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Domains of weak continuity of

statistical functionals with a view

toward robust statistics
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Abstract

Many standard estimators such as several maximum likelihood estimators or

the empirical estimator for any law-invariant convex risk measure are not (quali-

tatively) robust in the classical sense. However, these estimators may nevertheless

satisfy a weak [13, 14] or a local [22] robustness property on relevant sets of dis-

tributions. One aim of our paper is to identify sets of local robustness, and to

explain the benefit of the knowledge of such sets. For instance, we will be able to

demonstrate that many maximum likelihood estimators are robust on their natu-

ral parametric domains. A second aim consists in extending the general theory of

robust estimation to our local framework. In particular we provide a correspond-

ing Hampel-type theorem linking local robustness of a plug-in estimator with a

certain continuity condition.
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1 Introduction and problem statement

Recently, in [22] qualitative robustness of plug-in estimators was considered as a local

property, i.e., on strict subsets of the natural domain of the corresponding statistical

functional, and a respective Hampel-type criterion was proven. The latter says that

if the statistical functional is continuous for a certain topology finer than the weak

topology, then qualitative robustness holds on every set of distributions on which the

relative weak topology coincides with the finer topology. Such sets of distributions were

characterized in [22], but the provided characterization is rather technical and not at all

useful for checking the concurrence of the topologies for any given set. The aim of the

present paper is to provide more useful characterizations of such sets, and to illustrate

their use in the context of qualitative robustness. Compared to [22] we will also allow

for more general topologies on sets of distributions which will turn out to increase the

flexibility to check qualitative robustness for statistical functionals. As applications,

robustness of maximum likelihood estimators and of empirical estimators of law-invariant

convex risk measures are studied in detail. In particular we will demonstrate that many

maximum likelihood estimators are robust on their natural parametric domains and

even on broader sets. A further field of application is quantitative risk management.

In recent contributions in this field the property of robustness has been pointed out

as an important requirement for risk assessment; see, for instance, [3, 6, 14]. Again

the empirical estimators of well-founded statistical functionals like those associated with

law-invariant convex risk measures fail to be robust but might satisfy this property on

domains of interest.

To explain our intension more precisely, let E be a Polish space and M1 be the set of

all Borel probability measures on E. Consider the statistical model

(Ω,F , {Pθ : θ ∈ Θ}) := (EN,B(E)⊗N, {Pµ : µ ∈ M}), (1)

where M ⊆ M1 is any set of Borel probability measures on E and

Pµ := µ⊗N (2)

is the infinite product measure of µ. Note that the coordinate projections on EN are

i.i.d. with law µ under Pµ. For every x = (x1, x2, . . .) ∈ EN and n ∈ N, we define the

empirical probability measure

m̂n(x) := m̂n(x1, . . . , xn) :=
1

n

n∑

i=1

δxi.

Assume that M contains the set

E := {m̂n(x1, . . . , xn) : x1, . . . , xn ∈ E, n ∈ N}
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of all empirical probability measures. Let (Σ, dΣ) be a complete and separable metric

space and T : M → Σ be any map (statistical functional). The empirical probability

measure m̂n induces a nonparametric estimator T̂n : Ω → Σ for T (µ) in the statistical

model (1) through

T̂n(x) := T (m̂n(x)), x = (x1, x2, . . .) ∈ Ω, (3)

provided T̂n is (F ,B(Σ))-measurable.

The following Definition 1.1 generalizes Hampel’s classical notion of (qualitative) ro-

bustness for the sequence (T̂n) as introduced in [9]. Recall from Theorem 2.14 in [10]

that the set of all Borel probability measures on Σ equipped with the weak topology is

Polish and can be metrized by the Prohorov metric π. Moreover denote by Ow the weak

topology on M1.

Definition 1.1 For a given set M ⊆ M and µ ∈ M , the sequence of estimators (T̂n)

is said to be M-robust at µ if for every ε > 0 there exists an open neighborhood U =

U(µ, ε;M) of µ for the relative weak topology Ow ∩M such that

ν ∈ U =⇒ π(Pµ ◦ T̂ −1n ,Pν ◦ T̂ −1n ) ≤ ε for all n ∈ N.

The sequence (T̂n) is said to be robust on M if it is M-robust at every µ ∈M .

In their pioneer work, Hampel [9] and Cuevas [4] used (mainly the first part of)

Definition 1.1 with specifically M = M = M1 and established several criteria for

robustness; cf. Theorems 1–2 in [9] and Theorems 1–2 in [4]. In the present paper, our

focus will be on the second part of Definition 1.1, i.e. on robustness of (T̂n) on subsets

M of M. In this context the following two criteria are already known for M = M.

(I) If T : M → Σ is continuous for the relative weak topology Ow ∩M, then (T̂n) is

robust on M.

(II) If (T̂n) is weakly consistent and robust on M, then T : M → Σ is continuous for

the relative weak topology Ow ∩M.

Assertion (I) is a straightforward generalization of Theorem 2 in [4] (where the author

assumed M = M1) and assertion (II) is a special case of Theorem 1 in [4].

Recall that we assumed the set E of all empirical probability measures to be contained

in M. As E is dense in M1 w.r.t. the weak topology Ow (cf. Theorem A.38 in [8]

reformulated for probability measures), this implies that weak continuity of the map

T : M → Σ is a relatively strict requirement. For instance, in the case E = R the mean

functional T (µ) :=
´

xµ(dx) is not weakly continuous on E (indeed, letting xn,1 := n

and xn,i = 0 for i = 2, . . . , n and n ∈ N, the sequence (m̂n(xn1, . . . , xnn))n∈N converges

to δ0 w.r.t. Ow, but
´

x m̂(xn1, . . . , xnn)(dx) = 1 6→ 0
´

x δ0(dx)). In view of (I)–(II),
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this simple example indicates that there are only a few relevant statistical functionals

T : M → Σ for which the corresponding sequence of estimators (T̂n) is robust on the

whole domain M. Nevertheless, for general statistical functionals one might ask for

those subsets M of M on which robustness of (T̂n) holds. The following simple example

shows that this question can be reasonable.

Example 1.2 Let E = (0,∞) and E be the class of all exponential distributions with

mean θ (cf. Example 3.6), θ ∈ (0,∞). The unique maximum likelihood estimator for

the parameter θ is known to be T̂n(x) = xn, where xn = 1
n

∑n
i=1 xi for x = (x1, x2, . . .).

It can be represented by T̂n(x) = T (m̂n(x)) for the functional T (µ) =
´

xµ(dx) with

domainM = {µ ∈ M1 :
´

|x|µ(dx) <∞} and state space Σ = (0,∞). Since T is weakly

consistent by the law of large numbers but not weakly continuous on M, assertions (I)–

(II) imply that the sequence (T̂n) is not robust on M. However, in Subsection 4.1.2

we will see that our results yield robustness of (T̂n) on relatively large subsets of M,

in particular on E . That means that the maximum likelihood estimator is robust at

least against small deviations within the underlying parametric set of distributions E .

This statement could not be derived in the conventional theory of robustness. Note

that robustness on E is of interest if one starts from the premise that both the target

distribution µ and the distribution ν underlying the observations lie in E .

In fact the maximum likelihood estimator is even robust against certain deviations

out of E , even though not against arbitrary deviations within the whole domain M.

For instance, at the end of Subsection 4.1.2 we will see that the maximum likelihood

estimator is also robust on the broader class Γ of all Gamma distributions (with loca-

tion parameter 0). Robustness on Γ ) E is of interest if one assumes that the target

distribution lies in E (so that the maximum likelihood principle is reasonable) but the

distribution ν underlying the observations may lie in the broader class Γ. ✸

The issue of robustness on subsets was approached in Section 3.1 of [22]. The latter

paper develops further the theory of [13, 14] and provides the following criteria (i)–(ii),

where M is assumed to be contained in the set Mψ
1 of all µ ∈ M1 with

´

ψ dµ <

∞ for some given continuous function ψ : E → [0,∞). By ψ-weak topology Oψ on

Mψ
1 we mean the coarsest topology for which all mappings µ 7→

´

f dµ, f ∈ Cψ are

continuous, where Cψ refers to the space of all continuous functions f : E → R for which

supx∈E |f(x)/(1+ψ(x))| <∞. For E = Rd and ψ(x) := ‖x‖p with p ≥ 1, the set Mψ
1 is

just the set of all Borel probability measures on E = Rd with finite p-th absolute moment

and the ψ-weak topology is metrizable by the Lp-Wasserstein metric; cf. Lemma 8.3 in

[1].

(i) If T : M → Σ is continuous for the relative ψ-weak topology Oψ ∩M, then (T̂n)

is robust on every subset M ⊆ M with Oψ ∩M = Ow ∩M .
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(ii) If (T̂n) is weakly consistent on M and robust on every subset M ⊆ M with

Oψ ∩M = Ow ∩M , then T : M → Σ is continuous for the ψ-weak topology Oψ.

In general the ψ-weak topology Oψ is finer than the relative weak topology Ow∩Mψ
1 ,

and the two topologies coincide for ψ ≡ 1. Thus the criteria (i)–(ii) generalize the criteria

(I)–(II). Assertion (i) says that for ψ-weakly continuous functionals T : M → Σ the

sequence (T̂n) is robust on every subset M of M for which the relative ψ-weak topology

Oψ ∩M and the relative weak topology Ow ∩M coincide. Lemma 3.4 of [22] provides

the following characterization of those subsets M of Mψ
1 for which Oψ ∩M = Ow ∩M

holds: the latter identity holds if and only if M is locally uniformly ψ-integrating in the

sense of Definition 2.2 below. On the one hand, this characterization is the basis for the

proof of the criteria (i)–(ii) and is also relevant for robustness of more general estimators

than plug-in estimators as defined in (3); see [21] for an example. On the other hand,

the condition “locally uniformly ψ-integrating” is rather technical and not at all useful

for checking the identity Oψ∩M = Ow∩M for any given setM . The aim of the present

paper is to provide more useful characterizations of those subsets M of Mψ
1 for which

the identity Oψ ∩M = Ow ∩M holds, and to illustrate their use. For the sake of brevity

we will refer to any M ⊆ Mψ
1 satisfying the condition Oψ ∩M = Ow ∩M as w-set in

Mψ
1 .

Theorem 2.3 below gives three further equivalent conditions for a set to be a w-set in

Mψ
1 . Based on this theorem, we will obtain in Section 3 several specific examples for w-

sets inMψ
1 for various choices of ψ. Among others, we will investigate popular parametric

families of distribution such as normal, Pareto, Gumbel, or Gamma distributions, and

also consider sets of distributions derived from Fréchet classes of univariate marginal

distributions via aggregation operators like the sum. The latter sets of distributions are

of particular interest in the context of risk assessment. The results of Section 3 together

with assertion (i) above (and the results of Section 4) in particular justify Example 1.2. In

Section 4 we will provide examples for ψ-weakly continuous functionals T ; we will study

statistical functionals underlying the maximum likelihood method and law-invariant

convex risk measures. In Section 4 we will also discuss the property of robustness of

the corresponding plug-in estimators (T̂n) on subsets of T ’s domain. Sections 5 and 6

contain longer proofs of our results.

