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Abstract

Recurrent Neural Networks (RNNs) have achieved tremendous success in pro-
cessing sequential data, yet understanding and analyzing their behaviours re-
mains a significant challenge. To this end, many efforts have been made to ex-
tract finite automata from RNNs, which are more amenable for analysis and
explanation. However, existing approaches like exact learning and composi-
tional approaches for model extraction have limitations in either scalability
or precision. In this paper, we propose a novel framework of Weighted Finite
Automata (WFA) extraction and explanation to tackle the limitations for
natural language tasks. First, to address the transition sparsity and context
loss problems we identified in WFA extraction for natural language tasks, we
propose an empirical method to complement missing rules in the transition
diagram, and adjust transition matrices to enhance the context-awareness
of the WFA. We also propose two data augmentation tactics to track more
dynamic behaviours of RNN, which further allows us to improve the extrac-
tion precision. Based on the extracted model, we propose an explanation
method for RNNs including a word embedding method – Transition Matrix
Embeddings (TME) and TME-based task oriented explanation for the target
RNN. Our evaluation demonstrates the advantage of our method in extrac-
tion precision than existing approaches, and the effectiveness of TME-based
explanation method in applications to pretraining and adversarial example
generation.
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1. Introduction

In the last decade, deep learning (DL) has been widely deployed in a
range of applications, such as image processing [1], speech recognition [2]
and natural language processing [3]. In particular, recurrent neural networks
(RNNs) achieve great success in sequential data processing, e.g., time series
forecasting [4], text classification [5] and language translation [6]. However,
the complex internal design and gate control of RNNs make the interpretation
and analysis of their behaviours rather challenging.

Recently, much progress has been made to abstract RNN as a finite au-
tomaton, that is, a finite-state model with explicit states and transition ma-
trix to characterize the behaviours of RNN in processing sequential data. Up
to the present, a series of extraction approaches leverage explicit learning al-
gorithms (e.g., L∗ algorithm [7]) to extract a surrogate model of RNN. Such
exact learning procedure has achieved great success in capturing the state
dynamics of RNNs when processing formal languages [8; 9; 10]. However,
the computational complexity of the exact learning algorithm limits its scal-
ability to construct abstract models from RNNs for natural language tasks.
Another technical line for automata extraction from RNNs is the composi-
tional approach, which uses unsupervised learning algorithms to obtain dis-
crete partitions of RNNs’ state vectors and construct the transition diagram
based on the concrete state dynamics of RNNs. This approach demonstrates
better scalability and has been applied to robustness analysis and repairment
of RNNs on large-scale tasks [11; 12; 13; 14; 15; 16], but falls short in extrac-
tion precision. A precise and scalable extraction approach for RNNs in the
context of natural language tasks is needed.

Regarding model-based explanation, current extraction methods are lim-
ited to utilizing finite automata as a global interpretable model with explicit
states and transition rules for RNNs. The information extracted in the tran-
sition diagram of automata is not fully exploited in understanding RNN
behaviors for natural language tasks. In particular, given that the alpha-
bet size of natural language datasets is quite large, the extracted rules in the
transition matrix are difficult to grasp and interpret. A more comprehensible
explanation method that can effectively exploits the extracted information
to assist in understanding RNN behaviors remains underexplored.

In this paper, we propose a general framework of Weighted Finite Au-
tomata (WFA) extraction and explanation for RNNs to tackle the above
challenges. To address the first challenge, we propose a complete pipeline to
extract more precise automata for RNNs in the context of natural language
tasks. We identify two problems that cause precision deficiency in natural
language tasks: (1) transition sparsity : the transition dynamics are usually
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sparse in natural language tasks, due to the large alphabet size and the de-
pendency on a finite set of (sequential) data in the extraction procedure.
(2)context loss: the tracking of long-term context of RNNs (e.g., LSTM net-
works [17]) is inevitably compromised due to the abstraction. To deal with
the transition sparsity problem, we propose a method to fill in the missing
transition rules based on the semantics of abstract states. We also propose
two tactics to augment the data samples to learn more transition behaviours
of RNNs, which further alleviates the transition sparsity problem. To en-
hance the context awareness of WFAs, we adjust the transition matrices to
preserve partial context information from the previous states.

To address the second challenge, we utilize the extracted WFAs to in-
terpret the behaviours of RNNs. Motivated by the observation that the
transition matrices of the extracted WFAs capture the behaviour of the
source RNNs, we propose a word embedding method – Transition Matrix
Embeddings (TME) to construct task-oriented explanations for the target
RNNs. Further, by leveraging the information captured in TME, we pro-
pose a global explanation method for word attribution to RNNs’ decisions
and a contrastive method to investigate the difference between task-oriented
TME and pretrained word embeddings (e.g., Glove [18]). We validate the
effectiveness of the contrastive explanation with applications to pretraining
boost and adversarial example generation1.

We summarize our contributions as follows:

(a) We propose a complete WFA extraction algorithm from RNNs designed
for natural language tasks.

(b) Experiments on benchmark datasets demonstrate that the proposed
heuristic methods effectively improve the extraction precision by alle-
viating the transition sparsity and context loss problems.

(c) We propose a novel word embedding – Transition Matrix Embeddings
(TME), based on which a global explanation method for word attribu-
tion and a contrastive approach for task-oriented explanation of RNNs
are proposed.

The organization of this paper is as follows. In Section 2, we present pre-
liminaries about recurrent neural networks, weighted finite automata, and
related notations and concepts. In Section 3, we present our transition rule
extraction approach, including an overview on the automata extraction pro-
cedure, the transition rule complement method for transition sparsity, the

1Code is available at https://github.com/weizeming/Extract_WFA_from_RNN_for_
NL
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transition rule adjustment method for context-awareness enhancement, and
the data augmentation tactics. In Section 4, we present the experimental
evaluation towards the extraction consistency of our approach on two nat-
ural language tasks. We introduce the transition matrix embedding based
explanation framework for RNNs in Section 5, and discuss our extraction
algorithm including computational complexity analysis and applicability to
other RNNs at the end of Section 5. Finally, we discuss related works in
Section 6 and conclude our work in Section 7.

2. Preliminaries

In this section, we present the notations and definitions that will be used
throughout the paper. Given a finite alphabet Σ, we use Σ∗ to denote the
set of sequences over Σ and ε to denote the empty sequence. For w ∈ Σ∗, we
use |w| to denote its length, its i-th word as wi and its prefix with length i
as w[: i]. For x ∈ Σ, w · x represents the concatenation of w and x.

Definition 1 (RNN). A Recurrent Neural Network (RNN) for natural lan-
guages is a tuple R = (X ,S,O, f, p), where X is the input space; S is the
internal state space; O is the probabilistic output space; f : S × X → S is
the transition function; p : S → O is the prediction function.

RNN Configuration. In this paper, we consider RNN as a black-box model
and focus on its stepwise probabilistic output for each input sequence. The
following definition of configuration characterizes the probabilistic outputs in
response to a sequential input fed to RNN. Given an alphabet Σ, let ξ : Σ→
X be the function that maps each word in Σ to its embedding vector in X . We
define f ∗ : S × Σ∗ → S recursively as f ∗(s0, ξ(w · x)) = f(f ∗(s0, ξ(w)), ξ(x))
and f ∗(s0, ε) = s0, where s0 is the initial state of R. The RNN configuration
δ : Σ∗ → O is defined as δ(w) = p(f ∗(s0, w)).

