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Summary

This paper presents new results on prediction of linear processes in function spaces. The autoregressive
Hilbertian process framework of order one (ARH(1) process framework) is adopted. A componentwise estimator
of the autocorrelation operator is formulated, from the moment—based estimation of its diagonal coefficients,
with respect to the orthogonal eigenvectors of the auto-covariance operator, which are assumed to be known.
Mean-square convergence to the theoretical autocorrelation operator, in the space of Hilbert-Schmidt operators,
is proved. Consistency then follows in that space. For the associated ARH(1) plug-in predictor, mean absolute
convergence to the corresponding conditional expectation, in the considered Hilbert space, is obtained. Hence,
consistency in that space also holds. A simulation study is undertaken to illustrate the finite-large sample
behavior of the formulated componentwise estimator and predictor. The performance of the presented approach
is compared with alternative approaches in the previous and current ARH(1) framework literature, including the

case of unknown eigenvectors.
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1 Introduction

In the last few decades, an extensive literature on statistical inference from functional random vari-

ables has emerged. This work was motivated in part by the statistical analysis of high—dimensional data,

as well as data of a continuous (infinite-dimensional) nature; see, e.g., Bosd [2000,2007]; Dedecker and Merleved

2003]; [Ferraty and Vieu [2006]; Merlevedd [1996h, [1997); [Ramsay and Silverman [2005]; [Ruiz-Medin

2012]. New developments in functional data analysis are described, e.g., in [Bongiorno et all [2014];
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Cuevas [2014]; [Horvath and Kokoszka [2012]; [Hsing and Eubank [2015], and in a recent Special Issue of

this journal |Goia and Vieu [2016].

These references include a nice summary on the statistics theory for functional data, contemplating
covariance operator theory and eigenfunction expansion, perturbation theory, smoothing and regular-
ization, probability measures on a Hilbert spaces, functional principal component analysis, functional
counterparts of the multivariate canonical correlation analysis, the two sample problem and the change
point problem, functional linear models, functional test for independence, functional time series theory,
spatially distributed curves, software packages and numerical implementation of the statistical procedures
discussed, among other topics.

The special case of functional regression models, in which the predictor is a random function and
the response is scalar, has been particularly well studied. Various specifications of the functional regres-
sion parameter arise in fields such as biology, climatology, chemometrics, and economics. To avoid the

computational (high—dimensional) limitations of the nonparametric approach, several parametric and

semi—parametric methods have been proposed; see, e.g., [Ferraty et all [2012] and the references therein.

In [Ferraty et all [2012], a combination of a spline approximation and the one-dimensional Nadaraya—

Watson approach was proposed to avoid high dimensionality issues. Generalizations to the case of

more regressors (all functional, or both functional and real) were also addressed in the nonparamet-

ric, semi—parametric, and parametric frameworks; for an overview, see |Aneiros-Pérez and Vieu [2006];

Febrero-Bande and Gonzdlez-Manteiga [2013]; [Ferraty and Vieu [2009].

In the nonparametric regression framework, the case where the covariates and the response are

functional was considered by [Ferraty et all [2012], where a functional version of the Nadaraya—Watson

estimator was proposed for the estimation of the regression operator and shown to be point—wise asymp-
totically normal. Resampling techniques were used to overcome the difficulties arising in the estim-

ation of the asymptotic bias and variance. Semi-functional partial linear regression, introduced in

Aneiros-Pérez and Vieu [2008], allows the prediction of a real-valued random variable from a set of

real-valued explanatory variables, and a time—dependent functional explanatory variable. Motivated by

genetic and environmental applications, a semi—parametric maximum likelihood method for the estim-

ation of odds ratio association parameters was developed by |Chen et all [2012] in a high—dimensional

data context.

In the autoregressive Hilbertian time series framework, several estimation and prediction procedures

have been proposed and studied. [Mad |[1999] established, under suitable conditions, the asymptotic nor-

mal distribution of the formulated estimator of the autocorrelation operator, based on projection into

the theoretical eigenvectors. In[Bosq [2000]; Bosq and Blanked [2007)], the problem of prediction of linear

processes in function spaces was addressed. In particular, sufficient conditions for the consistency of the



empirical autocovariance and cross—covariance operators were obtained. The asymptotic normal distri-
bution of the empirical autocovariance operator was also derived. Moreover, the asymptotic properties

of the empirical eigenvalues and eigenvectors were analysed.

Guillad [2001] established the efficiency of a componentwise estimator of the autocorrelation operator,

based on projection into the empirical eigenvector system of the autocovariance operator. Consistency, in

the space of bounded linear operators, of the formulated estimator of the autocorrelation operator, and of

its associated ARH(1) plug—in predictor was later proved by [Mas [2004]. He derived sufficient conditions

for the weak convergence of the ARH(1) plug—in predictor to a Hilbert—valued Gaussian random variable

(see [Mas [2007]). Simultaneously, Mas and Menneteau [2003a] obtained high deflection results or large

and moderate deviations for infinite—dimensional autoregressive processes. Furthermore, the law of the

iterated logarithm for the covariance operator estimator was formulated by [Menneteau [2005].

The main properties of the class of autoregressive Hilbertian processes with random coefficients were

investigated by Mourid [2004]. Kargin and Onatski [2008] gave interesting extensions of the autore-
gressive Hilbertian framework, based on the spectral decomposition of the autocorrelation operator,

and not of the autocovariance operator. The first generalization on autoregressive processes of order

greater than one was proposed by [Mourid [1993], in order to improve prediction. ARHX(1) models; i.e.,

autoregressive Hilbertian processes with exogenous variables were studied by [Damon and Guillas [2002,

2005]. In Guillas [2000, 2001] a doubly stochastic formulation of the autoregressive Hilbertian process

was investigated. The ARHD model was introduced by IMarion and Pumd [2004)], taking into account

the regularity of trajectories through the derivatives. The conditional autoregressive Hilbertian process

(CARH process) was considered by |Cugliari [2011], developing parallel projection estimation methods to

redict such processes. In the Banach—valued context, we refer to the papers by [Bensmain and Mouri

2001)]; Dehling and Sharipov [2005]; [Pumo [1992, [1998], among others.

In this paper, we assume that the autocorrelation operator belongs to the Hilbert—Schmidt class,
and admits a diagonal spectral decomposition in terms of the orthogonal eigenvector system of the
autocovariance operator. Such is the case, e.g., of an autocorrelation operator defined as a continuous
function of the autocovariance operator. A componentwise estimator of the autocorrelation operator is
then constructed in terms of the eigenvectors of the autocovariance operator, which are assumed to be
known. This occurs when the random initial condition is defined as the solution, in the mean—square
sense, of a stochastic differential equation driven by white noise. Beyond this case, the sparse repres-
entation and whitening properties of wavelet bases can be exploited to obtain a diagonal representation
of the autocovariance and cross—covariance operators, in terms of a common and known wavelet basis.
Unconditional bases, like wavelet bases, also allow the diagonal spectral series representation of the

distributional kernels of Calderén-Zygmund operators.



Under the assumptions stated in Appendices BHAl we establish the convergence in the £2-sense of
a componentwise estimator of the autocorrelation operator in the space of Hilbert—Schmidt operators
S(H), ie., EZ(H) (Q, A, P), is derived. Consistency then follows in S (H). Under the same conditions,
consistency in H of the associated ARH(1) plug—in predictor is obtained, from its convergence in the
L!-sense in the Hilbert space H, i.e., in the space L} (2, A, P). The Gaussian framework is analysed
in Appendix M and illustrated in Appendix [Bl where examples show the behaviour of the proposed com-
ponentwise autocorrelation operator estimator, and associated predictor, for large sample sizes. We also
present there a comparative study with alternative ARH(1) prediction techniques, including compon-
entwise parameter estimation of the autocorrelation operator, from known and unknown eigenvectors,
as well as kernel (nonparametric) functional estimation, and penalized, spline and wavelet, estimation.
Final comments on the application of the proposed approach from real data are provided in Appendix

ol

2 Preliminaries

This section contains the preliminary definitions and lemmas that will be used to derive the main
results of this paper. In the following, H denotes a real separable Hilbert space. Recall that, from [Bosq

[2000], a zero-mean ARH(1) process X = {X,,, n € Z} satisfies, for all n € Z, the equation

Xn=pXn-1)+en, (1)

where p denotes the autocorrelation operator of the process X, which belongs to the space L(H) of
bounded linear operators, such that ||o*|| cay < 1, for all integers k > ko beyond a certain ko > 1, with
|l -l z(zry denoting the norm in the space L£(H). The Hilbert—valued innovation process € = {e,, n € Z}
is assumed to be a strong—white noise which is uncorrelated with the random initial condition. That
is, € is a Hilbert—valued zero—mean stationary process, with independent and identically distributed
components in time, with 62 = E {|len[|%,} < oo, for all n € Z. We restrict our attention here to the case

where p is such that

lollzcry < 1.

The following assumptions are made.

