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Abstract

Many standard estimators such as several maximum likelihood estimators or
the empirical estimator for any law-invariant convex risk measure are not (quali-
tatively) robust in the classical sense. However, these estimators may nevertheless
satisfy a weak [13] [14] or a local [22] robustness property on relevant sets of dis-
tributions. One aim of our paper is to identify sets of local robustness, and to
explain the benefit of the knowledge of such sets. For instance, we will be able to
demonstrate that many maximum likelihood estimators are robust on their natu-
ral parametric domains. A second aim consists in extending the general theory of
robust estimation to our local framework. In particular we provide a correspond-
ing Hampel-type theorem linking local robustness of a plug-in estimator with a

certain continuity condition.
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1 Introduction and problem statement

Recently, in [22] qualitative robustness of plug-in estimators was considered as a local
property, i.e., on strict subsets of the natural domain of the corresponding statistical
functional, and a respective Hampel-type criterion was proven. The latter says that
if the statistical functional is continuous for a certain topology finer than the weak
topology, then qualitative robustness holds on every set of distributions on which the
relative weak topology coincides with the finer topology. Such sets of distributions were
characterized in [22], but the provided characterization is rather technical and not at all
useful for checking the concurrence of the topologies for any given set. The aim of the
present paper is to provide more useful characterizations of such sets, and to illustrate
their use in the context of qualitative robustness. Compared to [22] we will also allow
for more general topologies on sets of distributions which will turn out to increase the
flexibility to check qualitative robustness for statistical functionals. As applications,
robustness of maximum likelihood estimators and of empirical estimators of law-invariant
convex risk measures are studied in detail. In particular we will demonstrate that many
maximum likelihood estimators are robust on their natural parametric domains and
even on broader sets. A further field of application is quantitative risk management.
In recent contributions in this field the property of robustness has been pointed out
as an important requirement for risk assessment; see, for instance, [3, 6, 14]. Again
the empirical estimators of well-founded statistical functionals like those associated with
law-invariant convex risk measures fail to be robust but might satisfy this property on
domains of interest.

To explain our intension more precisely, let ' be a Polish space and M be the set of
all Borel probability measures on E. Consider the statistical model

(Q, F,{P?:0 € 0}) = (EY, B(E)*™, {P": p € M}), (1)
where M C M, is any set of Borel probability measures on E and
Pt = N (2)

is the infinite product measure of u. Note that the coordinate projections on EN are
i.i.d. with law g under P*. For every © = (x1,23,...) € EN and n € N, we define the
empirical probability measure

. . 1 ¢
M (x) == Mmp(T1,...,2,) = 525@,1
i=1

Assume that M contains the set

¢ :={m,(x1,...,20) : T1,...,2, € E, n € N}



of all empirical probability measures. Let (X, ds) be a complete and separable metric
space and T : M — ¥ be any map (statistical functional). The empirical probability
measure m, induces a nonparametric estimator 7, :  — 3 for T'(x) in the statistical

model (I]) through
To(x) :==T(m,(z)), x=(r1,22,...) € Q, (3)

provided T,, is (F, B(X))-measurable.

The following Definition [[LT] generalizes Hampel’s classical notion of (qualitative) ro-
bustness for the sequence (T},) as introduced in [9]. Recall from Theorem 2.14 in [I0]
that the set of all Borel probability measures on ¥ equipped with the weak topology is
Polish and can be metrized by the Prohorov metric 7. Moreover denote by O, the weak
topology on Mj.

Definition 1.1 For a given set M C M and u € M, the sequence of estimators (fn)
s said to be M-robust at p if for every e > 0 there exists an open neighborhood U =
Ulp,e; M) of p for the relative weak topology Oy N M such that

velU = a(P*oT " P ol Y)Y<e foralneN.

~

The sequence (T,,) is said to be robust on M if it is M-robust at every p € M.

In their pioneer work, Hampel [9] and Cuevas [4] used (mainly the first part of)
Definition [LI] with specifically M = M = M; and established several criteria for
robustness; cf. Theorems 1-2 in [9] and Theorems 1-2 in [4]. In the present paper, our
focus will be on the second part of Definition [[.1] i.e. on robustness of (T\n) on subsets
M of M. In this context the following two criteria are already known for M = M.