Output Trace. To record the stepwise behavior of RNN when processing an
input sequence w, we define the Output Trace of w, i.e., the probabilistic
output sequence, as T (w) = {δ(w[: i])}|w|

i=1. The i-th item of T (w) indicates
the probabilistic output given by R after taking the prefix of w with length
i as input.

Definition 2 (WFA). Given a finite alphabet Σ, a Weighted Finite Automa-
ton (WFA) over Σ is a tuple A = (Ŝ,Σ, E, ŝ0, I, F ), where Ŝ is the finite set
of abstract states; E = {Eσ|σ ∈ Σ} is the set of transition matrix Eσ with
size |Ŝ| × |Ŝ| for each token σ ∈ Σ; ŝ0 ∈ Ŝ is the initial state; I is the initial
vector, a row vector with size |Ŝ|; F is the final vector, a column vector with
size |Ŝ|.
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Abstract States. Given a RNN R and a dataset D, let Ô denote all step-
wise probabilistic outputs given by executing R on D, i.e. Ô =

⋃
w∈D

T (w).

The abstraction function λ : Ô → Ŝ maps each probabilistic output to an
abstract state ŝ ∈ Ŝ. As a result, the output set is divided into a number
of abstract states by λ. For each ŝ ∈ Ŝ, the state ŝ has explicit semantics
that the probabilistic outputs corresponding to ŝ has similar distribution. In
this paper, we leverage the k-means algorithm to construct the abstraction
function. We cluster all probabilistic outputs in Ô into some abstract states.
In this way, we construct the set of abstract states Ŝ with these discrete
clusters and an initial state ŝ0.

For a state ŝ ∈ Ŝ, we define the center of ŝ as the average value of the
probabilistic outputs ô ∈ Ô which are mapped to ŝ. More formally, the
center of ŝ is defined as follows:

ρ(ŝ) = Avg
λ(ô)=ŝ

{ô}.

The center ρ(ŝ) represents an approximation of the distribution tendency
of probabilistic outputs ô in ŝ. We then use the center ρ(ŝ) as its
weight for each state ŝ ∈ Ŝ. The final vector F is thus formulated as
(ρ(ŝ0), ρ(ŝ1), · · · , ρ(ŝ|Ŝ|−1))

t.

Abstract Transitions. In order to capture the dynamic behavior of RNN R,
we define the abstract transition as a triple (ŝ, σ, ŝ′) where the original state
ŝ is the abstract state corresponding to a specific output y, i.e. ŝ = λ(y);
σ is the next word of the input sequence to consume; ŝ′ is the destination
state λ(y′) after R reads σ and outputs y′. We use T to denote the set of all
abstract transitions tracked from the execution of R on training samples.

Abstract Transition Count Matrices. For each word σ ∈ Σ, the abstract tran-
sition count matrix of σ is a matrix T̂σ with size |Ŝ|×|Ŝ|. The count matrices
record the number of times that each abstract transition is triggered. Given
the set of abstract transitions T , the count matrix of σ can be calculated as

T̂σ[i, j] = T .count((ŝi, σ, ŝj)), 1 ≤ i, j ≤ |Ŝ|.

As for the remaining components, the alphabet Σ is consistent with the
alphabet of training set D. The initial vector I is formulated according to
the initial state ŝ0.

For an input sequence w = w1w2 · · ·wn ∈ Σ∗, the WFA will calculate its
weight following

I · Ew1 · Ew2 · · ·Ewn · F.
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Figure 1: An illustration of our approach to extracting WFA from RNN.

3. Weighted Automata Extraction Scheme

3.1. Overview

We present the workflow of our extraction procedure in Figure 1. As the
first step, we generate augmented sample set D from the original training
set D0 to enrich the transition dynamics of RNN behaviours and alleviate
the transition sparsity. Then, we execute RNN R on the augmented sample
set D, and record the probabilistic output trace T (w) of each input sentence
w ∈ D. With the output set Ô =

⋃
w∈D

T (w), we cluster the probabilistic

outputs into abstract states Ŝ, and generate abstract transitions T from
the output traces {T (w)|w ∈ D}. All transitions constitute the abstract
transition count matrices T̂σ for all σ ∈ Σ.

Next, we construct the transition matrices E = {Eσ|σ ∈ Σ}. Based
on the abstract states Ŝ and count matrices T̂ , we construct the transition
matrix Eσ for each word σ ∈ Σ. Specifically, we use frequencies to calculate
the transition probabilities. Suppose that there are n abstract states in Ŝ.
The i-th row of Eσ, which indicates the probabilistic transition distribution
over states when R is in state ŝi and consumes σ, is calculated as

Eσ[i, j] =
T̂σ[i, j]

n∑
k=1

T̂σ[i, k]
. (1)

This empirical rule faces the problem that the denominator of (1) could be
zero, which means that the word σ never appears when the RNN R is in
abstract state ŝi. In this case, one should decide how to fill in the transition
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rule of the missing rows in Eσ. In Section 3.2, we present a novel approach
for transition rule complement. Further, to preserve more contextual infor-
mation during processing the input sequence, we propose an approach to
enhancing the context-awareness of WFA by adjusting the transition matri-
ces, which is presented in Section 3.3.

3.2. Missing Rows Complement

Existing approaches for transition rule extraction usually face the problem
of transition sparsity, i.e., missing rows in the transition diagram. In the
context of formal languages, the probability of the occurrence of missing
rows is quite low, since the size of the alphabet is small and each token in the
alphabet can appear sufficient number of times. However, in the context of
natural language processing, the occurrence of missing rows is quite frequent.
The following proposition gives an approximation of the occurrence frequency
of missing rows.

Proposition 1. Assume an alphabet Σ with m = |Σ| words, a natural lan-
guage dataset D over Σ which has N words in total, a RNN R trained on
D, the extracted abstract states Ŝ and transitions T . Let σi denote the i-th
most frequent word occurred in D and ti = T .count((∗, σi, ∗)) indicates the
occurrence times of σi in D. The median of {ti|1 ≤ i ≤ m} can be estimated
as

t[m
2
] =

2N

m · lnm
.

Proof. The Zipf’s law [19] shows that

ti
N
≈ i−1

m∑
k=1

k−1

.

Note that
m∑
k=1

k−1 ≈ lnm and take i to be m
2
, we complete our proof.

Example 1. In the QC news dataset [20], which has m = 20317 words in its
alphabet and N = 205927 words in total, the median of {ti} is approximated
to 2N

m·lnm
≈ 2. This indicates that about half of Eσ are constructed with no

more than 2 transitions. In practice, the number of abstract states is usually
far more than the transition numbers of these words, making most rows of
their transition matrices missing rows.
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Filling the missing row with 0⃗ is a simple solution, since no informa-
tion were provided from the transitions. However, as estimated above, this
solution will lead to the problem of transition sparsity, i.e., the transition
matrices for uncommon words are nearly null. Consequently, if the input
sequence includes some uncommon words, the weights over states tend to
vanish. We refer to this solution as null filling.

Another simple idea is to use the uniform distribution over states for
fairness. In [9], the uniform distribution is used as the transition distribution
for unseen tokens in the context of formal language tasks. However, for
natural language processing, this solution still loses information of the current
word, despite that it avoids the weight vanishment over states. We refer to
this solution as uniform filling. [21] uses the synonym transition distribution
for an unseen token at a certain state. However, it increases the computation
overhead when performing inference on test data, since it requires to calculate
and sort the distance between the available tokens at a certain state and the
unseen token.