Finally, note that we will in fact work with a slightly more general topology than Oψ,

namely with the so-called (ψk)-weak topology O(ψk) to be introduced at the beginning

of Section 2. This generalization does not have priority, but the respective theory covers

some more examples than the theory for the ψ-weak topology Oψ. In particular, we

need to establish a corresponding extension of the criteria (i)–(ii), which can be found

in Theorem 2.6.
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2 Concurrence of weak and (ψk)-weak topologies and

applications in robust statistics

As before let E be a Polish space and use the notation introduced in Section 1. Let

(ψk) be a sequence of gauge functions, i.e., a sequence of continuous functions ψk :

E → [0,∞). Let Cψk
be the space of all continuous functions f : E → R for which

supx∈E |f(x)/(1+ψk(x))| <∞. Let M(ψk)
1 be the set of all Borel probability measures µ

on E for which
´

ψk dµ <∞ for every k ∈ N. The (ψk)-weak topology O(ψk) on M(ψk)
1 is

defined to be the coarsest topology for which all mappings µ 7→
´

f dµ, f ∈ Cψk
, k ∈ N,

are continuous. When ψk = ψ for all k ∈ N, we have M(ψk)
1 = Mψ

1 and O(ψk) = Oψ.

Lemma 2.1 The set M(ψk)
1 equipped with the (ψk)-weak topology is a Polish space. In

addition the (ψk)-weak topology is metrizable by the metric

d(ψk)(µ, ν) := dw(µ, ν) +
∞∑

k=1

2−k
(∣∣∣
ˆ

ψk dµ−

ˆ

ψk dν
∣∣∣ ∧ 1

)
, (4)

where dw is any metric for the weak topology. Moreover, for every (µn)n∈N0
⊂ M(ψk)

1 the

following statements are equivalent.

(a) µn → µ0 (ψk)-weakly.

(b) µn → µ0 weakly and
´

ψk dµn →
´

ψk dµ0 for every k ∈ N.

In Theorem 2.3 below we will specify those subsets of M(ψk)
1 on which the relative

(ψk)-weak topology and the relative weak topology coincide. We will use the following

terminology, which extends Definition 2.12 in [14] and Definition 3.1 in [22].

Definition 2.2 A set M ⊆ M1 is said to be locally uniformly (ψk)-integrating if for

every µ ∈ M , ε > 0, and k ∈ N there exist a > 0 and a weakly open neighborhood U of

µ such that

ν ∈M ∩ U =⇒

ˆ

ψk1{ψk≥a} dν ≤ ε.

The set M is said to be uniformly (ψk)-integrating if for every ε > 0 and k ∈ N there

exists some a > 0 such that

sup
µ∈M

ˆ

ψk1{ψk≥a} dµ ≤ ε.

If (ψk) consists of a single gauge function, say ψ, we shall speak of (locally) uniformly

ψ-integrating sets instead of (locally) uniformly (ψk)-integrating sets.
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Note that a set M is (locally) uniformly (ψk)-integrating if and only if it is (locally)

uniformly ψk-integrating for every k ∈ N. Of course, any uniformly (ψk)-integrating set

M is also locally uniformly (ψk)-integrating, and any locally uniformly (ψk)-integrating

set M is a subset of M(ψk)
1 . If all ψk are bounded, then the set M1 coincides with M(ψk)

1

and is uniformly (ψk)-integrating.

Let us now turn to the characterization of those subsets of M(ψk)
1 on which the relative

(ψk)-weak topology and the relative weak topology coincide. For ψ-weak topologies, the

equivalence (a)⇔(b) in the following theorem is already known from Lemma 3.6 in [22].

Theorem 2.3 Let (ψk) be any sequence of gauge functions and M ⊆ M(ψk)
1 be given.

Then the following conditions are equivalent:

(a) O(ψk) ∩M = Ow ∩M .

(b) M is locally uniformly (ψk)-integrating.

(c) Every weakly compact subset of M is uniformly (ψk)-integrating.

(d) Every sequence in M which converges weakly in M is uniformly (ψk)-integrating.

(e) For every sequence (µn) ⊆M for which µn converges weakly to µ0 the convergence
´

ψk dµn →
´

ψk dµ0 holds for all k ∈ N.

Definition 2.4 Let (ψk) be any sequence of gauge functions and M ⊆ M(ψk)
1 . Then M

is said to be a w-set in M(ψk)
1 if condition (a) (and thus each of the equivalent conditions

(a)–(e)) in Theorem 2.3 holds.

Remark 2.5 Let (ψk) and (ψ̃k) be sequences of gauge functions satisfying ψ̃k ≤ ψk

pointwise for every k ∈ N. Then M(ψk)
1 ⊆ M(ψ̃k)

1 , and the (ψk)-weak topology is finer

than the (ψ̃k)-weak topology on M(ψk)
1 . In particular, every w-set in M(ψk)

1 is also a

w-set in M(ψ̃k)
1 . Moreover, if ψk ≡ 1 for every k ∈ N, then every subset of M1 = M(ψk)

1

is a w-set. ✸

We obtain the following generalization of Hampel’s theorem, where by weak consis-

tency of (T̂n) on M we mean that limn→∞ Pµ[|T̂n − T (µ)| ≥ η] = 0 for all η > 0 and

µ ∈ M.

Theorem 2.6 Let the statistical model (Ω,F , {Pµ : µ ∈ M}) (with M ⊆ M(ψk)
1 ), the

functional T : M → Σ, and the sequence of estimators (T̂n) be as introduced in Section 1.

Then the following two assertions hold:
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(i) If for any w-set M in M(ψk)
1 with M ⊆ M the functional T is continuous at every

µ ∈M for the relative (ψk)-weak topology O(ψk)∩M, then (T̂n) is robust on M . In

particular, if T is continuous for the relative (ψk)-weak topology O(ψk) ∩M, then

(T̂n) is robust on every w-set M in M(ψk)
1 with M ⊆ M.

(ii) If (T̂n) is weakly consistent on M and robust on every w-set M in M(ψk)
1 with

M ⊆ M, then T is continuous for the relative (ψk)-weak topology O(ψk) ∩M.

In the case where ψk = ψ for all k ∈ N, Theorem 2.6 is already known from Theorem

3.8 in [22]; previous versions of this result were obtained in [13, 14]. The extension

in terms of the general notion of (ψk)-weak topology is motivated by the example of

maximum likelihood estimation which will be studied in Subsection 4.1. In particular,

in order to establish local robustness for the maximum likelihood estimator of the scale

parameter of Gumbel distributions the possibility to use nonconstant sequences of gauge

functions will prove to be convenient; cf. Subsection 4.1.3 below. Likewise, it will turn

out that the full generality of Theorem 2.6 is useful when investigating local robustness

of certain law-invariant convex risk measures; cf. the discussion subsequent to Corollary

4.19.

In many situations the functional T : M → Σ can be shown to be (ψk)-weakly

continuous on the whole domain M. In some cases, however, it is beneficial that in

condition (i) of Theorem 2.6 we only require continuity of T at every point of M . To

give an example, let E = R, ψk = ψ ≡ 1 (hence M(ψk)
1 = M1), α ∈ (0, 1), and

T : M1 → R be the functional that assigns to a Borel probability measure its (lower)

α-quantile. This (quantile) functional T is (ψ-) weakly continuous at every point of

the set M of all Borel probability measures with a unique α-quantile, but not weakly

continuous on M1.

3 Examples of w-sets in M
(ψk)
1

The following lemma provides a simple but general class of w-sets in M(ψk)
1 .

Lemma 3.1 Every set M ⊆ M(ψk)
1 that is relatively compact for the (ψk)-weak topology

is a w-set in M(ψk)
1 .

Proof It suffices to show that on M weak convergence implies (ψk)-weak convergence.

So let us suppose that (µn) is a sequence in M that converges weakly to some µ ∈ M .

Then by (ψk)-weak compactness, every subsequence of (µn) has a subsequence that

converges (ψk)-weakly toward some ν ∈ M(ψk)
1 . Since (ψk)-weak convergence implies

weak convergence, we must have ν = µ. It hence follows that µn → µ also (ψk)-weakly

which completes the proof. ✷

The preceding lemma has the following consequence.
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Proposition 3.2 Suppose that (ψk) is a sequence of gauge functions such that all sets

of the form {ψk+1 ≤ nψk} are compact for k, n ∈ N. Then M(ψk)
1 is (ψk)-weakly compact

and thus itself a w-set.

Proof Clearly, M(ψk)
1 is (ψk)-weakly closed, while relative compactness follows from

Lemma 5.1 (d) by taking φk := ψk+1. Lemma 3.1 finally gives that M(ψk)
1 is a w-set. ✷

The most interesting case is where E is non-compact. In this case Proposition 3.2

is not applicable to constant sequences of gauge functions (i.e. ψk = ψ for all k ∈ N),

because then the sets {ψ ≤ nψ} = E, n ∈ N, are not compact. However, as an immediate

consequence of condition (e) in Theorem 2.3 we obtain the following alternative device.

Proposition 3.3 Let Θ be a topological space, and µθ be an element of M(ψk)
1 for every

θ ∈ Θ. Then the set MΘ := {µθ : θ ∈ Θ} is a w-set in M(ψk)
1 if the following two

conditions are satisfied:

(a) For every sequence (θn)n∈N0
in Θ, weak convergence of µθn to µθ0 implies θn → θ0.

(b) For every sequence (θn)n∈N0
in Θ, convergence of θn to θ0 implies

´

ψk dµθn →
´

ψk dµθ0 for all k ∈ N.

3.1 Parametric classes of distributions

In this section, we consider a few examples in which parametric classes of probability

distributions belong to M(ψk)
1 for suitably chosen sequences (ψk) satisfying the hypothe-

ses of Proposition 3.2 or Proposition 3.3. Note that in view of Remark 2.5, the assertions

in the following examples can be reformulated for many other (coarser) topologies; see

the second part of Example 3.6 for an illustration.

Example 3.4 Let E = Rd equipped with the euclidean norm ‖ ·‖ and N be the class of

all d-dimensional normal distributions N(m,Σ), where m ∈ Rd and Σ is a semidefinite

d× d covariance matrix. If we let ψk(x) := exp(λk‖x‖
αk), where λk ↑ ∞ and αk ↑ 2, we

have N ⊆ M(ψk)
1 , and Proposition 3.2 yields that N is a w-set in M(ψk)

1 . ✸

Example 3.5 For fixed parameters α > 0 and xmin > 0, let Pα,xmin
be the class of

type-1 Pareto distributions with shape parameter a ≥ α. That is, Pα,xmin
consists of all

Borel probability measures on R with Lebesgue density

fa(x) =
a

xmin

(xmin

x

)a+1

1[xmin,∞)(x)

for some a ≥ α. If we let ψk(x) := |x|pk , where pk > 0 and pk ↑ α, we have Pα,xm ⊆

M(ψk)
1 , and Proposition 3.2 yields that Pα,xmin

is a w-set in M(ψk)
1 . ✸
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Example 3.6 Let Γ denote the class of all Gamma distributions with location param-

eter 0. That is, Γ is the class of all Borel probability measures on (0,∞) with Lebesgue

density

fκ,θ(x) =
xκ−1e−x/θ

θκ Γ(k)

for some θ, κ > 0. When taking ψk(x) := xk or ψk(x) := eλkx
βk where λk ↑ ∞ and βk ↑ 1,

we have Γ ⊆ M(ψk)
1 , and Proposition 3.2 yields that Γ is a w-set in M(ψk)

1 .