(I) If T : M — ¥ is continuous for the relative weak topology O, N M, then (T,) is
robust on M.

(1) If (T,) is weakly consistent and robust on M, then T : M — ¥ is continuous for
the relative weak topology Oy, N M.

Assertion (I) is a straightforward generalization of Theorem 2 in [4] (where the author
assumed M = M) and assertion (II) is a special case of Theorem 1 in [4].

Recall that we assumed the set € of all empirical probability measures to be contained
in M. As € is dense in M; w.r.t. the weak topology O, (cf. Theorem A.38 in [§]
reformulated for probability measures), this implies that weak continuity of the map
T : M — ¥ is a relatively strict requirement. For instance, in the case £ = R the mean
functional T'(n) := [ p(dz) is not weakly continuous on € (indeed, letting z,1 := n
and z,,; = 0 for i = 2,...,n and n € N, the sequence (M, (Zn1,...,Tun))nen converges

to 6 w.rt. Oy, but [ m(@p1,. .., ) (dz) =1 4 0 [2d(dz)). In view of (I)—(II),



this simple example indicates that there are only a few relevant statistical functionals
T : M — ¥ for which the corresponding sequence of estimators (7;,) is robust on the
whole domain M. Nevertheless, for general statistical functionals one might ask for

those subsets M of M on which robustness of (7;,) holds. The following simple example
shows that this question can be reasonable.

Example 1.2 Let £ = (0,00) and £ be the class of all exponential distributions with
mean 6 (cf. Example B), 6 € (0,00). The unique maximum likelihood estimator for
the parameter 6 is known to be T\n(w) = T,, where &, = % Yorxfor @ = (1, 29,...).
It can be represented by T,,(z) = T(fi,(x)) for the functional T(y) = [ p(dx) with
domain M = {p € M, : [ |z| p(dz) < oo} and state space ¥ = (0, 00). Since T is weakly
consistent by the law of large numbers but not weakly continuous on M, assertions (I)—
(1) imply that the sequence (7},) is not robust on M. However, in Subsection
we will see that our results yield robustness of (fn) on relatively large subsets of M,
in particular on £. That means that the maximum likelihood estimator is robust at
least against small deviations within the underlying parametric set of distributions £.
This statement could not be derived in the conventional theory of robustness. Note
that robustness on & is of interest if one starts from the premise that both the target
distribution p and the distribution v underlying the observations lie in £.

In fact the maximum likelihood estimator is even robust against certain deviations
out of &£, even though not against arbitrary deviations within the whole domain M.
For instance, at the end of Subsection we will see that the maximum likelihood
estimator is also robust on the broader class I' of all Gamma distributions (with loca-
tion parameter 0). Robustness on I' O £ is of interest if one assumes that the target
distribution lies in &€ (so that the maximum likelihood principle is reasonable) but the
distribution v underlying the observations may lie in the broader class I'. &

The issue of robustness on subsets was approached in Section 3.1 of [22]. The latter
paper develops further the theory of [13, [14] and provides the following criteria (i)—(ii),
where M is assumed to be contained in the set MY of all 4 € M; with [du <
oo for some given continuous function ¢ : E — [0,00). By t-weak topology Oy on
./\/llf we mean the coarsest topology for which all mappings u — [ fdu, f € Cy are
continuous, where C,, refers to the space of all continuous functions f : £ — R for which
sup,cp | f(x)/(14+9(x))| < oo. For E = R? and ¢(z) := ||z||” with p > 1, the set MY is
just the set of all Borel probability measures on F = R? with finite p-th absolute moment
and the ¥-weak topology is metrizable by the LP-Wasserstein metric; cf. Lemma 8.3 in

.

(i) If T': M — ¥ is continuous for the relative 1)-weak topology O, N M, then (T\n)
is robust on every subset M C M with O, " M = O, N M.



(i) If (T},) is weakly consistent on M and robust on every subset M C M with
Oy NM =0, NM,then T : M — ¥ is continuous for the 1)-weak topology O,.