To this end, we propose a novel approach to constructing the transition
matrices based on two empirical observations. First, each abstract state
ŝ ∈ Ŝ has explicit semantics, i.e. the probabilistic distribution over labels,
and similar abstract states tend to share more similar transition behaviours.
The semantic distance between abstract states is defined as follows.

Definition 3 (State Distance). For two abstract states ŝ1 and ŝ2, the distance
between ŝ1 and ŝ2 is defined by the Euclidean distance between their center:

dist(ŝ1, ŝ2) = ∥ρ(ŝ1)− ρ(ŝ2)∥2.

We calculate the distance between each pair of abstract states, which
forms a distance matrix M where each element M [i, j] = dist(ŝi, ŝj) for

1 ≤ i, j ≤ |Ŝ|. For a missing row in Eσ, following the heuristics that similar
abstract states are more likely to have similar behaviours, we observe the
transition behaviours from other abstract states, and simulate the missing
transition behaviours weighted by distance between states. Particularly, in
order to avoid numerical underflow, we leverage softmin on distance to bias
the weight to states that share more similarity. Formally, for a missing row
Eσ[i], the weight of information set for another row Eσ[j] is defined by e−M [i,j].

Second, it is also observed that sometimes the RNN just remains in the
current state after reading a certain word. Intuitively, this is because part
of words in the sentence do not deliver significant information in the task.
Therefore, we consider simulating behaviours from other states whilst re-
maining in the current state with a certain probability.
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In order to balance the trade-off between referring to behaviours from
other states and remaining still, we introduce a hyper-parameter β named
reference rate, such that when WFA is faced with a missing row, it has a
probability of β to refer to the transition behaviours from other states, and
in the meanwhile has a probability of 1 − β to keep still. We select the
parameter β according to the proportion of self-transitions, i.e., transitions
(ŝ, σ, ŝ′) in T where ŝ = ŝ′.

To sum up, the complete transition rule for the missing row is

Eσ[i, j] = β ·

n∑
k=1

e−M [i,k] · T̂σ[k, j]

n∑
l=1

n∑
k=1

e−M [i,k] · T̂σ[k, l]
+ (1− β) · δi,j. (2)

Here δi,j is the Kronecker symbol:

δi,j =

{
1, j = i

0, j ̸= i
.

In practice, we can calculate
n∑

k=1

e−M [i,k] · T̂σ[k, j] for each j and then make

division on their summation once and for all, which can reduce the compu-
tation overhead on transition rule extraction.

3.3. Context-Awareness Enhancement

For NLP tasks, the memorization of long-term context information is cru-
cial. One of the advantages of RNN and its advanced design LSTM networks
is the ability to capture long-term dependency. We expect the extracted
WFA to simulate the step-wise behaviours of RNNs whilst keeping track of
context information along with the state transition. To this end, we pro-
pose an approach to adjusting the transition matrix such that the WFA can
remain in the current state with a certain probability.

Specifically, we select a hyper-parameter α ∈ [0, 1] as the static probability.
For each word σ ∈ Σ and its transition matrix Eσ, we replace the matrix
with the context-awareness enhanced matrix Êσ as follows:

Êσ = α · In + (1− α) · Eσ (3)

where In is the identity matrix.
The context-awareness enhanced matrix has explicit semantics. When the

WFA is in state ŝi and ready to process a new word σ, it has a probability
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of α (the static probability) to remain in ŝi, or follows the original transition
distribution Eσ[i, j] with a probability 1− α.

Here we present an illustration of how context-awareness enhanced matri-
ces deliver long-term context information. Suppose that a context-awareness
enhanced WFA A is processing a sentence w ∈ Σ∗ with length |w|. We de-
note di as the distribution over all abstract states after A reads the prefix
w[: i], and particularly d0 = I is the initial vector of A. We use Zi to denote
the decision made by A based on di−1 and the original transition matrix Ewi

.
Formally, di = di−1 · Êwi

and Zi = di−1 · Ewi
.

The di can be regarded as the information obtained from the prefix w[: i]
by A before it consumes wi+1, and Zi can be considered as the decision made
by A after it reads wi.

Proposition 2. The i-th step-wise information di delivered by processing
w[: i] contains the decision information Zj of prefix w[: j] with a proportion
of (1− α) · αi−j, 1 ≤ j ≤ i.

Proof. Since Êwi
= α · In + (1− α) · Ewi

, we can calculate that

di = di−1 · Êwi
= di−1 · [α · In + (1− α) · Ewi

] = α · di−1 + (1− α) · Zi. (4)

Using (4) recursively, we have

di = (1− α)
i∑

k=1

αi−k · Zk + αi · I.

This shows the information delivered by w[: i] refers to the decision made
by A on each prefix included in w[: i], and the portion vanishes exponen-
tially. The effectiveness of the context-awareness enhancement method for
transition matrix adjustment will be discussed in Section 4.

The following example presents the complete approach for transition rule
extraction, i.e., to generate the transition matrix Êσ with the missing row
filled in and context enhanced, from the count matrix T̂σ for a word σ ∈ Σ.

Example 2. Assume that there are three abstract states in Ŝ = {ŝ1, ŝ2, ŝ3}.
Suppose the count matrix for σ is T̂σ.

T̂σ =

1 3 0
1 1 0
0 0 0

 , Eσ =

0.25 0.75 0
0.5 0.5 0
0.15 0.35 0.5

 , Êσ =

 0.4 0.6 0
0.4 0.6 0
0.12 0.28 0.6

 .
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For the first two rows (states), there exist transitions for σ, thus we can
calculate the transition distribution of these two rows in Eσ in the usual
way. However, the third row is a missing row. We set the reference rate
as β = 0.5, and suppose that the distance between states satisfies e−M [1,3] =
2e−M [2,3], generally indicating the distance between ŝ1 and ŝ3 is nearer than
ŝ2 and ŝ3. With the transitions from ŝ1 and ŝ2, we can complement the
transition rule of the third row in Eσ through (2). The result shows that the
behavior from ŝ3 is more similar to ŝ1 than ŝ2, due to the smaller distance.
Finally, we construct Êσ with Eσ. Here we set the static probability α = 0.2,
thus Êσ = 0.2 · I3 + 0.8 · Eσ. The result shows that the WFA with Êσ has
higher probability to remain in the current state after consuming σ, which
can preserve more information from the prefix before σ.

3.4. Data Augmentation

Our proposed approach for transition rule extraction provides a solution
to the transition sparsity problem. Still, we hope to learn more dynamic
transition behaviours from the target RNN, especially for the words with
relatively low frequency to characterize their transition dynamics sufficiently
based on the finite data samples. Different from formal languages, we can
generate more natural language samples automatically, as long as the aug-
mented sequential data are reasonable with clear semantics and compatible
with the original learning task. Based on the augmented samples, we are
able to track more behaviours of the RNN and build the abstract model with
higher precision. In this section, we introduce two data augmentation tactics
for natural language processing tasks: Synonym Replacement and Dropout.

Synonym Replacement. Based on the distance quantization among the word
embedding vectors, we can obtain a list of synonyms for each word in Σ. For
a word σ ∈ Σ, the synonyms of w are defined as the top-k most similar words
of σ in Σ, where k is a hyper-parameter and we set k to 5 by default based on
an empirical observation that top-5 similar words are sufficiently reasonable
to keep the semantics. The similarity among the words is calculated based
on the Euclidean distance between the word embedding vectors over Σ.

