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Summary

This paper presents new results on prediction of linear processes in function spaces. The autoregressive

Hilbertian process framework of order one (ARH(1) process framework) is adopted. A componentwise estimator

of the autocorrelation operator is formulated, from the moment–based estimation of its diagonal coefficients,

with respect to the orthogonal eigenvectors of the auto-covariance operator, which are assumed to be known.

Mean-square convergence to the theoretical autocorrelation operator, in the space of Hilbert-Schmidt operators,

is proved. Consistency then follows in that space. For the associated ARH(1) plug-in predictor, mean absolute

convergence to the corresponding conditional expectation, in the considered Hilbert space, is obtained. Hence,

consistency in that space also holds. A simulation study is undertaken to illustrate the finite-large sample

behavior of the formulated componentwise estimator and predictor. The performance of the presented approach

is compared with alternative approaches in the previous and current ARH(1) framework literature, including the

case of unknown eigenvectors.
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1 Introduction

In the last few decades, an extensive literature on statistical inference from functional random vari-

ables has emerged. This work was motivated in part by the statistical analysis of high–dimensional data,

as well as data of a continuous (infinite-dimensional) nature; see, e.g., Bosq [2000, 2007]; Dedecker and Merlevède

[2003]; Ferraty and Vieu [2006]; Merlevède [1996b, 1997]; Ramsay and Silverman [2005]; Ruiz-Medina

[2012]. New developments in functional data analysis are described, e.g., in Bongiorno et al. [2014];
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Cuevas [2014]; Horváth and Kokoszka [2012]; Hsing and Eubank [2015], and in a recent Special Issue of

this journal Goia and Vieu [2016].

These references include a nice summary on the statistics theory for functional data, contemplating

covariance operator theory and eigenfunction expansion, perturbation theory, smoothing and regular-

ization, probability measures on a Hilbert spaces, functional principal component analysis, functional

counterparts of the multivariate canonical correlation analysis, the two sample problem and the change

point problem, functional linear models, functional test for independence, functional time series theory,

spatially distributed curves, software packages and numerical implementation of the statistical procedures

discussed, among other topics.

The special case of functional regression models, in which the predictor is a random function and

the response is scalar, has been particularly well studied. Various specifications of the functional regres-

sion parameter arise in fields such as biology, climatology, chemometrics, and economics. To avoid the

computational (high–dimensional) limitations of the nonparametric approach, several parametric and

semi–parametric methods have been proposed; see, e.g., Ferraty et al. [2012] and the references therein.

In Ferraty et al. [2012], a combination of a spline approximation and the one–dimensional Nadaraya–

Watson approach was proposed to avoid high dimensionality issues. Generalizations to the case of

more regressors (all functional, or both functional and real) were also addressed in the nonparamet-

ric, semi–parametric, and parametric frameworks; for an overview, see Aneiros-Pérez and Vieu [2006];

Febrero-Bande and González-Manteiga [2013]; Ferraty and Vieu [2009].

In the nonparametric regression framework, the case where the covariates and the response are

functional was considered by Ferraty et al. [2012], where a functional version of the Nadaraya–Watson

estimator was proposed for the estimation of the regression operator and shown to be point–wise asymp-

totically normal. Resampling techniques were used to overcome the difficulties arising in the estim-

ation of the asymptotic bias and variance. Semi–functional partial linear regression, introduced in

Aneiros-Pérez and Vieu [2008], allows the prediction of a real-valued random variable from a set of

real–valued explanatory variables, and a time–dependent functional explanatory variable. Motivated by

genetic and environmental applications, a semi–parametric maximum likelihood method for the estim-

ation of odds ratio association parameters was developed by Chen et al. [2012] in a high–dimensional

data context.

In the autoregressive Hilbertian time series framework, several estimation and prediction procedures

have been proposed and studied. Mas [1999] established, under suitable conditions, the asymptotic nor-

mal distribution of the formulated estimator of the autocorrelation operator, based on projection into

the theoretical eigenvectors. In Bosq [2000]; Bosq and Blanke [2007], the problem of prediction of linear

processes in function spaces was addressed. In particular, sufficient conditions for the consistency of the
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empirical autocovariance and cross–covariance operators were obtained. The asymptotic normal distri-

bution of the empirical autocovariance operator was also derived. Moreover, the asymptotic properties

of the empirical eigenvalues and eigenvectors were analysed.

Guillas [2001] established the efficiency of a componentwise estimator of the autocorrelation operator,

based on projection into the empirical eigenvector system of the autocovariance operator. Consistency, in

the space of bounded linear operators, of the formulated estimator of the autocorrelation operator, and of

its associated ARH(1) plug–in predictor was later proved by Mas [2004]. He derived sufficient conditions

for the weak convergence of the ARH(1) plug–in predictor to a Hilbert–valued Gaussian random variable

(see Mas [2007]). Simultaneously, Mas and Menneteau [2003a] obtained high deflection results or large

and moderate deviations for infinite–dimensional autoregressive processes. Furthermore, the law of the

iterated logarithm for the covariance operator estimator was formulated by Menneteau [2005].

The main properties of the class of autoregressive Hilbertian processes with random coefficients were

investigated by Mourid [2004]. Kargin and Onatski [2008] gave interesting extensions of the autore-

gressive Hilbertian framework, based on the spectral decomposition of the autocorrelation operator,

and not of the autocovariance operator. The first generalization on autoregressive processes of order

greater than one was proposed by Mourid [1993], in order to improve prediction. ARHX(1) models; i.e.,

autoregressive Hilbertian processes with exogenous variables were studied by Damon and Guillas [2002,

2005]. In Guillas [2000, 2001] a doubly stochastic formulation of the autoregressive Hilbertian process

was investigated. The ARHD model was introduced by Marion and Pumo [2004], taking into account

the regularity of trajectories through the derivatives. The conditional autoregressive Hilbertian process

(CARH process) was considered by Cugliari [2011], developing parallel projection estimation methods to

predict such processes. In the Banach–valued context, we refer to the papers by Bensmain and Mourid

[2001]; Dehling and Sharipov [2005]; Pumo [1992, 1998], among others.

In this paper, we assume that the autocorrelation operator belongs to the Hilbert–Schmidt class,

and admits a diagonal spectral decomposition in terms of the orthogonal eigenvector system of the

autocovariance operator. Such is the case, e.g., of an autocorrelation operator defined as a continuous

function of the autocovariance operator. A componentwise estimator of the autocorrelation operator is

then constructed in terms of the eigenvectors of the autocovariance operator, which are assumed to be

known. This occurs when the random initial condition is defined as the solution, in the mean–square

sense, of a stochastic differential equation driven by white noise. Beyond this case, the sparse repres-

entation and whitening properties of wavelet bases can be exploited to obtain a diagonal representation

of the autocovariance and cross–covariance operators, in terms of a common and known wavelet basis.

Unconditional bases, like wavelet bases, also allow the diagonal spectral series representation of the

distributional kernels of Calderón-Zygmund operators.
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Under the assumptions stated in Appendices 2–4, we establish the convergence in the L2-sense of

a componentwise estimator of the autocorrelation operator in the space of Hilbert–Schmidt operators

S (H) , i.e., L2
S(H) (Ω,A,P) , is derived. Consistency then follows in S (H). Under the same conditions,

consistency in H of the associated ARH(1) plug–in predictor is obtained, from its convergence in the

L1-sense in the Hilbert space H, i.e., in the space L1
H (Ω,A,P). The Gaussian framework is analysed

in Appendix 4 and illustrated in Appendix 5, where examples show the behaviour of the proposed com-

ponentwise autocorrelation operator estimator, and associated predictor, for large sample sizes. We also

present there a comparative study with alternative ARH(1) prediction techniques, including compon-

entwise parameter estimation of the autocorrelation operator, from known and unknown eigenvectors,

as well as kernel (nonparametric) functional estimation, and penalized, spline and wavelet, estimation.

Final comments on the application of the proposed approach from real data are provided in Appendix

6.

2 Preliminaries

This section contains the preliminary definitions and lemmas that will be used to derive the main

results of this paper. In the following, H denotes a real separable Hilbert space. Recall that, from Bosq

[2000], a zero–mean ARH(1) process X = {Xn, n ∈ Z} satisfies, for all n ∈ Z, the equation

Xn = ρ (Xn−1) + εn, (1)

where ρ denotes the autocorrelation operator of the process X, which belongs to the space L(H) of

bounded linear operators, such that ‖ρk‖L(H) < 1, for all integers k ≥ k0 beyond a certain k0 ≥ 1, with

‖ · ‖L(H) denoting the norm in the space L(H). The Hilbert–valued innovation process ε = {εn, n ∈ Z}

is assumed to be a strong–white noise which is uncorrelated with the random initial condition. That

is, ε is a Hilbert–valued zero–mean stationary process, with independent and identically distributed

components in time, with σ2
ε = E

{
‖εn‖2H

}
<∞, for all n ∈ Z. We restrict our attention here to the case

where ρ is such that

‖ρ‖L(H) < 1.

The following assumptions are made.

Assumption A1. The autocovariance operator

C = E {Xn ⊗Xn} = E {X0 ⊗X0} , n ∈ Z,
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is a positive, self–adjoint and trace operator. As a result, it admits the following diagonal spectral

representation

C =

∞∑

j=1

Cjφj ⊗ φj ,

in terms of an orthonormal system {φj , j ≥ 1} of eigenvectors which are known. Here,

C1 ≥ C2 ≥ · · · ≥ Cj ≥ · · · > 0

denote the real positive eigenvalues of C arranged in decreasing order of magnitude and

∞∑

j=1

Cj <∞.

Assumption A2. The autocorrelation operator ρ is a self–adjoint and Hilbert–Schmidt operator,

admitting the diagonal spectral decomposition

ρ =

∞∑

j=1

ρjφj ⊗ φj ,

∞∑

j=1

ρ2j <∞,

where {ρj , j ≥ 1} is the system of eigenvalues of the autocorrelation operator ρ, with respect to the

orthonormal system of eigenvectors {φj , j ≥ 1} of the autocovariance operator C.

Note that, under Assumption A2,

‖ρ‖L(H) = sup
j≥1

|ρj | < 1.

Remark 1 Assumption A2 holds, in particular, when operator ρ is defined as a continuous function of

operator C (see [Dautray and Lions, 1990, pp. 119–140] and Remark 4).

In the following, for any n ∈ Z, let

D = E {Xn ⊗Xn+1} = E {X0 ⊗X1}

be the cross–covariance operator of the ARH(1) process X .

Remark 2 Under Assumptions A1–A2, it follows from equation (1) that

Cε = CρCρ =

∞∑

j=1

Cj

(
1− ρ2j

)
φj ⊗ φj =

∞∑

j=1

σ2
jφj ⊗ φj .
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By projecting equation (1) into the orthonormal system {φj , j ≥ 1}, we also have, for each j ≥ 1

and all n ∈ Z, the AR(1) equation

Xn,j = ρjXn−1,j + εn,j, n ∈ Z, (2)

where Xn,j = 〈Xn, φj〉H and εn,j = 〈εn, φj〉H , for all n ∈ Z. From equation (2), we have, for each j ≥ 1

and all n ∈ Z,

ρj = ρ(φj)(φj) =
〈
φj , DC

−1(φj)
〉
H

= 〈D(φj), φj〉H
〈
C−1(φj), φj

〉
H

=
E {Xn,jXn−1,j}
E
{
X2

n−1,j

} =
Dj

Cj
, n ∈ Z, (3)

where

Dj = 〈D(φj), φj〉H = E {Xn,jXn−1,j} , C−1
j = [E

{
X2

n−1,j

}
]−1, Xn,j = 〈Xn, φj〉H ,

given that, for all j ≥ 1,

D =

∞∑

j=1

Djφj ⊗ φj , Dj = ρjCj , j ≥ 1. (4)

Let us now consider the Banach space L2
H (Ω,A,P) of the equivalence classes of L2

H (Ω,A,P) , the

space of zero–mean second–order Hilbert–valued random variables (H–valued random variables) with

finite seminorm given by

‖Z‖L2
H
(Ω,A,P) =

√
E
{
‖Z‖2H

}
, ∀Z ∈ L2

H (Ω,A,P) .