In general the 1-weak topology O, is finer than the relative weak topology O, ﬂ./\/ff,
and the two topologies coincide for ¢ = 1. Thus the criteria (i)—(ii) generalize the criteria
(I)—(II). Assertion (i) says that for i-weakly continuous functionals 7" : M — ¥ the
sequence (T\n) is robust on every subset M of M for which the relative ¥-weak topology
Oy N M and the relative weak topology Oy N M coincide. Lemma 3.4 of [22] provides
the following characterization of those subsets M of ./\/l;p for which O, "M = Oy, N M
holds: the latter identity holds if and only if M is locally uniformly t-integrating in the
sense of Definition below. On the one hand, this characterization is the basis for the
proof of the criteria (i)—(ii) and is also relevant for robustness of more general estimators
than plug-in estimators as defined in (B]); see [21] for an example. On the other hand,
the condition “locally uniformly 1-integrating” is rather technical and not at all useful
for checking the identity O, N M = Oy, N M for any given set M. The aim of the present
paper is to provide more useful characterizations of those subsets M of ./\/llf for which
the identity Oy N M = O, N M holds, and to illustrate their use. For the sake of brevity
we will refer to any M C M;p satisfying the condition Oy, N M = Oy, N M as w-set in
MY

Theorem 2.3 below gives three further equivalent conditions for a set to be a w-set in
./\/llf Based on this theorem, we will obtain in Section [3] several specific examples for w-
sets in M}p for various choices of ¢». Among others, we will investigate popular parametric
families of distribution such as normal, Pareto, Gumbel, or Gamma distributions, and
also consider sets of distributions derived from Fréchet classes of univariate marginal
distributions via aggregation operators like the sum. The latter sets of distributions are
of particular interest in the context of risk assessment. The results of Section 3 together
with assertion (i) above (and the results of Section ) in particular justify Example[.2l In
Section [l we will provide examples for ¢-weakly continuous functionals T'; we will study
statistical functionals underlying the maximum likelihood method and law-invariant
convex risk measures. In Section 4l we will also discuss the property of robustness of
the corresponding plug-in estimators (T\n) on subsets of T"’s domain. Sections bl and
contain longer proofs of our results.

Finally, note that we will in fact work with a slightly more general topology than Oy,
namely with the so-called (1y,)-weak topology O,) to be introduced at the beginning
of Section 2l This generalization does not have priority, but the respective theory covers
some more examples than the theory for the i-weak topology O,. In particular, we
need to establish a corresponding extension of the criteria (i)—(ii), which can be found
in Theorem



2 Concurrence of weak and (v;)-weak topologies and
applications in robust statistics

As before let E be a Polish space and use the notation introduced in Section [l Let
(1) be a sequence of gauge functions, i.e., a sequence of continuous functions vy, :
E — [0,00). Let Cy, be the space of all continuous functions f : £ — R for which
sup,ep | f(x)/(1+g(x))| < co. Let M¥) be the set of all Borel probability measures
on E for which [ 4y du < oo for every k € N. The (¢,)-weak topology Oy, on MW’ is
defined to be the coarsest topology for which all mappings pu+— [ fdu, f € Cy,, k €N,
are continuous. When ¢, = ¢ for all k£ € N, we have Mﬁ*"k) = MV and Oy = Oy

Lemma 2.1 The set Mﬁw’“) equipped with the (Yy)-weak topology is a Polish space. In
addition the (1y)-weak topology is metrizable by the metric

dootie) = () + 32| = [t 1), 0

where dy, is any metric for the weak topology. Moreover, for every (pin)nen, C MW’ the
following statements are equivalent.

() pn = po (Yr)-weakly.
(b) pn = po weakly and [y dpn, — [ r dpo for every k € N.

In Theorem [2.3] below we will specify those subsets of MW on which the relative
(¢ )-weak topology and the relative weak topology coincide. We will use the following
terminology, which extends Definition 2.12 in [14] and Definition 3.1 in [22].

Definition 2.2 A set M C M is said to be locally uniformly (iy)-integrating if for
every p € M, € >0, and k € N there exist a > 0 and a weakly open neighborhood U of
i such that

veMNU = /@Dkﬂ{wkZa} dv < e.

The set M is said to be uniformly (Vx)-integrating if for every e > 0 and k € N there
exists some a > 0 such that

sup /wkﬂ{¢k2a} du < e.

pneM

If (¢r) consists of a single gauge function, say v, we shall speak of (locally) uniformly
W-integrating sets instead of (locally) uniformly (1 )-integrating sets.