Given a dataset D0 over Σ, for each sentence w ∈ D0, we generate a new
sentence w′ by replacing some words in w with their synonyms. Specifically,
each word is replaced by a randomly selected synonym in its top-k synonyms
with probability pr (0.4 by default).

Dropout. Inspired by the regularization technique dropout, we also propose
a similar tactic to generate new sentences from D0. Initially, we introduce a
new word named unknown word and denote it as ⟨unk⟩. For the sentence

11



w ∈ D0 that has been processed by synonym replacing, we further replace
the words that haven’t been replaced with ⟨unk⟩ with a certain probabil-
ity pd (0.2 by default). Finally, new sentences generated by both synonym
replacement and dropout form the augmented dataset D.

With the dropout tactic, we can observe the behaviours of RNNs when
it processes an unknown word σ̂ ̸∈ Σ that hasn’t appeared in D0. Therefore,
the extracted WFA can also have better generalization ability. The complete
pipeline of the data augmentation algorithm is elaborated in Algorithm 1.
Note that the rand() function samples from [0, 1] in a uniform manner.

Algorithm 1: Data Augmentation for Transition Rule Extraction

Input : Original dataset D0, hyper-parameter k = 5, pr = 0.4,
pd = 0.2

Output: Augmented dataset D
1 Obtain the synonyms σ1, σ2, · · · , σk of each word σ ∈ w in the

vocabulary of D;
2 D ← {};
3 for each sentence w ∈ D0 do
4 for each word σ ∈ w do
5 if rand() < pr then
6 Replace σ with selected synonym from {σ1, σ2, · · · , σk};
7 end
8 else
9 if rand() < pd then

10 Replace σ with ⟨unk⟩;
11 end

12 end

13 end
14 Obtain a new sentence w′, and add w′ to D;
15 end
16 return D;

We illustrate the above data augmentation algorithm using the following
example to generate a new sentence w′ from D0.

Example 3. Consider a sentence w from the original training set D0,
w =[‘I’, ‘really’, ‘like’, ‘this’, ‘movie’]. First, the word ‘like’ is chosen to
be replaced by one of its synonym ‘appreciate’. Next, the word ‘really’ is
dropped from the sentence, i.e. replaced by the unknown word ⟨unk⟩. Fi-
nally, we get a new sentence w′ =[‘I’, ‘⟨unk⟩’, ‘appreciate’, ‘this’, ‘movie’]
and put it into the augmented dataset D.

12



Since the word ‘appreciate’ may be an uncommon word in Σ, we can
capture new transition information provided by RNNs. We can also capture
the behavior of RNN when it reads an unknown word after the prefix [‘I’].

Note that the role of data augmentation in our extraction approach is
different from that used in the training phase of RNNs. While data aug-
mentation used in the training phase aims to improve the performance of
RNNs, the goal of data augmentation in this work is to improve the WFA
extraction precision. To this end, we use data augmentation in the testing
phase to extract more transition dynamics to construct the abstract model.

4. Evaluation

In this section, we evaluate our extraction approach on two natural lan-
guage datasets and demonstrate its performance on precision and scalability.

4.1. Datasets and RNNs

We select two popular datasets for NLP tasks and train the target RNNs
on them.

1. The CogComp QC Dataset (abbrev. QC) [20] contains news titles
which are labeled with different topics. The dataset is divided into a
training set containing 20k samples and a test set containing 8k sam-
ples. Each sample is labeled with one of seven categories. We train an
LSTM model R on the training set, which achieves an accuracy of 81%
on the test set.

2. The Jigsaw Toxic Comment Dataset (abbrev. Toxic) [22] contains com-
ments from Wikipedia’s talk page edits, with each comment labeled
toxic or not. We select 25k non-toxic samples and toxic samples re-
spectively, and divide them into the training set and test set in a ratio
of four to one. We train an LSTM model which achieves 90% accuracy
on the test set.

Metrics. We use Consistency Rate (CR) and Jensen–Shannon Divergence
(JSD) as our evaluation metrics. For a sentence in the test set w ∈ Dtest, we
use R(w)[i] and A(w)[i] to denote the prediction score on class i of the RNNs
and WFA, respectively. The Consistency Rate measures the consistency of
the output decision between the two models, which is formally defined as

CR =
|{w ∈ Dtest : argmax

i
A(w)[i] = argmax

i
R(w)[i]}|

|Dtest|
. (5)
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Dataset QC Toxic
Metric CR(↑) JSD(↓) Time(s) CR(↑) JSD(↓) Time(s)
A0 0.26 0.25 47 0.57 0.09 167
AU 0.60 0.21 56 0.86 0.06 180
AE 0.80 0.10 70 0.91 0.02 200

Table 1: Evaluation results of different filling approaches on missing rows.

The Jensen–Shannon Divergence [23] measures the distance of two prob-
ability distributions, i.e., the outputs of WFA and RNN, which is formally
defined as

JSD =
1

2

∑
i

(A(w)[i] log( 2A(w)[i]
A(w)[i] +R(w)[i]

)+R(w)[i] log( 2R(w)[i]
A(w)[i] +R(w)[i]

)).

(6)
Note that the Consistency Rate measures the consistency of the classification
decision between the WFA and the RNN, while Jensen–Shannon Divergence
evaluates the similarity of the output probability distributions between the
two models. These two metrics evaluate the consistency between the abstract
model and RNN to a different degree. In this paper we mainly focus on the
consistency of predicted labels, hence we apply Consistency Rate as our
major measurement.

4.2. Missing Rows Complementing

As discussed in Section 3.2, we take two approaches as baselines, the null
filling and the uniform filling. The extracted WFA with these two approaches
are denoted asA0 andAU , respectively. The WFA extracted by our empirical
filling approach is denoted as AE.

Table 1 shows the evaluation results of three rule filling approaches. We
conduct the comparison experiments on QC and Toxic datasets and select
the cluster number for state abstraction as 40 and 20 for the QC and Toxic
datasets, respectively.

The three rows labeled with the type of WFA show the evaluation results
of different approaches. For the A0 based on nul filling , the WFA returns
the weight of most sentences in D with 0⃗, which fails to provide sufficient
information for prediction. For the QC dataset, only a quarter of sentences
in the test set are classified correctly. The second row shows that the perfor-
mance of AU is better than A0. The last row presents the evaluation result of
AE, which fills in the missing rows by our approach. In this experiment, the
hyper-parameter reference rate is set as β = 0.3. We can see that our em-
pirical approach achieves significantly better accuracy, which is 20% and 5%
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Rule Config.
QC Toxic

CR(↑) JSD(↓) Time(s) CR(↑) JSD(↓) Time(s)

AU
None 0.60 0.21 56 0.86 0.06 180

Context 0.71 0.22 64 0.89 0.06 191

AE
None 0.80 0.10 70 0.91 0.02 200

Context 0.82 0.13 78 0.92 0.03 211

Table 2: Evaluation results of with and without context-awareness enhancement.

higher than uniform filling on the two datasets, respectively. As for JSD, we
can see that our empirical approach also outperforms the baselines notably
over both QC and Toxic datasets.

The columns labeled Time show the execution time of the whole extrac-
tion workflow, from tracking transitions to evaluation on test set, but not
include the training time of RNNs. We can see that the extraction overhead
of our approach (AE) is about the same as AU and A0.