When the parameter κ is fixed and set to 1, the Lebesgue density fκ,θ simplifies to

the Lebesgue density

fθ(x) := f1,θ(x) =
e−x/θ

θ
of the exponential distribution to the parameter θ > 0, and the corresponding class of

all exponential distributions will be denoted by E . Again by Proposition 3.2 we obtain

that E is a w-set in M(ψk)
1 for the sequences (ψk) of gauge functions mentioned above. In

Subsection 4.1.2 we will consider the single gauge function ψ(x) := x which is dominated

by ψk(x) := eλkx
βk (with λk, βk as above) for every k. Thus E ⊆ M(ψk)

1 ⊆ Mψ
1 , and by

Remark 2.5 we obtain that E is also a w-set in Mψ
1 . ✸

Example 3.7 Let G denote the class of all Gumbel distributions, i.e., the class of all

Borel probability measures Ga on R with Lebesgue density

fa(x) = ae−ax−e
−ax

for some a > 0. By letting ψk(x) := |x|k or ψk(x) := eλk|x|
βk where λk ↑ ∞ and βk ↑ 1,

we obtain that G ⊆ M(ψk)
1 , and Proposition 3.2 yields that G is a w-set in M(ψk)

1 .

In Subsection 4.1.3 we will consider the gauge functions ψk(x) := | log ak−akx−e−akx|

for some sequence (ak) representing (0,∞)∩Q. Since for a > 0 the moment generating

function of Ga is well defined on (−∞, 1/a) enclosing 0, the integrals
´

ã|x|e−ax−e
−ax

dx

and
´

e−ãxe−ax−e
−ax

dx are finite for any a, ã > 0, and thus Ga ∈ M(ψk)
1 for all a > 0. We

now verify conditions (a)–(b) of Proposition 3.3 to show that G is also a w-set in M(ψk)
1

for this choice of gauge functions.

(a): Let (Gan)n∈N be any sequence in G which weakly converges to some distribution

Ga0 ∈ G. Then corresponding sequence (Fan)n∈N0
of distribution functions satisfies

e−e
−anx

= Fan(x) −→ Fa(x) = e−e
−ax

for all x ∈ R.

Thus necessarily an → a0.

(b): Let (an)n∈N be a sequence in (0,∞) which converges to some a0 ∈ (0,∞). Set

a := infn∈N an and a := supn∈N an, and note that a > 0 and a <∞. For any x ∈ R, the

mapping a 7→ −ax − e−ax is nonincreasing on (0,∞). Thus

sup
n∈N

ψk(x) ane
−anx−e−anx

≤ ψk(x) a e
−ax−e−ax

for every x ∈ R.

10



Hence by Ga ∈ M(ψk)
1 , we may apply the dominated convergence theorem to conclude

that for every k ∈ N,

ˆ

ψk(x)Gan(dx) =

ˆ

ψk(x) ane
−anx−e−anx

dx

−→

ˆ

ψk(x) a0e
−a0x−e−a0x

dx =

ˆ

ψk(x)Ga0(dx).

As we have shown that conditions (a)–(b) of Proposition 3.3 are satisfies, the propo-

sition ensures that G is indeed a w-set in M(ψk)
1 . ✸

3.2 Images of Fréchet classes

In this section we consider certain classes M that consist of the image measures of

the probability measures in a given Fréchet class w.r.t. fixed one-dimensional marginal

distributions. The motivation for studying this examples is the notion of aggregation

robustness recently introduced by Embrechts et al. [6]; see also Subsection 4.2 below.

Let E = Rr be endowed with the Euclidean norm ‖ · ‖. For given Borel probability

measures µ1, . . . , µd on R denote by M(d;µ1, . . . , µd) the set of all Borel probability

measures on Rd whose one-dimensional marginal distributions are µ1, . . . , µd. The set

M(d;µ1, . . . , µd) is sometimes called Fréchet class associated with µ1, . . . , µd. For any

Borel measurable map Ad : R
d → Rr let

M =M(µ1, . . . , µd;Ad) :=
{
µ ◦ A−1d : µ ∈ M(d;µ1, . . . , µd)

}
⊆ M1 (5)

be the class of the images under Ad of all probability measures from M(d;µ1, . . . , µd).

In the following Example 3.8 we give a few examples of maps Ad we have in mind.

All these maps are Lipschitz continuous and thus satisfy condition (a) of Proposition

3.9 ahead. This proposition will provide a general criterion for determining whether

M(µ1, . . . , µd;Ad) is a w-set.

Example 3.8 A simple but relevant example for a map Ad : Rd → Rd is the identity

map:

(i) Ad(x) := x.

In this case the set M(µ1, . . . , µd;Ad) defined by (5) is nothing but the Fréchet class

M(d;µ1, . . . , µd) itself. Examples for maps Ad : Rd → R that are relevant in risk

management and insurance are given by

(ii) Ad(x1, . . . , xd) :=
∑d

i=1 xi,

(iii) Ad(x1, . . . , xd) := max{x1, . . . , xd},

11



(iv) Ad(x1, . . . , xd) :=
∑d

i=1(xi − ti)
+ for thresholds t1, . . . , td > 0,

(v) Ad(x1, . . . , xd) := (
∑d

i=1 xi − t)+ for a threshold t > 0;

see, for instance, [15, p. 248]. For an application of (ii) see Subsection 4.2 below. ✸

Let us now turn over to our main criterion to check whether the set M defined in (5)

is a w-set in M(ψ̃k)
1 . Here we use the notation ψ̃k(·) := ψk(‖ · ‖). Note that ψ̃k = ψk,

k ∈ N, when r = 1.

Proposition 3.9 Let Ad : Rd → Rr be any Borel measurable map. Let (ψk) be any

sequence of gauge functions on R that are all convex and even, and consider the sequence

of gauge functions (ψ̃k) on Rr with ψ̃k as above. Further assume that the following

assertions hold:

(a) There exist constants b, c > 0 such that ‖Ad(x)‖ ≤ b + c
∑d

i=1 |xi| for all x =

(x1, . . . , xd) ∈ Rd.

(b) For every k ∈ N there exist ℓk ∈ N and ck > 0 such that ψk((d+ 1)cx) ≤ ckψℓk(x)

for all x ∈ R, where the constant c is given by (a).

(c) µ1, . . . , µd ∈ M(ψk)
1 .

Then M defined by (5) is uniformly (ψ̃k)-integrating, and thus it is a w-set in M(ψ̃k)
1 .

4 Examples for (ψk)-weakly continuous functionals T

In this section, we will discuss continuity of some relevant statistical functionals w.r.t.

the (ψk)-weak topology for suitable sequences of gauge functions (ψk). In Section 4.1 we

will consider statistical functionals which underly the maximum likelihood estimation

principle. In Section 4.2 we will consider statistical functionals associated with so-called

risk measures. The latter play an important role in quantitative risk management; see,

for instance, [15, 19].

4.1 Maximum likelihood functionals

Let Θ ⊆ Rd and µθ be a Borel probability measure on E for every θ ∈ Θ. Let

(Ω,F) := (EN,B(E)⊗N) and Pθ := µ⊗Nθ for every θ ∈ Θ.

Then (Ω,F , {Pθ : θ ∈ Θ}) is a parametric statistical product model. We will assume that

our parametric statistical model is dominated. That is, we assume that there is some
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σ-finite measure λ on (E,B(E)) (called the dominating measure) such that for every

θ ∈ Θ the law µθ is absolutely continuous w.r.t. λ with Radon–Nikodym derivative

fθ :=
dµθ
dλ

.

In particular, when Xi denotes the i-th coordinate projection on Ω = EN, the law

Pθ ◦ (X1, . . . , Xn)
−1 = µ⊗nθ of a sample of size n is absolutely continuous w.r.t. λ⊗n with

Radon–Nikodym derivative dµ⊗nθ /dλ⊗n satisfying

dµ⊗nθ
dλ⊗n

(x1, . . . , xn) =

n∏

i=1

fθ(xi) =: Ln(x1, . . . , xn; θ) for all x1, . . . , xn ∈ E

for every θ ∈ Θ and n ∈ N.

By definition, a maximum likelihood estimator T̂n for the parameter θ based on a

sample of size n satisfies

T̂n(x) = T̂n(x1, . . . , xn) ∈ argmax
θ∈Θ

Ln(x1, . . . , xn; θ) for all x = (x1, x2, . . .) ∈ Ω (6)

for every θ ∈ Θ. Let us assume that fθ > 0 on E for every θ ∈ Θ. Then condition (6) is

equivalent to

T̂n(x) = T̂n(x1, . . . , xn) ∈ argmax
θ∈Θ

1

n

n∑

i=1

log fθ(xi) for all x = (x1, x2, . . .) ∈ Ω.

In particular, if M ⊆ M1 contains the set E of all empirical probability measures and

T : M → Θ is a functional satisfying

T (µ) ∈ argmax
θ∈Θ

ˆ

log fθ dµ for all µ ∈ M, (7)

then we can define a maximum likelihood estimator by

T̂n(x) = T̂n(x1, . . . , xn) = T (m̂n(x1, . . . , xn)) for all x = (x1, x2, . . .) ∈ Ω. (8)

Inspired by the representation (8) of the maximum likelihood estimator we introduce

the following terminology. For any subset M ⊆ M1 containing E, a map T : M → Θ is

called maximum likelihood functional associated with the statistical model (Ω,F , {Pθ :

θ ∈ Θ}) if for every µ ∈ M the integrals
´

| log fθ| dµ, θ ∈ Θ, are finite and (7) holds.

Remark 4.1 Although it is not crucial for our purposes, note that a maximum likeli-

hood functional T evaluated at µθ takes the parameter θ as its value, i.e., θ provides a

maximizer of the mapping ϑ 7→
´

log fϑ dµθ on Θ. Moreover, θ is the unique maximizer
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as soon as µθ 6= µϑ for all ϑ ∈ Θ \ {θ}. Indeed, since we assumed fθ > 0 for every θ ∈ Θ,

the strict concavity of the logarithm and Jensen’s inequality yield
ˆ

log fϑ dµθ −

ˆ

log fθ dµθ =

ˆ

log
(fϑ
fθ

)
dµθ < log

(ˆ fϑ
fθ
dµθ

)
= log(1) = 0

for every ϑ ∈ Θ for which fϑ 6= fθ; in the third step we have used the fact that

fϑ/fθ = dµϑ/dµθ. ✸

In view of (8) the minimal domain of a maximum likelihood functional T : M → Θ is

M = E, where as before E refers to the set of all empirical probability measures on E.

In order to apply Theorem 2.6 to maximum likelihood estimators, the domain M has

to be chosen so large that it contains both E and the set

MΘ := {µθ : θ ∈ Θ}.