Note that a set M is (locally) uniformly (1) )-integrating if and only if it is (locally)
uniformly v,-integrating for every k € N. Of course, any uniformly (v;)-integrating set
M is also locally uniformly (v )-integrating, and any locally uniformly (v )-integrating
set M is a subset of MY”’@). If all ¢, are bounded, then the set M coincides with MY”’”
and is uniformly (v )-integrating.

Let us now turn to the characterization of those subsets of Mgw’“) on which the relative
(¢ )-weak topology and the relative weak topology coincide. For ¢)-weak topologies, the
equivalence (a)<(b) in the following theorem is already known from Lemma 3.6 in [22].

Theorem 2.3 Let (1) be any sequence of gauge functions and M C MYW be given.
Then the following conditions are equivalent:

(@) Oy NM =0y N M.

(b) M is locally uniformly (1 )-integrating.

(c) Every weakly compact subset of M is uniformly (1y)-integrating.

(d) Ewvery sequence in M which converges weakly in M is uniformly (iy)-integrating.

(e) For every sequence (i) € M for which p,, converges weakly to pg the convergence
f@/}k dp, — fz/)k dpg holds for all k € N.

Definition 2.4 Let (¢) be any sequence of gauge functions and M C Mgw’“). Then M
is said to be a w-set in MW’ if condition (a) (and thus each of the equivalent conditions

(a)-(e)) in Theorem[23 holds.

Remark 2.5 Let (¢4) and ({bvk) be sequences of gauge functions satisfying ¢ <
pointwise for every k € N. Then /\/l(w’c C ./\/l () , and the (¢y)-weak topology is finer
than the (zljk) weak topology on ./\/l(w’“ . In particular, every w-set in ./\/l1 ©) is also a
w-set in ./\/llw’“ . Moreover, if ¢, = 1 for every k € N, then every subset of M; = MW’
is a w-set. &

We obtain the following generalization of Hampel’s theorem, where by weak consis-
tency of (7,,) on M we mean that lim, ., P*[|T,, — T'(1)| > n] = 0 for all n > 0 and
e M.

Theorem 2.6 Let the statistical model (Q, F,{P* : u € MY}) (with M C M), the
functional T : M — X, and the sequence of estimators (T,,) be as introduced in Section[d.
Then the following two assertions hold:



(i) If for any w-set M in MW’“) with M C M the functional T is continuous at every
p € M for the relative (y)-weak topology Oy NM, then (fn) is robust on M. In
partzcular if T is continuous for the relative (1y)-weak topology O,y N M, then
(Tn) is robust on every w-set M in M(wk) with M C M.

(i) If (fn) is weakly consistent on M and robust on every w-set M in MW with
M C M, then T is continuous for the relative (¢y)-weak topology Oy, N M.

In the case where 1, = 1 for all £ € N, Theorem is already known from Theorem
3.8 in [22]; previous versions of this result were obtained in [I3| 14]. The extension
in terms of the general notion of (i)-weak topology is motivated by the example of
maximum likelihood estimation which will be studied in Subsection 4.1 In particular,
in order to establish local robustness for the maximum likelihood estimator of the scale
parameter of Gumbel distributions the possibility to use nonconstant sequences of gauge
functions will prove to be convenient; cf. Subsection below. Likewise, it will turn
out that the full generality of Theorem is useful when investigating local robustness
of certain law-invariant convex risk measures; cf. the discussion subsequent to Corollary
419

In many situations the functional 7" : M — X can be shown to be (¢)-weakly
continuous on the whole domain M. In some cases, however, it is beneficial that in
condition (i) of Theorem we only require continuity of 7" at every point of M. To
give an example, let £ = R, ¢ = ¢ = 1 (hence M = M;), o € (0,1), and
T : M; — R be the functional that assigns to a Borel probability measure its (lower)
a-quantile. This (quantile) functional 7" is (¢-) weakly continuous at every point of
the set M of all Borel probability measures with a unique a-quantile, but not weakly
continuous on Mj.

3 Examples of w-sets in /\/l(l‘z”f)

The following lemma provides a simple but general class of w-sets in MY”’“).