4.3. Context-Awareness Enhancement

In this experiment, we leverage the context-awareness enhanced matrices
when constructing the WFA. We adopt the same configuration on cluster
numbers n as the comparison experiments above, i.e. n = 40 and n =
20. The experiment results are summarized in Table 2. The columns titled
Config. indicate if the extracted WFA leverage context-awareness matrices.
We also take the WFA with different filling approaches, the uniform filling
and empirical filling, into comparison. Experiments on null filling is omitted
due to limited precision.

For the QC dataset, we set the static probability as α = 0.4. The consis-
tency rate of WFA AU improves 11% with the context-awareness enhance-
ment, and AE improves 2%. As for the Toxic dataset, we take α = 0.2
and the consistency rate of the two WFA improves 3% and 1% respec-
tively. This shows that the WFA with context-awareness enhancement re-
mains more context information from the prefixes of sentences, making it
simulate RNNs’ classification decision better. However, the WFA equipped
with context-awareness enhancement exhibit larger JSD, which is caused by
the fact that context-awareness enhancement reduces the transition magni-
tude, since larger α leads to higher probability on remaining in the current
state. This reveals a trade-off between the abstraction precision evaluated
by decision label consistency and prediction score consistency.

Still, the context-awareness enhancement processing costs little time,
since we only calculate the adjusting formula (3) for each Eσ in E. The
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Rule Data
QC Toxic

CR(↑) JSD(↓) Time(s) CR(↑) JSD(↓) Time(s)

AU
D0 0.71 0.22 64 0.89 0.06 191
D 0.76 0.18 81 0.91 0.05 295

AE
D0 0.82 0.13 78 0.92 0.03 211
D 0.84 0.12 85 0.94 0.02 315

Table 3: Evaluation results of with and without data augmentation.

additional extra time consumption is 8s for the QC dataset and 11s for the
Toxic dataset.

4.4. Data Augmentation

Finally, we evaluate the WFA extracted with transition behaviours from
augmented data. Note that the two experiments above are based on the
primitive dataset D0. In this experiment, we leverage the data augmentation
tactics to generate the augmented training set D, and extract WFA with
data samples from D. In order to get best performance, we build WFA with
context-awareness enhanced matrices.

Table 3 shows the results of consistency rate of WFA extracted with and
without augmented data. The rows labeled D0 show the results of WFA that
are extracted with the primitive training set, and the result from the aug-
mented data is shown in rows labeled D. With more transition behaviours
tracked, the WFA extracted with D demonstrates better precision. Specifi-
cally, the WFA extracted with both empirical filling and context-awareness
enhancement achieves a further 2% increase in consistency rate on the two
datasets. In addition, the extractions with augmented data also exhibit bet-
ter JSD.

To summarize, by using our transition rule extraction approach, the con-
sistency rate of extracted WFA on the QC dataset and the Toxic dataset
achieves 84% and 94%, respectively. Taking the primitive extraction algo-
rithm with uniform filling as baseline, of which experimental results in terms
of CR are 60% and 86%, our approach achieves an improvement of 22% and
8% in consistency rate. Regarding the Jensen–Shannon Divergence, though
there is a little drop made by the context-awareness enhancement, our ap-
proach still outperforms the baseline methods significantly. Taking uniform
filling for comparison, our overall approach improves the JSD from 0.21 to
0.12 on QC dataset and 0.06 to 0.02 on Toxic dataset. For the time complex-
ity, the time consumption of our approach increases from 56s to 81s on QC
dataset, and from 180s to 315s on Toxic dataset. There is no significant time
cost increase when adopting our approach for complicated natural language
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Figure 2: CR and JSD on the two datasets under different β.

tasks. We can conclude that our transition rule extraction approach makes
better approximation of RNNs, and is also efficient enough to be applied to
practical applications for large-scale natural language tasks.

4.5. Parameter Effect Evaluation

In this section, we conduct experiments to evaluate the impact of the
hyper-parameters on the validity of our extraction approach, including the
reference rate β, static probability α, and the number of cluster K.
Reference rate β. We first evaluate the impact of the reference rate. To this
end, we set β to different values from {0.1, 0.3, 0.5, 0.7, 0.9}. Meanwhile, we
set α to a fixed value 0. The results are shown in Figure 2, where we take
the uniform filling as baseline (the dotted lines). We observe that our filling
method outperforms uniform filling for a large range of parameter values (less
than 0.7), under both CR and JSD metrics. A relatively small β (e.g., less
than 0.5) leads to better extraction precision.

Static probability α. Similarly, we conduct an experiment to evaluate the im-
pact of different static probability values α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0} on the
performance of our approach. We set β to 0.3 based on the above evalu-
ation results. The results are illustrated in Figure 3. Compared with the
case of α = 0 where we do not apply the context-awareness enhancement, it
leads to improvements on the CRs when setting α to values from {0.2, 0.4}.
Meanwhile, as discussed before, context-awareness enhancement reduces the
transition scale of WFA, which leads to performance degradation in terms of
JSD. This reveals a trade-off between CR and JSD among different selections
on α. Based on the results, we suggest setting α to a small positive value
(less than 0.4).

Cluster number K. Finally, we evaluate the impact of cluster number K ∈
{10, 20, 30, 40, 50} on the performance of our approach. The results are shown
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Figure 3: CR and JSD on the two datasets under different α.

in Figure 4, where our approach is denoted by AE, and the uniform filling and
null filling are denoted as AU , A0 respectively. We can see that our approach
outperforms the baselines in all cases. Note that as K increases from 10 to
50, the performance of AU and A0 consistently decreases, which is caused
by the transition sparsity problem we have identified. The evaluation results
demonstrate the robustness of our method against the cluster number K.

5. Weighted Automata-based Explanation of RNNs

In this section, we propose a novel explanation framework of RNNs for
natural language tasks based on the extracted WFA. In the explanation
framework, we consider using transition matrix2 Eσ for each word σ as its
word embedding, named as Transition Matrix Embeddings (TME). In the
following, we first introduce TME and explain its difference from traditional
pretrained word embeddings. Next, we present a global explanation and con-
trastive explanation method based on TME to interpret the behaviours of
RNNs: (1) global explanation: we use TME to calculate the word-wise at-
tribution of RNN’s decisions, (2) contrastive explanation: we compare TME
with the conventional word embedding method to analyze the task-oriented
word semantics learned by RNNs. We also reveal two intriguing properties of
RNNs identified by the contrastive method, and validate the effectiveness of
the proposed embedding and explanation framework for RNNs by applying
it to pretraining and adversarial example generation.

5.1. Transition Matrix as Word Embeddings

Suppose the extracted WFA A from RNN R has n = |Ŝ| words. For each
word σ and its corresponding transition matrix Eσ ∈ Rn×n in A, recall that

2In this section, we focus on the final extracted transition matrix Êσ, and abuse the
notation Eσ for the sake of simplicity.
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(a) CR on QC dataset (b) JSD on QC dataset

(c) CR on Toxic dataset (d) JSD on Toxic dataset

Figure 4: Overall comparison under different K.

the (i, j)-th element of Eσ represents the transition probability of A from
si to sj after reading word σ, which is an approximation of the transition
probability of R between these two states. Therefore, if two words share
similar transition matrices, they trigger similar behaviours of RNN R, and
hence represent similar semantics from the RNN R’s perspective for the
current task.