Indeed, if E ∪ MΘ ⊆ M ⊆ M(ψk)
1 and a maximum likelihood functional T : M → Θ

is (ψk)-weakly continuous for some sequence of gauge functions (ψk), then Theorem 2.6

shows that the corresponding sequence of maximum likelihood estimators (T̂n) is robust

on every w-set M in M(ψk)
1 with M ⊆ M (in particular with M ⊆ MΘ). Recall that

robustness of (T̂n) on M means that for every µ ∈ M and ε > 0 there exists an open

neighborhood U = U(µ, ε;M) of µ for the relative weak topology Ow ∩M such that

π(Pµ ◦ T̂ −1n ,Pν ◦ T̂ −1n ) ≤ ε for all ν ∈ U and n ∈ N.

Remark 4.2 In many specific situations the set MΘ itself can be shown to be a w-set

in M(ψk)
1 ; see Examples 3.4 through 3.7. In this case the sequence (T̂n) of maxium

likelihood estimators is robust on MΘ. ✸

Note that robustness on MΘ is of interest if one starts from the premise that both

the target distribution µ and the distribution ν underlying the observations lie in the

parametric class of distributions MΘ. On the other hand, robustness on M ) MΘ is

of interest if one assumes that the target distribution lies in MΘ (so that the maximum

likelihood principle is reasonable) but the distribution ν underlying the observations

may lie in a broader class M (nested between MΘ and M).

4.1.1 (ψk)-weak continuity of maximum likelihood functionals

Here we are going to investigate a fixed maximum likelihood functional T : M → Θ for

continuity w.r.t. a suitable (ψk)-weak topology. To this end, let Θ be an open convex

subset of Rd equipped with the Euclidean norm ‖ · ‖. We will assume throughout that

the following three conditions hold:

fθ(x) > 0 for every θ ∈ Θ and x ∈ E. (9)
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x 7−→ log fθ(x) is continuous for every θ ∈ Θ. (10)

θ 7−→ log fθ(x) is concave for every x ∈ E. (11)

In general we cannot expect that the maximum likelihood functional T is weakly con-

tinuous. On the other hand, it should often be possible to find a sequence of gauge

functions (ψk) for which T is (ψk)-weakly continuous. At this abstract level the most

obvious candidates for the sequence (ψk) is built upon a sequence (log fθk(·)) with (θk)

a sequence in Θ representing Θ ∩Qd. For instance, we may and do choose

ψk(x) := | log fθk(x)|, x ∈ E. (12)

For every µ ∈ M1 with
´

| log fθ| dµ < ∞ for all θ ∈ Θ we can now define a map

Lµ : Θ → R by

Lµ(θ) :=

ˆ

log fθ dµ.

Note that Lµ is concave by (11) and thus continuous. Moreover, T (µ) is a maximum

point of Lµ by the characteristic property (7) of the functional T .

Theorem 4.3 Let M ⊆ M1 and T : M → Θ be a maximum likelihood functional.

Assume that (9)–(11) hold, and let the function ψk be defined by (12) for every k ∈ N.

Let µ ∈ M be such that the map Lµ has a unique maximum point. Then T (µn) → T (µ)

for any sequence (µn) ⊂ M which satisfies Lµn(θk) → Lµ(θk) for every k ∈ N. In

particular, T is continuous at µ w.r.t. the (ψk)-weak topology.

Remark 4.4 Let the gauge functions ψk be defined as in (12). Furthermore, let k0 ∈ N

such that for every k ∈ N there exist constants Bk ≥ 0 and Ck > 0 with ψk ≤ Bk +

Ckψk0. So ψk := Bk + Ckψk0 defines a new sequence (ψk) of gauge functions such that

M
ψk0

1 = M(ψk)
1 = M(ψk)

1 . Then on the one hand by the genuine definition of (ψk)-weak

topology, the (ψk)-weak topology is finer than the (ψk)-weak topology. On the other

hand by Lemma 2.1 the (ψk)-weak topology is coarser than the ψk0-weak topology. In

particular the (ψk)-topology coincides with the ψk0-weak topology so that we may replace

in Theorem 4.3 the (ψk)-weak topology with the ψk0-weak topology. ✸

We round out Section 4.1 with two specific examples illustrating Theorem 4.3.

4.1.2 Example exponential distribution

Let specifically E = (0,∞), Θ = (0,∞) and MΘ := {Expθ : θ ∈ (0,∞)} be the class of

all exponential distributions Expθ with parameter θ. In this case we have

log fθ(x) = − log θ − x/θ for all θ ∈ (0,∞) and x ∈ (0,∞). (13)
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If we choose the sequence of gauge functions (ψk) by (12), then we obtain

ψk(x) = | log fθk(x)| = | − log θk − x/θk| for all x ∈ (0,∞) and k ∈ N (14)

for some sequence (θk) in Θ = (0,∞) representing (0,∞)∩Q. It can easily be seen from

(13) that conditions (9)–(11) hold. Since | log fθ| ≤ Bθ + Cθψk0 for Bθ := | log θ|, Cθ :=

1/θ and those k0 for which θk0 = 1, we may observe M
ψk0

1 =
⋂
θ>0M

| log fθ|
1 = M(ψk)

1 .

Moreover, by Remark 4.4, the (ψk)-weak topology coincides with the ψ-weak topology

on M(ψk)
1 = Mψ

1 , where ψ := ψk0 , i.e.

ψ(x) := x, x ∈ (0,∞). (15)

For µ ∈ Mψ
1 the map Lµ : (0,∞) → R defined by

Lµ(θ) :=

ˆ

log fθ dµ =

ˆ

(− log θ − x/θ)µ(dx)

has a unique maximum point, namely θ̂ =
´

xµ(dx). In particular, there exists exactly

one maximum likelihood functional on Mψ
1 . That is, there exists exactly one functional

T : Mψ
1 → (0,∞) satisfying (7). In the present setting, (7) and Remark 4.1 imply that

T (µ) = argmaxθ∈(0,∞)

´

(− log θ−x/θ)µ(dx) for all µ ∈ Mψ
1 . Now, combining Theorem

4.3 with Remark 4.4 we obtain immediately the following result.

Proposition 4.5 The unique maximum likelihood functional T : Mψ
1 → (0,∞) is ψ-

weakly continuous.

In view of part (i) of Theorem 2.6, Proposition 4.5 and the second part of Example 3.6

together imply the following corollary, where robustness is understood as in Definition

1.1.

Corollary 4.6 The sequence of maximum likelihood estimators (T̂n) is robust on MΘ.

The preceding corollary shows that the maximum likelihood estimator for the pa-

rameter of the exponential distribution is robust on its natural parametric domain, i.e.,

on the class MΘ of all exponential distributions. To see that it is even robust on, for

instance, the broader class of all Gamma distributions (with location parameter 0), let

the sequence of gauge function (ψk) no longer be given by (14) but rather by

ψk(x) = |x|k for all x ∈ R and k ∈ N.

Then we clearly have MΘ ⊂ M(ψk)
1 ⊂ Mψ

1 for the single gauge function ψ defined in

(15). In particular, by Proposition 4.5 the restriction of the unique maximum likelihood

functional T to M(ψk)
1 is clearly (ψk)-weakly continuous. Together with part (i) of

Theorem 2.6 and the first part of Example 3.6 this implies the following corollary.

Corollary 4.7 The sequence of maximum likelihood estimators (T̂n) is robust on the

class Γ of all Gamma distributions (with location parameter 0) introduced in Example

3.6.

16



4.1.3 Example Gumbel distribution

Let specifically E = R, Θ = (0,∞) and MΘ := {Ga : a ∈ (0,∞)} be the class of all

Gumbel distributions Ga = G0,a with location parameter 0 and scale parameter 1/a for

a > 0; cf. Example 3.7. In this case we have

log fa(x) = log a− ax− e−ax for all a ∈ (0,∞) and x ∈ R.

It is easily seen that conditions (9)–(11) are satisfied. Let the sequence of gauge function

(ψk) be given by (12), i.e.

ψk(x) := | log fak(x)| = | log ak − akx− e−akx|, x ∈ R, k ∈ N

for some sequence (ak) in Θ = (0,∞) representing (0,∞) ∩Q. For this choice of gauge

functions we can observe the following.

Lemma 4.8
⋂
a>0 M

| log fa|
1 = M(ψk)

1 .

Proof Let 0 < a < a. Then by the de l’Hospital rule we may observe

lim
x→∞

log fa(x)

log fa(x)
= lim

x→∞

−a + ae−ax

−a + ae−ax
=
a

a
,

and

lim
x→−∞

axeax = 0 = lim
x→−∞

axeax.

In addition

lim
x→−∞

log fa(x)

log fa(x)
= lim

x→−∞

log a eax − axeax − 1

log a eax − axeax − e(a−a)x−
= 0,

where in the last step the assumption a < a has been invoked. Then

lim
x→−∞

| log fa(x)|

| log fa(x)|
= 0 and lim

x→∞

| log fa(x)|

| log fa(x)|
=
a

a

so that for some δ > 0

| log fa(x)| ≤ 2
a

a
| log fa(x)| if |x| > δ. (16)

Now let µ ∈ M| log fa(x)|
1 . Firstly by (16),

ˆ

1R\[−δ,δ](x)| log fa(x)| µ(dx) <∞.

Secondly in view of (10)
ˆ

1[−δ,δ](x)| log fa(x)| µ(dx) ≤ sup
x∈[−δ,δ]

| log fa(x)| µ([−δ, δ]) <∞.
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Hence µ ∈ M| log fa|
1 . Since for any a > 0 there is some k ∈ N such that a < ak, we may

conclude
⋂
a>0 M

| log fa|
1 = M(ψk)

1 . ✷

Using δ0 to denote the Dirac measure at 0, Proposition 4.10 below shows that there

is exactly one maximum likelihood functional on

M := M(ψk)
1 \ {δ0}

and that this functional is (ψk)-weakly continuous. The proof of Proposition 4.10 relies

on Theorem 4.3 and the following lemma.

Lemma 4.9 For every µ ∈ M, the map Lµ : (0,∞) → R defined by

Lµ(a) :=

ˆ

log fa dµ =

ˆ

(log a− ax− e−ax)µ(dx)

has a unique maximum point.

Proof The function a 7→ log fa(x) is strictly concave for every x ∈ R, and so a 7→ Lµ(a)

is also strictly concave for every µ ∈ M. We will show below that for µ 6= δ0,

lim sup
a↓0

Lµ(a) = −∞ and lim sup
a↑∞

Lµ(a) = −∞, (17)

and so Lµ has indeed a unique maximum point. To show (17), we first note that

log fa(x) ≤ log a holds for all x ∈ R and a ∈ (0,∞). It follows that lim supa↓0 Lµ(a) ≤

lim supa↓0 log a = −∞. To prove the second identity in (17), note that

1

a

ˆ (
ax+ e−ax

)
µ(dx) ≥

ˆ

[0,∞)

xµ(dx) +

ˆ

(−∞,0)

(
x+ e−ax/a

)
µ(dx).