That is, for Z, Y ∈ L2
H (Ω,A,P) , Z and Y belong to the same equivalence class if and only if

E {‖Z − Y ‖H} = 0.

The convergence in the seminorm of L2
S(H) (Ω,A,P) will be considered in Proposition 1, where

H = S(H) denotes the Hilbert space of Hilbert–Schmidt operators on a Hilbert space H .

For each n ∈ Z, let us consider the following biorthogonal representation of the functional value Xn

of the ARH(1) process X = {Xn, n ∈ Z}, and of the functional value εn of its innovation process:
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Xn =

∞∑

j=1

√
Cj

〈Xn, φj〉H√
Cj

φj =

∞∑

j=1

√
Cjηj(n)φj , (5)

εn =

∞∑

j=1

σj
〈εn, φj〉H

σj
φj =

∞∑

j=1

σj η̃j(n)φj , (6)

where

ηj(n) =
〈Xn, φj〉H√

Cj

=
Xn,j√
Cj

, η̃j(n) =
〈εn, φj〉H

σj
=
εn,j
σj

, n ∈ Z, j ≥ 1.

Here, under Assumptions A1–A2, for Cε = E {εn ⊗ εn} = E {ε0 ⊗ ε0} , n ∈ Z,

Cε (φj) = σ2
jφj , j ≥ 1,

where, as before, {φj , j ≥ 1} denotes the system of eigenvectors of the autocovariance operator C, and

∞∑

j=1

σ2
j = σ2

ε = E
{
‖εn‖2H

}
,

for all n ∈ Z.

The following lemma provides the convergence, in the seminorm of L2
H(Ω,A,P), of the series expan-

sions (5)–(6).

Lemma 1 Let X = {Xn, n ∈ Z} be a zero–mean ARH(1) process. Under Assumptions A1–A2, for

any n ∈ Z, the following limit holds

lim
M→∞

E

{∥∥∥Xn − X̂n,M

∥∥∥
2

H

}
= 0,

where X̂n,M =

M∑

j=1

√
Cjηj(n)φj. Furthermore,

lim
M→∞

∥∥∥E
{(
Xn − X̂n,M

)
⊗
(
Xn − X̂n,M

)}∥∥∥
2

S(H)
= 0.

Similar assertions hold for the biorthogonal series representation

εn =

∞∑

j=1

σj
〈εn, φj〉H

σj
φj =

∞∑

j=1

σj η̃j(n)φj .

Proof.
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Under Assumption A1, from the trace property of C, the sequence



X̂n,M =

M∑

j=1

√
Cjηj(n)φj , M ≥ 1





satisfies, for M sufficiently large, and L > 0, arbitrary,

‖X̂n,M+L − X̂n,M‖2L2
H
(Ω,A,P ) = E

{
‖X̂n,M+L − X̂n,M‖2H

}

=

M+L∑

j=M+1

M+L∑

k=M+1

√
Cj

√
CkE {ηj(n)ηk(n)} 〈φj , φk〉H

=

M+L∑

j=M+1

Cj → 0, when M → ∞, (7)

since, under Assumption A1,

∞∑

j=1

Cj <∞. Hence,





M∑

j=1

Cj , M ≥ 1



 is a Cauchy sequence. Thus,

lim
M→∞

M+L∑

j=M+1

Cj = 0,

for L > 0 arbitrary. From equation (7),



X̂n,M =

M∑

j=1

√
Cjηj(n)φj , M ≥ 1





is also a Cauchy sequence in L2
H(Ω,A, P ). Thus, the sequence

{
X̂n,M , M ≥ 1

}
has finite limit in

L2
H(Ω,A,P), for all n ∈ Z.

Furthermore,

lim
M→∞

E

{∥∥∥Xn − X̂n,M

∥∥∥
2

H

}
= E

{
‖Xn‖2H

}
+ lim

M→∞

M∑

j=1

M∑

h=1

√
Cj

√
ChE {ηj(n)ηh(n)} 〈φj , φh〉H

− 2 lim
M→∞

M∑

j=1

√
CjE {〈Xn, ηj(n)φj〉H} = σ2

X

− lim
M→∞

M∑

j=1

Cj = 0.

(8)

In the derivation of the identities in (7)–(8), we have applied that, for every j, h ≥ 1,
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C (φj) = Cjφj , σ2
X = E

{
‖Xn‖2H

}
=

∞∑

j=1

Cj < +∞, 〈φj , φh〉H = δj,h,

E {ηj(n)ηh(n)} = δj,h, E
{
〈Xn, ηj(n)φj〉H

}
=
√
Cj .

(9)

Moreover, from identities in (9),

∥∥∥E
{(
Xn − lim

M→∞
X̂n,M

)
⊗
(
Xn − lim

M→∞
X̂n,M

)}∥∥∥
2

S(H)

=

∥∥∥∥∥∥
E {Xn ⊗Xn}+ lim

M→∞

M∑

j=1

M∑

h=1

√
Cj

√
Chφj ⊗ φhE {ηj(n)ηh(n)}

−2 lim
M→∞

M∑

j=1

E
{
Xn ⊗

√
Cjηj(n)φj

}
∥∥∥∥∥∥

2

S(H)

=

∥∥∥∥∥∥
E {Xn ⊗Xn}+ lim

M→∞




M∑

j=1

Cjφj ⊗ φj − 2

M∑

j=1

Cjφj ⊗ φj



∥∥∥∥∥∥

2

S(H)

=

∥∥∥∥∥∥
E {Xn ⊗Xn} − lim

M→∞

M∑

j=1

Cjφj ⊗ φj

∥∥∥∥∥∥

2

S(H)

= 0. (10)

In a similar way, we can derive the convergence to εn, in L2
H(Ω,A,P), of the series

∞∑

j=1

σj η̃j(n)φj ,

for every n ∈ Z, since ε is assumed to be strong–white noise, and hence, its covariance operator Cε is in

the trace class. We can also obtain an analogous to equation (10).

�

In equations (5)–(6), for every n ∈ Z,

E {ηj(n)} = 0, E {ηj(n)ηh(n)} = δj,h, j, h ≥ 1, n ∈ Z, (11)

E {η̃j(n)} = 0, E {η̃j(n)η̃h(n)} = δj,h, j, h ≥ 1, n ∈ Z.

Note that, from Assumption A2 for each j ≥ 1, {Xn,j , n ∈ Z} in equation (2) defines a sta-

tionary and invertible AR(1) process. In addition, from equations (5) and (9), for every n ∈ Z,
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and j, p ≥ 1,

Xn =

∞∑

j=1

Xn,jφj ,

E {Xn,jXn,p} =

∞∑

k=0

∞∑

h=0

ρkj ρ
h
pE {εn−k,jεn−h,p} = δj,p

∞∑

k=0

ρ2kj σ
2
j = δj,p

σ2
j

1− ρ2j
,

E
{
‖Xn‖2H

}
=

∞∑

j=1

E
{
X2

n,j

}
=

∞∑

j=1

〈C (φj) , φj〉H =
∞∑

j=1

Cj = σ2
X <∞,

(12)

which implies that

Cj =
σ2
j

1− ρ2j
, j ≥ 1.

In particular, we obtain, for each j ≥ 1, and for every n ∈ Z,

E {ηj(n)ηj(n+ 1)} = E

{
Xn,j√
Cj

Xn+1,j√
Cj

}
=

E {Xn,jXn+1,j}
Cj

=

∞∑

k=0

∞∑

h=0

ρk+h
j E {εn−k,jεn+1−h,j}

Cj

=

∞∑

k=0

ρ2k+1
j σ2

j

Cj
=
σ2
j

Cj

ρj
1− ρ2j

= ρj . (13)

Remark 3 From equation (2) and Lemma 1, keeping in mind that

Cj =
σ2
j

1− ρ2j
, j ≥ 1,

the following invertible and stationary AR(1) process can be defined:

ηj(n) = ρjηj(n− 1) +
√
1− ρ2j η̃j(n), 0 < ρ2j ≤ ρj < 1, (14)

where, for each j ≥ 1, {ηj(n), n ∈ Z} and {η̃j(n), n ∈ Z} are respectively introduced in equations (5)-

(6). In the following, for each j ≥ 1, we assume that

E
{
(η̃j(n))

4
}
<∞, n ∈ Z,

to ensure ergodicity for all second–order moments, in the mean–square sense; see, e.g., [Hamilton, 1994,

pp. 192–193].
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Furthermore,

D = E {Xn ⊗Xn+1} =

∞∑

j=1

∞∑

p=1

E
{
〈Xn, φj〉H 〈Xn+1, φp〉H

}
φj ⊗ φp

=

∞∑

j=1

∞∑

p=1

√
Cj

√
Cp

E
{
〈Xn, φj〉H 〈Xn+1, φp〉H

}
√
Cj

√
Cp

φj ⊗ φp

=

∞∑

j=1

∞∑

p=1

√
Cj

√
CpE {ηj(n)ηp(n+ 1)}φj ⊗ φp.

Remark 4 In particular, Assumption A2 holds if the following orthogonality condition is satisfied, for

all n ∈ Z and j, p ≥ 1,

E {ηj(n)ηp(n+ 1)} = δj,p,

where δj,p denotes the Kronecker Delta function. In practice, unconditional bases, e.g., wavelet bases,

lead to a sparse representation for functional data; see, e.g., Nason [2008]; Ogden [1997]; Vidakovic

[1998] for statistically-oriented treatments. Wavelet bases are also designed for sparse representation of

kernels defining integral operators, in L2 spaces with respect to a suitable measure (see Mallat [2009]).

The Discrete Wavelet Transform (DWT) approximately decorrelates or whitens data (see Vidakovic

[1998]). In particular, operators C and D could admit an almost diagonal representation with respect to

the self-tensorial tensorial product of a suitable wavelet basis.

3 Estimation and prediction results

A componentwise estimator of the autocorrelation operator and of the associated ARH(1) plug–in

predictor are formulated in this section. Their convergence to the corresponding theoretical functional

values are derived in the spaces L2
S(H)(Ω,A,P) and LH(Ω,A,P), respectively. Their consistency in the

spaces S(H) and H then follows.

From equation (3), for each j ≥ 1, and for a given sample size n, one can consider the usual respective

moment–based estimators D̂n,j and Ĉn,j of Dj and Cj , in the AR(1) framework, given by

D̂n,j =
1

n− 1

n−2∑

i=0

Xi,jXi+1,j , Ĉn,j =
1

n

n−1∑

i=0

X2
i,j .
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The following truncated componentwise estimator of ρ is then formulated:

ρ̂kn
=

kn∑

j=1

ρ̂n,jφj ⊗ φj , (15)

where, for each j ≥ 1,

ρ̂n,j =
D̂n,j

Ĉn,j

=

1
n−1

n−2∑

i=0

Xi,jXi+1,j

1
n

n−1∑

i=0

X2
i,j

=
n

n− 1

n−2∑

i=0

Xi,jXi+1,j

n−1∑

i=0

X2
i,j

. (16)

Here, the truncation parameter indicates that we have considered the first kn eigenvectors associated

with the first kn eigenvalues, arranged in decreasing order of their modulus magnitude. Furthermore, kn

is such that

lim
n→∞

kn = ∞,
kn
n
< 1, n ≥ 2. (17)

The following additional condition will be assumed on kn for the derivation of the subsequent results:

Assumption A3. The truncation parameter kn in (15) is such that

lim
n→∞

Ckn

√
n = ∞.

Remark 5 Assumption A3 has also been considered in [Bosq, 2000, p. 217], to ensure weak consistency

of the proposed estimator of ρ, as well as, in [Mas, 1999, Proposition 4], in the derivation of asymptotic

normality.