Assumption Al. The autocovariance operator

C:E{Xn®Xn}:E{X0®X0}, n € Z,



is a positive, self-adjoint and trace operator. As a result, it admits the following diagonal spectral

representation
o0
C=> Ci¢;®¢;,
j=1
in terms of an orthonormal system {¢;, j > 1} of eigenvectors which are known. Here,

01202220J2>0

denote the real positive eigenvalues of C' arranged in decreasing order of magnitude and
o0
Z Cj < 0.
j=1

Assumption A2. The autocorrelation operator p is a self-adjoint and Hilbert—Schmidt operator,

admitting the diagonal spectral decomposition
o0 o0
p=) it @b Y pj <o,
j=1 j=1

where {p;, j > 1} is the system of eigenvalues of the autocorrelation operator p, with respect to the

orthonormal system of eigenvectors {¢;, j > 1} of the autocovariance operator C.

Note that, under Assumption A2,

Nl ey = sup |p;| < 1.
§>1

Remark 1 Assumption A2 holds, in particular, when operator p is defined as a continuous function of

operator C (see [Dautray and Liond, 1990, pp. 119-140] and Remark [J).

In the following, for any n € Z, let
D =E{X,®X,11}=E{Xo® X}
be the cross—covariance operator of the ARH(1) process X.
Remark 2 Under Assumptions A1-A2, it follows from equation (1) that

C.=C,Cp=>Y Ci(1-p)d;@¢; =Y 020; D¢
j=1

j=1



By projecting equation (IJ) into the orthonormal system {¢;, j > 1}, we also have, for each j > 1

and all n € Z, the AR(1) equation

Xnj = piXn-1j+énj nei, (2)

where X, j = (Xn, ¢j) 5 and €, j = (€n, ¢5)  , for all n € Z. From equation (), we have, for each j > 1

and all n € Z,
pi = p(05)(¢5) = (05, DCTH;)) ;= (D(5),05) 1 (CTH b)), b5)
_ E{Xn,an—l,‘} _ D_
T e, o "R ¥
where

D] = <D(¢])a¢]>H = E{Xn,anfl,j}v C_]_l = [E {X?L—l,j}]715 Xn,j = <Xn7¢j>]—]7

given that, for all j > 1,

D:ZDj¢j®¢ja Dj =p;C;, j>1. (4)

j=1
Let us now consider the Banach space L3, (2, A, P) of the equivalence classes of £3, (22, A, P), the
space of zero—mean second—order Hilbert—valued random variables (H—valued random variables) with

finite seminorm given by
120 ez, 0.am = VE{IZI3} V2 € 23, (@,A,P).
That is, for Z,Y € £3,(Q, A, P), Z and Y belong to the same equivalence class if and only if
E{IZ = Y} = 0.

The convergence in the seminorm of E?g( ) (Q, A,P) will be considered in Proposition [ where
‘H = S(H) denotes the Hilbert space of Hilbert—Schmidt operators on a Hilbert space H.
For each n € Z, let us consider the following biorthogonal representation of the functional value X,

of the ARH(1) process X = {X,,, n € Z}, and of the functional value €, of its innovation process:



Xn = z_: T/jﬁ H¢J Z \/_77] n)g;, (5)
En = i {en, ¢] AGREAE: — ¢, = Z o
n j 15 (n)9j, (6)

where

a8y _ Ko P

Uj(n) = \/C—,J = \/C—,ja ﬁ](n) = T o; )

Here, under Assumptions A1-A2, for C. = E{e, ®e,} = E{eg®eo}, n € Z,

Ce(¢5) =070, j=1,

where, as before, {¢;, j > 1} denotes the system of eigenvectors of the autocovariance operator C, and
(o]
2 2 2
Y oi =02 =E{leall},

j=1

for all n € Z.

The following lemma provides the convergence, in the seminorm of £%(, A, P), of the series expan-

sions (B)—(6).

Lemma 1 Let X = {X,,, n € Z} be a zero-mean ARH(1) process. Under Assumptions A1-A2, for

any n € Z, the following limit holds
. 2
lim E {HX” . Xn7M" } _o,
M —o00 H

where )?n,M = Z VCin;j(n)¢;. Furthermore,

~ ~ 2
i [E {5 %) o (52~ T, =1
M— o0 S(H)

Similar assertions hold for the biorthogonal series representation

o0

Z €n7¢j HQSJ ZO'JUJ

-1 .7

Proof.



Under Assumption A1, from the trace property of C, the sequence

Xoar = me n)g;, M >1

satisfies, for M sufficiently large, and L > 0, arbitrary,

1 Xnarss = Kot 2z am = E{IXnaree = Xnulli }

M+L M+L

Yo > VOVOEmm(n)} (65, 00)

Jj=M+1k=M+1

M+L

= Z C; -0, when M — oo, (7)
j=M+1

0o M
since, under Assumption A1, Z C; < oo. Hence, Z Cj, M > 1 ; is a Cauchy sequence. Thus,
j=1 =1

M+L

li P =
Ml—r)noo Z CJ 0,
Jj=M+1

for L > 0 arbitrary. From equation (),

Xoar = me n)p;, M >1

is also a Cauchy sequence in L% (), A, P). Thus, the sequence {)A(,LM, M > 1} has finite limit in
£2%,(Q, A, P), for all n € Z.

Furthermore,

lim E{HXHXH,MHZ} = B{IX)% )} + lim ZZ\/_\/C_hE{m n)} (65, dn)m

M—o0
j=1h=1

— 2 lim ZfE{ wj(n)oj i} = 0%

M—o0

M
—  lim C; =

M—o0
j=1

In the derivation of the identities in (@)—(8]), we have applied that, for every j, h > 1,



C(¢)) = Cidy,  ox =B{IXulH} =D Cj <400, (dj,n) =bjn,

j=1

E{nj(mnn(n)} = dn B{(Xn0;(n)65)y} = V/C;.

Moreover, from identities in (@),

o { (- i T (0 - i Lus) ],

E{X,® Xy} + lim ZZ VCiv/Crdj @ E {n;(n)nn(n)}

=1 h=1
2
M
g 3500 T
=t s()
2
= |E{Xa®Xu}+ lim_ Zc ¢; ® ¢j — 22@@ ® ¢,
=1 S(H)
2
M
— E{Xn®Xn}fA}1_r>nOOZC’j¢j®¢j =0. (10)
=1 s(m)
In a similar way, we can derive the convergence to €, in £%(Q, .4, P), of the series Zajﬁj(n)qﬁj,
j=1

for every n € Z, since ¢ is assumed to be strong—white noise, and hence, its covariance operator C; is in

the trace class. We can also obtain an analogous to equation ([ITJ).

In equations ([B)—(6)), for every n € Z,

E{n;(n)} =0, E{nj(n)mu(n)} =0dn, Jh>1, nez, (11)

E{nj(n)} =0, E{nj(n)mn(n)} =djn, jh=1, nel

Note that, from Assumption A2 for each j > 1, {X, ;, n € Z} in equation (2) defines a sta-

tionary and invertible AR(1) process. In addition, from equations (@) and (@), for every n € Z,



and j,p > 1,

Xn = ZXn,j¢ja
ok 2 o}
E{Xn;Xnp} = ZngppE{En k,j€n— hm}—(sj,pzp gj _6“)1—]2’
k=0 h=0 k=0 Pj
2
B{Ix.l}} = ZE{X&} Z (0 650 = . C; = o <%,
Jj=1
(12)
which implies that
o]
) > 1
j 1 p?a J =z
In particular, we obtain, for each j > 1, and for every n € Z,
Xn j Xn 1,5 E{Xn ’Xn—i-l }
Ef{n:(n)n:(n+1 - E J +1y 0 _ ] »J
{nj (n)n;( )} {\/@ \/C_J C;
S o E{enkjnt1ong}
_ k=0h=0
Cj
2k+1 o2
J 2 i
= _ 5P i 13
Cj C; 1 p? Pj (13)

Remark 3 From equation (3) and Lemmalll, keeping in mind that

the following invertible and stationary AR(1) process can be defined:

n;(n) = pini(n =1) + /1= pi;(n), 0<pf <p; <1, (14)

where, for each j > 1, {n;(n), n € Z} and {n;(n), n € Z} are respectively introduced in equations (3)-

(@). In the following, for each j > 1, we assume that

E{(ﬁj(n))4} <o, nez,

to ensure ergodicity for all second—order moments, in the mean—square sense; see, e.g., [Hamilton, 1994,

pp. 192-193].

10



Furthermore,

D:E{Xn®Xn+1} = ZZE{<Xm¢j>H<Xn+1a¢p>H}¢j®¢P

j=1p=1

- 0o oo ‘ E{<Xn,¢j>H<Xn+1a¢p>H} .
B Y

= D> Y VOVCEm(nmy(n+ 1)} 6 @ by

j=1p=1

Remark 4 In particular, Assumption A2 holds if the following orthogonality condition is satisfied, for

allne€Z and j,p > 1,

E{nj(n)n,(n+1)} = djp,

where 0, denotes the Kronecker Delta function. In practice, unconditional bases, e.g., wavelet bases,

lead to a sparse representation for functional data; see, e.g., [Nason [2008]; |Ogden [1997]; |Vidakovi

[1998] for statistically-oriented treatments. Wavelet bases are also designed for sparse representation of

kernels defining integral operators, in L? spaces with respect to a suitable measure (see Mallat [2009]).

The Discrete Wavelet Transform (DWT) approzimately decorrelates or whitens data (see |[Vidakovi

[1998]). In particular, operators C' and D could admit an almost diagonal representation with respect to

the self-tensorial tensorial product of a suitable wavelet basis.