Since e−ax/a ↑ ∞ as a ↑ ∞ for every x < 0, the rightmost integral tends to +∞ as

soon as µ((−∞, 0)) > 0. Altogether, we obtain lim infa↑∞
1
a

´ (
ax+ e−ax

)
µ(dx) > 0 for

µ 6= δ0, which clearly implies lim supa↑∞
1
a
Lµ(a) < 0 and in turn (17). ✷

Lemma 4.9 says that there exists exactly one maximum likelihood functional on M,

i.e., exactly one functional T : M → (0,∞) satisfying (7). In the present setting, (7) and

Remark 4.1 imply that T (µ) = argmaxa∈(0,∞)

´

(log a− ax− e−ax)µ(dx) for all µ ∈ M.

Proposition 4.10 The unique maximum likelihood functional T : M → (0,∞) is (ψk)-

weakly continuous.

Proof As already mentioned above, conditions (9)–(11) hold. Moreover, by Lemma 4.9

the map Lµ possesses a unique maximum point for every µ ∈ M. Thus the claim follows

by an application of Theorem 4.3. ✷

From the second part of Example 3.7 we know that MΘ is a w-set in M(ψk). Together

with part (i) of Theorem 2.6 and Proposition 4.10, this yields the following corollary,

where robustness is understood as in Definition 1.1.
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Corollary 4.11 The sequence of maximum likelihood estimators (T̂n) is robust on MΘ.

4.2 Risk functionals

4.2.1 Risk measures

In this section we let specifically E = R. Let Ψ : R+ → R+ be a continuous nonde-

creasing convex function such that 0 = Ψ(0) and limx↑∞Ψ(x) = ∞. Such a function is

sometimes referred to as a finite Young function; see, e.g., [2]. Fix any atomless proba-

bility space (Ω,F ,P) and denote by L0 = L0(Ω,F ,P) the set of all P-a.s. finite random

variables on (Ω,F ,P). The Orlicz heart on (Ω,F ,P) associated with Ψ is defined by

HΨ = HΨ(Ω,F ,P) :=
{
X ∈ L0 : E[Ψ(c|X|)] <∞ for all c > 0

}
.

It is the largest vector subspace contained in the Orlicz class Y Ψ = Y Ψ(Ω,F ,P) :=

{X ∈ L0 : E[Ψ(|X|)] < ∞}. The Orlicz class in turn is a convex subset of the Orlicz

space LΨ = LΨ(Ω,F ,P) := {X ∈ L0 : E[Ψ(c|X|)] < ∞ for some c > 0}. In general we

have L∞ ⊆ HΨ ⊆ Y Ψ ⊆ LΨ ⊆ L1, and these inclusions may all be strict. In fact, it is

known form Theorem 2.1.17 (b) in [5] that the identity HΨ = LΨ holds if and only if Ψ

satisfies the so-called ∆2-condition:

There are C, x0 > 0 such that Ψ(2x) ≤ CΨ(x) for all x ≥ x0. (18)

This condition is clearly satisfied when specifically Ψ(x) = xp/p for some p ∈ [1,∞). In

this case, LΨ coincides with the usual Lp-space Lp = Lp(Ω,F ,P).

Definition 4.12 Let Ψ be a finite Young function. A law-invariant convex risk measure

on HΨ will be a map ρ : HΨ → R satisfying the following three conditions:

• Monotonicity: ρ(X) ≥ ρ(Y ) for X, Y ∈ HΨ with X ≤ Y P-a.s.

• Convexity: ρ(λX+(1−λ)Y ) ≤ λρ(X)+(1−λ)ρ(Y ) for X, Y ∈ HΨ and λ ∈ [0, 1].

• Law-invariance: ρ(X) = ρ(Y ) for X, Y ∈ HΨ with P ◦X−1 = P ◦ Y −1.

In a financial context, one typically requires that a law-invariant convex risk measure

ρ is also monetary in the sense that it also satisfies the following additional property:

• Cash additivity: ρ(X +m) = ρ(X) +m for X ∈ HΨ and m ∈ R;

see, e.g., [8]. Here, however, cash additivity will not be needed and so we will work

with our more general class of not necessarily monetary law-invariant convex risk mea-

sures. As argued in [2], Orlicz hearts are natural domains for law-invariant convex risk

measures.
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Example 4.13 Let g : [0, 1] → [0, 1] be concave, nonincreasing, and continuous with

g(0) = 0 and g(1) = 1. Let Ψ be a (finite) Young function with the conjugate Ψ∗

defined by Ψ∗(y) := supx≥0(xy −Ψ(x)). It was shown in Proposition 2.22 in [14] that if

the right-sided derivative g′ of g fulfills the condition
´ 1

0
Ψ∗(g′(t)) dt <∞, then

ρg(X) :=

ˆ 0

−∞

g(FX(x)) dx−

ˆ ∞

0

(
1− g(FX(x))

)
dx

defines a monetary law-invariant convex risk measure ρg : HΨ → R, where FX stands

for the distribution function of X . It is called distortion risk measure associated with

g. For the specific distortion function g(t) = (t/α) ∧ 1 the associated distortion risk

measure ρg reads as

ρg(X) = −
1

α

ˆ α

0

F←X (β) dβ,

where F←X denotes the left-continuous quantile function of the distribution FX . This

distortion risk measure is also called Average Value at Risk at level α ∈ (0, 1), and it is

denoted by AV@Rα. ✸

Example 4.14 Let for finite Young function Ψ the map ρΨ : HΨ → R be defined by

ρΨ(X) := inf
{
m ∈ R : E

[
Ψ
(
(−X −m)+

)]
≤ x0

}

for some x0 > 0. This is a monetary law-invariant convex risk measure known as the

utility-based shortfall risk measure with loss function ℓΨ : R → R defined by ℓΨ(x) :=

Ψ(x+); cf. e.g. [8] and, for the extension to Orlicz hearts, [14]. ✸

Example 4.15 Let specifically Ψ(x) = xp/p for some p ∈ [1,∞). Then HΨ = Lp and

(M(ψk)
1 ,O(ψk)) = (Mψ

1 ,Oψ)) for ψ(x) = |x|p/p. The map ρp : L
p → R defined by

ρp(X) := E[(X−)p]

obviously defines a law-invariant convex risk measure in the sense of Definition 4.12.

Here, X− := −min{0, X} denotes the negative part of X . ✸

4.2.2 (ψk)-weak continuity of the associated risk functionals

Denote by M(HΨ) the set of the distributions of all random variables from HΨ and note

that

M(HΨ) = M(ψk)
1 for ψk := Ψ(k| · |), k ∈ N. (19)
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The inclusion ⊆ is obvious and the inclusion ⊇ holds because (Ω,F ,P) is assumed to

be atomless. Note that if Ψ satisfies the ∆2-condition (18), then M(HΨ) = Mψ
1 and

O(ψk) = Oψ for

ψ := Ψ(| · |).

The law-invariance of ρ is equivalent to the existence of a map Rρ : M(ψk)
1 → R such

that

ρ(X) = Rρ(P ◦X−1) for all X ∈ HΨ. (20)

This map Rρ will be called the risk functional associated with ρ.

Theorem 4.16 Let Rρ : M(ψk)
1 → R be the risk functional associated with a law-

invariant convex risk measure ρ : HΨ → R. Then Rρ is continuous w.r.t. the (ψk)-weak

topology.

Remark 4.17 As a consequence of Theorem 4.16, the risk functional Rρ : M
(ψk)
1 → R

is weakly continuous on every w-set in M(ψk)
1 = M(HΨ). At the beginning of Section 3

we discussed how to check when a subset of M(ψk)
1 is a w-set. ✸

If Ψ satisfies the ∆2-condition (18), then the (ψk)-weak topology can be replaced by

the ψ-weak topology in Theorem 4.16. On the other hand, if Ψ does not satisfy the

∆2-condition (18), then we can always find a law-invariant convex risk measure on HΨ

which fails to be continuous w.r.t. the ψ-weak topology:

Example 4.18 Let Ψ be a finite Young function which does not satisfy ∆2-condition

(18), and let ρΨ denote the shortfall risk measure as in Example 4.14. In [14, proof

of Theorem 2.8], there was constructed as sequence (Xn) in L
∞ which converges to δ0

w.r.t. the ψ-weak topology such that supn inf{m ∈ R : E[Ψ(8(−Xn−m)+)] ≤ x0} = ∞.

Hence Yn := 8Xn defines a sequence (Yn) in L
∞ whose laws converge weakly to δ0, while

ρΨ(Yn) → ∞. In particular ρΨ is not continuous w.r.t. the ψ-weak topology. ✸

As an immediate consequence of Theorem 4.16 and Example 4.18 we get the following

corollary. The corollary extends Theorem 2.8 of [14], where considerations have been

restricted to monetary law-invariant convex risk measures.

Corollary 4.19 Let Rρ : M(ψk)
1 → R be the risk functional associated with a law-

invariant convex risk measure ρ : HΨ → R. Then the following conditions are equivalent:

(a) For every law-invariant convex risk measure ρ on HΨ, the map Rρ : M(HΨ) → R

is continuous for the ψ-weak topology.

(b) Ψ satisfies the ∆2-condition (18).
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Let us emphasize as a further implication of Corollary 4.19 that, if Ψ does not satisfy

the ∆2-condition (18), then we cannot apply Theorem 2.6 for the ψ-weak topology but

only for the (ψk)-weak topology.

4.2.3 Robustness on parametric classes of distributions

Consider the statistical model (1)–(3) with specifically

E := R, M := M(HΨ), T := Rρ, (21)

where ρ : HΨ → R is any law-invariant convex risk measure. By Theorem 4.16 we know

that Rρ : M(HΨ) → R is (ψk)-weakly continuous for the sequence (ψk) introduced

in (19), and it is clear that the set E of all empirical probability measures on R is

contained in M(HΨ). Thus Theorem 2.6 yields that the sequence of estimators (T̂n) is

robust on every w-set M in M(HΨ). In particular, the sequence (T̂n) is robust on many

parametric families MΘ := {µθ : θ ∈ Θ} of univariate distributions. This is illustrated

by the following examples, which rely on Examples 3.4–3.7.