From Remark 3, for each j ≥ 1, ηj = {ηj(n), n ∈ Z} in equation (14) defines a stationary and

invertible AR(1) process, ergodic in the mean–square sense; see, e.g., Bartlett [1946]. Therefore, in view

of equations (11) and (13), for each j ≥ 1, there exist two positive constants Kj,1 and Kj,2 such that the

following identities hold:

lim
n→∞

E





[
1− 1

n

n−1∑

i=0

η2j (i)

]2


1
n

= Kj,1, (18)

lim
n→∞

E





[
ρj − 1

n−1

n−2∑

i=0

ηj(i)ηj(i+ 1)

]2


1
n

= Kj,2. (19)

12



Equations (18)-(19) imply, for n sufficiently large,

Var

{
1

n

n−1∑

i=0

η2j (i)

}
≤ K̃j,1

n
, (20)

Var

{
1

n− 1

n−2∑

i=0

ηj(i)ηj(i + 1)

}
≤ K̃j,2

n
, (21)

for certain positive constants K̃j,1 and K̃j,2, for each j ≥ 1. Equivalently, for n sufficiently large,

E





(
1− 1

n

n−1∑

i=0

η2j (i)

)2


 ≤ K̃j,1

n
, (22)

E





(
ρj −

1

n− 1

n−1∑

i=0

ηj(i)ηj(i+ 1)

)2


 ≤ K̃j,2

n
, (23)

The following assumption is now considered.

Assumption A4. We assume that

S = sup
j≥1

(
K̃j,1 + K̃j,2

)
<∞.

Remark 6 From equation (16), applying the Cauchy–Schwarz’s inequality, we obtain, for each j ≥ 1,

|ρ̂n,j | =
n

n− 1

∣∣∣∣∣∣∣∣∣∣

n−2∑

i=0

Xi,jXi+1,j

n−1∑

i=0

X2
i,j

∣∣∣∣∣∣∣∣∣∣

≤ n

n− 1

√√√√
n−2∑

i=0

X2
i,j

n−2∑

i=0

X2
i+1,j

n−1∑

i=0

X2
i,j

≤ n

n− 1

√√√√√√√√√√

n−2∑

i=0

X2
i+1,j

n−1∑

i=0

X2
i,j

≤ n

n− 1
a.s. (24)

13



3.1 Convergence in L2
S(H) (Ω,A,P)

Next, the convergence of ρ̂kn
to ρ, in the space L2

S(H) (Ω,A,P) , is derived under the setting of

conditions formulated in the previous sections.

Proposition 1 Let X = {Xn, n ∈ Z} be a zero–mean standard ARH(1) process. Under Assumptions

A1–A4, the following limit holds:

lim
n→∞

‖ρ− ρ̂kn
‖2L2

S(H)
(Ω,A,P) = 0. (25)

Specifically,

‖ρ− ρ̂kn
‖2L2

S(H)
(Ω,A,P) ≤ g(n), with g(n) = O

(
1

C2
kn
n

)
, n→ ∞. (26)

Remark 7 [Bosq, 2000, Corollary 4.3] can be applied to obtain weak convergence results, in terms of

weak expectation, using the empirical eigenvectors . See definition of weak expectation at the beginning

of [Bosq, 2000, Section 1.3, p. 27]).

Proof. For each j ≥ 1, the following almost surely inequality is satisfied:

|ρj − ρ̂n,j | =

∣∣∣∣∣
Dj

Cj
− D̂n,j

Ĉn,j

∣∣∣∣∣ =
∣∣∣∣∣
DjĈn,j − D̂n,jCj

CjĈn,j

∣∣∣∣∣

=

∣∣∣∣∣
DjĈn,j − D̂n,jCj + Ĉn,jD̂n,j − Ĉn,jD̂n,j

CjĈn,j

∣∣∣∣∣

=

∣∣∣∣∣
Dj − D̂n,j

Cj
+
Ĉn,j − Cj

Cj

D̂n,j

Ĉn,j

∣∣∣∣∣ ≤
1

Cj

(
|ρ̂n,j |

∣∣∣Cj − Ĉn,j

∣∣∣+
∣∣∣Dj − D̂n,j

∣∣∣
)
.

Thus, under Assumptions A1–A2, from equation (24), for each j ≥ 1,

(ρj − ρ̂n,j)
2 ≤ 1

C2
j

(
|ρ̂n,j |

∣∣∣Cj − Ĉn,j

∣∣∣+
∣∣∣Dj − D̂n,j

∣∣∣
)2

≤ 2

C2
j

(
(ρ̂n,j)

2
(
Cj − Ĉn,j

)2
+
(
Dj − D̂n,j

)2)

≤ 2

C2
j

((
n

n− 1

)2 (
Cj − Ĉn,j

)2
+
(
Dj − D̂n,j

)2
)
a.s.,

14



which implies, for each j ≥ 1,

E
{
(ρj − ρ̂n,j)

2
}
≤ 2

C2
j

((
n

n− 1

)2

E

{(
Cj − Ĉn,j

)2}
+ E

{(
Dj − D̂n,j

)2}
)
. (27)

Under Assumption A2, from equations (15) and (27),

‖ρ− ρ̂kn
‖2L2

S(H)
(Ω,A,P) = E

{
‖ρ− ρ̂kn

‖2S(H)

}
=

kn∑

j=1

E
{
(ρj − ρ̂n,j)

2
}
+

∞∑

j=kn+1

E
{
ρ2j
}

≤
kn∑

j=1

2

C2
j

((
n

n− 1

)2

E

{(
Cj − Ĉn,j

)2}

+E

{(
Dj − D̂n,j

)2})
+

∞∑

j=kn+1

ρ2j

≤ 2

C2
kn

kn∑

j=1

(
n

n− 1

)2 (
E

{(
Cj − Ĉn,j

)2}

+E

{(
Dj − D̂n,j

)2})
+

∞∑

j=kn+1

ρ2j

≤
2
(

n
n−1

)2

C2
kn

kn∑

j=1

(
E

{(
Cj − Ĉn,j

)2}
+ E

{(
Dj − D̂n,j

)2})

+

∞∑

j=kn+1

ρ2j . (28)

Furthermore, from (5) and (16), for each j ≥ 1,

Ĉn,j =
1

n

n−1∑

i=0

X2
i,j =

1

n

n−1∑

i=0

Cjη
2
j (i), (29)

D̂n,j =
1

n− 1

n−2∑

i=0

Xi,jXi+1,j =
1

n− 1

n−2∑

i=0

Cjηj(i)ηj(i+ 1), (30)

where, considering equation (4),

Dj = E {Xn,jXn+1,j} = CjE {ηj(n)ηj(n+ 1)} = Cjρj, (31)

15



for each j ≥ 1. Equations (28)–(31) then lead to

‖ρ− ρ̂kn
‖2L2

S(H)
(Ω,A,P) ≤

2
(

n
n−1

)2

C2
kn

kn∑

j=1

C2
j


E





(
1− 1

n

n−1∑

i=0

η2j (i)

)2




+E





(
ρj −

1

n− 1

n−2∑

i=0

ηj(i+ 1)ηj(i)

)2







+

∞∑

j=kn+1

ρ2j .

For each j ≥ 1, and for n sufficiently large, considering equations (22)–(23), under Assumption A4,

E
{
‖ρ− ρ̂kn

‖2S(H)

}
≤

2
(

n
n−1

)2

C2
kn

kn∑

j=1

C2
j

(
K̃j,1 + K̃j,2

n

)
+

∞∑

j=kn+1

ρ2j

≤
2S
(

n
n−1

)2

C2
kn
n

kn∑

j=1

C2
j +

∞∑

j=kn+1

ρ2j .

(32)

From the trace property of operator C,

lim
n→∞

kn∑

j=1

C2
j =

∞∑

j=1

C2
j <∞, (33)

and from the Hilbert–Schmidt property of ρ,

lim
n→∞

∞∑

j=kn+1

ρ2j = 0. (34)

Thus, in view of equations (32)–(34),

‖ρ− ρ̂kn
‖2L2

S(H)
(Ω,A,P) = E

{
‖ρ− ρ̂kn

‖2S(H)

}
≤ g(n) = O

(
1

C2
kn
n

)
, n→ ∞,

(35)

where

g(n) =
2S
(

n
n−1

)2

C2
kn
n

kn∑

j=1

C2
j +

∞∑

j=kn+1

ρ2j . (36)

Under Assumption A3, equations (35)–(36) imply

lim
n→∞

‖ρ− ρ̂kn
‖2L2

S(H)
(Ω,A,P) = 0,

16



as we wanted to prove.

�

Note that consistency of ρ̂kn
in the space S (H) directly follows from equation (25) in Proposition 1.

Corollary 1 Let X = {Xn, n ∈ Z} be a zero–mean standard ARH(1) process. Under Assumptions

A1–A4, as long as n→ ∞,

‖ρ− ρ̂kn
‖S(H) →p 0,

where, as usual, →p denotes the convergence in probability.

3.2 Consistency of the ARH(1) plug–in predictor.

Let us consider L (H) the space of bounded linear operators on H, with the norm

‖A‖L(H) = sup
x∈H

‖A (x)‖H
‖x‖H

,

for every A ∈ L (H) . In particular, for each x ∈ H,

‖A (x)‖H ≤ ‖A‖L(H) ‖x‖H . (37)

In the following, we denote by

X̂n = ρ̂kn
(Xn−1) (38)

as usual, the ARH(1) plug–in predictor of Xn, as an estimator of the conditional expectation

E {Xn|Xn−1} = ρ (Xn−1). The following proposition provides the consistency of X̂n = ρ̂kn
(Xn−1)

in H .

Proposition 2 Let X = {Xn, n ∈ Z} be a zero–mean standard ARH(1) process. Under Assumptions

A1–A4,

lim
n→∞

E {‖(ρ− ρ̂kn
) (Xn−1)‖H} = 0.

Specifically,

E {‖(ρ− ρ̂kn
) (Xn−1)‖H} ≤ h (n) , h (n) = O

(
1

Ckn

√
n

)
, n→ ∞.

In particular,

‖(ρ− ρ̂kn
) (Xn−1)‖H →p 0,

where, as usual, →p denotes the convergence in probability.

17



Proof.

From (37) and Proposition 1, for n sufficiently large, the following almost surely inequality holds:

∥∥∥ρ (Xn−1)− X̂n

∥∥∥
H

≤ ‖ρ− ρ̂kn
‖L(H) ‖Xn−1‖H ,

where, as given in equation (38), X̂n = ρ̂kn
(Xn−1) . Thus,

E
{∥∥∥ρ (Xn−1)− X̂n

∥∥∥
H

}
≤ E

{
‖ρ− ρ̂kn

‖L(H) ‖Xn−1‖H
}
. (39)

From the Cauchy-Schwarz’s inequality, keeping in mind that, for a Hilbert–Schmidt operator K, it

always holds that ‖K‖L(H) ≤ ‖K‖S(H), we have from equation (39),

E
{∥∥∥Xn − X̂n

∥∥∥
H

}
≤

√
E
{
‖ρ− ρ̂kn

‖2L(H)

}√
E
{
‖Xn−1‖2H

}

≤
√
E
{
‖ρ− ρ̂kn

‖2S(H)

}√
E
{
‖Xn−1‖2H

}

=

√
E
{
‖ρ− ρ̂kn

‖2S(H)

}
σX , (40)

where, as before, σ2
X = E

{
‖Xn−1‖2H

}
=

∞∑

j=1

Cj <∞, n ∈ Z (see equation (9)).

Since from Proposition 1 (see equation (26)),

‖ρ− ρ̂kn
‖2L2

S(H)
(Ω,A,P) ≤ g(n), with g(n) = O

(
1

C2
kn
n

)
, n→ ∞,

from equation (40), we obtain,

E {‖(ρ− ρ̂kn
) (Xn−1)‖H} ≤ h (n) ,

where h (n) = σX
√
g (n), with g (n) being given in (36). In particular, under Assumption A3,

lim
n→∞

E {‖(ρ− ρ̂kn
) (Xn−1)‖H} = 0,

which implies that

‖(ρ− ρ̂kn
) (Xn−1)‖H =

∥∥∥ρ (Xn−1)− X̂n

∥∥∥
H

→p 0, n→ ∞.

�
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4 The Gaussian case

In this section, we prove that, in the Gaussian ARH(1) context, Assumptions A1–A2 and A4 also

hold. From equation (11), for n ≥ 1,

E





n−1∑

i=0

η2j (i)

n





= 1.

Furthermore, for each j ≥ 1 and n ≥ 2, the n× 1 random vector ηT
j = (ηj(0), . . . , ηj(n− 1)) follows

a Multivariate Normal distribution with null mean vector, and covariance matrix

Σ =




1 ρj 0 . . . . . . 0

ρj 1 ρj 0 . . . 0

0 ρj 1 ρj . . . 0

...
...

...
...

...
...