This observation motivates us using the transition matrices to craft word
embeddings. In order to obtain the task-oriented embedding vector, we flat-
ten the transition matrix Eσ ∈ Rn×n into a vector eσ of N = n2 dimension:

eσ[j + n · (i− 1)] = Eσ[i, j], for 1 ≤ i, j ≤ n, (7)

which we refer to as Transition Matrix Embeddings (TME).
Note that TME are fundamentally different from the traditional pre-

trained word embeddings, e.g. Word2vec [24], Gloves [18]. The TME char-
acterize transition behaviours of RNNs when processing each word, which
are task oriented (e.g., text classification), while pretrained embeddings are
word-semantic oriented. Therefore, for two words σ1 and σ2, they may share
similar TME eσ1 , eσ2 , yet represent different semantics and hence their em-
bedding differences in pretrained embeddings may be large. We detail such
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Figure 5: WFA-based explanation framework.

cases in Section 5.3. Further, the applications of TME are different from the
general pretrained embeddings. The extracted TME can be seen as a global
explanation of the source RNN R (see Section 5.2 for details), which aids us
for understanding the decision logic of the source RNN.

5.2. Word-Wise Attribution with TME

We introduce a global explanation method based on TME for analyzing
the decision attribution of the source RNN R. We investigate the impact of
each word σ on the decision of R based on its TME eσ. Recall that each
abstract state ŝ has an explicit semantic represented by its center ρ(ŝ), the
probability distribution of labels. Therefore, each transition between two
states, such as ŝ1 → ŝ2, can be interpreted as a shift in the probability dis-
tribution of labels, ρ(ŝ1)→ ρ(ŝ2). By multiplying the transition probability
between states, which is saved in eσ, we can calculate the average variation
of prediction scores among labels after R reading word σ. More formally,
the variation contributed by the abstract transition (ŝi, σ, ŝj) is given by
eσ[j + n · (i− 1)]× (ρ(ŝj)− ρ(ŝi)).

Additionally, we take into account the uneven significance among all ab-
stract states, where states that appear more frequently should be assigned
larger weight. To reflect this, we calculate the frequency of each abstract
state ŝ as u(ŝ) and incorporate it into the computation of influence score as
a weight. Formally, the Influence Score (IS) of word σ is formulated as

IS(σ) =
n∑

i=1

u(ŝi){
n∑

j=1

eσ[j + n · (i− 1)]× (ρ(ŝj)− ρ(ŝi))}. (8)

For class i, the i-th element of influence score for word σ represents how
this word impacts the decision of RNN on this class. Therefore, we can
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Label Category Top-10 Influencial Words

0 Sport
players, lockout, rangers, sox, knicks,
basketball, coach, bruins, champions, djokovic

1 World
libyan, pakistan, yemen, sudan, gaddafi,
syrian, egypt, mubarak, syria, afghans

2 US
florida, county, wildfire, layoffs, massachusetts,
mid-atlantic, wildfires, cpsc, firefighters, blagojevich

3 Business
stocks, dollar, consumer, goldman, mortgage,
wall, companies, rosneft, s&p, sec

4 Health
disease, crackers, cancer, asthma, patients,
exercise, prevention, symptoms, therapy, obesity

5 Entertainment
idol, cannes, arthur, gotti, beaver,
mccreery, mariah, lohan, baldwin, diana

6 Sci tech
3ds, playstation, icloud, software, gmail,
windows, tablets, linkedin, tablet, climate

Table 4: Top-10 Influential Words for 7 classes in the QC news Dataset [20]

investigate the influential words for the source RNN’s decisions by sorting
the input words in descending order of IS. To demonstrate the effectiveness
of the proposed influence analysis method, we compute the IS of all words in
the vocabulary of the QC news dataset, and show the top-10 influential words
for each class in Table 4. Due to the presence of inappropriate language in
the Toxic dataset we exclude the experiment results on this dataset. From
Table 4 we can see that for each category, its most influential words are highly
correlated to that domain. This confirms that the proposed influence score
based on TME can indeed identify the input features (words) that RNN R
relies on to make decisions on each class.

We can also use the TME to characterize the relative importance of an in-
dividual word for different labels. For instance, we show the influence scores
of the words “Basketball”, “Dollar”, “Apple”, and “Happy” in Figure 6.
As shown in Figure 6, the ISs of “Basketball” and “Dollar” demonstrate
that they lead to high prediction tendency on class “Sport” and “Business”,
respectively, which is strongly correlated to their semantic domains. In con-
trast, the word “Apple” shows high influence score on class “Business” and
“Sci tech”, which is consistent with the intuition that this word is active in
both business and technology news. Finally, the word “Happy”, which has
no particular influence on any class, demonstrates uniform IS on each class.

To sum up, the proposed TME provide a global explanation of the source
RNN R. As discussed above, by computing TME-based influential score, we
can provide explanations of R from both class-wise and word-wise perspec-
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(a) Basketball (b) Dollar

(c) Apple (d) Happy

Figure 6: Influence Scores (ISs) visualization for some words.

tives.

5.3. Contrastive Word Relation

Based on the Transition Matrix Embeddings (TME), we propose a con-
trastive method to investigate the relations of words in TME and conven-
tional word embeddings, which reveals two intriguing properties.

First, to demonstrate the difference between TME and Glove embeddings,
we use t-SNE [25] to visualize the embedding vectors of TME and Glove,
which is shown in Figure 7. Specifically, we select top-50 influential words
from each class in QC news dataset with each color representing a class. We
can see that the selected 350 (50× 7) words demonstrate different clustering
property in these two word embeddings. This shows our TME are quite
different from pretrained word embeddings, wherein the word semantics are
task-oriented.
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(a) TME (b) Glove

Figure 7: t-SNE visualization of two kinds of word embeddings on QC dataset. Each color
represents a class.

We now characterize the contrastive relations between words in TME and
the conventional word embeddings. We define ∥·∥ as the p−norm of a matrix
or a vector divided by the number of its elements, and we set p to 2. We
compute the distance of two words given by TME and their conventional
semantics, respectively. For words σ1, σ2, we define their transition distance
as dT (σ1, σ2) = ∥eσ1 − eσ2∥. In order to analyze their conventional semantic
distance, we use the Glove [18] word embeddings gσ1

, gσ2
, and define the

semantic distance as dS(σ1, σ2) = ∥gσ1
− gσ2

∥. By analyzing these two em-
bedding distances between words, we find that there exist some contrastive
word pairs demonstrating different properties. We formally define two types
of contrastive word pairs in the following.

Definition 4 ((ϵ, δ)-Collaborative Pair). A (ϵ, δ)-Collaborative Pair is a pair
of words (σ1, σ2) satisfying that

dT (σ1, σ2) ≤ ϵ, dS(σ1, σ2) ≥ δ. (9)

Here ϵ is a small positive number to guarantee that the word pair σ1 and
σ2 trigger similar transition behaviours of the source RNN R. On the other
hand, δ is a relatively larger positive number, indicating these two words
have quite different semantics in terms of conventional embeddings. Hence
the collaborative pairs are the word pairs that have distinct meanings, but
are similar from the RNN R’s perspective on the specific task. In contrast,
the adversarial pairs are defined in a symmetry manner, which means the
words share similar meanings, but are quite different from the RNN R’s
understanding in a particular task.
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Label Category Collaborative Pairs Adversarial Pairs
0 Sport (‘lakers’,‘wozniacki’) (‘cup’,‘cups’)
1 World (‘yemen’,‘gaddafi’) (‘yemen’,‘usa’)
2 US (‘wildfire’,‘texas’) (‘wildfire’, ‘tsunami’)
3 Business (‘wall’,‘mortage’) (‘wall’,‘behind’)
4 Health (‘therapy’,‘rice’) (‘exercise’,‘sports’)
5 Entertainment (‘cannes’,‘bieber’) (‘diana’,‘williams’)
6 Sci tech (‘climate’,‘software’) (‘windows’,‘open’)

Table 5: Examples of Collaborative Pairs and Adversarial Pairs.