Lemma 3.1 Fvery set M C MW that is relatively compact for the (Vy)-weak topology
is a w-set in M\,

Proof It suffices to show that on M weak convergence implies (¢ )-weak convergence.
So let us suppose that (u,) is a sequence in M that converges weakly to some p € M.
Then by (tr)-weak compactness, every subsequence of (iu,) has a subsequence that
converges (¢ )-weakly toward some v € M) Since (1 )-weak convergence implies
weak convergence, we must have v = u. It hence follows that p, — p also (i)-weakly

which completes the proof. O

The preceding lemma has the following consequence.



Proposition 3.2 Suppose that (Vy) is a sequence of gauge functions such that all sets
of the form {x1 < niby} are compact for k,n € N. Then M§ k) s (¢y)-weakly compact
and thus itself a w-set.

Proof Clearly, MW is (1 )-weakly closed, while relative compactness follows from
Lemma [5.1] (d) by taking ¢y := ¥,41. Lemma Bl finally gives that M?"k) is a w-set. O

The most interesting case is where F is non-compact. In this case Proposition
is not applicable to constant sequences of gauge functions (i.e. 1, = v for all k € N),
because then the sets {1 < ny} = E, n € N, are not compact. However, as an immediate
consequence of condition (e) in Theorem 2.3 we obtain the following alternative device.

Proposition 3.3 Let © be a topological space, and py be an element Of./\/lgw’“) for every
0 € ©. Then the set Mg := {ug : 0 € O} is a w-set in MW’“) if the following two
conditions are satisfied:

(a) For every sequence (0,)nen, in O, weak convergence of pg, to g, implies 0,, — 6.

(b) For every sequence (O,)nen, in ©, convergence of 6, to 0y implies [y dpg, —
[ Wx dpg, for all k € N.

3.1 Parametric classes of distributions

In this section, we consider a few examples in which parametric classes of probability
distributions belong to Mﬁ*"k) for suitably chosen sequences (1)) satisfying the hypothe-
ses of Proposition 3.2 or Proposition[3.3l Note that in view of Remark 2.5, the assertions
in the following examples can be reformulated for many other (coarser) topologies; see
the second part of Example for an illustration.

Example 3.4 Let £ = R? equipped with the euclidean norm ||- || and A/ be the class of
all d-dimensional normal distributions N(m, ), where m € R? and ¥ is a semidefinite
d x d covariance matrix. If we let ¢y (x) := exp(Ag||x]|**), where A\ 1 o0 and i 12, we
have N' C M{") and Proposition 32 yields that A is a w-set in M), &

Example 3.5 For fixed parameters a > 0 and zp;, > 0, let P,, be the class of
type-1 Pareto distributions with shape parameter a > «. That is, P, ,, . consists of all

Zmin

Borel probability measures on R with Lebesgue density

a Tmin atl
a = Lz min,co
fa() xmm( , ) [#minso0) (7)
for some a > «a. If we let ¢y (x) := |z|P*, where p; > 0 and py 1T «, we have P, ., C

M) and Proposition B2 yields that Pz 18 @ w-set in M, &

ZTmin



Example 3.6 Let I denote the class of all Gamma distributions with location param-
eter 0. That is, I" is the class of all Borel probability measures on (0, 00) with Lebesgue
density

xn—le—x/e

fro(r) = TR

for some 0, k > 0. When taking ¢y (z) := 2* or ¢y (x) := M where A\, 1 oo and B 1 1,
we have I' C Mgw’“), and Proposition [3.2] yields that I' is a w-set in Mﬁw’“’.
When the parameter x is fixed and set to 1, the Lebesgue density f, ¢ simplifies to

the Lebesgue density
—xz/0

fol) = fro(@) =

of the exponential distribution to the parameter § > 0, and the corresponding class of

e

all exponential distributions will be denoted by £. Again by Proposition we obtain
that £ is a w-set in MW for the sequences (1) of gauge functions mentioned above. In
Subsection [L.T.2] we will consider the single gauge function ¢(z) := x which is dominated
by Yi(z) = eM*™ (with Ay, 8; as above) for every k. Thus & C M) C MY and by
Remark 25 we obtain that & is also a w-set in M. &

Example 3.7 Let G denote the class of all Gumbel distributions, i.e., the class of all
Borel probability measures G, on R with Lebesgue density

fulw) = ae™

for some a > 0. By letting ¢y () := |z|* or ¢y () := Ml where A\, 1 oo and By 1 1,
we obtain that G C MW, and Proposition yields that G is a w-set in Mﬁwk).