0 0 0 0 ρj 1




n×n

. (41)

It is well–known (see, for example, Gurland [1956]) that the variance of a quadratic form defined

from a multivariate Gaussian vector y ∼ N(µ,Λ), and a symmetric matrix Q is given by:

Var
{
yTQy

}
= 2Tr (QΛQΛ) + 4µTQΛQµ. (42)

For each j ≥ 1, applying equation (42), with y = ηj , Λ = Σ in (41), and Q = Idn, the n×n identity

matrix, keeping in mind E {ηj(i)ηj(i + 1)} = ρj , for every i ∈ Z,

Var
{
ηT
j Idnηj

}
= Var

{
n−1∑

i=0

η2j (i)

}
= 2Tr (ΣΣ) = 2

(
n+ 2(n− 1)ρ2j

)
.

(43)

Furthermore, from equation (43), for each j ≥ 1,

Var





n−1∑

i=0

η2j (i)

n





=
2

n2

(
n+ 2(n− 1)ρ2j

)
=

2

n
+ 4

(
1

n
− 1

n2

)
ρ2j . (44)

We then obtain, from equation (44),
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lim
n→∞

Var





n−1∑

i=0

η2j (i)

n





= lim
n→∞

E







1−

n−1∑

i=0

η2j (i)

n




2


= lim
n→∞

2

n
+ 4

(
1

n
− 1

n2

)
ρ2j = 0. (45)

Equation (45) leads to

lim
n→∞

Var





n−1∑

i=0

η2j (i)

n





1
n

= 2 + 4ρ2j .

Hence, for each j ≥ 1, Kj,1 in equation (18) is given by

Kj,1 = 2 + 4ρ2j ,

and, from equation (44),

Var





n−1∑

i=0

η2j (i)

n





≤ 2 + 4

(
1

n
− 1

n2

)
ρ2j ≤ 2 + 4ρ2j ≤ 6.

Thus, for every j ≥ 1, K̃j,1 in equation (20) satisfies

K̃j,1 ≤ 6.

Remark 8 Note that, from Lemma 1, for each j ≥ 1 and i ∈ Z,

E
{
η̃4j (i)

}
= 3.

Thus, the assumption considered in Remark 3 holds, and for each j ≥ 1, the AR(1) process

ηj = {ηj(n), n ∈ Z} is ergodic for all second–order moments, in the mean–square sense; see [Hamilton,

1994, pp. 192–193].

For n ≥ 2, and for each j ≥ 1, we are now going to compute Kj,2 in (19). The (n − 1)× 1 random
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vectors

η⋆
j = (ηj(0), . . . , ηj(n− 2))

T
, η⋆⋆

j = (ηj(1), . . . , ηj(n− 1))
T

are multivariate Normal distributed, with null mean vector, and covariance matrix

Σ̃ =




1 ρj 0 . . . . . . 0

ρj 1 ρj 0 . . . 0

0 ρj 1 ρj . . . 0

...
...

...
...

...
...

0 . . . 0 0 ρj 1




(n−1)×(n−1)

. (46)

From equation (13), for each j ≥ 1,

E

{
n−2∑

i=0

ηj(i)ηj(i+ 1)

}
=

n−2∑

i=0

ρj = (n− 1)ρj = Tr
(
E
{
η⋆
j [η

⋆⋆
j ]T

})
, (47)

where

E
{
η⋆
j [η

⋆⋆
j ]T

}
= E

{
η⋆
j ⊗ η⋆⋆

j

}
= ρjIdn−1, (48)

with, as before, Idn−1 denoting the (n− 1)× (n− 1) identity matrix.

However, the variance of
n−2∑

i=0

ηj(i)ηj(i+ 1)

depends greatly on the distribution of η⋆
j and η⋆⋆

j . In the Gaussian case, keeping in mind that

η⋆
j = (ηj(0), . . . , ηj(n− 2))T , η⋆⋆

j = (ηj(1), . . . , ηj(n− 1))T

are zero–mean multivariate Normal distributed vectors with covariance matrix Σ̃ given in (46), and

having cross–covariance matrix in (48), we can compute the variance of
n−2∑

i=0

ηj(i)ηj(i + 1), from (47)–

(48), as follows. First,

Var
{
[η⋆

j ]
T Idn−1η

⋆⋆
j

}
= E

{
[η⋆

j ]
T Idn−1η

⋆⋆
j [η⋆

j ]
T Idn−1η

⋆⋆
j

}

−
(
E
{
[η⋆

j ]
T Idn−1η

⋆⋆
j

}
]
)2
.

This can be rewritten as

n−2∑

i=0

n−2∑

p=0

E {ηj(i)ηj(i+ 1)ηj(p)ηj(p+ 1)} −
(
E
{
[η⋆

j ]
T Idn−1η

⋆⋆
j

})2
,
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which is equal to

n−2∑

i=0

E {ηj(i)ηj(i+ 1)}
n−2∑

p=0

E {ηj(p)ηj(p+ 1)} +

n−2∑

i=0

n−2∑

p=0

E {ηj(i)ηj(p)}E {ηj(i + 1)ηj(p+ 1)}

+
n−2∑

i=0

n−2∑

p=0

E {ηj(i)ηj(p+ 1)}E {ηj(i+ 1)ηj(p)}

−
(
E
{
[η⋆

j ]
T Idn−1η

⋆⋆
j

})2
.

This then reduces to

[
Tr
(
E
{
η⋆
j ⊗ η⋆⋆

j

})]2
+ Tr

(
Σ̃Σ̃

)

+ Tr
(
E
{
η⋆
j ⊗ η⋆⋆

j

} [
E
{
η⋆
j ⊗ η⋆⋆

j

}]T)−
[
Tr
(
E
{
η⋆
j ⊗ η⋆⋆

j

})]2
,

(49)

which is the same as

Tr
(
Σ̃Σ̃

)
+ Tr

(
E
{
η⋆
j ⊗ η⋆⋆

j

} [
E
{
η⋆
j ⊗ η⋆⋆

j

}]T)

= (n− 1) + 2(n− 2)ρ2j + (n− 1)ρ2j ,

where, from (48),

E
{
η⋆
j ⊗ η⋆⋆

j

} [
E
{
η⋆
j ⊗ η⋆⋆

j

}]T
=




ρ2j 0 . . . . . . 0

0 ρ2j 0 . . . 0

...
. . .

. . .
...

...

0 . . .
. . .

. . . ρ2j




= ρ2jIdn−1.

From (49),

Var





n−2∑

i=0

ηj(i)ηj(i+ 1)

n− 1





=
(n− 1) + 2(n− 2)ρ2j + (n− 1)ρ2j

(n− 1)2
. (50)

Therefore, for each j ≥ 1,

lim
n→∞

nVar





n−2∑

i=0

ηj(i)ηj(i + 1)

n− 1





= 1 + 3ρ2j .
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Thus, for each j ≥ 1, Kj,2 in (19) is given by Kj,2 = 1 + 3ρ2j . From equation (50),

Var





n−2∑

i=0

ηj(i)ηj(i+ 1)

n− 1





≤ 1 + 3ρ2j ≤ 4.

Hence, for every j ≥ 1, K̃j,2 in equation (21) satisfies

K̃j,2 ≤ 4.

Therefore, the constant S in Assumption A4 is such that S ≤ 6 + 4 = 10.

5 Simulation study

A simulation study is undertaken to illustrate the behaviour of the formulated componentwise es-

timator of the autocorrelation operator, and of its associated ARH(1) plug–in predictor for large sample

sizes. The results are reported in Appendix 5.1. In Appendix 5.2, a comparative study is developed, from

the implementation of the ARH(1) plug–in prediction techniques proposed in Antoniadis and Sapatinas

[2003]; Besse et al. [2000]; Bosq [2000]; Guillas [2001]. In the subsequent sections, we restrict our atten-

tion to the Gaussian case

5.1 Behaviour of ρ̂ and X̂n for large sample sizes

Let (−∆)(a,b) be the Dirichlet negative Laplacian operator on (a, b) given by

(−∆)(a,b) (f) (x) = − d2

dx2
f (x) , x ∈ (a, b) ⊂ R,

f (a) = f(b) = 0.

The eigenvectors {φj , j ≥ 1} and eigenvalues
{
λj
(
(−∆)(a,b)

)
, j ≥ 1

}
of (−∆)(a,b) satisfy, for each

j ≥ 1 and for each x ∈ (a, b),

(−∆)(a,b)φj (x) = λj
(
(−∆)(a,b)

)
φj (x) , φj (a) = φj (b) = 0. (51)

For each j ≥ 1 and x ∈ [a, b], the solution to equation (51) is given by (see [Grebenkov and Nguyen,
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2013, p. 6]):

φj (x) =

√
2

b− a
sin

(
πjx

b− a

)
, ∀x ∈ [a, b] , λj

(
(−∆)(a,b)

)
=

π2j2

(b− a)2
. (52)

We consider here the operator C defined as

C =
(
(−∆)(a,b)

)−2(1−γ1)
, γ1 ∈ (0, 1/2) .

From [Dautray and Lions, 1990, pp. 119–140], the eigenvectors of C coincide with the eigenvectors

of (−∆)(a,b), and its eigenvalues {Cj , j ≥ 1} are given by:

Cj =
[
λj
(
(−∆)(a,b)

)]−2(1−γ1)
=

[
π2j2

(b− a)2

]−2(1−γ1)

. (53)

Additionally, considering

ρ =

[
(−∆)(a,b)

λ1
(
(−∆)(a,b)

)
− ǫ

]−(1−γ2)

, γ2 ∈ (0, 1/2) ,

for certain positive constant ǫ < λ1
(
(−∆)(a,b)

)
close to zero, ρ is a positive self–adjoint Hilbert–

Schmidt operator, whose eigenvectors coincide with the eigenvectors of (−∆)(a,b) , and whose eigenvalues

{ρj , j ≥ 1} are such that ρj < 1, for every j ≥ 1, and

ρ2j =

[
λj
(
(−∆)(a,b)

)

λ1
(
(−∆)(a,b)

)
− ǫ

]−2(1−γ2)

, ρ2j ∈ (0, 1) , γ2 ∈ (0, 1/2) , (54)

where, as before,
{
λj
(
(−∆)(a,b)

)
, j ≥ 1

}
are given in equation (52).

From (12), the eigenvalues
{
σ2
j , j ≥ 1

}
of Cε are then defined, for each j ≥ 1, as

σ2
j = Cj

(
1− ρ2j

)
= [λj

(
(−∆)(a,b)

)
]−2(1−γ1) −

[
λj
(
(−∆)(a,b)

)]−2(2−γ1−γ2)

[
λ1
(
(−∆)(a,b)

)
− ǫ
]−2(1−γ2)

.

Note that Cε is in the trace class, since the trace property of C, and the fact that ρ2j < 1, for every

j ≥ 1, implies
∞∑

j=1

σ2
j =

∞∑

j=1

Cj

(
1− ρ2j

)
<

∞∑

j=1

Cj <∞.

For this particular example of operator C, we have considered truncation parameter kn of the form

kn = n1/α, (55)
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for a suitable α > 0, which, in particular, allows verification of (17). From equation (53), one has, for

γ1 ∈ (0, 1/2),

√
nCkn

=
√
n
[
λkn

(
−∆(a,b)

)]−2(1−δ1)
=

√
n

(
πkn
b− a

)−4(1−δ1)

, δ1 > 1.

From equation (55), Assumption A3 is then satisfied if

1/2− 4 (1− γ1)

α
> 0, i.e., if α > 8 (1− γ1) > 4. (56)

since γ1 ∈ (0, 1/2). Fix γ1 = 0.4 and γ2 = 9/20. Then, from equation (56), α > 48/10. In particular,

the values α1 = 5 and α2 = 6 have been tested, in Table 1 below, for H = L2((a, b)), and (a, b) = (0, 4),

where L2((a, b)) denotes the space of square integrable functions on (a, b).