Example 4.20 The Average Value at Risk AV@Rα introduced in Example 4.13 is de-

fined on L1, i.e., on HΨ with Ψ(x) = x. Since this Ψ satisfies the ∆2-condition (18), we

have O(ψk) = Oψ for ψ(x) = |x|. Thus the sequence (T̂n) is robust on each of the sets

N , Pα,xmin
(with α > 1), Γ, and G introduced in Examples 3.4–3.7. ✸

Example 4.21 Let ρΨ be the utility-based shortfall risk measure on HΨ as introduced

in Example 4.14, and let N , Pα,xmin
(with α > q ≥ 1), Γ, and G denote the parametric

families of distributions from Examples 3.4–3.7. Then the sequence (T̂n) is robust on

(a) N if there exists λ > 0 such that Ψ(x) = O(eλx
2

) as x ↑ ∞;

(b) Pα,xmin
if there exists q ∈ [1, α) such that Ψ(x) = O(xq) as x ↑ ∞;

(c) Γ and G if there is some β ∈ (0, 1) such that Ψ(x) = O(ex
β

) as x ↑ ∞. ✸

Example 4.22 The risk measure ρp introduced in Example 4.15 is defined on Lp, i.e., on

HΨ with Ψ(x) = xp/p. Since this Ψ satisfies the ∆2-condition (18), we have O(ψk) = Oψ

for ψ(x) = |x|p/p. Thus the sequence (T̂n) is robust on each of the sets N , Pα,xmin
(with

α > p), Γ, and G introduced in Examples 3.4–3.7. ✸
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4.2.4 Aggregation robustness

For µ1, . . . , µd ∈ M1 and Ad(x1, . . . , xd) :=
∑d

i=1 xi we let

S(µ1, . . . , µd) :=
{
µ ◦ A−1d : µ ∈ M(d;µ1, . . . , µd)

}
,

whereM(d;µ1, . . . , µd) denotes the Fréchet class w.r.t. µ1, . . . , µd; cf. Subsection 3.2. As

before we consider a law-invariant convex risk measure ρ on HΨ as well as the associated

risk functional Rρ : M(HΨ) → R. If µ1, . . . , µd ∈ M(HΨ) are regarded as distributions

of single positions Y1, . . . , Yd of a financial portfolio, then the set S(µ1, . . . , µd) may be

seen as the set of all possible distributions of the portfolio sum Sd :=
∑d

i=1 Yi. It is argued

by Embrechts et al. [6] that it is often relatively easy to model the marginal distributions

µ1, . . . , µd, while it can be difficult to obtain accurate information on the dependence

structure of Y1, . . . , Yd. This situation roughly corresponds to the setting where the

marginal distributions µ1, . . . , µd are known but the law of Ad(Y1, . . . , Yd) =
∑d

i=1 Yi can

vary withinS(µ1, . . . , µd). Motivated by this issue, Embrechts et al. [6] raise the question

of robustness of the empirical estimator for ρ(Sd) = Rρ(µ ◦ A−1d ) for known marginal

distributions µ1, . . . , µd. More precisely, the statistical model (1)–(3) is specialized to

E := R, M := S(µ1, . . . , µd), T := Rρ|S(µ1,...,µd), (22)

where the observations (i.e. the coordinates on Ω = RN) should be seen as i.i.d. copies

of Sd. Theorem 2.6 and Proposition 3.9 imply that the sequence (T̂n) is robust on

S(µ1, . . . , µd), because the risk functional Rρ is always (ψk)-weakly continuous on its do-

mainM(HΨ), according to Theorem 4.16. The crucial point is that the setS(µ1, . . . , µd)

is a w-set in M(HΨ) = M(ψk)
1 by Proposition 3.9, and so the risk functional Rρ is weakly

continuous on S(µ1, . . . , µd). Embrechts et al. [6] referred to the weak continuity of the

functional Rρ on S(µ1, . . . , µd) as aggregation robustness of Rρ. Maybe it is even more

appropriate to use the terminology aggregation robustness for the sequence of estimators

(T̂n) in the statistical model given by (1)–(3) and (22).

The above considerations are not restricted to the particular aggregation function

Ad(x1, . . . , xd) :=
∑d

i=1 xi. The latter can be replaced by any other function Ad : R
d →

R satisfying condition (a) of Proposition 3.9. Recall that the set M(µ1, . . . , µd;Ad)

was defined in (5) and that M(µ1, . . . , µd;Ad) = S(µ1, . . . , µd) when Ad(x1, . . . , xd) =∑d
i=1 xi.

Theorem 4.23 Let Ad : R
d → R be any Borel-measurable map satisfying condition (a)

of Proposition 3.9, and let Rρ : M(HΨ) → R be the risk functional associated with any

law-invariant convex risk measure ρ on HΨ. Moreover fix µ1, . . . , µd ∈ M(HΨ). Then

Rρ|M(µ1,...,µd;Ad) is weakly continuous. In particular, the sequence of estimators (T̂n) in

the statistical model given by (1)–(3) and (22) is robust.
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Proof Recall that ψk = Ψ(k| · |) for k ∈ N, and let ℓ be any fixed integer exceeding the

real number c. By monotonicity of Ψ we have that ψk((d + 1)c|x|) ≤ ψk(d+1)c(x) for all

x ∈ R. Then the first statement of Theorem 4.23 follows immediately from Proposition

3.9 along with Theorem 4.16. The second statement can then be derived with the help

of Theorem 2.6. ✷

5 Proofs of results from Section 2

5.1 Proof of Lemma 2.1

By construction, a base for the (ψk)-weak topology is given by sets of the form Uk1 ∩

· · · ∩ Ukn ∩ M(ψk)
1 , where n ∈ N, k1, . . . , kn ∈ N, and each Uki belongs to a base for

the ψki-weak topology on M
ψki

1 . Since the ψk-weak topology on Mψk

1 is metrizable

by a separable metric by [8, Corollary A.45] and hence admits a countable base, it

follows that the (ψk)-weak topology also has a countable base. Then it is known that a

subset of M(ψk)
1 is closed w.r.t. the (ψk)-weak topology if and only if together with any

sequence it contains all its accumulation points; cf. Theorem 1.6.14 in [7]. Hence under

the equivalence of (a) and (b) the (ψk)-weak topology is obviously metrizable by d(ψk)

as defined in the display of Lemma 2.1.

As a metrizable topology with countable base the (ψk)-weak topology is separable.

Moreover, by [8, Corollary A.45] the ψk-weak topology is completely and separably

metrizable by say dk for every k ∈ N. Then the equivalence of (a) and (b) implies that

the metric d on M(ψk)
1 defined by d(µ, ν) :=

∑∞
k=1(dk(µ, ν)∧ 1) 2−k metrizes O(ψk). This

metric is separable by separability of O(ψk). Now, every d-Cauchy sequence (µn) is a

dk-Cauchy sequence for any k ∈ N. Then by completeness of the metrics dk (k ∈ N),

we may find for any k ∈ N some νk ∈ Mψk

1 such that dk(µn, νk) → 0 as n → ∞. Since

each ψk-weak topology is finer than the weak topology, we obtain µn → νk as n → ∞

for each k ∈ N. Hence by Hausdorff property of the weak topology, all the νk coincide,

and thus by definition of the metric d we have d(µn, µ) → 0 for some µ ∈ M(ψk)
1 . Thus

we have shown that d is a complete metric. In particular, M(ψk)
1 equipped with O(ψk) is

a Polish space. So it is left to show the equivalence of (a) and (b).

The implication (a)⇒(b) is obvious. Conversely, let statement (b) be satisfied. We

have to show that for every f ∈ Cψk
, k ∈ N, and ε > 0 there exists some n0 ∈ N such

that ∣∣∣
ˆ

f dµn −

ˆ

f dµ0

∣∣∣ ≤ ε for all n ≥ n0. (23)

The left hand side of (23) is bounded above by

∣∣∣
ˆ

f1{|f |≤a} dµn −

ˆ

f1{|f |≤a} dµ0

∣∣∣ +
∣∣∣
ˆ

f1{|f |>a} dµn −

ˆ

f1{|f |>a} dµ0

∣∣∣ (24)
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for every a > 0. For notational simplicity we set ψ̃k := 1+ψk. Then the second summand

in (24) is bounded above by

Cf,k

ˆ

ψ̃k1{ψ̃k>a}
dµn + Cf,k

ˆ

ψ̃k1{ψ̃k>a}
dµ0 (25)

for some suitable constant Cf,k > 0 satisfying |f(x)| ≤ Cf,kψ̃k(c) for all x ∈ E. Now we

can choose a > 0 so large that the second summand in (25) is at most ε/5. The first

summand in is bounded above by

Cf,k

∣∣∣
ˆ

ψ̃k1{ψ̃k>a}
dµn −

ˆ

ψ̃k1{ψ̃k>a}
dµ0

∣∣∣+ Cf,k

ˆ

ψ̃k1{ψ̃k>a}
dµ0 (26)

As see above, the second summand in (26) is at most ε/5. The first summand in (26) is

bounded above by

Cf,k

∣∣∣
ˆ

ψ̃k dµn −

ˆ

ψ̃k dµ0

∣∣∣ + Cf,k

∣∣∣
ˆ

ψ̃k1{ψ̃k≤a}
dµn −

ˆ

ψ̃k1{ψ̃k≤a}
dµ0

∣∣∣. (27)

The first summand in (27) converges to 0 as n → ∞ by assumption. Thus we can find

n0 ∈ N such that it is bounded above by ε/5 for every n ≥ n0. Since µ0 ◦ ψ̃
−1
k as a

probability measure on the real line has at most countably many atom, we may and do

assume that a > 0 is chosen such that µ0[{ψ̃k = a}] = 0. Since µn → µ0 weakly by

assumption, it follows by the portmanteau theorem that the second summand in (27)

converges to 0 as n→ ∞. By possibly increasing n0 we obtain that the second summand

in (27) is at most ε/5 for all n ≥ n0. So far we have shown that the second summand in

(24) is bounded above by 4ε/5 for all n ≥ n0. Using the same arguments as for second

summand in (27) and possibly increasing n0 further, we moreover obtain that the first

summand in (24) is bounded above by ε/5 for all n ≥ n0. That is, we indeed arrive at

(23). ✷

5.2 Proof of Theorem 2.3

First we shall provide the following characterization of relative compact subsets for the

(ψk)-weak topology, which will be needed in the proof of Lemma 5.2. For the ψ-weak

topology this characterization is already known from Corollary A.47 in [8].

Lemma 5.1 Let (ψk) be any sequence of gauge functions and M ⊆ M(ψk)
1 be given.

Then the following conditions are equivalent:

(a) M is relatively compact for the (ψk)-weak topology.

(b) For every k ∈ N, M is relatively compact for the ψk-weak topology.
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(c) For every k ∈ N and ε > 0 there exists a compact set Kk ⊆ E such that

sup
µ∈M

ˆ

Kc

k

ψk dµ ≤ ε.

(d) For every k ∈ N there exists a measurable function φk : E → R+ such that each

set {φk ≤ nψk}, n ∈ N, is compact in E and such that

sup
µ∈M

ˆ

φk dµ <∞.

Proof (b)⇔(c)⇔(d): These implications follow immediately from Corollary A.47 in

[8].

(a)⇔(b): Since the (ψk)-weak and the ψk-weak topologies are metrizable, for any of

these topologies the relatively compact subsets are exactly the relatively sequentially

compact ones. Then the implication (a)⇒(b) is obvious. To prove the implication

(b)⇒(a), let M be relatively compact for the ψk-weak topology for each k ∈ N. In

particular, every ψk-weak closure Mk of M in Mψk

1 is ψk-weakly compact. Then by

Tychonoff’s theorem the set ×∞k=1Mk is a compact subset of ×∞k=1M
ψk

1 for the product

topology generated by the ψk-weak topologies. Notice that the product topology is

metrizable by the metric

dprod(µ,ν) :=
∞∑

k=1

2−k
(
dψk

(µ(k),ν(k)) ∧ 1
)
.

Let (µn) be any sequence inM . We will construct a (ψk)-weakly converging subsequence.