3 Estimation and prediction results

A componentwise estimator of the autocorrelation operator and of the associated ARH(1) plug—in
predictor are formulated in this section. Their convergence to the corresponding theoretical functional
values are derived in the spaces Eé( ) (Q, A, P) and L (R, A, P), respectively. Their consistency in the
spaces S(H) and H then follows.

From equation (B]), for each j > 1, and for a given sample size n, one can consider the usual respective

moment—based estimators ﬁn,j and (/j\,w» of D; and Cj, in the AR(1) framework, given by

n—2 n—1
. 1 . 1 )
Dnj = —— .EO XijXivrg, COng = EO Xij
i= i=

11



The following truncated componentwise estimator of p is then formulated:

Fon
P = Y Pnj®; © b5, (15)

Jj=1

where, for each j > 1,

n—2 n—2
~ T ZXi7in+1,j ZXi,in-i-l,j
P = Dy, — i=0 __ " =0 (16)
" C n—1 ’

_ n—1 n—1
" X > XL
i=0 i=0
Here, the truncation parameter indicates that we have considered the first &, eigenvectors associated
with the first k,, eigenvalues, arranged in decreasing order of their modulus magnitude. Furthermore, k,,
is such that

n

lim k, = oo, k—<1, n > 2. (17)
n

n—oo

The following additional condition will be assumed on k,, for the derivation of the subsequent results:

Assumption A3. The truncation parameter k, in (3] is such that

lim Cy,v/n = oo.
n—oo

Remark 5 Assumption A3 has also been considered in [Bosq, 2000, p. 217], to ensure weak consistency
of the proposed estimator of p, as well as, in [Mas, 1999, Proposition 4], in the derivation of asymptotic

normality.

From Remark B for each j > 1, n; = {n;(n), n € Z} in equation (I4) defines a stationary and
invertible AR(1) process, ergodic in the mean—square sense; see, e.g., [Bartlettl [1946]. Therefore, in view
of equations (IIl) and (I3)), for each j > 1, there exist two positive constants K, 1 and K 2 such that the

following identities hold:

lim = ijl, (18)

n—oo l
n

2

n—2
EQ (5= 755 > mi(i)n(i+1)
1=0

lim
n— o0

= Kjo. (19)

3=

12



Equations (I8)-(I3) imply, for n sufficiently large,

n—1

1 . K1
Vi _E 2 < 251
ar{ni_on](l)} -on

var {ﬁ S m(imsti + 1>}
=0

for certain positive constants K 51 and K j,2, for each j > 1. Equivalently, for n sufficiently large,

n—1 2
1 )
E <1 - Zm—(z))
=0
1 n—1 2
E <Pj — > i (ims (i + 1))
i=0
The following assumption is now considered.

Assumption A4. We assume that

Kj»
n b

<

Nz

7,1
< n’,

K

7,2
< n’,

S = sup (I?JJ + I?jg) < 00.

Jj=1

Remark 6 From equation (I6), applying the Cauchy—Schwarz’s inequality, we obtain, for each j > 1,

n—2 n—2 n—2
X2, X2 .
E Xi i Xit1,5 § : 0. E : i+1,j
~ n i— n i=0 i=0
|Pn; = <
n—1 n—-1 ) n—1 n—1 ,
> X > X
i=0 i=0
n
< a.s
-1

13

(24)



3.1 Convergence in L'?S(H) (Q,A,P)

Next, the convergence of pi, to p, in the space Eé(H) (Q, A, P), is derived under the setting of

conditions formulated in the previous sections.

Proposition 1 Let X = {X,,, n € Z} be a zero-mean standard ARH(1) process. Under Assumptions
A1-AY, the following limit holds:

. ~ 2
Jim lp =Pk, N2z, @,0ap) =0 (25)
Specifically,
. |1 < ith Y —— 26
o= Pknncg(H)(Q,A,p) <g(n), with g(n)= CZ )’ n — oo. (26)

Remark 7 [Bosq, 12000, Corollary 4.3] can be applied to obtain weak convergence results, in terms of

weak expectation, using the empirical eigenvectors . See definition of weak expectation at the beginning

of [Bosg, |2000, Section 1.3, p. 27]).

Proof. For each j > 1, the following almost surely inequality is satisfied:

P D, D
Pi—Pnjl = |/ — =
J J Cj C

CiCn,;
nj — Cj Dn

=

Cj C; Chny

S
\

J:
)

< = (Ius |
> Oj Pn,j

Cj — Ch,

+ ‘Dj — Dn

).

Thus, under Assumptions A1-A2, from equation (24)), for each j > 1,

1

(pj = Png)” < c? (m”’j |‘Oj =Gyt ‘Dj ~Dny )2
< % ((ﬁn,j)Q (C] - an,j)z + (Dj - Bn7j)2>
J
9 n 2 . 2 ~ 2
B ey oon)

14



which implies, for each j > 1,

o0} < 2 ((25) B{(0-) } re{(m-5u)'})

Under Assumption A2, from equations (I5) and 27,

kn o0
~ 2 ~ 2 ~ 2 2
lo=Brl2z , @am = E{nppknu(m}Z‘TE{(pJ—pn,n b > E{i)
= j=kn+1

IN

> 2 ((:2) 2{(e-eu))

IN
?r%‘ Do
hghs
3
N
3
|3
—
N————
o
N
e
—N
/N
Q
\
A
&
N—
)
—

IN
[N}
Q /N
) :\‘3
N—
o
&
3
7 N
=
—N
/N
Q
|
§Q>
&,
N—
o
——
_l’_
s
—
VS
S
|
o
3
&
N—
)
——
N———

j=kn+1

Furthermore, from (&) and (I6)), for each j > 1,

n—1 n—1

~ 1 1 .

Cnj = =D Xi=—> Ci(),
i=0 i=0
1 n—2 1 n—2

Dnj = — ZO XijXiv1y = ——F ZO Cim;(@)n; (i + 1),

where, considering equation (@),
Dj = E{Xn;Xnt15} = CEL{n;(n)n;(n+ 1)} = Cjpj,

15

(27)

(28)

(29)

(30)



for each j > 1. Equations (28)—(3I) then lead to

2
2
o C ) s
lp = Prallzz , @ap) < TZ 5 _Ezgnj (i)
n 1=

Jj=1

+E (/)j - % z_: n; (i + 1)77j(i)>
=0

oo
+ Z p?.

j=kn+1

For each j > 1, and for n sufficiently large, considering equations (22)—(23]), under Assumption A4,

2
Q(L) kn i nyd e’}
R 9 n—1 K'11+K',2
E{”P—PanS(H)} < 2 E:CJ2< : " : >+ E: P

From the trace property of operator C,

kn 0o
lim Y C? =% C? < oo,
n—oo

Jj=1 Jj=1

and from the Hilbert—Schmidt property of p,

oo
lim § 2 =0.
n— oo Pj
j=kn+1

Thus, in view of equations (32)—(34),

2 ~ 2 1
o — Pkn”ﬁg(H)(Q,A,P) - E{HP - pkn“S(H)} <g(n)=0 (@ » T —> 00,

n

where
e MU S

Under Assumption A3, equations ([B3)—B6) imply

. ~ 2 o
nlggo llp — Pk, ||L‘2S(H)(Q,A77>) =0,

16

(35)



as we wanted to prove.

Note that consistency of pi, in the space S (H) directly follows from equation (25) in Proposition [l

Corollary 1 Let X = {X,, n € Z} be a zero-mean standard ARH(1) process. Under Assumptions

A1-AY, as long as n — oo,

I = Pro sy =7 0,

where, as usual, =P denotes the convergence in probability.

3.2 Consistency of the ARH(1) plug—in predictor.

Let us consider £ (H) the space of bounded linear operators on H, with the norm

1A @)
Il 2y = sup ————=,
) eh ]l g7
for every A € L (H) . In particular, for each x € H,
IA @ g < 1Az 2] g - (37)
In the following, we denote by
)?n = ﬁkn (anl) (38)

as usual, the ARH(1) plug—in predictor of X,, as an estimator of the conditional expectation
E{X,|Xn_1} = p(Xn_1). The following proposition provides the consistency of X, = p, (Xn_1)
in H.

Proposition 2 Let X = {X,,, n € Z} be a zero—-mean standard ARH(1) process. Under Assumptions
A1-AY,

Tim B {]l(p— pk,) (Xn-1)ll ) = 0.

Specifically,

Bl i) o) <000, 1w =0 (7). ns o

In particular,

(o = Pk,.) (Xn—1)l[ g =70,
where, as usual, =P denotes the convergence in probability.
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Proof.