The computed empirical truncated functional mean square error EMSEρ̂kn
of the estimator ρ̂kn

of ρ,

for a sample size n, is given by:

EMSEρ̂kn
=

1

N

N∑

w=1

kn∑

j=1

(
ρj − ρ̂wn,j

)2
, (57)

ρ̂wn,j =
D̂w

n,j

Ĉw
n,j

=

1
n−1

n−2∑

i=0

Xw
i,jX

w
i+1,j

1
n

n−1∑

i=0

(
Xw

i,j

)2
, (58)

where N denotes the number of simulations, and for each j = 1, . . . , kn, ρ̂
w
n,j represents the estim-

ator of ρj , based on the w–th generation of the values Xw
0,j, . . . , X

w
n−1,j, with Xw

i,j = 〈Xw
i , φj〉H , for

w = 1, . . . , 700, and i = 0, . . . , n− 1.

For the plug–in predictor X̂n = ρ̂kn
(Xn−1) , we compute the empirical version UB(EMAE)X̂kn

n
of

the derived upper bound (40), which, for each n ∈ Z, is given by

UB(EMAE)X̂kn
n

=

√√√√ 1

N

N∑

w=1

kn∑

j=1

(
ρj − ρ̂wn,j

)2 ̂
E
{∥∥Xw

n−1

∥∥2
H

}
. (59)

From N = 700 realizations, for each one of the elements of the sequence of sample sizes

{nt, t = 1, . . . , 20} = {15000 + 20000(t− 1), t = 1, . . . , 20} ,

the EMSEρ̂kn
and UB(EMAE)X̂kn

n
values, for α = 5 and α = 6, are displayed in Table 1, where the

abbreviated notations MSEρ̂kn,1
, for EMSEρ̂kn

, and UBX̂
n
kn,1

, for UB(EMAE)X̂kn
n
, are used (see also

Figures 1–2).
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Table 1: EMSEρ̂kn
(here, MSEρ̂kn,i

), and UB(EMAE)
X̂

kn
n

(here, UBX̂
n
kn,i

) values, in (57)–(59),

based on N = 700 simulations, for γ1 = 0.4 and γ2 = 9/20, considering the sample sizes

{nt = 15000 + 20000(t − 1), t = 1, . . . , 20} and the corresponding kn,1 and kn,2 values, for α1 = 5 and α2 = 6.

n kn,1 MSEρ̂kn,1
UBX̂

n
kn,1

kn,2 MSEρ̂kn,2
UBX̂

n
kn,2

n1 = 15000 6 3.74 (10)−4 2.87 (10)−2 4 2.45 (10)−4 2.25 (10)−2

n2 = 35000 8 2.15 (10)−4 2.21 (10)−2 5 1.35 (10)−4 1.71 (10)−2

n3 = 55000 8 1.34 (10)−4 1.75 (10)−2 6 1.03 (10)−4 1.51 (10)−2

n4 = 75000 9 1.09 (10)−4 1.57 (10)−2 6 7.55 (10)−5 1.29 (10)−2

n5 = 95000 9 9.48 (10)−5 1.47 (10)−2 6 5.86 (10)−5 1.14 (10)−2

n6 = 115000 10 8.31 (10)−5 1.39 (10)−2 6 5.16 (10)−5 1.07 (10)−2

n7 = 135000 10 6.81 (10)−5 1.25 (10)−2 7 4.86 (10)−5 1.04 (10)−2

n8 = 155000 10 6.37 (10)−5 1.21 (10)−2 7 3.88 (10)−5 9.66 (10)−3

n9 = 175000 11 6.14 (10)−5 1.19 (10)−2 7 3.87 (10)−5 9.65 (10)−3

n10 = 195000 11 5.34 (10)−5 1.11 (10)−2 7 3.42 (10)−5 8.79 (10)−3

n11 = 215000 11 4.67 (10)−5 1.03 (10)−2 7 3.40 (10)−5 8.74 (10)−3

n12 = 235000 11 4.66 (10)−5 1.03 (10)−2 7 2.92 (10)−5 8.12 (10)−3

n13 = 255000 12 4.53 (10)−5 1.02 (10)−2 7 2.77 (10)−5 7.95 (10)−3

n14 = 275000 12 4.24 (10)−5 9.95 (10)−3 8 2.77 (10)−5 7.94 (10)−3

n15 = 295000 12 3.72 (10)−5 9.32 (10)−3 8 2.67 (10)−5 7.76 (10)−3

n16 = 315000 12 3.62 (10)−5 9.21 (10)−3 8 2.55 (10)−5 7.64 (10)−3

n17 = 335000 12 3.39 (10)−5 8.91 (10)−3 8 2.28 (10)−5 7.04 (10)−3

n18 = 355000 12 3.34 (10)−5 8.86 (10)−3 8 2.20 (10)−5 7.04 (10)−3

n19 = 375000 13 3.34 (10)−5 8.86 (10)−3 8 2.04 (10)−5 6.84 (10)−3

n20 = 395000 13 3.12 (10)−5 8.56 (10)−3 8 1.92 (10)−5 6.65 (10)−3
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Figure 1: EMSEρ̂kn
values (blue line), in (57)–(58), based on N = 700 simulations, for γ1 = 0.4 and

γ2 = 9/20, considering the sample sizes {nt = 15000 + 20000(t − 1), t = 1, . . . , 20} and the corresponding kn,1

and kn,2 values, for α1 = 5 (left-hand side) and α2 = 6 (right-hand side), against curves (1/nt)
3/4 (black dot

line) and 1/nt (red dot line).
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Figure 2: UB(EMAE)
X̂

kn
n

values (blue line), in (59), based on N = 700 simulations, for γ1 = 0.4 and

γ2 = 9/20, considering the sample sizes {nt = 15000 + 20000(t − 1), t = 1, . . . , 20} and the corresponding kn,1

and kn,2 values, for α1 = 5 (left-hand side) and α2 = 6 (right-hand side), against curves (1/nt)
1/2 (red dot line)

and (1/nt)
1/3 (black dot line).

In this paper, a one–parameter model of kn is selected depending on parameter α. In [Guillas, 2001,

Example 2], in the same spirit, for an equivalent spectral class of operators C, a three–parameter model
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is established for kn to ensure convergence in quadratic mean in the space L(H) of the componentwise

estimator of ρ constructed from the known eigenvectors of C. The numerical results displayed in Table

1 and Figures 1–2 illustrate the fact that the proposed componentwise estimator ρ̂kn
presents a speed

of convergence to ρ, in quadratic mean in S(H), faster than n−1/3, which corresponds to the optimal

case for the componentwise estimator of ρ proposed in Guillas [2001], in the case of known eigenvectors

of C; see, in particular, [Guillas, 2001, Theorem 1, Remark 2 and Example 2]. For larger values of the

parameters γ1 than 2.4, and α than 6, a faster velocity of convergence of ρ̂kn
to ρ, in quadratic mean

in the space S(H), will be obtained. However, larger sample sizes are required for larger values of α, in

order to estimate a given number of coefficients of ρ. A more detailed discussion about comparison of

the rates of convergence of the ARH(1) plug–in predictors proposed in Antoniadis and Sapatinas [2003];

Besse et al. [2000]; Bosq [2000]; Guillas [2001] can be found in the next section.

5.2 A comparative study

In this section, the performance of our approach is compared with those ones given in Antoniadis and Sapatinas

[2003]; Besse et al. [2000]; Bosq [2000]; Guillas [2001], including the case of unknown eigenvectors of C. In

the last case, our approach and the approaches presented in Bosq [2000]; Guillas [2001] are implemented

in terms of the empirical eigenvectors.

5.2.1 Theoretical–eigenvector–based componentwise estimators

Let us first compare the performance of our ARH(1) plug–in predictor, defined in (38), and the

ones formulated in Bosq [2000]; Guillas [2001], in terms of the theoretical eigenvectors {φj , j ≥ 1} of

C. Note that, in this first part of our comparative study, we consider the previous generated Gaussian

ARH(1) process, with autocovariance and autocorrelation operators defined from equations (53) and

(54), for different rates of convergence to zero of parameters Cj and ρ2j , j ≥ 1, with both sequences

being summable sequences. Since we restrict our attention to the Gaussian case, conditions A1, B1 and

C1, formulated in [Bosq, 2000, pp. 211–212] are satisfied by the generated ARH(1) process. Similarly,

Conditions H1–H3 in [Guillas, 2001, p. 283] are satisfied as well.

In [Bosq, 2000, Section 8.2] the following estimator of ρ is proposed

ρ̂n(x) =
(
ΠknDnĈ

−1
n Πkn

)
(x) =

kn∑

l=1

ρ̂n,l(x)φl, x ∈ H, (60)

ρ̂n,l(x) =
1

n− 1

n−2∑

i=0

kn∑

j=1

1

Ĉn,j

〈φj , x〉HXi,jXi+1,l, (61)
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in the finite dimensional subspace

Hkn
= span (φ1, . . . , φkn

)

of H, where Πkn is the orthogonal projector over Hkn
, and, as before, Xi,j = 〈Xi, φj〉H , for j ≥ 1.

A modified estimator of ρ is studied in [Guillas, 2001, Section 2], given by

ρ̂n,a(x) =
(
ΠknDnĈ

−1
n,aΠ

kn

)
(x) =

kn∑

l=1

ρ̂n,a,l(x)φl, x ∈ H, (62)

ρ̂n,a,l(x) =
1

n− 1

n−1∑

i=1

kn∑

j=1

1

max
(
Ĉn,j , an

) 〈φj , x〉HXi,jXi+1,l, (63)

where

Ĉ−1
n,a(x) =

kn∑

j=1

1

max
(
Ĉn,j , an

) 〈φj , x〉Hφj a.s.

Here, {an, n ∈ N} is such that (see [Guillas, 2001, Theorem 1])

α
Cγ

kn

nε
≤ an ≤ βλkn

, α > 0, 0 < β < 1, ε < 1/2, γ ≥ 1.

Tables 2–3 display the truncated, for two different kn rules, empirical values of

E {‖ρ (Xn−1)− ρ̂kn
(Xn−1)‖H} , based on N = 700 generations of each one of the functional samples

considered with sizes nt = 15000 + 20000(t− 1), t = 1, . . . , 20, when

Cj = bCj
−δ1 , bC > 0, ρ2j = bρj

−δ2 , bρ > 0.

Specifically, ρ̂kn
is computed from equations (15)–(16) (see third column), ρ̂kn

= ρ̂n, with ρ̂n being given

in equations (60)–(61) (see fourth column), and ρ̂kn
= ρ̂n,a, with ρ̂n,a being defined in (62)–(63) (see

fifth column).

In Table 2, δ1 = 2.4 δ2 = 1.1, and kn = ⌈n1/α⌉, for α = 6, according to our Assumption A3, which

is also considered in [Bosq, 2000, p. 217] to ensure weak consistency of the proposed estimator of ρ. In

Table 3, the same empirical values are displayed for δ1 = 61
60 , δ2 = 1.1, and kn is selected according to

[Guillas, 2001, Example 2]. Thus, in Table 3,

kn = ⌈n
1−2ǫ

δ1(4+2γ) ⌉, γ ≥ 1, ǫ < 1/2. (64)

In particular we have chosen γ = 2, and ǫ = 0.04δ1. Note that, from [Guillas, 2001, Theorem 1 and

Remark 1], for the choice made of kn in Table 3, convergence to ρ, in quadratic mean in the space L(H),

holds for ρ̂n,a given in (62)–(63).
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Table 2: Truncated empirical values of E‖ρ (Xn−1)− ρ̂kn(Xn−1)‖H , for ρ̂kn given in equations (15)-(16) (third
column), in equations (60)–(61) (fourth column), and in equations (62)–(63) (fifth column), based on N = 700
simulations, for δ1 = 2.4 and δ2 = 1.1, considering the sample sizes {nt = 15000 + 20000(t − 1), t = 1, . . . , 20}
and the corresponding kn = ⌈n1/α⌉ values, for α = 6.