Definition 5 ((ϵ, δ)-Adversarial Pair). An (ϵ, δ)-Adversarial Pair is a pair
of words (σ1, σ2) satisfying that

dT (σ1, σ2) ≥ δ, dS(σ1, σ2) ≤ ϵ. (10)

The above contrastive pairs allow us to understand how RNN learns the
semantics of the words. When a dataset and a task is given, the semantic of a
word in the vocabulary is not learned fully obeying general word embedding,
but task-oriented. To make the task-oriented word semantics clearer, we show
some examples of (ϵ, δ)-Collaborative Pairs and Adversarial Pairs found by
our algorithm in Table 5. The (ϵ, δ) is set to be (0.012, 0.1) for collaborative
pairs, and (0.2, 0.01) for adversarial pairs. Note that the size of (ϵ, δ) for
adversarial pairs is significantly different from that for collaborative pairs.
In collaborative pairs, ϵ is set to a relatively small positive value, ensuring
that the embedding distances in RNN are small, while for adversarial pairs,
ϵ is set to a larger value to avoid strict constraints on semantic distance that
would make the resulting adversarial words too similar. The value of δ is
also set for similar reasons. From these examples, we identify two intriguing
properties of the source RNN. The collaborative pairs are the pair of words
which the source RNN processes similarly with regard to the current task, but
not synonyms in conventional semantics. On the other hand, the adversarial
pairs are actually synonyms, but when considered in the current task, the
behaviours of RNNs are triggered differently. These contrastive pairs capture
the RNN’s specific understanding of word semantics, which are task-oriented.

Next, we analyze the adversarial pairs with a concrete example. Note
that the collaborative pairs can be analyzed in a similar way. Consider the
adversarial pair (“exercise”, “sports”) as an example, which are synonyms in
general word semantics. But when we analyze their influence on RNN’s deci-
sions, they demonstrate significant differences. The influence analysis results
show that “exercise” is a word that has high influence score on class “Health”,
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while “sports” is a word that is most influential to the “Sports” category.
We further present an adversarial example generated by leveraging this ad-
versarial pair. Consider the following sentence in the test set, “exercise helps
her age swimmingly”, on which the RNN outputs “Health” with probability
of 98.9%. When we feed the sentence “sports helps her age swimmingly” to
the RNN instead, the output probability of category “Sport” raises up to
92.7%. However, the two sequences have nearly the same semantics. Based
on the above result, we see that synonyms with regard to general embed-
dings are understood differently by RNNs. Therefore, TME and TME-based
explanation can help us better understanding what the target RNN learns
and how it makes decisions.

In this way, by identifying and analyzing the collaborative examples, we
can understand what are task-oriented synonyms from the target RNN’s per-
spective, though they may be distinct in conventional embedding semantics.
On the other hand, characterizing adversarial pairs provides explanations of
the target RNN on distinguishing similar words in the context of the current
task. We further validate the effectiveness of the contrastive pairs with the
following two applications.

5.3.1. TME for RNN Pretraining

The identification of collaborative pairs reveals that TME is able to char-
acterize task-oriented semantics, compared with the conventional embedding
method like Glove. We next show the effectiveness of TME in boosting RNN
training when serving as pretrained embeddings.

In the experiment, we consider training RNNs on the QC news dataset
and Toxic dataset with three word embedding initialization strategies: (i)
TME, (ii) Glove, and (iii) random initialization. Figure 8 shows the compar-
ison results. We can see that the initialization with TME outperforms Glove
and random initialization on convergence speed in terms of loss and accuracy
on the test set, which validates the effectiveness of TME in boosting RNN
pretraining.

Note that there is a steep rise in accuracy observed during the training
process. In fact, for general NLP tasks, neural networks tend to experience a
rapidly initial improvement in accuracy and then reach a plateau as training
progresses. In our benchmarks tasks, the initialization of word embedding
vectors has a significant impact on the network’s ability to learn the correct
patterns. It is only after the network learns the correct semantics from these
embeddings, then the neural network can enter the phase of improvement
in accuracy. As our pre-trained word embeddings are initialised with clearer
semantics, the network is able to reach this phase of improvement at an
earlier stage in the training process.
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(a) Loss on test set, QC (b) Accuracy on test set, QC

(c) Loss on test set, Toxic (d) Accuracy on test set, Toxic

Figure 8: Comparison of three initialization strategies for RNN training.

5.3.2. TME for Adversarial Example Generation

Previous investigation has shown that TME can be utilized to identify
adversarial pairs and decision vulnerabilities of RNNs. Inspired by the in-
vestigation results, we apply TME to generate adversarial examples for the
source RNN. We perform comparison experiments of using TME and Glove
as embeddings in crafting adversarial examples. To evaluate the effectiveness
of different methods in adversarial example generation, we use Attack Suc-
cess Rate (ASR) as the evaluation metric, namely the proportion of crafted
sequences that successfully mislead the RNN to produce false outputs.

To generate adversarial examples, we select the top-k influential words
in each sentence from the test set, measured by ℓ2-norm of IS, and replace
them with their synonyms with regard to different embedding methods. To
ensure the generation of adversarial pair, we set a lower bound for the TME
semantic distance between the original word σ and the selected synonym σ′,
that is, dT (σ, σ

′) ≥ 0.01. For Glove, we simply replace the top-k influen-
tial words with their synonyms. For TME, we leverage the Adversarial Pair
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Embeddings
QC Toxic

k = 1 k = 2 k = 1 k = 2
Glove 0.17 0.22 0.06 0.11

Weak Adversarial Pairs 0.34 0.46 0.11 0.23
Strong Adversarial Pairs 0.44 0.59 0.15 0.25

Table 6: Comparison results of Attack Success Rate (ASR) with different embedding
methods.

under two settings with dS(σ, σ
′) ≤ 0.15, dS(σ, σ

′) ≤ 0.18, respectively, to
generate adversarial examples. Here, when ϵ is set to 0.15, the constraint
on semantic distance for natural language is relatively strict. The resulting
adversarial samples are semantically clear and have minor changes compared
to the original sentences. We denote this kind of adversarial pair as Weak
Adversarial Pairs. When ϵ is set to 0.18, however, the constraint on semantic
distance becomes more relaxed. The resulting sentences have more different
semantics and there might be some local grammar issues, but still can be
classified into the same label as the original ones. We refer to this type of
adversarial pair as Strong Adversarial Pairs. For Toxic, we set ϵ to 0.12 and
0.2 for Weak Adversarial Pairs and Strong Adversarial Pairs, respectively.
The comparison results are shown in Table 6. We can see that using ad-
versarial pairs guided by TME achieves higher ASR than using Glove. For
example, on QC news dataset, we’ve gained an average increase of 21% for
Weak Adversarial Pairs and 32% for Strong Adversarial Pairs. The evalua-
tion results validate the effectiveness of TME in capturing the decision logic
and vulnerability of the target RNN.