From (37) and Proposition[I] for n sufficiently large, the following almost surely inequality holds:

H/)(Xn—l) ~ X,

S 10 = Pl 2oy 1 X1l »

where, as given in equation B8), X, = Pk, (Xn_1). Thus,

e (ot -

From the Cauchy-Schwarz’s inequality, keeping in mind that, for a Hilbert—-Schmidt operator I, it

o} < B{lo =Bl o 1 Xl }- (39)

always holds that [|C||zz) < ||Klls(#), we have from equation ([B9),

E{‘ n H} \/ {Ilp Ph, ||1:(H) \/E ||Xn 1||H

~ 2
VBl B}y B {1
~ 2
VB {1l A Jox, (40)

oo
where, as before, 0% = E {||Xn,1||§1} = ZCj <00, n€Z(seeequation (@)).
j=1

IN

IN

Since from Proposition [l (see equation (24])),
o |12 < ith oy
llp— pkn||L§(H)(Q7A,7D) <g(n), with g(n)= @ ;M= 00,
from equation (@0}, we obtain,

E{|[(p = pr.) (Xn-1)llg} <D (n),

where h (n) = ox+/g (n), with g (n) being given in [B8). In particular, under Assumption A3,
tim B {(p i) (Xam)lr} =0,

which implies that

1o = P) (Xu-t)llgr = [ (K1) = X

18



4 The Gaussian case

In this section, we prove that, in the Gaussian ARH(1) context, Assumptions A1-A2 and A4 also

hold. From equation (), for n > 1,

S 20)
1=0

n

E =1.

Furthermore, for each j > 1 and n > 2, the n x 1 random vector nJT = (n;(0),...,n;(n — 1)) follows

a Multivariate Normal distribution with null mean vector, and covariance matrix

pi 1 p;i 0 0
E=| 0 p, 1 p 0 (41)

nxn

It is well-known (see, for example, |Gurland [1956]) that the variance of a quadratic form defined

from a multivariate Gaussian vector y ~ N(u, A), and a symmetric matrix Q is given by:

Var {y"Qy} = 2Tr(QAQA)+4p"QAQpu. (42)

For each j > 1, applying equation ([@2)), with y = n;, A = ¥ in { Il), and Q@ = Id,,, the n x n identity

matrix, keeping in mind E {n;(i)n;(i + 1)} = p;, for every i € Z,

Var {n]TIdnnj} = Var {"Zl 77]2(1)} =2Tr (EX) =2 (n+2(n—1)p3).
- (43)
Furthermore, from equation ([#3]), for each j > 1,
n—1
Z 77]2(@) 2 1 1
Var ’:On == (n+2(n—1)p}) == +4 (5 - ﬁ) p; (44)

We then obtain, from equation (44)),
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S 20) SR G)

lim Var { =Y limBE{ |1-2%
n—oo n n—roo n
2 11\,
= i 2 (G- m) et = w

Equation (@3] leads to

lim =2 +4p§.

n—oo

3=

Hence, for each j > 1, K1 in equation (I8)) is given by

Kj1=2+4p3,

and, from equation (44),

n—1
> ni() L
Var 712071 §2+4<Eﬁ)/’?§2+4/’?§6'

Thus, for every j > 1, I~(j11 in equation (20) satisfies

K;1 <6.

Remark 8 Note that, from Lemmald, for each j > 1 and i € Z,

E {7 (i)} = 3.

Thus, the assumption considered in Remark holds, and for each j > 1, the AR(1) process

n; = {nj(n), n € Z} is ergodic for all second—order moments, in the mean—square sense; see [Hamilton,

1994, pp. 192-193].

For n > 2, and for each j > 1, we are now going to compute Ko in (I9). The (n — 1) x 1 random

20



vectors

;= (0), o =2))" = (1), (= 1)1

are multivariate Normal distributed, with null mean vector, and covariance matrix

1 p; 0 ... ... 0
0 0 0 pj 1

(n—1)x(n—1)

From equation ([I3)), for each j > 1,

E {Z n; (1), (i + 1)} = i pj=(n—"1)p; =Tr (E{n;n1"}), (47)
where

E{nim;" 1"} =E{nj @nj*} = pildn, (48)
with, as before, Id,_; denoting the (n — 1) x (n — 1) identity matrix.
However, the variance of
n—2
> miiyn;(i+1)
i=0
depends greatly on the distribution of n7 and n7*. In the Gaussian case, keeping in mind that

;= m5(0), - mi(n=2)", 0yt = (1), mi(n = 1)

are zero—mean multivariate Normal distributed vectors with covariance matrix ¥ given in (46]), and

n—2
having cross—covariance matrix in ([@8)), we can compute the variance of Z n;(9)n; (i + 1), from {@7)-
i=0
@3], as follows. First,
Var {[n;]TIdnfln;*} = E {[n;]TIdnfln;*[n?]TIdn,ln;*}
2
= (E{m}]" Idn1mj*}])"
This can be rewritten as
n—2n-—2 5
SN E{m; i+ Dmy(p)ns(p + 1)} — (B {m}]" Idn_1m}*})",
i=0 p=0
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which is equal to

n—2n—2

iE{m(i)m(H1)}2_:E{nj(p)nj(p+1)} + 20 2 B @n@)}E {0+ Dni(p+ 1)}

n—2n—2

+ YN E{n(ini o+ DYE{n;(i + Dn;(p)}

=0 p=0

— (B{m) 1d,m}})’

This then reduces to

T (B {n; @n; )] + T (X)

+ T(E{men) [E{nen}]") - [T (E{n; o))",

(49)
which is the same as
Sy Sk T
T (85) + T (B{n;en} [B{nen}]”)
= (n—1)+2(n- 2)p§ +(n— 1)p§7
where, from (Eg]),
p]2 0 0
0 p2 0
* *k T J
E{n; @nj*} [E{n] ©nj"}] _ = p2Id, 1.
2
0 P;
From (49),
n—2
1 (@) (i + 1)
v ; Y _ (n=1)+2(n—-2)p7 + (n—1)p} (50)
a n—1 B (n—1)2 '
Therefore, for each j > 1,
n—2
> nilim;(i+1)
lim nVar{ =2 =1+ 3p%
n— 00 n—1 J
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Thus, for each j > 1, Kj» in ([[J) is given by K2 = 1+ 3p3. From equation (1),

S s iy + 1)
1=0

n—1

Var

<1+3p7 <4

Hence, for every j > 1, K 2 in equation (1)) satisfies

Therefore, the constant S in Assumption A4 is such that S <6+ 4 = 10.

5 Simulation study

A simulation study is undertaken to illustrate the behaviour of the formulated componentwise es-
timator of the autocorrelation operator, and of its associated ARH(1) plug—in predictor for large sample

sizes. The results are reported in Appendix[5.1l In Appendix 5.2l a comparative study is developed, from

the implementation of the ARH(1) plug—in prediction techniques proposed in [Antoniadis and Sapatinas

2003]; Besse et all [2000]; Bosd [2000]; |Guillas [2001]. In the subsequent sections, we restrict our atten-

tion to the Gaussian case

5.1 Behaviour of p and X, for large sample sizes
Let (—A)(a,) be the Dirichlet negative Laplacian operator on (a,b) given by
d2

(=A)@p (M) (@) = ——=f(x), z€(ab)CR,

dx?

fla) = f(b)=0.

The eigenvectors {¢;, j > 1} and eigenvalues {/\j ((fA)(aJ,)) , 7> 1} of (—A)(q,p) satisfy, for each

j > 1 and for each z € (a,b),

(=A@ @5 (@) = N ((=A)@ap) @5 (@), ¢;(a)=¢;(b) =0. (51)

For each j > 1 and x € [a, b], the solution to equation (&) is given by (see [Grebenkov and Nguyen,
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2013, p. 6]):

6; (x) = bQGSm(”x), Vo € a,b], A ((—A)@p) = . (52)

b—a
We consider here the operator C' defined as

C=((-D)an) "7, 41 €(0,1/2).

From |Dautray and Lions, 1990, pp. 119-140], the eigenvectors of C' coincide with the eigenvectors

of (=A)(a,p), and its eigenvalues {C}, j > 1} are given by:

Additionally, considering

—(1=72)
— (_A)(a,b)
. [)‘1 (=A)(ap) — e] » 12€(0,1/2),

for certain positive constant € < A\; ((fA)(a,b)) close to zero, p is a positive self-adjoint Hilbert—
Schmidt operator, whose eigenvectors coincide with the eigenvectors of (fA)(a b)) and whose eigenvalues

{pj, j > 1} are such that p; < 1, for every j > 1, and

A (=A) )
)\1 ((_A)(a,b)) —€

p; =

—2(1—72)
] , p3e(0,1), 1 e(0,1/2), (54)

where, as before, {)\j ((—A)(a,b)) , j > 1} are given in equation (B2)).