n kn Our Approach Bosq (2000) Guillas (2001)

n1 = 15000 4 2.25 (10)−2 2.57 (10)−2 2.36 (10)−2

n2 = 35000 5 1.71 (10)−2 1.72 (10)−2 1.84 (10)−2

n3 = 55000 6 1.51 (10)−2 1.65 (10)−2 1.53 (10)−2

n4 = 75000 6 1.29 (10)−2 1.46 (10)−2 1.37 (10)−2

n5 = 95000 6 1.14 (10)−2 1.20 (10)−2 1.16 (10)−2

n6 = 115000 6 1.07 (10)−2 1.10 (10)−2 1.11 (10)−2

n7 = 135000 7 1.04 (10)−2 1.06 (10)−2 1.07 (10)−2

n8 = 155000 7 9.66 (10)−3 9.91 (10)−3 1.01 (10)−2

n9 = 175000 7 9.65 (10)−3 9.79 (10)−3 9.68 (10)−3

n10 = 195000 7 8.79 (10)−3 9.12 (10)−3 8.93 (10)−3

n11 = 215000 7 8.74 (10)−3 8.79 (10)−3 8.83 (10)−3

n12 = 235000 7 8.12 (10)−3 8.69 (10)−3 8.75 (10)−3

n13 = 255000 7 7.95 (10)−3 8.53 (10)−3 8.73 (10)−3

n14 = 275000 8 7.94 (10)−3 8.52 (10)−3 8.58 (10)−3

n15 = 295000 8 7.76 (10)−3 8.49 (10)−3 8.36 (10)−3

n16 = 315000 8 7.64 (10)−3 7.88 (10)−3 8.13 (10)−3

n17 = 335000 8 7.04 (10)−3 7.24 (10)−3 7.59 (10)−3

n18 = 355000 8 7.04 (10)−3 7.23 (10)−3 6.92 (10)−3

n19 = 375000 8 6.84 (10)−3 6.89 (10)−3 6.90 (10)−3

n20 = 395000 8 6.65 (10)−3 6.67 (10)−3 6.85 (10)−3
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Table 3: Truncated empirical values of E‖ρ (Xn−1)− ρ̂kn(Xn−1)‖H , for ρ̂kn given in equations (15)–(16) (third
column), in equations (60)–(61) (fourth column), and in equations (62)–(63) (fifth column), based on N = 700
simulations, for δ1 = 61

60
and δ2 = 1.1, considering the sample sizes {nt = 15000 + 20000(t − 1), t = 1, . . . , 20}

and the corresponding kn given in (64).

n kn Our Approach Bosq (2000) Guillas (2001)

n1 = 15000 2 9.91 (10)−3 1.39 (10)−2 1.26 (10)−2

n2 = 35000 3 8.78 (10)−3 1.34 (10)−2 1.24 (10)−2

n3 = 55000 3 7.89 (10)−3 1.15 (10)−2 1.14 (10)−2

n4 = 75000 3 6.49 (10)−3 1.01 (10)−2 8.58 (10)−3

n5 = 95000 3 6.36 (10)−3 9.09 (10)−3 8.29 (10)−3

n6 = 115000 3 6.14 (10)−3 7.65 (10)−3 7.26 (10)−3

n7 = 135000 3 5.91 (10)−3 7.03 (10)−3 6.69 (10)−3

n8 = 155000 3 5.73 (10)−3 6.77 (10)−3 6.54 (10)−3

n9 = 175000 3 5.44 (10)−3 6.74 (10)−3 6.16 (10)−3

n10 = 195000 3 5.10 (10)−3 6.69 (10)−3 5.97 (10)−3

n11 = 215000 4 5.01 (10)−3 6.48 (10)−3 5.94 (10)−3

n12 = 235000 4 4.85 (10)−3 6.45 (10)−3 5.83 (10)−3

n13 = 255000 4 4.17 (10)−3 6.17 (10)−3 5.68 (10)−3

n14 = 275000 4 4.64 (10)−3 5.99 (10)−3 5.60 (10)−3

n15 = 295000 4 4.55 (10)−3 5.94 (10)−3 5.58 (10)−3

n16 = 315000 4 4.48 (10)−3 5.69 (10)−3 5.50 (10)−3

n17 = 335000 4 4.38 (10)−3 5.58 (10)−3 5.44 (10)−3

n18 = 355000 4 4.16 (10)−3 5.45 (10)−3 5.42 (10)−3

n19 = 375000 4 3.91 (10)−3 5.34 (10)−3 5.32 (10)−3

n20 = 395000 4 3.86 (10)−3 5.29 (10)−3 5.26 (10)−3

One can observe in Table 2 a similar performance of the three methods compared with the truncation

order kn satisfying Assumption A3, with slightly worse results being obtained from the estimator

defined in (62)–(63), specially, for the sample size n8 = 155000. Furthermore, in Table 3, a better

performance of our approach is observed for the smallest sample sizes (from n1 = 15000 until n4 =

75000). For the remaining largest sample sizes, only slight differences are observed, with, again, a better

performance of our approach, very close to the other two approaches presented in Bosq [2000]; Guillas

[2001].

5.2.2 Empirical–eigenvector–based componentwise estimators

In this section, we address the case where {φj , j ≥ 1} are unknown, as is often the case in practice.

Specifically, for a given sample size n, let {φn,j , j ≥ 1} be the empirical counterpart of the theoretical
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eigenvectors {φj , j ≥ 1}, satisfying, for every j ≥ 1,

Cn (φn,j) =
1

n

n−1∑

i=0

〈Xi, φn,j〉HXi = Cn,jφn,j ,

where {Cn,j , j ≥ 1} denotes the system of eigenvalues associated with the system of empirical eigen-

vectors

{φn,j , j ≥ 1}. We then consider the following estimators for comparison purposes

ρ̃n,j =

1
n−1

n−2∑

i=0

X̃i,jX̃i+1,j

1
n

n−1∑

i=0

(
X̃i,j

)2
, ρ̃kn

=

kn∑

j=1

ρ̃n,jφn,j ⊗ φn,j , (65)

ρ̃n(x) =
(
Π̃knDnC

−1
n Π̃kn

)
(x) =

kn∑

l=1

ρ̃n,l(x)φn,l, x ∈ H,

ρ̃n,l(x) =
1

n− 1

n−2∑

i=0

kn∑

j=1

1

Cn,j
〈φn,j , x〉HX̃i,jX̃i+1,l, (66)

ρ̃n,a(x) =
(
Π̃knDnC

−1
n,aΠ̃

kn

)
(x) =

kn∑

l=1

ρ̃n,a,l(x)φn,l, x ∈ H,

ρ̃n,a,l(x) =
1

n− 1

n−2∑

i=0

kn∑

j=1

1

max (Cn,j , an)
〈φn,j , x〉HX̃i,jX̃i+1,l, (67)

where, for i ∈ Z, and j ≥ 1, X̃i,j = 〈Xi, φn,j〉H , Π̃kn denotes the orthogonal projector into the space

H̃kn
= span (φn,1, . . . , φn,kn

) .

The Gaussian ARH(1) process is generated under Assumptions A1–A2, as well as C′
1 in [Bosq,

2000, p. 218]. Note that conditions A1 and B′
1 in Bosq [2000] already hold. Moreover, as given in [Bosq,

2000, Theorem 8.8 and Example 8.6], for

Cj = bCj
−δ1 , bC > 0, δ1 > 0,

with, in particular, δ1 = 2.4, and for

ρj = bρj
−δ2 , bρ > 0,
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with δ2 = 1.1,, the estimator ρ̃n converges almost surely to ρ under the condition

nC2
kn

ln(n)




kn∑

j=1

bj




2 −→ ∞,

where

b1 = 2
√
2 (C1 − C2)

−1 , bj = 2
√
2max

{
(Cj−1 − Cj)

−1, (Cj − Cj+1)
−1
}
, j ≥ 2.

In Table 4, kn = ⌈ln(n)⌉ has been tested; see [Bosq, 2000, Example 8.6].

Table 4: Truncated empirical values of E
{
‖ρ (Xn−1)− ρ̃kn (Xn−1)‖H

}
, for ρ̃kn = ρ̃kn given in equation

(65) (third column), ρ̃kn = ρ̃n defined in equation (66) (fourth column) and ρ̃kn = ρ̃n,a defined in equation
(67) (fifth column), based on N = 700 simulations, for δ1 = 2.4 and δ2 = 1.1, considering the sample sizes
{nt = 15000 + 20000(t − 1), t = 1, . . . , 20} and kn = ⌈ln(n)⌉.

n kn Our approach Bosq (2000) Guillas (2001)

n1 = 15000 9 8.42 (10)−2 1.061 1.035

n2 = 35000 10 5.51 (10)−2 1.019 1.005

n3 = 55000 10 4.75 (10)−2 1.017 0.999

n4 = 75000 11 4.43 (10)−2 1.015 0.995

n5 = 95000 11 3.68 (10)−2 1.013 0.988

n6 = 115000 11 3.51 (10)−2 1.011 0.963

n7 = 135000 11 3.23 (10)−2 1.008 0.925

n8 = 155000 11 2.95 (10)−2 1.007 0.912

n9 = 175000 12 2.94 (10)−2 1.006 0.911

n10 = 195000 12 2.80 (10)−2 0.995 0.891

n11 = 215000 12 2.71 (10)−2 0.902 0.862

n12 = 235000 12 2.59 (10)−2 0.890 0.820

n13 = 255000 12 2.58 (10)−2 0.878 0.800

n14 = 275000 12 2.35 (10)−2 0.872 0.783

n15 = 295000 12 2.28 (10)−2 0.860 0.778

n16 = 315000 12 2.27 (10)−2 0.842 0.747

n17 = 335000 12 2.16 (10)−2 0.822 0.714

n18 = 355000 12 2.14 (10)−2 0.800 0.707

n19 = 375000 12 2.09 (10)−2 0.778 0.687

n20 = 395000 12 2.06 (10)−2 0.769 0.662

A better performance of our estimator (65) in comparison with estimator (66), formulated in Bosq
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[2000], and estimator (67), formulated in [Guillas, 2001, Example 4 and Remark 4], is observed in Table

4. Note that, in particular, in [Guillas, 2001, Example 4 and Remark 4], smaller values of kn than

ln(n) are required for a given sample size n, to ensure convergence in quadratic mean, and, in par-

ticular, weak–consistency. However, considering a smaller discretization step size ∆t = 0.015 than in

Table 4, where ∆t = 0.08, and for kn = ⌈n1/6⌉, (i.e., α = 6), we obtain in Table 5, for the same

parameter values δ1 = 2.4 and δ2 = 1.1, better results than in Table 4, since a smaller number of

coefficients of ρ (parameters) to be estimated is considered in Table 5, from a richer sample informa-

tion (coming from the smaller discretization step size considered). One can also observe in Table 5 a

similar performance of the three approaches studied. In Table 6, the value kn = ⌈e′n1/(8δ1+2)⌉, with

e′ = 17
10 proposed in [Guillas, 2001, Example 4 and Remark 4] is considered to compute the truncated

empirical values of E {‖ρ(Xn−1)− ρ̃kn
(Xn−1)‖H} , for ρ̃kn

defined in equation (65) (third column), for

ρ̃kn
= ρ̃n given in equation (66) (fourth column), and for ρ̃kn

= ρ̃n,a in equation (67) (fifth column). A

similar performance of the three approaches is observed, with the exception of n20 = 395000, where the

approach presented in Guillas [2001] displays a slightly better performance
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Table 5: Truncated empirical values of E
{
‖ρ (Xn−1)− ρ̃kn (Xn−1)‖H

}
, for ρ̃kn defined in equation (65) (third

column), for ρ̃kn = ρ̃n given in equation (66) (fourth column), and for ρ̃kn = ρ̃n,a in equation (67) (fifth column),
based on N = 200 (due to high-dimensionality) simulations, for δ1 = 2.4 and δ2 = 1.1, considering the sample
sizes {nt = 15000 + 20000(t − 1), t = 1, . . . , 20} and kn = ⌈n1/6⌉.

