & Goldberg, A. (2005). Verify your runs. In B. Meyer,
& J. Woodcock (Eds.), Verified Software: Theories, Tools, Experi-
ments, First IFIP TC, 2/WG 2.3 Conference, VSTTE 2005 (pp. 374–
383). Springer volume 4171 of Lecture Notes in Computer Science.
doi:10.1007/978-3-540-69149-5_40.

[31] Havelund, K., & Rosu, G. (2001). Monitoring Java programs with
Java PathExplorer. Electron. Notes Theor. Comput. Sci., 55 , 200–217.
doi:10.1016/S1571-0661(04)00253-1.

[32] Heering, J. (1986). Partial evaluation and ω-completeness of
algebraic specifications. Theor. Comput. Sci., 43 , 149–167.
doi:10.1016/0304-3975(86)90173-8.

[33] Hennessy, M. (1981). A term model for synchronous processes. Information
and Control , 51 , 58–75. doi:10.1016/S0019-9958(81)90082-6.

[34] Hennessy, M., & Milner, R. (1985). Algebraic laws for nondeterminism and
concurrency. Journal of the ACM , 32 , 137–161. doi:10.1145/2455.2460.

[35] Hoare, C. A. R., Hayes, I. J., He, J., Morgan, C., Roscoe, A. W.,
Sanders, J. W., Sørensen, I. H., Spivey, J. M., & Sufrin, B. (1987).
Laws of programming. Communications of the ACM , 30 , 672–686.
doi:10.1145/27651.27653.

[36] Kamp, H. (1968). Tense Logic and the Theory of Linear Order . Ph.D.
thesis UCLA.

[37] Kappé, T., Brunet, P., Silva, A., Wagemaker, J., & Zanasi, F. (2020).
Concurrent kleene algebra with observations: From hypotheses to com-
pleteness. In J. Goubault-Larrecq, & B. König (Eds.), Foundations of Soft-
ware Science and Computation Structures - 23rd International Conference,
FOSSACS 2020 (pp. 381–400). Springer volume 12077 of Lecture Notes in
Computer Science. doi:10.1007/978-3-030-45231-5_20.

55

http://dx.doi.org/10.1016/b978-044482830-9/50019-9
http://dx.doi.org/10.1145/3373718.3394744
http://dx.doi.org/10.1016/b978-044482830-9/50035-7
http://dx.doi.org/10.1007/978-3-540-69149-5_40
http://dx.doi.org/10.1016/S1571-0661(04)00253-1
http://dx.doi.org/10.1016/0304-3975(86)90173-8
http://dx.doi.org/10.1016/S0019-9958(81)90082-6
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.1145/27651.27653
http://dx.doi.org/10.1007/978-3-030-45231-5_20

[38] Kozen, D. (1994). A completeness theorem for Kleene algebras and the
algebra of regular events. Information and Computation, 110 , 366–390.
doi:10.1006/inco.1994.1037.

[39] Kozen, D., & Silva, A. (2020). Left-handed completeness. Theoretical
Computer Science, 807 , 220–233. doi:10.1016/j.tcs.2019.10.040.

[40] Leucker, M., & Schallhart, C. (2009). A brief account of runtime veri-
fication. Journal of Logical and Algebraic Methods in Programming, 78 ,
293–303. doi:10.1016/j.jlap.2008.08.004.

[41] Lin, H. (1995). PAM: A process algebra manipulator. Formal Methods in
System Design, 7 , 243–259. doi:10.1007/BF01384078.

[42] Milner, R. (1980). A Calculus of Communicating Systems volume 92 of Lec-
ture Notes in Computer Science. Springer. doi:10.1007/3-540-10235-3.

[43] Milner, R. (1984). A complete inference system for a class of regular
behaviours. Journal of Computer and System Sciences , 28 , 439–466.
doi:10.1016/0022-0000(84)90023-0.

[44] Milner, R. (1989). Communication and Concurrency. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc. doi:10.5555/534666.

[45] Peled, D., & Havelund, K. (2018). Refining the safety-liveness classification
of temporal properties according to monitorability. In T. Margaria, S. Graf,
& K. G. Larsen (Eds.), Models, Mindsets, Meta: The What, the How, and
the Why Not? - Essays Dedicated to Bernhard Steffen on the Occasion of
His 60th Birthday (pp. 218–234). Springer volume 11200 of Lecture Notes
in Computer Science. doi:10.1007/978-3-030-22348-9_14.

[46] Pnueli, A., & Zaks, A. (2006). PSL model checking and run-time verifica-
tion via testers. In J. Misra, T. Nipkow, & E. Sekerinski (Eds.), FM 2006:
Formal Methods, 14th International Symposium on Formal Methods (pp.
573–586). Springer volume 4085 of Lecture Notes in Computer Science.
doi:10.1007/11813040_38.

[47] Reddy, S., Lemieux, C., Padhye, R., & Sen, K. (2020). Quickly generating
diverse valid test inputs with reinforcement learning. In G. Rothermel,
& D. Bae (Eds.), ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020 (pp. 1410–1421).
ACM. doi:10.1145/3377811.3380399.

[48] Redko, V. (1964). On defining relations for the algebra of regular events.
Ukrainskĭı matematicheskĭı Zhurnal , 16 , 120–126 (in Russian).

[49] Salomaa, A. (1966). Two complete axiom systems for the algebra of regular
events. Journal of the ACM , 13 , 158–169. doi:10.1145/321312.321326.

56

http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1016/j.tcs.2019.10.040
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1007/BF01384078
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1016/0022-0000(84)90023-0
http://dx.doi.org/10.5555/534666
http://dx.doi.org/10.1007/978-3-030-22348-9_14
http://dx.doi.org/10.1007/11813040_38
http://dx.doi.org/10.1145/3377811.3380399
http://dx.doi.org/10.1145/321312.321326

[50] Schützenberger, M. P. (1965). On finite monoids having only trivial sub-
groups. Inf. Control., 8 , 190–194. doi:10.1016/S0019-9958(65)90108-7.

[51] Sokolsky, O., & Rosu, G. (2012). Introduction to the special is-
sue on runtime verification. Formal Methods Syst. Des., 41 , 233–235.
doi:10.1007/s10703-012-0174-0.

[52] Tabakov, D., Rozier, K. Y., & Vardi, M. Y. (2012). Optimized tem-
poral monitors for SystemC. Formal Methods Syst. Des., 41 , 236–268.
doi:10.1007/s10703-011-0139-8.

57

http://dx.doi.org/10.1016/S0019-9958(65)90108-7
http://dx.doi.org/10.1007/s10703-012-0174-0
http://dx.doi.org/10.1007/s10703-011-0139-8

	1 Introduction
	2 Preliminaries
	3 A ground-complete axiomatization of verdict and -verdict equivalence
	3.1 Axiomatizing -verdict equivalence

	4 Open Terms
	4.1 Infinite set of actions
	4.2 Finite set of actions
	4.2.1 Completeness of verdict equivalence
	4.2.2 Completeness of -verdict equivalence

	5 A non-finite-axiomatizability result
	6 Conclusions