From (I2), the eigenvalues {O‘JQ», j> 1} of C¢ are then defined, for each j > 1, as

N (A @) 2

o) = Ci (1= 05) = Iy ((=8) )] 2077 = ST
(1 =r7) = N (D)) (D)) — ] 20

Note that C. is in the trace class, since the trace property of C, and the fact that p? < 1, for every

7 > 1, implies

For this particular example of operator C, we have considered truncation parameter k,, of the form

kp = nt/®, (55)
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for a suitable a > 0, which, in particular, allows verification of (IT7). From equation (53, one has, for
T € (0,1/2),

s k, \ 1000
Vi, = Vi (~Ban)] T A ()L hs

From equation (B3], Assumption A3 is then satisfied if

1/2 — >0, ie, if a>8(1—v)>4. (56)

4(1—m)
e
since y1 € (0,1/2). Fix v4 = 0.4 and 72 = 9/20. Then, from equation (B6), o > 48/10. In particular,
the values a3 = 5 and ap = 6 have been tested, in Table [ below, for H = L?((a,b)), and (a,b) = (0,4),

where L?((a,b)) denotes the space of square integrable functions on (a, b).
The computed empirical truncated functional mean square error EMSEg, =~ of the estimator py, of p,

for a sample size n, is given by:

N k
1 - 2
EMSEz,, = > (0 —7r;)" (57)
w=1 j=1
n—2
1
f)w n—1 Z szy qujrl J
~w n,Jj =0
pn,j w n—1 ’ (58)
n,J 1 2
n ( zu,)J)
1=0
where N denotes the number of simulations, and for each j = 1,...,ky, Z)\’,‘;j represents the estim-
ator of p;, based on the w-th generation of the values X¢’;,..., X} 4 ;, with X, = (X*,¢;), , for

w=1,...,700,and ¢ =0,...,n — 1.
For the plug-in predictor X,, = P, (Xn_1), we compute the empirical version UB(EMAE) ghn Of

the derived upper bound (@0, which, for each n € Z, is given by

-

N k
1 - 2 w 112
UB(EMAE)grn = [+ > 2 (0 — 7)) E{ X201, }- (59)
w=1 j=1
From N = 700 realizations, for each one of the elements of the sequence of sample sizes
{n¢, t=1,...,20} = {15000 + 20000(t — 1), t =1,...,20},

the EMSE;, ~and UB(EMAE) ¢», values, for a = 5 and a = 6, are displayed in Table [Il where the
abbreviated notations MSE;, ~, for EMSE;, , and UBy .

B g for UB(EMAE) ¢x.., are used (see also
Figures [TH2]).

n,
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) values, in [EX)-E9),

n,i

n

considering the sample sizes

(here, UBg

kn
n

EMSEj, ~ (here, MSE;, ), and UB(EMAE)

Table 1:

9/20,

.,20} and the corresponding kn,1 and kn,2 values, for a; =5 and as = 6.

= 04 and 72

for m

700 simulations,

{n; = 15000 + 20000(t — 1), ¢

based on N

1,..
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( ~ ~— ~— ~— ~ ~ ~— ~— ~ ~ ~— ~— ~— ~ ~ ~— ~— ~ ~ ~—
m 0 — — (@) <t L~ <t Nej 0 (o] N a 0 sy =] < <t sy <t 0
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T
—— EMCE for operator,a =5
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T
—— EMCE for operator,a =6
- -7

- '(1/T)3M

Figure 1: EMSEj, ~values (blue line), in (57)-(ES), based on N = 700 simulations, for 71 = 0.4 and
~v2 = 9/20, considering the sample sizes {n; = 15000 + 20000(¢t — 1), t =1,...,20} and the corresponding kn,1
and ky 2 values, for a1 = 5 (left-hand side) and az = 6 (right-hand side), against curves (1/n:)*/* (black dot
line) and 1/n; (red dot line).
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Figure 2: UB(EMAE)

Xfn

values (blue line), in (B9), based on N = 700 simulations, for 77 = 0.4 and

~v2 = 9/20, considering the sample sizes {n; = 15000 + 20000(¢ — 1), t =1,...,20} and the corresponding kn,1
and ky o values, for a; = 5 (left-hand side) and a2 = 6 (right-hand side), against curves (1/n¢)'/? (red dot line)
and (1/n:)'/? (black dot line).

In this paper, a one-parameter model of k,, is selected depending on parameter . In |Guillad, 2001,

Example 2], in the same spirit, for an equivalent spectral class of operators C, a three—parameter model
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is established for k, to ensure convergence in quadratic mean in the space L£L(H) of the componentwise
estimator of p constructed from the known eigenvectors of C'. The numerical results displayed in Table
[[ and Figures [[H2 illustrate the fact that the proposed componentwise estimator py, presents a speed

of convergence to p, in quadratic mean in S(H), faster than n~1/3 which corresponds to the optimal

case for the componentwise estimator of p proposed in [Guillas [2001], in the case of known eigenvectors

of Cj; see, in particular, [Guillad, 2001, Theorem 1, Remark 2 and Example 2]. For larger values of the

parameters -y; than 2.4, and « than 6, a faster velocity of convergence of py, to p, in quadratic mean
in the space S(H), will be obtained. However, larger sample sizes are required for larger values of «, in

order to estimate a given number of coefficients of p. A more detailed discussion about comparison of

the rates of convergence of the ARH(1) plug—in predictors proposed in |Antoniadis and Sapatinas [2003];

Besse et all [2000]; Bosd [2000]; [Guillas [2001] can be found in the next section.

5.2 A comparative study

In this section, the performance of our approach is compared with those ones given inlAntoniadis and Sapatinas

2003]; Besse et all [2000]; Bosq [2000]; |Guillas [2001], including the case of unknown eigenvectors of C. In

the last case, our approach and the approaches presented in [Bosq [2000]; |Guillas [2001] are implemented

in terms of the empirical eigenvectors.

5.2.1 Theoretical-eigenvector-based componentwise estimators

Let us first compare the performance of our ARH(1) plug—in predictor, defined in (38), and the

ones formulated in Bosd [2000]; IGuillas [2001], in terms of the theoretical eigenvectors {¢;, j > 1} of

C. Note that, in this first part of our comparative study, we consider the previous generated Gaussian
ARH(1) process, with autocovariance and autocorrelation operators defined from equations (B3]) and
(B4), for different rates of convergence to zero of parameters C; and p?, j > 1, with both sequences

being summable sequences. Since we restrict our attention to the Gaussian case, conditions Ay, By and

Cq, formulated in [Bosd, 2000, pp. 211-212] are satisfied by the generated ARH(1) process. Similarly,

Conditions H;—Hj in [Guillas, 2001, p. 283] are satisfied as well.

In [Bosd, 12000, Section 8.2] the following estimator of p is proposed

ko
pn(z) = (nknpné,;lnkn) @)=Y puilz)dr, ze€H, (60)
=1
1 n—2 kn 1
Pni(T) = = (&5, ) nXi j Xit1,0, (61)
n—1 =0 j=1 C"»j
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in the finite dimensional subspace

Hy, =span(¢1,..., ¢, )

of H, where IT*" is the orthogonal projector over Hy, , and, as before, X; ; = (X;, ¢;),; , for j > 1.

A modified estimator of p is studied in |Guillas, 2001, Section 2], given by

kn
Pra(@) = (DO ) (@) = Bnaa(@)ér, @€ H, (62)
=1
R 1 n—1 k, 1
Pr,ai(T) = ZA—<¢j,iE>HXi,in+1,z~ (63)
n—14& & (C ) )
i=1 j=1 Max n,jy an

where

A—)<¢jax>H¢j a.s.

j=1 max (ij, an

Here, {a,, n € N} is such that (see [Guillas, 2001, Theorem 1])

Y
o k"SanSﬁ)\kn, a>0, 0<pB<1, e<1/2, y>1.

net

Tables PBH3] display the truncated, for two different £k, rules, empirical values of
E{llp(Xn-1) — Pk, (Xn—1)|lm}, based on N = 700 generations of each one of the functional samples
considered with sizes n; = 15000 4+ 20000(t — 1), ¢ = 1,...,20, when

Cj=bcj™®, bc>0, p5=byi %, b,>0.
Specifically, py, is computed from equations (I5)—(T8) (see third column), pr, = pn, with p,, being given
in equations (BU)—(@I) (see fourth column), and px, = Pn.q, With p, o being defined in ([G2)—(63)) (see
fifth column).

In Table@ §; = 2.4 o = 1.1, and k,, = [n'/*], for a = 6, according to our Assumption A3, which

is also considered in [Bosq, 2000, p. 217] to ensure weak consistency of the proposed estimator of p. In

Table [3] the same empirical values are displayed for d; = %, 02 = 1.1, and k,, is selected according to

Guillas, 12001, Example 2]. Thus, in Table 3]

1—2¢

kyp = [noi@m 20 ], v >1, e<1/2. (64)

In particular we have chosen v = 2, and € = 0.046;. Note that, from |Guillas, 2001, Theorem 1 and

Remark 1], for the choice made of k,, in TableBl convergence to p, in quadratic mean in the space £L(H),

holds for py, q given in (62)—(63).
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Table 2: Truncated empirical values of E||p (Xn—1) — pk, (Xn—1)| #, for pk, given in equations ([IH)-(I0]) (third
column), in equations (60)—(E1]) (fourth column), and in equations (62)—(G3) (fifth column), based on N = 700

.20}

1,..

1.1, considering the sample sizes {n; = 15000 + 20000(¢t — 1), ¢

and the corresponding k,, = [nl/ﬂ values, for a = 6.