n kn Our approach Bosq (2000) Guillas (2001)

n1 = 15000 4 9.88 (10)−2 9.25 (10)−2 0.106

n2 = 35000 5 9.52 (10)−2 9.07 (10)−2 9.86 (10)−2

n3 = 55000 6 9.12 (10)−2 8.92 (10)−2 9.39 (10)−2

n4 = 75000 6 8.48 (10)−2 8.64 (10)−2 8.98 (10)−2

n5 = 95000 6 7.61 (10)−2 8.30 (10)−2 8.46 (10)−2

n6 = 115000 6 7.05 (10)−2 7.96 (10)−2 8.04 (10)−2

n7 = 135000 7 6.99 (10)−2 7.84 (10)−2 7.82 (10)−2

n8 = 155000 7 6.70 (10)−2 7.45 (10)−2 7.40 (10)−2

n9 = 175000 7 6.49 (10)−2 7.03 (10)−2 7.07 (10)−2

n10 = 195000 7 5.88 (10)−2 6.74 (10)−2 6.80 (10)−2

n11 = 215000 7 5.63 (10)−2 6.46 (10)−2 6.57 (10)−2

n12 = 235000 7 5.30 (10)−2 6.28 (10)−2 6.37 (10)−2

n13 = 255000 7 5.05 (10)−2 6.19 (10)−2 6.24 (10)−2

n14 = 275000 8 4.88 (10)−2 5.99 (10)−2 6.15 (10)−2

n15 = 295000 8 4.58 (10)−2 5.74 (10)−2 6.04 (10)−2

n16 = 315000 8 4.24 (10)−2 5.52 (10)−2 5.93 (10)−2

n17 = 335000 8 3.86 (10)−2 5.24 (10)−2 5.70 (10)−2

n18 = 355000 8 3.70 (10)−2 5.02 (10)−2 5.53 (10)−2

n19 = 375000 8 3.55 (10)−2 4.88 (10)−2 5.36 (10)−2

n20 = 395000 8 3.46 (10)−2 4.70 (10)−2 5.23 (10)−2
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Table 6: Truncated empirical values of E
{
‖ρ (Xn−1)− ρ̃kn (Xn−1)‖H

}
, for ρ̃kn defined in equation (65) (third

column), for ρ̃kn = ρ̃n given in equation (66) (fourth column), and for ρ̃kn = ρ̃n,a in equation (67) (fifth column),
based on N = 200 (due to high-dimensionality) simulations, for δ1 = 2.4 and δ2 = 1.1, considering the sample
sizes {nt = 15000 + 20000(t − 1), t = 1, . . . , 20} and kn = ⌈e′n1/(8δ1+2)⌉, e′ = 17

10
.

n kn Our approach Bosq (2000) Guillas (2001)

n1 = 15000 2 6.78 (10)−2 8.77 (10)−2 6.64 (10)−2

n2 = 35000 2 6.72 (10)−2 8.61 (10)−2 6.30 (10)−2

n3 = 55000 2 6.46 (10)−2 8.48 (10)−2 6.17 (10)−2

n4 = 75000 2 6.24 (10)−2 8.20 (10)−2 5.76 (10)−2

n5 = 95000 2 5.42 (10)−2 7.84 (10)−2 5.03 (10)−2

n6 = 115000 2 4.84 (10)−2 7.34 (10)−2 4.56 (10)−2

n7 = 135000 2 4.27 (10)−2 6.95 (10)−2 3.94 (10)−2

n8 = 155000 2 3.64 (10)−2 6.60 (10)−2 3.65 (10)−2

n9 = 175000 3 3.51 (10)−2 6.52 (10)−2 3.42 (10)−2

n10 = 195000 3 3.38 (10)−2 6.16 (10)−2 3.24 (10)−2

n11 = 215000 3 3.16 (10)−2 5.78 (10)−2 2.85 (10)−2

n12 = 235000 3 2.98 (10)−2 5.53 (10)−2 2.60 (10)−2

n13 = 255000 3 2.83 (10)−2 5.15 (10)−2 2.34 (10)−2

n14 = 275000 3 2.50 (10)−2 4.85 (10)−2 2.05 (10)−2

n15 = 295000 3 2.23 (10)−2 4.46 (10)−2 1.83 (10)−2

n16 = 315000 3 2.15 (10)−2 4.30 (10)−2 1.58 (10)−2

n17 = 335000 3 2.06 (10)−2 4.14 (10)−2 1.40 (10)−2

n18 = 355000 3 1.98 (10)−2 3.95 (10)−2 1.24 (10)−2

n19 = 375000 3 1.89 (10)−2 3.77 (10)−2 1.05 (10)−2

n20 = 395000 3 1.82 (10)−2 3.70 (10)−2 9.93 (10)−3

5.2.3 Kernel–based nonparametric and penalized estimation

In practice, curves are observed in discrete times, and should be approximated by smooth functions.

In Besse et al. [2000], the following optimization problem is considered:

X̂i = argmin
∥∥∥LX̂i

∥∥∥
2

L2
, X̂i(tj) = Xi(tj), j = 1, . . . , p, i = 0, . . . , n− 1, (68)

where L is a linear differential operator of order d. Our interpolation is computed by Matlab smooth-

ingspline method. Non-linear kernel regression is then considered, in terms of the smoothed functional
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data, solution to (68), as follows:

X̂hn
n = ρ̂hn

(Xn−1), ρ̂hn
(x) =

n−2∑

i=0

X̂i+1K




∥∥∥X̂i − x
∥∥∥
2

L2

hn




n−2∑

i=0

K




∥∥∥X̂i − x
∥∥∥
2

L2

hn




,

where K is the usual Gaussian kernel, and

∥∥∥X̂i − x
∥∥∥
2

L2
=

∫
(X̂i(t)− x(t))2dt, i = 0, . . . , n− 2.

Alternatively, in Besse et al. [2000], prediction, in the context of functional autoregressive processes

(FAR(1) processes), under the linear assumption on ρ, which is considered to be a compact operator,

with ‖ρ‖ < 1, is also studied, from smooth data X̂1, . . . , X̂n, solving the optimization problem

min
X̂i∈Hq

1

n

n−1∑

i=0


1

p

p∑

j=1

(
Xi(tj)− X̂q,l

i (tj)
)2

+ l
∥∥∥D2X̂q,l

i

∥∥∥
2

L2


 , (69)

where l is the smoothing parameter, Hq is the q–dimensional functional subspace spanned by the leading

eigenvectors of the autocovariance operator C associated with its largest eigenvalues. Thus, smoothness

and rank constraint are considered in the computation of the solution to the optimization problem (69).

Such a solution is obtained by means of functional PCA.

The following regularized empirical estimators of C and D are then considered, with inversion of C

in the subspace Hq:

Ĉq,l =
1

n

n−1∑

i=0

X̂i ⊗ X̂i, D̂q,l =
1

n− 1

n−2∑

i=0

X̂i ⊗ X̂i+1.

Thus, the regularized estimator of ρ is given by

ρ̂q,l = D̂q,lĈ
−1
q,l ,

and the predictor

X̂q,l
n = ρ̂q,lXn−1.

Due to computational cost limitations, in Table 7, the following statistics are evaluated to compare the

performance of the two above-referred prediction methodologies:

EMAEhn

X̂n

=
1

p

p∑

j=1

(
Xn(tj)− X̂hn

n (tj)
)2
, (70)
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EMAEq,l

X̂n

=
1

p

p∑

j=1

(
Xn(tj)− X̂q,l

n (tj)
)2
. (71)

Table 7: EMAE
hn,i

X̂n
, i = 1, 2, and EMAEq,l

X̂n
values (see (70) and (71), respectively), with q = 7, based on N =

200 simulations, for δ1 = 2.4 and δ2 = 1.1, considering now the sample sizes {nt = 750 + 500(t − 1), t = 1, . . . , 13}
hn,1 = 0.1 and hn,2 = 0.3.

n EMAE
hn,1

X̂n
EMAE

hn,2

X̂n
EMAEq,l

X̂n

n1 = 750 8.57 (10)−2 8.85 (10)−2 8.99 (10)−2

n2 = 1250 7.67 (10)−2 8.43 (10)−2 8.69 (10)−2

n3 = 1750 7.15 (10)−2 7.12 (10)−2 8.05 (10)−2

n4 = 2250 7.09 (10)−2 6.87 (10)−2 7.59 (10)−2

n5 = 2750 6.87 (10)−2 6.67 (10)−2 7.31 (10)−2

n6 = 3250 6.52 (10)−2 5.92 (10)−2 7.28 (10)−2

n7 = 3750 6.20 (10)−2 5.56 (10)−2 7.13 (10)−2

n8 = 4250 6.06 (10)−2 5.32 (10)−2 7.06 (10)−2

n9 = 4750 5.67 (10)−2 5.25 (10)−2 6.47 (10)−2

n10 = 5250 5.24 (10)−2 5.12 (10)−2 6.08 (10)−2

n11 = 5750 5.01 (10)−2 4.82 (10)−2 5.75 (10)−2

n12 = 6250 4.90 (10)−2 4.49 (10)−2 5.33 (10)−2

n13 = 6750 4.87 (10)−2 3.87 (10)−2 4.97 (10)−2

It can be observed a similar performance of the kernel–based and penalized FAR(1) predictors,

from smooth functional data, which is also comparable, considering one realization, to the performance

obtained in Table 6, from the empirical eigenvectors.

5.2.4 Wavelet–based prediction for ARH(1) processes

The approach presented in Antoniadis and Sapatinas [2003] is now studied. Specifically, wavelet-

based regularization is applied to obtain smooth estimates of the sample paths. The projection onto the

space VJ , generated by translations of the scaling function φJk, k = 0, . . . , 2J − 1, at level J, associated

with a multiresolution analysis of H, is first considered. For a given primary resolution level j0, with

j0 < J, the following wavelet decomposition at J−j0 resolution levels can be computed for any projected

curve ΦVJ
Xi, in the space VJ , for i = 0, . . . , n− 1 :

ΦVJ
Xi =

2j0−1∑

k=0

cij0kφj0k +

J−1∑

j=j0

2j−1∑

k=0

dijkψjk,

cij0k = 〈ΦVJ
Xi, φj0k〉H , dijk = 〈ΦVJ

Xi, ψjk〉H .
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For i = 0, . . . , n− 1, the following variational problem is solved to obtain the smooth estimate of the

curve Xi :

inf
fi∈H

{∥∥ΦVJ
Xi − f i

∥∥2
L2 + λ

∥∥∥ΦV ⊥
j0
f
∥∥∥
2

; f ∈ H

}
, (72)

where ΦV ⊥
j0

denotes the orthogonal projection operator of H onto the orhogonal complement of Vj0 , and

for i = 0, 1 . . . n− 1,

f i =
2j0−1∑

k=0

αi
j0kφj0k +

∞∑

j=j0

2j−1∑

k=0

βi
jkψjk.

Using the equivalent sequence of norms of fractional Sobolev spaces of order s with s > 1/2, on a

suitable interval (in our case, s = δ1), the minimization of (72) is equivalent to the optimization problem,

for i = 0, . . . , n− 1,

2j0−1∑

k=0

(αi
j0k − cij0k)

2 +

J−1∑

j=j0

2j−1∑

k=0

(dijk − βi
jk)

2 +

∞∑

j=j0

2j−1∑

k=0

λ2js[βi
jk]

2. (73)

The solution to (73) is given by, for i = 0, . . . , n− 1,

α̂i
j0k

= cij0k, k = 0, 1, . . . , 2j0 − 1,

β̂i
j0k

=
dijk

(1 + λ22sj)
, j = j0, . . . , J − 1, k = 0, 1, . . . , 2j − 1,

β̂i
j0k

= 0, j ≥ J, k = 0, 1, . . . , 2j − 1.

In particular, in the subsequent computations, we have considered the following value of the smooth-

ing parameter λ (see Angelini et al. [2003]):

λ̂M =




M∑

j=1

σ2
j






M∑

j=1

Cj




n
.

The following smoothed data are then computed

X̃i,λ̂M =
2j0−1∑

k=0

α̂i
j0k
φj0k +

J−1∑

j=j0

2j−1∑

k=0

β̂i
j0k
ψjk,

removing the trend

ãn,λ̂M =
1

n

n−1∑

i=0

X̃i,λ̂M

to obtain

Ỹi,λ̂M = X̃i,λ̂M − ãn,λ̂M , i = 0, . . . , n− 1,
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for the computation of

ρ̃n,λ̂M (x) =
(
Π̃kn

λ̂M
D̃n,λ̂M C̃

−1

n,λ̂M
Π̃kn

λ̂M

)
(x) =

kn∑

l=1

ρ̃n,λ̂M ,l(x)φ̃
M
l , x ∈ H,

ρ̃n,λ̂M ,l(x) =

kn∑

j=1

1

n− 1

n−2∑

i=0

1

C̃n,λ̂M ,j

〈φ̃Mj , x〉H Ỹi,λ̂M ,j Ỹi+1,λ̂M ,l,

for x ∈ H and

C̃n,λ̂M =
1

n

n−1∑

i=0

Ỹi,λ̂M ⊗ Ỹi,λ̂M ,

where

Ỹi,λ̂M ,j =
〈
Ỹi,λ̂M , φ̂j,λ̂M

〉
,

and

C̃n,λ̂M ,j =
〈
C̃n,λ̂M φ̂j,λ̂M

〉
,

for every j ≥ 1. Table 8 displays the empirical truncated approximation of the expectation

E {‖ρ̃kn
(Xn−1)− ρ(Xn−1)‖H} and E

{
‖ρ̃n,λ̂M (Xn−1)− ρ(Xn−1)‖H

}
, respectively obtained applying our

approach, and the approach in Antoniadis and Sapatinas [2003], in the estimation of the autocorrelation

operator ρ. Here, we have tested kni
= ⌈n1/αi⌉, i = 1, 2, with α1 = 6, according to Assumption A3,

and α2 > 4δ1, according to

H4 : nC4
kn

→ ∞

in [Antoniadis and Sapatinas, 2003, p. 149]. In particular, we have considered δ1 = 2.4, and α2 = 10.