For every n ∈ N we obtain an element µn ∈ ×∞k=1Mk by setting µn(k) := µn, k ∈ N. By

compactness of ×∞n=1Mk we may extract a subsequence (µn(j)) from (µn) that converges

to some µ ∈ ×∞k=1M
ψk

1 , i.e., dprod(µn(j),µ) → 0. In particular, dψk
(µn(j)(k),µ(k)) → 0

for every k ∈ N, i.e., (µn(j)(k)) converges ψk-weakly to µ(k) for every k ∈ N. Now, if we

can show that µ(k) = µ(1) =: µ holds for every k ∈ N, then it follows that µn(j) → µ

ψk-weakly for every k ∈ N and thus µn(j) → µ (ψk)-weakly. In the rest of the proof we

show that µ(k) = µ(1) holds for every k ∈ N.

For fixed k ∈ N, the set M is a subset of Mψ1+ψk

1 . Since M is also a relatively ψi-

compact subset of Mψi

1 we may find by (c) for every ε > 0 some compact subset Ki ⊆ E

such that

sup
µ∈M

ˆ

Kc

i

ψi dµ ≤ ε/2

for i ∈ {1, k}. Then K := K1 ∪Kk is a compact subset of E such that

sup
µ∈M

ˆ

Kc

(ψ1 + ψk) dµ ≤ sup
µ∈M

ˆ

Kc

1

ψ1 dµ+ sup
µ∈M

ˆ

Kc

k

ψk dµ ≤ ε.
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Hence in view of Corollary A.47 in [8] the set M is also a relatively compact subset

of M
ψ1,k

1 for the ψ1,k-weak topology with ψ1,k := ψ1 + ψk. Therefore we may select

a subsequence (µn(j(ι))) of (µn(j)) which converges ψ1,k-weakly to some µ ∈ M
ψ1,k

1 . In

particular, for every f ∈ Cψ1
∪ Cψk

we clearly have f ∈ Cψ1,k
and thus

´

f dµn(j(ι)) →
´

f dµ. This means that (µn(j(ι))) converges to µ w.r.t. both the ψ1-weak topology and

the ψk-weak topology. This implies µ(1) = µ = µ(k), and the proof is complete. ✷

In the case where each set {ψ ≤ n}, n ∈ N, is relatively compact in E, a set M ⊆ Mψ
1

is relatively compact for the ψ-weak topology if and only if it is uniformly ψ-integrating;

cf. Lemma 3.4 in [22]. The following Lemma shows that the same is true for general

gauge functions (and for sequences (ψk) of general gauge functions) when M is assumed

to be relatively compact for the weak topology.

Lemma 5.2 Let (ψk) be any sequence of gauge functions and M ⊆ M1 be given. Then

the following conditions are equivalent:

(a) M is uniformly (ψk)-integrating and relatively compact for the weak topology.

(b) M is relatively compact for the (ψk)-weak topology.

Proof (a)⇒(b): Let k ∈ N and ε > 0 be given. Since M is assumed to be uniformly

(ψk)-integrating, there exists ak > 0 such that supµ∈M
´

ψk1{ψk>ak} dµ ≤ ε/2. Since M

is assumed to be weakly relatively compact, we moreover obtain by Prohorov’s theorem

a compact set Ck ⊆ E such that supµ∈M µ[Cc

k] ≤ ε/(2ak). The set Kk := Ck∩{ψk ≤ ak}

is a compact subset of E and satisfies Kc

k = {ψk > ak} ∪ (Cc

k ∩ {ψk ≤ ak}). Hence,

sup
µ∈M

ˆ

Kc

k

ψk dµ ≤ sup
µ∈M

ˆ

ψk1{ψk>ak} dµ+ sup
µ∈M

ˆ

Cc

k

ψk1{ψk≤ak} dµ ≤ ε.

It follows by the implication (c)⇒(a) of Lemma 5.1 thatM is relatively compact for the

(ψk)-weak topology.

(b)⇒(a): By the implication (a)⇒(b) of Lemma 5.1 the set M is ψk-weakly relatively

compact for each k ∈ N. Hence M is uniformly ψk-integrating for each k ∈ N due to

Lemma A.2 in [14]. Moreover, relative compactness of M for the weak topology follows

from the fact that the weak topology is coarser than the (ψk)-weak topology. ✷

Proof of Theorem 2.3: (b)⇒(c): Let M0 ⊆ M be weakly compact, and fix ε > 0

and k ∈ N. By assumption there exists for every µ ∈M0 some weakly open neighborhood

Uµ of µ and some aµ > 0 such that
´

ψk1{ψk≥aµ} dν < ε for all ν ∈ Uµ ∩M . By weak

compactness of M0 we can extract a finite cover of M0 consisting of such neighborhoods

Uµ1 , . . . , Uµm (with µ1, . . . , µm ∈ M), and it follows that supν∈M0

´

ψk1{ψk≥a} dν ≤ ε if

we take a := maxi=1,...,m aµi .
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(c)⇒(b): Let us suppose by way of contradiction that there exist µ ∈ M , k ∈ N,

ε > 0, and a sequence (νn) in M such that νn → µ weakly but
´

ψk1{ψk≥n} dνn ≥ ε for

all n. Then {ν1, ν2, . . . } ∪ {µ} is weakly compact and not uniformly (ψk)-integrating.

This gives a contradiction.

(c)⇒(a): Since both topologies are metrizable, it suffices to show that they coincide

on any given weakly compact set M0 ⊆ M . By (c) and Lemma 5.2, M0 is compact for

the (ψk)-weak topology, and so the two topologies coincide on M0 by Lemma 3.1.

(a)⇒(c): Every weakly compact subset of M is also (ψk)-weakly compact due to (a),

and hence uniformly (ψk)-integrating by Lemma 5.2.

(c)⇔(d): The implication (c)⇒(d) is obvious. Conversely suppose by way of contra-

diction that (d) holds but that there is a weakly compact M0 ⊆ M that is not uniformly

(ψk)-integrating. Then there exist k ∈ N, ε > 0, and a sequence (µn) in M such that
´

ψk1{ψk≥n} dµn ≥ ε for all n. By selecting a weakly convergent subsequence we arrive

at a contradiction to (d).

(a)⇔(e): This equivalence is obvious since both topologies are metrizable. ✷

5.3 Proof of Theorem 2.6

5.3.1 Proof of part (i)

The proof of this part is organized as follows. Below we will show that conditions (a)–(b)

of Lemma 5.3 and conditions (c)–(d) of Lemma 5.4 are satisfied for every w-set M ⊆ M

(⊆ M(ψk)
1 ). Then, if for any w-setM ⊆ M the functional T is continuous at every µ ∈M

for the relative (ψk)-weak topology O(ψk) ∩M, the (ψk)-robustness of the sequence (T̂n)

on M is a consequence of the two lemmas and the fact that Ow ∩M = O(ψk) ∩M for

every w-set M .

Lemma 5.3 Let M ⊆ M and assume that the following two conditions hold:

(a) T : M → Σ is (d(ψk), dΣ)-continuous at every µ ∈M .

(b) For every µ ∈M , ε > 0, and η > 0 there are some δ > 0 and n0 ∈ N such that

ν ∈ M, d(ψk)(µ, ν) ≤ δ =⇒ Pν
[
d(ψk)(m̂n, ν) ≥ η

]
≤ ε for all n ≥ n0.

Then for every µ ∈ M and ε > 0 there exist n0 ∈ N and an open neighborhood U(ψk) =

U(ψk)(µ, ε;M) of µ for the relative (ψk)-weak topology O(ψk) ∩M such that

ν ∈ U(ψk) =⇒ π(Pµ ◦ T̂ −1n ,Pν ◦ T̂ −1n ) ≤ ε for all n ≥ n0.

Proof Note that the proof of Theorem 2.1 in [22] still works when in assumption (a)

of this theorem one only requires that the sequence (Vn) is asymptotically (dΥ, dΣ)-

continuous at every point of Θ0 (and not on all of Θ); take into account that in the

28



proof the asymptotic continuity of (Vn) is used only subsequent to (41). Further note

that in [22] the assumption that the metric space (Υ, dΥ) be complete and separable

is superfluous (and nowhere used). Then the claim follows by (the generalization of)

Theorem 2.1 in [22] with (Υ, dΥ) := (M, d(ψk)), U(µ) := µ, Vn := T for all n ∈ N, and

Ûn(x1, x2, . . .) := m̂n(x1, . . . , xn). ✷

For every n ∈ N we equip the n-fold product space En with the product topology.

Note that the corresponding Borel σ-field coincides with the n-fold product B(E)⊗n

of the Borel σ-algebra B(E) on E, and let πn be any metric that metrizes the weak

topology on the set of all probability measures on (En,B(E)⊗n). Let Xi be the i-th

coordinate projection on Ω = EN and let t̂n : En → Σ be the estimator T̂n regarded as

a map on En; recall (3) and note that m̂n(x) depends only on the first n coordinates of

x = (x1, x2, . . .) ∈ EN.

Lemma 5.4 Let M ⊆ M and assume that the following two conditions hold:

(c) En ∋ (x1, . . . , xn) 7→ t̂n(x1, . . . , xn) is continuous for every n ∈ N.

(d) M ∋ µ 7→ Pµ ◦ (X1, . . . , Xn)
−1 is (dw, πn)-continuous for every n ∈ N.

Then for every µ ∈ M , n ∈ N, and ε > 0 there exist and an open neighborhood U(ψk) =

U(ψk)(µ, ε;M) of µ for the relative (ψk)-weak topology O(ψk) ∩M such that

ν ∈ U(ψk) =⇒ π(Pµ ◦ T̂ −1n ,Pν ◦ T̂ −1n ) ≤ ε.

Proof The lemma is a direct consequence of Theorem 2.5 and Example 2.6 in [22]. ✷

As already discussed at the beginning of the proof, it remains to show that conditions

(a)–(d) are satisfied, where for (b) we have to assume that M ⊆ M is a w-set in M(ψk)
1 .

(a): Condition (a) holds by assumption.

(b): To verify condition (b) for any fixed w-setM ⊆ M (⊆ M(ψk)
1 ), we assume without

loss of generality that the metric dw in (4) is given by the Prohorov metric dP, i.e.,

d(ψk)(µ, ν) = dP(µ, ν) +

∞∑

k=1

2−k
(∣∣∣
ˆ

ψk dµ1 −

ˆ

ψk dµ2

∣∣∣ ∧ 1
)
.

Let µ ∈M , ε > 0, and η > 0 be fixed. Choose kη ∈ N so large such that
∑∞

k=kε+1 2
−k <

η/3. Then, for every ν ∈ M,

Pν
[
d(ψk)(m̂n, ν) ≥ η

]

≤ Pν
[
d(ψk)(m̂n, ν) ≥ η/3

]
+

kε∑

k=1

Pν
[
2−k

∣∣∣
ˆ

ψk dm̂n −

ˆ

ψk dν
∣∣∣ ≥ η/(3kε)

]
.
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Lemma 4 in [17] shows that limn→∞ supν∈M1
Pν [dP(m̂n, ν) ≥ η] = 0. So we can find

some nP ∈ N such that

sup
ν∈M1

Pµ[dP(m̂n, ν) ≥ η] ≤ ε/2 for all n ≥ nP. (28)

So it remains to show that for every k = 1, . . . , kε there exist δk > 0 and nk ∈ N such

that

ν ∈M, d(ψk)(µ, ν) ≤ δk =⇒ Pν
[∣∣∣
ˆ

ψk dm̂n−

ˆ

ψk dν
∣∣∣ ≥ 2kη

3kε

]
≤

ε

2kε
for all n ≥ nk.