2.4 and 2

simulations, for §1

\)
S | e
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Table 3: Truncated empirical values of E||p (Xn—1) — Pk, (Xn—1)||#, for pk, given in equations (I5)—(I0) (third
column), in equations (B0)—(1]) (fourth column), and in equations (62)—(G3) (fifth column), based on N = 700
simulations, for §; = % and §2 = 1.1, considering the sample sizes {n: = 15000 + 20000(¢ — 1), t =1,...,20}
and the corresponding k, given in (64)).

n kn || Our Approach | Bosq (2000) | Guillas (2001)

n1 = 15000 2 9.91 (10)~3 1.39 (10) 2 1.26 (10) 2

n2 = 35000 3 8.78 (10) 3 1.34

nz = 55000 3 7.89

n4 = 75000 3 6.49

ns = 95000 3 6.36

ne = 115000 3 6.14

n7 = 135000 3 5.91

ng = 155000 3 5.73

ng = 175000 3 5.44

nio = 195000 | 3 5.10

niz2 = 235000 | 4 4.85

niz = 255000 | 4 4.17
4

Nnig — 275000 4 4.6

nis = 295000 4 4.55

nie = 315000 | 4 4.48

nir = 335000 | 4 4.38

nig = 355000 | 4 4.16

nig = 375000 4 3.91

(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
ni1 = 215000 | 4 5.01(10)~? 6.48 (10)~* 5.94 (10)7?
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)

n2o = 395000 | 4 3.86 (10) 3 5.29 (10) 3 5.26 (10) 3

One can observe in Table[2]a similar performance of the three methods compared with the truncation
order kn satisfying Assumption A3, with slightly worse results being obtained from the estimator
defined in ([G2)-(G3), specially, for the sample size ng = 155000. Furthermore, in Table Bl a better
performance of our approach is observed for the smallest sample sizes (from n; = 15000 until ny =
75000). For the remaining largest sample sizes, only slight differences are observed, with, again, a better
performance of our approach, very close to the other two approaches presented in [Bosq [2000]; IGuillas

[2001].

5.2.2 Empirical-eigenvector—based componentwise estimators

In this section, we address the case where {¢;, j > 1} are unknown, as is often the case in practice.

Specifically, for a given sample size n, let {¢y j, j > 1} be the empirical counterpart of the theoretical
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eigenvectors {¢;, j > 1}, satisfying, for every j > 1,

n—1

1
Cr (fn,5) = - > (Xi, bn ) aXi = Crjbn

=0

where {C,, ;, 7 > 1} denotes the system of eigenvalues associated with the system of empirical eigen-

vectors

{¢n,j, 7 > 1}. We then consider the following estimators for comparison purposes

n—2 » .
aor D XigXit, e
ﬁ”hj = ;iol , Pk, = Zﬁn,j¢n,j ® Pn,js
% (Xm‘) =
=0
~ kn
pn(z) = (HknDncvlekn) (z) = Zﬁn,l(z)(bn,lv xz € H,
=1
1 n—2 kn 1 _ ~
pni(z) = (nj, o)X Xiv1,0,
=0 j=1 >
~ ~ kTL
pra(@) = (DG ) (@) =3 Prai(@)ons, w € H,
=1
1 n—2 kn 1 _ _
D, = - - @@ . X. . X
pn,a,l(z) 1 - 2 hax (Cn B an) <¢n,y7 35>H i,j<Vi4+1,1,
=0 j=1 ’

(66)

(67)

where, for i € Z, and j > 1, )?i,j = (X, nj) g > II*» denotes the orthogonal projector into the space

ﬁkn = span (¢ 1,. ..

200

, p- 218]. Note that conditions A; and Bj in

200

, Theorem 8.8 and Example 8.6], for

C] = ij76la

with, in particular, §; = 2.4, and for

P; = bpj_ 5

The Gaussian ARH(1) process is generated under Assumptions A1-A2, as well as C] in

’ ¢n,kn) .
Bosq [2000] already hold. Moreover, as given in
be >0, ;1 >0,
%2 b, >0,
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with d = 1.1,, the estimator p,, converges almost surely to p under the condition

2
nC
kn 5 — 00,

kn
In(n) Z b
j=1

where

bl = 2\/5(01 - 02)—1 5 bj = 2\/5111&){{(0]—,1 — Cj)il, (C] — Cj+1)71} 5 ] Z 2.

In Tabled &, = [In(n)] has been tested; see |Bosq, 2000, Example 8.6].

Table 4: Truncated empirical values of E{|p(Xn-1) — pr, (Xn-1)ll5}, for pr, = pr, given in equation
@3] (third column), pi, = pn defined in equation (GG) (fourth column) and pi, = pn,. defined in equation
@) (fifth column), based on N = 700 simulations, for §1 = 2.4 and §2 = 1.1, considering the sample sizes
{ne = 15000 + 20000(¢ — 1), ¢t = 1,...,20} and kn = [In(n)].

n kn || Our approach | Bosq (2000) | Guillas (2001)

ni =15000 | 9 8.42 (10) 2 1.061 1.035
n2 = 35000 | 10 5.51 (10) 2 1.019 1.005
nz = 55000 | 10 4.75 (10) 2 1.017 0.999
n4 = 75000 | 11 4.43 (10)~? 1.015 0.995
ns = 95000 | 11 3.68 (10) 2 1.013 0.988
ne = 115000 | 11 3.51(10) 2 1.011 0.963
n7 = 135000 | 11 3.23(10) 2 1.008 0.925
ng = 155000 | 11 2.95(10)~2 1.007 0.912
ng = 175000 | 12 2.94 (10) 2 1.006 0.911
nio = 195000 | 12 2.80 (10) 2 0.995 0.891
ni = 215000 | 12 2.71 (10) 2 0.902 0.862
ni2 = 235000 | 12 2.59 (10)~2 0.890 0.820
niz = 255000 | 12 2.58 (10) 2 0.878 0.800
nis = 275000 | 12 2.35 (10) 2 0.872 0.783
nis = 295000 | 12 2.28 (10) 2 0.860 0.778
nie = 315000 | 12 2.27 (10) 2 0.842 0.747
ni7 = 335000 | 12 2.16 (10) 2 0.822 0.714
nis = 355000 | 12 2.14 (10) 2 0.800 0.707
nig = 375000 | 12 2.09 (10) 2 0.778 0.687
n2o = 395000 | 12 2.06 (10) 2 0.769 0.662

A better performance of our estimator (65) in comparison with estimator (G6l), formulated in Bosq
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[2000], and estimator (@1), formulated in |Guillas, 2001, Example 4 and Remark 4], is observed in Table
M@ Note that, in particular, in |Guillas, 2001, Example 4 and Remark 4], smaller values of k,, than
In(n) are required for a given sample size n, to ensure convergence in quadratic mean, and, in par-
ticular, weak—consistency. However, considering a smaller discretization step size At = 0.015 than in
Table @ where At = 0.08, and for k, = [n!/%], (i.e., @ = 6), we obtain in Table [ for the same
parameter values 0; = 2.4 and d2 = 1.1, better results than in Table dl since a smaller number of
coefficients of p (parameters) to be estimated is considered in Table [B from a richer sample informa-
tion (coming from the smaller discretization step size considered). One can also observe in Table [l a
similar performance of the three approaches studied. In Table B the value k, = [e'n!/(3%+2)] with
e = }—g proposed in [Guillad, 2001, Example 4 and Remark 4] is considered to compute the truncated
empirical values of E{||p(Xn-1) — pk, (Xn—1)|lzr}, for pi, defined in equation (65) (third column), for
Pk, = pn given in equation (66) (fourth column), and for pg, = pn.e in equation @0 (fifth column). A
similar performance of the three approaches is observed, with the exception of nyy = 395000, where the

approach presented in |Guillad [2001] displays a slightly better performance
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Table 5: Truncated empirical values of E {||p (Xn-1) — Pk, (Xn-1)|ly }, for pk, defined in equation (@A) (third
column), for py,, = pn given in equation ([G0)) (fourth column), and for p,, = pn,. in equation ([E7) (fifth column),
based on N = 200 (due to high-dimensionality) simulations, for §1 = 2.4 and d2 = 1.1, considering the sample
sizes {n; = 15000 + 20000(t — 1), t =1,...,20} and k, = [n'/¢].

n kn || Our approach | Bosq (2000) | Guillas (2001)

n1 = 15000 4 9.88 (10) 2 9.25 (10) 2 0.106

nz = 35000 5 9.52

nz = 55000 6 9.12

ng = 75000 6 8.48

ns = 95000 6 7.61

ne = 115000 6 7.05

nr = 135000 7 6.99

ng = 155000

ng = 175000

ni1 = 215000 | 7 5.63

ni12 = 235000

n13z = 255000

nis = 275000 | 8 4.88 (10) 72 5.99

nis = 295000 | 8 4.58

nie = 315000 | 8 4.24

ni7 = 335000 | 8 3.86

nig = 355000 | 8 3.70

nig = 375000 | 8 3.55

(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
nio = 195000 | 7 5.88 (10) 2 6.74 (10) 2 6.80
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)

nzo = 395000 | 8 3.46 (10) 2 4.70 (10) 2 5.23 (10) 2
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Table 6: Truncated empirical values of E {||p (Xn-1) — Pk, (Xn-1)|y }, for pk, defined in equation (@A) (third
column), for py,, = pn given in equation ([G0)) (fourth column), and for p,, = pn,. in equation ([E7) (fifth column),
based on N = 200 (due to high-dimensionality) simulations, for §1 = 2.4 and d2 = 1.1, considering the sample

sizes {n; = 15000 + 20000(¢t — 1), ¢t = 1,...,20} and k, = [e'n!/ B FD] ¢ = 1T,

n kn || Our approach | Bosq (2000) | Guillas (2001)