From the results displayed in Table 8, one can observe a similar performance for the two truncation rules

implemented, and approaches compared, for the small sample sizes tested. A similar accuracy is also

displayed by the approaches presented in Besse et al. [2000], for such small sample sizes (see Table 7).
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Table 8: Truncated empirical values of E {‖ρ(Xn−1)− ρ̃kn(Xn−1)‖H} , with ρ̃kn defined in equation (65), and

of E
{
‖ρ̃n,λ̂M (Xn−1)− ρ(Xn−1)‖H

}
,, based on N = 200 simulations, for δ1 = 2.4 and δ2 = 1.1, considering the

sample sizes {nt = 750 + 500(t − 1), t = 1, . . . , 13}, using λ̂M , M = 50, and the corresponding kn,i = ⌈n1/αi⌉,
for α1 = 6 and α2 = 10. Here, O.A. means Our Approach.

n kn,1 O.A. Antoniadis and Sapatinas [2003] kn,2 O.A. Antoniadis and Sapatinas [2003]

750 3 0.070 0.091 1 0.064 0.059

1250 3 0.055 0.087 2 0.051 0.043

1750 3 0.047 0.080 2 0.045 0.039

2250 3 0.041 0.079 2 0.041 0.038

2750 3 0.037 0.073 2 0.036 0.035

3250 3 0.034 0.072 2 0.033 0.031

3750 3 0.033 0.068 2 0.033 0.029

4250 4 0.033 0.067 2 0.031 0.029

4750 4 0.032 0.066 2 0.031 0.026

5250 4 0.031 0.064 2 0.028 0.023

5750 4 0.030 0.060 2 0.020 0.019

6250 4 0.028 0.058 2 0.017 0.015

6750 4 0.028 0.056 2 0.019 0.014

6 Final comments

As noted before, in this paper, the eigenvectors of C are considered to be known in the derivation of

the results on consistency. This assumption is satisfied, e.g., when the random initial condition is given

as the solution, in the mean-square sense, of a stochastic differential equation driven by white noise

(e.g., the Wiener measure), since the eigenvectors of the differential operator involved in that equation

coincide with the eigenvectors of the autocovariance operator of the ARH(1) process. In the case where

the eigenvectors of the autocovariance operator are unknown, the numerical results displayed in Tables

4–6 illustrate the fact that our approach displays, in terms of the empirical eigenvectors, very similar

prediction results to those obtained with the implementation of the componentwise estimators proposed

in Bosq [2000]; Guillas [2001], with a better performance of our approach in the more unfavorable

case, corresponding to a large discretization step size, and truncation order (see Table 4 computed for

kn = ⌈ln(n)⌉).

Regarding Assumption A2, Remark 1 provides an example where this assumption is satisfied.

However, our approach can still be applied in a wider range of situations. Wavelet bases are well suited

for sparse representation of functions; recent work has considered combining them with sparsity-inducing
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penalties, both for semiparametric regression (see, e.g., Wand and Ormerod [2011]), and for regression

with functional or kernel predictors (see Wand and Ormerod [2011]; Zhao et al. [2015, 2012], among

others). The latter papers focused on ℓ1 penalization, also known as the lasso (see Tibshirani [1996]),

in the wavelet domain. Alternatives to the lasso include the SCAD penalty by Fan and Li [2001], and

the adaptive lasso by Zou [2006]. The ℓ1 penalty in the elastic net criterion has the effect of shrinking

small coefficients to zero. This can be interpreted as imposing a prior that favors a sparse estimate. The

above mentioned smoothing techniques, based on wavelets, can be applied to obtain a smooth sparse

approximation X̂1, . . . X̂n of the functional data X1, . . . , Xn, whose empirical auto-covariance operator

Ĉn =
1

n

n−1∑

i=0

X̂i ⊗ X̂i

and cross-covariance operator

D̂n =
1

n− 1

n−2∑

i=0

X̂i ⊗ X̂i+1

admits a diagonal representation in terms of wavelets.

In the literature, shrinkage approaches for estimating a high–dimensional covariance matrix are em-

ployed to circumvent the limitations of the sample covariance matrix. In particular, a new family of

nonparametric Stein–type shrinkage covariance estimators is proposed in Touloumis [2015] (see also ref-

erences therein), whose members are written as a convex linear combination of the sample covariance

matrix and of a predefined invertible diagonal target matrix. These results can be applied to our frame-

work, considering the shrinkage estimators of the autocovariance and cross-covariance operators, with

respect to a common suitable wavelet basis, which can lead to an empirical diagonal representation of

both operators.

In the Supplementary Material provided (see Appendix 7), a numerical example is provided to illus-

trate the performance of our approach, in the case of a pseudo–diagonal autocorrelation operator.

7 Supplementary Material: non–diagonal autocorrelation op-

erator

This Section provides as a numerical example where the methodology proposed in such paper still

works beyond the considered Assumption A2. In particular, this section illustrates the performance

of the proposed estimation methodology, when Assumption A2 is not satisfied, but ρ is close to be

diagonal in some sense. The numerical results obtained are compared to those ones derived from the

computation of the ARH(1) predictors, based on the componentwise estimators proposed in Bosq [2000];
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Guillas [2001] where this diagonal assumption is not required. The Gaussian ARH(1) process generated

has autocorrelation operator ρ with coefficients ρj,h with respect to the basis {φj ⊗ φh, j, h ≥ 1} , given

by

ρ2j,j =




λj

(
(−∆)(a,b)

)

λ1

(
(−∆)(a,b)

)
− ǫ




−δ2

, (74)

in the diagonal, and outside of the diagonal

ρ2j,j+a =
0.01

5a2
, a = 1, . . . , 5, ρ2j+a,j =

0.02

5a2
, a = 1, . . . , 5, (75)

where ρ2j,j+a = ρ2j+a,j = 0 when a ≥ 6. The coefficients of the autocovariance operator Cε of the

innovation process ε, with respect to the mentioned basis {φj ⊗ φh, j, h ≥ 1} , are given by

σ2
j,j = Cj

(
1− ρ2j,j

)

in the diagonal, and outside of the diagonal by

σ2
j,j+a =

0.015

5a2
, a = 1, 2, 3, 4, 5, σ2

j+a,j =
0.01

5a2
, a = 1, 2, 3, 4, 5, (76)

where σ2
j,j+a = σ2

j+a,j = 0 when a ≥ 6. Table 9 below displays the empirical truncated values of

E
{∥∥ρ(Xn−1)− ρ̂ND

kn
(Xn−1)

∥∥
H

}
based on N = 200 simulations of each one of the 20 functional samples

considered, with sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20}, for the corresponding kn values ob-

tained, in this case, by the rule kn = ⌈n1/α⌉, with α = 6. We have considered parameter δ1 = 2.4 in the

definition of the eigenvalues of C; but, in this case, as noted before, operators ρ and Cε are non-diagonal

(see equations 75–76). The estimators of ρ and the associated plug–in predictors are computed, for the

three approaches compared, under the assumption that the eigenvectors of C are known.

As expected, in Table 9, an outperformance of the approaches in Bosq [2000]; Guillas [2001] is

observed in comparison with our methodology. However, for large sample sizes, the ARH(1) prediction

methodology proposed here still can be applied with an order of magnitude of 10−2 for the empirical errors

associated with ρ̂kn
given in equation 65. Thus, in the pseudodiagonal autocorrelation operator case, in

some sense, our approach could still be considered. As referred in our paper, an example is given in the

case where the autocovariance and autocorrelation operators admit a sparse representation in terms of

a suitable orthonormal wavelet basis (see, for instance, Angelini et al. [2003]; Antoniadis and Sapatinas

[2003]).
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Table 9: Truncated empirical values of E
{∥∥ρ(Xn−1)− ρ̂ND

kn
(Xn−1)

∥∥
H

}
, for ρ̂ND

kn
given in equations (15)–(16)

(third column), in equations (60)–(61) (fourth column), and in equations (62)–(63) (fifth column), from the non–
diagonal data generated by equations (74)–(76), based on N = 200 (due to high–dimensionality) simulations,
for δ1 = 2.4 and δ2 = 1.1, considering the sample sizes {nt = 15000 + 20000(t − 1), t = 1, . . . , 20} and the
corresponding kn = ⌈n1/α⌉, α = 6 values. The eigenvectors {φj , j ≥ 1} are assumed to be known.

n kn Our approach Bosq (2000) Guillas (2001)

n1 = 15000 4 0.581 8.94 (10)−2 0.1055

n2 = 35000 5 0.560 7.05 (10)−2 9.49 (10)−2

n3 = 55000 6 0.548 6.67 (10)−2 9.14 (10)−2

n4 = 75000 6 0.532 6.24 (10)−2 8.85 (10)−2

n5 = 95000 6 0.512 5.89 (10)−2 8.47 (10)−2

n6 = 115000 6 0.498 5.62 (10)−2 8.04 (10)−2

n7 = 135000 7 0.495 5.57 (10)−2 7.66 (10)−2

n8 = 155000 7 0.481 5.28 (10)−2 7.24 (10)−2

n9 = 175000 7 0.474 5.01 (10)−2 6.78 (10)−2

n10 = 195000 7 0.461 4.90 (10)−2 6.30 (10)−2

n11 = 215000 7 0.442 4.69 (10)−2 6.07 (10)−2

n12 = 235000 7 0.425 4.45 (10)−2 5.82 (10)−2

n13 = 255000 7 0.411 4.25 (10)−2 5.54 (10)−2

n14 = 275000 8 0.408 4.14 (10)−2 5.16 (10)−2

n15 = 295000 8 0.381 4.09 (10)−2 4.81 (10)−2

n16 = 315000 8 0.360 3.85 (10)−2 4.53 (10)−2

n17 = 335000 8 0.349 3.56 (10)−2 4.29 (10)−2

n18 = 355000 8 0.330 3.29 (10)−2 3.98 (10)−2

n19 = 375000 8 0.320 2.90 (10)−2 3.75 (10)−2

n20 = 395000 8 0.318 2.62 (10)−2 3.44 (10)−2
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Application à la consommation d’électricité, University of Paris-Sud 11, PhD. Thesis, 2011. – URL

https://tel.archives-ouvertes.fr/tel-00647334

[Damon and Guillas 2002] Damon, J. ; Guillas, S.: The inclusion of exogenous variables in

functional autoregressive ozone forecasting. Environmetrics 13 (2002), pp. 759–774. – DOI:

doi.org/10.1002/env.527

[Damon and Guillas 2005] Damon, J. ; Guillas, S.: Estimation and simulation of autoregressie

Hilbertian processes with exogenous variables. Stat. Inference Stoch. Process. 8 (2005), pp. 185–204.

– DOI: doi.org/10.1007/s11203-004-1031-6

[Dautray and Lions 1990] Dautray, R. ; Lions, J.-L.: Mathematical Analysis and Numerical Methods

for Science and Technology Volume 3: Spectral Theory and Applications. Springer, New York, 1990.

– ISBN 9783642615290
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[Mourid 1993] Mourid, T.: Processus autorégressifs Banachiques d’ordre supérieur. C. R. Acad. Sci.

Paris Sér. I Math. 317 (1993), pp. 1167–1172

[Mourid 2004] Mourid, T.: Processus autorégressifs Hilbertiens à coef-
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