(29)

By choosing δ := min{δ1, . . . , δkε} and n0 := max{nP, n1, . . . , nkε} we then obtain (b).

To prove (29), we take into account that M is a w-set in M(ψk)
1 . By Theorem 2.3 this

means that M is locally uniformly (ψk)-integrating. Thus for every k ∈ N we can find

some δk > 0 and ak > 0 such that
´

ψk1{ψk≥ak}dν < min{2kη
3kε

; 2kη
9kε

ε
2
} for all ν ∈ M with

dP(µ1, µ2) ≤ δ. For every ν ∈M with dP(µ, ν) ≤ δk we then obtain

Pν
[∣∣∣
ˆ

ψk dm̂n −

ˆ

ψk dν
∣∣∣ ≥ 2kη

3kε

]

≤ Pν
[ˆ

ψk1{ψk≥ak} dm̂n ≥
2kη

9kε

]

+Pν
[ ∣∣∣
ˆ

ψk1{ψk<ak} dm̂n −

ˆ

ψ1{ψ<ak} dν
∣∣∣ ≥ 2kη

9kε

]

+Pν
[ ˆ

ψk1{ψk≥ak} dν ≥
2kη

9kε

]

=: S1(k, n, ak) + S2(k, n, ak) + S3(k, ak),

where S3(k, ak) = 0 and S1(k, n, ak) ≤ (9kε/(2
kη)
´

ψ1{ψk≥ak}dν ≤ ε/2 for all n ∈ N

(by Markov’s inequality). Further, by Chebychev’s inequality we can find some nk ∈ N

such that S2(k, n, a) ≤ ε/2 for all n ≥ nk (and all ν ∈ M1). This proves (29) with d(ψk)

replaced by dP. Since dP ≤ d(ψk), we arrive at (29).

(c): The mapping (x1, . . . , xn) 7→ t̂n(x1, . . . , xn) = T ( 1
n

∑n
i=1 δxi) is continuous, be-

cause the statistical functional T is (d(ψk), dΣ)-continuous by assumption and the map-

ping (x1, . . . , xn) 7→
1
n

∑n
i=1 δxi is easily seen to be (dEn, d(ψk))-continuous, where dEn

is

any metric which metrizes the product topology on En.

(d): The (dw, πn)-continuity of the mapping M ∋ µ 7→ Pµ ◦ (X1, . . . , Xn)
−1 = µ⊗n for

every n ∈ N is obvious. too. ✷

5.3.2 Proof of part (ii)

Now assume that (T̂n) is (ψk)-robust and weakly consistent. The (ψk)-robustness means

that (T̂n) is robust on every w-setM ⊆ M (⊆ M(ψk)
1 ). By the classical Hampel theorem
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(Theorem 1 in [4]) we can conclude that T |M is weakly continuous for every w-set M ⊆

M (⊆ M(ψk)
1 ). In the remainder we will show that this implies (ψk)-weak continuity of T .

Let µ, µ1, µ2, . . . ∈ M such that µn → µ (ψk)-weakly. Since T |M is (dw, dΣ)-continuous

for every w-setM ⊆ M (⊆ M(ψk)
1 ), it suffice to show that the setM := {µ, µ1, µ2, . . .} is

a w-set in M ⊆ M (⊆ M(ψk)
1 ). By assumption, the set M is compact for the (ψk)-weak

topology since this topology is metrizable. Thus by Lemma 3.1 the set M is also a w-set

in M ⊆ M. This completes the proof. ✷

6 Remaining proofs

6.1 Proof of Proposition 3.9

For every i = 1, . . . , d we define µ′i := µi ◦ f
−1
d,c for fd,c(x) := (d + 1)cx. By assumption

(b) {µ′1, . . . , µ
′
d} is a finite subset of M(ψk)

1 , and thus uniformly (ψk)-integrating. In view

of de la Vallée-Poussin theorem for sets of measures (analogue Theorem II.T22 in [16])

one can thus find for every k ∈ N a convex and increasing function hk : R+ → R+ such

that limx→∞ hk(x)/x = ∞ and

max
i=1,...,d

ˆ

hk(ψk) dµ
′
i < ∞. (30)

Since ψk is convex and nonnegative, it is also nondecreasing on [0,∞). In addition ψk is

assumed to be even, so that the composition hk ◦ ψk = hk ◦ ψk(| · |) is convex. Together

with assumption (a) and (30) this yields

ˆ

hk(ψ̃k) dµ ◦ A−1d =

ˆ

hk ◦ ψ̃k(Ad(x))µ(dx)

=

ˆ

hk ◦ ψk(‖Ad(x)‖)µ(dx)

≤

ˆ

hk ◦ ψk
(
b+ c

d∑

i=1

|xi|
)
µ(dx)

≤

ˆ

1

d+ 1

d∑

i=0

hk ◦ ψk
(
(d+ 1)cxi

)
µ(dx)

≤ hk ◦ ψk
(
(d+ 1)b

)
∨ max

j=1,...,d

ˆ

hk ◦ ψk
(
(d+ 1)cx

)
µj(dx)

= hk ◦ ψk
(
(d+ 1)b

)
∨ max

j=1,...,d

ˆ

hk ◦ ψk(x)µ
′
j(dx) < ∞

for all k ∈ N and µ ∈ M(d;N), where we used the convention x0 := b/c. This implies

sup
ν∈M

ˆ

hk(ψ̃k) dν < ∞
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for all k ∈ N, and by another application of the de la Vallée-Poussin theorem for sets of

measures we can conclude that M is uniformly (ψ̃k)-integrable. ✷

6.2 Proof of Theorem 4.3

Let (µn)n∈N be any sequence in M such that Lµn(θk) → Lµ(θk) holds for every k ∈ N.

In particular the sequence (Lµn)n∈N converges pointwise on a dense subset of Θ to Lµ.

Together with the concavity of Lµ and Lµn , n ∈ N, this implies that (Lµn)n∈N converges

even pointwise to Lµ; cf. Corollary 7.18 in [18].

Further, by assumption argmaxθ∈Θ Lµ(θ) = {T (µ)} and T (µn) ∈ argmaxθ∈Θ Lµn(θ)

for every n ∈ N. Since (Lµn)n∈N is a sequence of concave maps which converges pointwise

to the concave map Lµ, we may draw on well-known results concerning stability of convex

minimization (e. g. Theorem 5.3.25(f) in [12]) to conclude T (µn) → T (µ). So the first

part of Theorem 4.3 is shown. The remaining part follows immediately from the first

part, because convergence µn → µ w.r.t. the (ψk)-weak topology implies Lµn(θk) →

Lµ(θk) for every k ∈ N. Now, the proof is complete. ✷

6.3 Proof of Theorem 4.16

It is known from Theorem 2.1.11 in [5] that the Orlicz heart HΨ is a Banach space when

endowed with the Luxemburg norm

‖X‖Ψ := inf
{
λ > 0 : E[Ψ(|X|/λ)] ≤ 1

}
.

Moreover, we may observe that ‖X‖Ψ ≤ ‖X‖Ψ whenever |X| ≤ |Y | P-a.s. This means

that HΨ equipped with ‖ · ‖Ψ and the P-a.s. order is a Banach lattice. It follows by

Proposition 3.1 in [20] that

ρ is continuous w.r.t. ‖ · ‖Ψ. (31)

The missing link between (31) and Theorem 4.16 is provided by the following repre-

sentation result which is interesting in its own right. Recall that (Ω,F ,P) is atomless

so that it supports a random variable which is uniformly distributed on the open unit

interval.

Theorem 6.1 A sequence (µn) in M(ψk)
1 converges w.r.t. the (ψk)-weak topology to some

µ0 ∈ M(ψk)
1 if and only if ‖F←µn(U) − F←µ0 (U)‖Ψ → 0, where U is an arbitrary random

variable on (Ω,F ,P) that is uniformly distributed on (0,1).

Proof We let Xn := F←µn(U) and prove first that ‖Xn − X0‖Ψ → 0 implies that

µn → µ0 in the (ψk)-weak topology. By Proposition 2.1.10 in [5], ‖Xn − X0‖Ψ → 0

yields E[ψ2k(Xn − X0)] → 0 for all k ∈ N and Xn → X0 in probability. Convexity

and monotonicity of Ψ imply that 0 ≤ ψk(Xn)) ≤
1
2
ψ2k(Xn − X0) +

1
2
ψ2k(X0). Hence,
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ψk(Xn) is uniformly integrable, and we obtain by Vitali’s theorem in the form of [11,

Proposition 3.12 (iii)⇒(ii)] that

ˆ

ψk(x)µn(dx) = E[ψk(Xn)] −→ E[ψk(X0)] =

ˆ

ψk(x)µ0(dx).

Moreover, since Xn → X0 P-a.s., the corresponding laws (µn) converge weakly. It follows

that (µn) converges to µ w.r.t. the (ψk)-weak topology.

Conversely, assume that µn → µ0 in the (ψk)-weak topology. Then µn → µ0 weakly,

and the continuity of Ψ and the fact that Ψ(0) = 0 yield that

ψk(Xn) −→ ψk(X0) P-a.s. for all k ≥ 0, (32)

ψk(Xn −X0) −→ 0 P-a.s. for all k ≥ 0. (33)

Moreover, the convergence µn → µ0 w.r.t. the (ψk)-weak topology implies that

E[ψk(Xn)] =

ˆ

ψk(x)µn(dx) −→

ˆ

ψk(x)µ0(dx) = E[ψk(X0)]. (34)

In particular each expectation E[ψk(Xn)] is finite so that we have Xn ∈ HΨ. Now, (32),

(34), and Vitali’s theorem in the form of [11, Proposition 3.12 (ii)⇒(iii)] imply that the

sequence (ψk(Xn))n∈N0
is uniformly integrable for every k. Since Ψ is nondecreasing and

convex we obtain ψk(Xn−X0) ≤
1
2
ψ2k(X0)+

1
2
ψ2k(X0). Since the sequence (ψ2k(Xn))n∈N0

is uniformly integrable, we may thus conclude that the sequence (ψk(Xn − X0))n∈N is

uniformly integrable. Therefore, (33) and another application of Vitali’s theorem, this

time in the form of [11, Proposition 3.12 (iii)⇒(ii)], yield E[ψk(Xn −X0)] → 0 for every

k > 0, which implies ‖Xn −X0‖Ψ → 0 according to Proposition 2.1.10 in [5]. ✷

Proof of Theorem 4.16: Since P ◦ (F←ν (U))−1 = ν for every ν ∈ M1, the asserted

(ψk)-weak continuity of the risk functional Rρ is an immediate consequence of (31) and

Theorem 6.1. ✷
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