ni =15000 | 2 6.78 (10) 2 8.77 (10) 2 6.64 (10) 2
n2 = 35000 | 2 6.72 (10) 2 8.61(10)> 6.30 (10) >
nz = 55000 | 2 6.46 (10)~2 8.48 (10) 2 6.17 (10) 2
na = 75000 | 2 6.24 (10) 2 8.20 (10) 2 5.76 (10) 2
ns = 95000 | 2 5.42 (10) 2 7.84 (10) 2 5.03 (10) 2
ne = 115000 | 2 4.84 (10)~2 7.34 (10) 72 4.56 (10) 2
n7 = 135000 | 2 4.27(10)72 6.95 (10) > 3.94 (10)~?
ns = 155000 | 2 3.64 (10)72 6.60 (10) 2 3.65 (10) 72
ng = 175000 | 3 3.51(10) 2 6.52 (10) 2 3.42(10) 2
n1o = 195000 | 3 3.38(10) 2 6.16 (10) 2 3.24 (10) 2
ni1 = 215000 | 3 3.16 (10) 2 5.78 (10) 2 2.85 (10) 2
n12 = 235000 | 3 2.98(10)72 5.53 (10) 2 2.60 (10) 2
niz = 255000 | 3 2.83(10) 2 5.15 (10) 2 2.34 (10) 2
nia = 275000 | 3 2.50 (10) 2 4.85 (10) 2 2.05 (10) 2
nis = 295000 | 3 2.23(10)"2 4.46 (10)~2 1.83(10) 72
n1s = 315000 | 3 2.15(10) 2 4.30 (10)~? 1.58 (10) 2
niz = 335000 | 3 2.06 (10)~2 4.14 (10)72 1.40 (10)~2
nis = 355000 | 3 1.98 (10) 2 3.95 (10) 2 1.24 (10) 2
nie = 375000 | 3 1.89 (10) 2 3.77(10) 2 1.05 (10) 2
n20 = 395000 | 3 1.82(10) 72 3.70 (10) 2 9.93(10)7?

5.2.3 Kernel-based nonparametric and penalized estimation

In practice, curves are observed in discrete times, and should be approximated by smooth functions.

In Besse et all [2000], the following optimization problem is considered:

~ 112
Xi:argminHLXi Xt = Xi(ty), j=1,....p,i=0,....,n—1, (68)
L2

where L is a linear differential operator of order d. Our interpolation is computed by Matlab smooth-

ingspline method. Non-linear kernel regression is then considered, in terms of the smoothed functional
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data, solution to (68, as follows:

N 2
n—2 N HXl — ZC‘ R
XK - L

o =0 "
Xnn - phn(Xn—l)a phn,( ): -~ 2 ’

n—2 HX,L — 1"

K —
1=0 "

where K is the usual Gaussian kernel, and

~ 2
% =]

L2

= /()?i(t) —z(t))%dt, i=0,...,n—2.

Alternatively, in [Besse et al! [2000], prediction, in the context of functional autoregressive processes

(FAR(1) processes), under the linear assumption on p, which is considered to be a compact operator,

with [|p|| < 1, is also studied, from smooth data X1,...,X,, solving the optimization problem
1 n—1 1 D ol 2 ol 2
min — 3 =37 (X(ty) - X)) +1f|p2se ) 69
i o3 p;( (t) - X¢'(t) . (69)

where [ is the smoothing parameter, H, is the g-dimensional functional subspace spanned by the leading
eigenvectors of the autocovariance operator C' associated with its largest eigenvalues. Thus, smoothness
and rank constraint are considered in the computation of the solution to the optimization problem (GJ).
Such a solution is obtained by means of functional PCA.

The following regularized empirical estimators of C' and D are then considered, with inversion of C'

in the subspace Hg:

1 n—1 1 n—2
Cqﬂl:EZXi@)Xi, qul:n_lin@)XHl.
i=0 i=0
Thus, the regularized estimator of p is given by
~ _pn -1
Pq,l = Dq,quJ )

and the predictor

-~

d_ =
X3 =pgaXn-1.

Due to computational cost limitations, in Table[7 the following statistics are evaluated to compare the

performance of the two above-referred prediction methodologies:

EMAEY = 1—1) i (Xulty) — Khe (@-))2 , (70)
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_1 3 (Xn(tj) - )?gvl(tj))Q . (71)

Table 7: E'MAE;("”7 i=1,2, and EMAE;&(J values (see (({Q) and (1)), respectively), with ¢ = 7, based on N =
200 simulations, for 61 = 2.4 and d2 = 1.1, considering now the sample sizes {n; = 750 + 500(¢t — 1), t =1,...,13}
hn71 =0.1 and hn,g =0.3.

hn,1 L) q,l
n EMAEgn EMAEf(n EMAE)A(H

ni = 750 8.57(10)"% | 8.85(10)72 || 8.99

ny = 1250 || 7.67(10)7% | 8.43

nz = 1750 7.15

ng = 2250 7.09

ns = 2750 6.87 (10)"% | 6.67

ne = 3250 6.52

ng = 4250 6.06

ng = 4750 5.67
4

nio = 5250 5.2

nip = 5750 5.01

nig = 6250 4.90

(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
n7 =3750 || 6.20(10)"% | 5.56(10)"° || 7.13(10)">
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)
(10) (10) (10)

nis = 6750 || 4.87(10)72 | 3.87(10)% || 4.97(10)" 2

It can be observed a similar performance of the kernel-based and penalized FAR(1) predictors,
from smooth functional data, which is also comparable, considering one realization, to the performance

obtained in Table [0l from the empirical eigenvectors.

5.2.4 Wavelet—based prediction for ARH(1) processes

The approach presented in |Antoniadis and Sapatinas [2003] is now studied. Specifically, wavelet-
based regularization is applied to obtain smooth estimates of the sample paths. The projection onto the
space V7, generated by translations of the scaling function ¢y, k=0,...,27 — 1, at level J, associated
with a multiresolution analysis of H, is first considered. For a given primary resolution level jo, with

jo < J, the following wavelet decomposition at J — jo resolution levels can be computed for any projected

curve ¢y, X;, in the space Vy, fori =0,...,n—1:
290 1 J—127-1
_ i i
Py, X = E CiokPiok + E E dip Wik
k=0 j=jo k=0

Céok = (Dy, X, Pjok) H, dék = (Pv, Xi, Vjk)H-
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For i =0,...,n—1, the following variational problem is solved to obtain the smooth estimate of the

curve X; :

. 2 2
fl;ég[{u%xi—f 152+ 2@y | ;feH}, (72)

where ®,. denotes the orthogonal projection operator of H onto the orhogonal complement of V},, and
Jo

fori=0,1...n—1,

290 1 co 271
Fr=)0 digbior + D Y Btk
k=0 Jj=jo k=0

Using the equivalent sequence of norms of fractional Sobolev spaces of order s with s > 1/2, on a
suitable interval (in our case, s = d1), the minimization of (72)) is equivalent to the optimization problem,

fori=0,...,n—1,

290 —1 J—127-1 oo 291
D (@ = o)+ D0 D0 (i = B+ 30 3 A2 BT (73)
k=0 Jj=jo k=0 Jj=jo k=0

The solution to ([73) is given by, for i =0,...,n — 1,

—

a;ok == C;Uk’ kZO,l,...,2j0—1’

7
/i-\ _ 7k . . _ j
I 7(1+)\225j), J=12Jos.---,J—1, k=0,1,...,2 1,
;'.Uk =0, j>J k=0,1,...,27 — 1.

In particular, in the subsequent computations, we have considered the following value of the smooth-

ing parameter A (see|Angelini et all [2003]):

M M
2 C.-
0']- j
Jj=1 Jj=1

M —
n
The following smoothed data are then computed
2901 J-129-1
Xigm = Z ok Pjok + Z Z Bk Wik
k=0 j=jo k=0
removing the trend
1 n—1 "
an,/\M = E Z Xl7)\A4
i=0
to obtain
}/i,//\\M - Xz,)\M an,XM7 L= 05 , L — 17
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for the computation of

for x € H and

where

and

for every j > 1.

E{llp, (Xn-1) = p(Xn-1)|l}

approach, and the approach in

Fn
Thn 1 -1 77kn _ ~ oM
(53, D, 500 5T, ) (@) = 307, 500 (@06, w e H,
=1
k n—2
S| 1 o~ = =
n—1 C ~ (@5 )Y, 500 ;Yo 5o g0
j=1 i=0 “n, XM j
1 n—1
Cogn = =2 Yizu @Y 3u,

C

77/7

C

77/7

M :<

NIV

and E {7, 51 (Xo-1) = p(Xn-s

Antoniadis and Sapatinag [2003

).

Table displays the empirical truncated approximation of the expectation

I H} , respectively obtained applying our

|, in the estimation of the autocorrelation

operator p. Here, we have tested k,, = [n'/®], i = 1,2, with a; = 6, according to Assumption A3,

and ag > 401, according to

Hy: nC,‘cln — 00

in |Antoniadis and Sapatinas

200

i

, p- 149]. In particular, we have considered d; = 2.4, and ag = 10.