5.4. Discussion

Computational Complexity. The time complexity of the whole workflow is
analyzed as follows. Suppose that the set of training samples D0 has N
words in total and its alphabet Σ contains n words, and is augmented as D
with t epochs (i.e. each sentence in D0 is transformed to t new sentences in
D), hence |D| = (t+ 1)N . Assume that a probabilistic output of RNNs is a
m-dim vector, and the abstract states set Ŝ contains k states.

To start with, the augmentation of D0 and tracking of probabilistic out-
puts in D will be completed in O(|D|) = O(t · N) time. Besides, the time
complexity of k-means clustering algorithm is O(k · |D|) = O(k · t ·N). The
count of abstract transitions will be done in O(n). As for the processing of
transition matrices, we need to calculate the transition probability for each
word σ with each source state ŝi and destination state ŝj, which costsO(k2·n)
time. Finally, the context-aware enhancement on transition matrices takes
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O(k · n) time.
Note that O(n) = O(N), hence we can conclude that the time complexity

of our whole workflow isO(k2·t·N). So the time complexity of our approaches
only takes linear time w.r.t. the size of the dataset, which provides theoretical
extraction overhead for large-scale data applications.

For the explanation analysis, the IS score can be computed in constant
time, as this process simply involves multiplying two matrices. Assuming
the vocabulary contains a total of n words, and a sequence s with k words,
conducting an adversarial attack on this sequence requires O(k + m log k)
time to find the top-m influential words, and it costs O(n) time to find an
optimal adversarial pair in the entire vocabulary through enumeration. Thus,
if m words need to be replaced, the time complexity for the entire process is
O(k +m log k + nm).

Applicability to other RNNs. Although the proposed framework for WFA
extraction and explanation of RNNs is customized for natural language tasks,
we point out that some of its components can be generalized to other types
of RNNs as well.

First, the identified transition sparsity and context-awareness problems
in WFA extraction for natural language tasks may also occur in RNNs used
in other domains, thus the proposed methods to address these problems are
applicable to them as well. Thus, the empirical method to complement the
missing rules in the transition diagram and the adjustment of transition
matrices to enhance the context-awareness of the WFA can also be applied
to other types of RNNs. However, the data augmentation tactics proposed in
the paper may need to be adapted to suit the specific characteristics of other
types of RNNs. Specifically, we can perform data augmentation on natural
language samples as long as the synthetic sentences make sense. However,
other datasets, such as formal languages, do not possess this property.

As for the explanation analysis, the application of our method for RNN
explanation is not limited to natural language tasks. As long as a WFA can
be extracted from the target RNN, the method for explanation is applicable.
In fact, our study on RNN explainability only involves the extraction of
vector representation of words through the transition matrices of the WFA,
thus this component of our framework is highly generalizable and can be
applied to various other domains beyond natural language processing.

6. Related Work

Many research efforts have been made to understand the behaviours of
RNNs with an extracted model. We discuss the extraction methods and their
applications respectively in the following.
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6.1. Model Extraction of RNNs

As Jacobsson reviewed in [26], the extraction approach of RNNs can
be divided into two categories: pedagogical approaches and compositional
approaches.

Pedagogical Approaches. Many research works consider using pedagogical
approaches to abstract RNNs by leveraging explicit learning algorithms,
such as the L∗ algorithm [7]. Earlier works date back to two decades ago,
when Omlin et al. attempted to extract a finite model for Boolean-output
RNNs [27; 28; 29]. Recently, Weiss et al. [8] proposed an approach to ex-
tracting DFA from RNN-acceptors based on L∗ algorithm. Later, they pre-
sented a weighted extension of L∗ algorithm that extracted probabilistic de-
termininstic finite automata (PDFA) from RNNs [9]. Okudono et al. [10]
proposed a weighted extension of L∗ algorithm to extract WFA for real-
value-output RNNs. Overall, pedagogical approaches have achieved great
success in abstracting RNNs for small-scale languages, particularly formal
languages. Such exact learning approaches have intrinsic limitation in scal-
ability w.r.t. the language complexity, thus are not suitable for automata
extraction for natural language models.

Compositional Approach. Another technical line for automata extraction
from RNNs is the compositional approach, which leverages unsupervised
algorithms (e.g. k-means, GMM) to cluster state vectors as abstract
states [30; 31]. Wang et al. [11] studied the key factors in the composi-
tional approach that influence the reliability of the extraction process, and
proposed an empirical rule to extract DFA from RNNs. Later, Zhang et
al. [21] followed the state encoding of compositional approach and proposed
a WFA extraction approach from RNNs, which can be applied to both gram-
matical languages and natural languages. In this paper, the proposed WFA
extraction approach from RNNs also falls into the line of compositional ap-
proach, but aims at proposing transition rule extraction method to address
the transition sparsity problem and enhance the context-aware ability, which
is customized for natural language tasks.

6.2. Model-based RNN Analysis and Explanation

There are a series of works focusing on deriving the extracted models
for further applications, where the abstract models are more amenable to
analysis and explanation.
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Model-based Analysis. Model extraction techniques have been widely used
to aid the analysis of RNNs, since the extracted models can be regarded
as an approximation of the target RNNs, on which are easier to operate
and perform analysis. [13] is a representative work for model-based RNN
analysis, which leverages the extracted model to detect adversarial examples
and increase test coverage of the target RNNs. Later, [15] proposed a model-
based approach for robustness analysis of RNNs. Xie et al. [16] proposed
to leverage the extracted model to identify buggy behaviors and further for
automatic repairment of RNNs. In this paper, based on the extracted WFA,
we proposed a new embedding method TME, which provides a new insight
on RNN analysis for natural language tasks. With the proposed contrastive
pairs derived by TME, we can analyze task-oriented semantics of the target
RNNs, which further can be applied to boost pretraining and adversarial
example generation for RNNs.

Model-based Explanation. There are also several works devoted to explain-
ing the mechanism of RNNs with the aid of surrogate models. Krakovna
et al. [32] presented an interpretation method for RNNs by using hidden
markov models (HMMs) to simulate the source RNNs. Hou et al. [33] pro-
posed an approach to interpreting the effect of gates on the mechanism of
RNNs by using the extracted finite state automata. Jiang et al. [34] proposed
a hybrid model FA-RNNs, which is trainable, generalizable as well as inter-
pretable. There are also works operating directly on the structure of RNNs.
Guo et al. [35] proposed an interpretable LSTM neural network equipped
with tensorized hidden states, which could learn variable-specific representa-
tions. In this work, by leveraging the extracted WFA, we proposed a global
explanation method, which computes the word-wise influence score on RNN
decisions, and a contrastive explanation method, where the identified col-
laborative and adversarial repairs effectively characterize the task-oriented
semantics learned by the target RNN.

7. Conclusion

In this paper, we propose a general framework for weighted automata ex-
traction and explanation of RNNs for natural language tasks. We introduce a
novel approach to extracting transition rules of weighted finite automata from
recurrent neural networks. In particular, we address the transition sparsity
problem and complement the transition rules of missing rows, which effec-
tively improves the extraction precision. In addition, we present an heuristic
method to enhance the context-aware ability of the extracted WFA. We fur-
ther propose two augmentation tactics to track more transition behaviours of
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RNNs. Both theoretical analysis and experimental results demonstrate the
efficiency and precision of our rule extraction approach for natural language
tasks. Based on the extracted model, we propose a word embedding method,
Transition Matrix Embeddings (TME), to construct task-oriented explana-
tions of the target RNN, including a word-wise global explanation method
of RNNs, and a contrastive method to interpret the word semantics that the
RNNs learned from the task.
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