From the results displayed in Table[8l one can observe a similar performance for the two truncation rules

implemented, and approaches compared, for the small sample sizes tested. A similar accuracy is also

displayed by the approaches presented in

Besse et._all [2000

41
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Table 8: Truncated empirical values of E {||p(Xn-1) — p,, (Xn—1)||a}, with pi, defined in equation (6], and
of E {Hﬁn5M (Xn-1) — p(Xn,1)||H} ,» based on N = 200 simulations, for §;1 = 2.4 and 62 = 1.1, considering the

sample sizes {n, = 750 + 500(¢t — 1), t =1,...,13}, using XM, M = 50, and the corresponding k,, ; = ]—nl/ai],
for a1 = 6 and a2 = 10. Here, O.A. means Our Approach.

n kn,1 | O.A. | Antoniadis and Sapatinas [2003] || kn,2 | O.A. | Antoniadis and Sapatinas [2003]
750 3 0.070 0.091 1 0.064 0.059
1250 3 0.055 0.087 2 0.051 0.043
1750 3 0.047 0.080 2 0.045 0.039
2250 3 0.041 0.079 2 0.041 0.038
2750 3 0.037 0.073 2 0.036 0.035
3250 3 0.034 0.072 2 0.033 0.031
3750 3 0.033 0.068 2 0.033 0.029
4250 4 0.033 0.067 2 0.031 0.029
4750 4 0.032 0.066 2 0.031 0.026
5250 4 0.031 0.064 2 0.028 0.023
5750 4 0.030 0.060 2 0.020 0.019
6250 4 0.028 0.058 2 0.017 0.015
6750 4 0.028 0.056 2 0.019 0.014

6 Final comments

As noted before, in this paper, the eigenvectors of C are considered to be known in the derivation of
the results on consistency. This assumption is satisfied, e.g., when the random initial condition is given
as the solution, in the mean-square sense, of a stochastic differential equation driven by white noise
(e.g., the Wiener measure), since the eigenvectors of the differential operator involved in that equation
coincide with the eigenvectors of the autocovariance operator of the ARH(1) process. In the case where
the eigenvectors of the autocovariance operator are unknown, the numerical results displayed in Tables
[@Hg illustrate the fact that our approach displays, in terms of the empirical eigenvectors, very similar
prediction results to those obtained with the implementation of the componentwise estimators proposed
in Bosq [2000]; |Guillas [2001], with a better performance of our approach in the more unfavorable
case, corresponding to a large discretization step size, and truncation order (see Table d computed for
kn = [In(n)]).

Regarding Assumption A2, Remark [ provides an example where this assumption is satisfied.
However, our approach can still be applied in a wider range of situations. Wavelet bases are well suited

for sparse representation of functions; recent work has considered combining them with sparsity-inducing
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penalties, both for semiparametric regression (see, e.g., Wand and Ormerod [2011]), and for regression

with functional or kernel predictors (see [Wand and Ormerod [2011]; [Zhao et all [2015, 2012], among

others). The latter papers focused on ¢; penalization, also known as the lasso (see [Tibshirani [1996]),

in the wavelet domain. Alternatives to the lasso include the SCAD penalty by [Fan and Li [2001], and

the adaptive lasso by 2006]. The ¢; penalty in the elastic net criterion has the effect of shrinking
small coefficients to zero. This can be interpreted as imposing a prior that favors a sparse estimate. The

above mentioned smoothing techniques, based on wavelets, can be applied to obtain a smooth sparse

approximation X 1,.. )?n of the functional data X1, ..., X,, whose empirical auto-covariance operator
1 n—1
Co =~ Z X, ® X,
1=0
and cross-covariance operator
-2
~ 1 =L A
D, = — 2)X¢®Xz‘+1
1=

admits a diagonal representation in terms of wavelets.
In the literature, shrinkage approaches for estimating a high—dimensional covariance matrix are em-

ployed to circumvent the limitations of the sample covariance matrix. In particular, a new family of

nonparametric Stein—type shrinkage covariance estimators is proposed in [Touloumis [2015] (see also ref-

erences therein), whose members are written as a convex linear combination of the sample covariance
matrix and of a predefined invertible diagonal target matrix. These results can be applied to our frame-
work, considering the shrinkage estimators of the autocovariance and cross-covariance operators, with
respect to a common suitable wavelet basis, which can lead to an empirical diagonal representation of

both operators.

In the Supplementary Material provided (see Appendix [7]), a numerical example is provided to illus-

trate the performance of our approach, in the case of a pseudo—diagonal autocorrelation operator.

7 Supplementary Material: non—diagonal autocorrelation op-
erator

This Section provides as a numerical example where the methodology proposed in such paper still
works beyond the considered Assumption A2. In particular, this section illustrates the performance
of the proposed estimation methodology, when Assumption A2 is not satisfied, but p is close to be

diagonal in some sense. The numerical results obtained are compared to those ones derived from the

computation of the ARH(1) predictors, based on the componentwise estimators proposed in[Bosq |2000];
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Guillad |2001) where this diagonal assumption is not required. The Gaussian ARH(1) process generated

has autocorrelation operator p with coefficients p; j, with respect to the basis {¢; ® ¢p, j,h > 1}, given

by
(~4) -
)‘j ( “=/)(a b))
A ((=8) ) — €
in the diagonal, and outside of the diagonal
0.01 0.02
2 _ _ 2 _ _

Pt sor 0= LBy Pl =g a=1005, (75)
where pij ta = p? ta,j = 0 when a > 6. The coefficients of the autocovariance operator C. of the
innovation process e, with respect to the mentioned basis {¢; ® ¢y, j,h > 1}, are given by

2 2
055 =C; (1=0j;)
in the diagonal, and outside of the diagonal by
0.015 0.01
2 _ _ 2 _ _
Ojita = oz 0=1,23,45 0j.;=+5,a=12345, (76)
where ng,j IS O‘JQ» ta,j = 0 when a > 6. Table [ below displays the empirical truncated values of

E {Hp(Xn_l) — P (Xn1) HH} based on N = 200 simulations of each one of the 20 functional samples
considered, with sizes {n; = 15000 + 20000(¢t — 1), ¢ =1,...,20}, for the corresponding k,, values ob-
tained, in this case, by the rule k,, = fnl/a], with e = 6. We have considered parameter §; = 2.4 in the
definition of the eigenvalues of C'; but, in this case, as noted before, operators p and C. are non-diagonal
(see equations [TEHTA). The estimators of p and the associated plug—in predictors are computed, for the
three approaches compared, under the assumption that the eigenvectors of C are known.

As expected, in Table [@ an outperformance of the approaches in [Bosq [2000]; IGuillas [2001)] is
observed in comparison with our methodology. However, for large sample sizes, the ARH(1) prediction
methodology proposed here still can be applied with an order of magnitude of 10~2 for the empirical errors
associated with py, given in equation Thus, in the pseudodiagonal autocorrelation operator case, in
some sense, our approach could still be considered. As referred in our paper, an example is given in the
case where the autocovariance and autocorrelation operators admit a sparse representation in terms of
a suitable orthonormal wavelet basis (see, for instance, |Angelini et all [2003]; |Antoniadis and Sapatinas

[2003]).
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Table 9: Truncated empirical values of E {||p(Xn-1) — pp.” (X”—I)HH}7 for pp P given in equations (I5)-(I5)
(third column), in equations ([E0)—(GI) (fourth column), and in equations (G2)—(63) (fifth column), from the non—
diagonal data generated by equations (74)—(76]), based on N = 200 (due to high-dimensionality) simulations,
for 61 = 2.4 and é2 = 1.1, considering the sample sizes {n; = 15000 4+ 20000(¢t — 1), t =1,...,20} and the
corresponding k, = [n'/*], o = 6 values. The eigenvectors {¢;, j > 1} are assumed to be known.

n kn || Our approach | Bosq (2000) | Guillas (2001)
ni = 15000 | 4 0.581 8.94 (10) 2 0.1055
n2 = 35000 | 5 0.560 7.05 (10) 72 9.49 (10) 2
nz = 55000 | 6 0.548 6.67 (10) 2 9.14 (10) 2
na = 75000 | 6 0.532 6.24 (10) 2 8.85 (10) 2
ns = 95000 | 6 0.512 5.89 (10) 2 8.47(10) 2
ne = 115000 | 6 0.498 5.62 (10) 2 8.04 (10) 2
ny = 135000 | 7 0.495 5.57 (10) 2 7.66 (10) 2
ng = 155000 | 7 0.481 5.28 (10) 2 7.24 (10) 2
ng = 175000 | 7 0.474 5.01(10) 2 6.78 (10) >
nio = 195000 | 7 0.461 4.90 (10)~? 6.30 (10) 2
ni1 = 215000 | 7 0.442 4.69 (10) 2 6.07 (10) 2
ni2 = 235000 | 7 0.425 4.45 (10) 2 5.82 (10) 2
n1z = 255000 | 7 0.411 4.25 (10) 2 5.54 (10) 2
n1a = 275000 | 8 0.408 4.14 (10)~? 5.16 (10) 2
nis = 295000 | 8 0.381 4.09 (10) 72 4.81(10)72
nie = 315000 | 8 0.360 3.85(10) 2 4.53(10) 2
ni7 = 335000 | 8 0.349 3.56 (10) 2 4.29 (10)~2
nis = 355000 | 8 0.330 3.29(10)~? 3.98 (10) 2
nig = 375000 | 8 0.320 2.90 (10) 2 3.75 (10) 2
nao = 395000 | 8 0.318 2.62 (10) 72 3.44 (10) 72
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