In Subsection LT3l we will consider the gauge functions ¢y (z) := | log ar — apx — e~ |
for some sequence (ay) representing (0,00) N Q. Since for a > 0 the moment generating

azr

function of G, is well defined on (—o0, 1/a) enclosing 0, the integrals [ a|z|e "¢ ""dx

and [ e %e"9=¢"""dz are finite for any a,a > 0, and thus G, € Mﬁwk) for all @ > 0. We
now verify conditions (a)—(b) of Proposition 3.3 to show that G is also a w-set in M%’
for this choice of gauge functions.

(a): Let (G, )nen be any sequence in G which weakly converges to some distribution
Gg, € G. Then corresponding sequence (F,, )nen, of distribution functions satisfies

e =F, (z) — Fy(r)=e " forallz € R.
Thus necessarily a,, — ag.
(b): Let (an)nen be a sequence in (0,00) which converges to some ay € (0,00). Set
a = inf, ey a,, and @ := sup,,cy @y, and note that ¢ > 0 and @ < oco. For any x € R, the

a

mapping a — —ax — e~ *" is nonincreasing on (0, 00). Thus

SUp Ui (x) ane ¢ " < hp(z)ae ™ for every x € R.
neN

10



Hence by G; € MW, we may apply the dominated convergence theorem to conclude
that for every k € N,

/ Ui(x) G, (dz) = / () ane= =
— /wk(x) ape— 0" gy — /@/)k(x) G (d).

As we have shown that conditions (a)—(b) of Proposition B.3] are satisfies, the propo-
sition ensures that G is indeed a w-set in MW. &

3.2 Images of Fréchet classes

In this section we consider certain classes M that consist of the image measures of
the probability measures in a given Fréchet class w.r.t. fixed one-dimensional marginal
distributions. The motivation for studying this examples is the notion of aggregation
robustness recently introduced by Embrechts et al. [6]; see also Subsection below.

Let F = R" be endowed with the Euclidean norm || - ||. For given Borel probability
measures fi1, ..., g on R denote by M(d; puy, ..., ug) the set of all Borel probability
measures on R? whose one-dimensional marginal distributions are p, ..., uq. The set
M(d; p1q, . .., pa) is sometimes called Fréchet class associated with py, ..., ug. For any
Borel measurable map Ay : R — R” let

M = M, ..., pa; Aa) = {po A" - pe M(d; ..., p1g) } € My (5)

be the class of the images under A, of all probability measures from M(d; 1, . .., tta)-
In the following Example B.§ we give a few examples of maps A; we have in mind.
All these maps are Lipschitz continuous and thus satisfy condition (a) of Proposition
3.9 ahead. This proposition will provide a general criterion for determining whether
M(p, ..., pa; Ag) is a w-set.

Example 3.8 A simple but relevant example for a map Ay : RY — R? is the identity
map:

(i) Ag(x) :==.

In this case the set M (u1, ..., pq; Aq) defined by (B) is nothing but the Fréchet class
M(d; i1, ..., 1) itself. Examples for maps Ay : R? — R that are relevant in risk
management and insurance are given by

(i) Ag(x1,...,2q) = Zfil X,

(ili) Ag(zy,...,2zq) = max{zy,..., 24},

11



(iv) Ag(x1,...,2q) = Ele(:ci —t;)* for thresholds t1,...,t3 > 0,
(v) Ag(x, ... 24) = (2L, 2 —t)* for a threshold ¢ > 0;

see, for instance, [15], p.248]. For an application of (ii) see Subsection 4.2 below. <&

Let us now turn over to our main criterion to check whether the set M defined in ()

is a w-set in MW. Here we use the notation {/}vk() = (|| - ||). Note that —
k € N, when r = 1.

Proposition 3.9 Let A; : R? — R" be any Borel measurable map. Let (1) be any
sequence of gauge functions on R that are all convex and even, and consider the sequence
of gauge functions ({/;k) on R™ with {/;k as above. Further assume that the following
assertions hold:

(a) There exist constants b,c > 0 such that ||Aq(®)|| < b+ S0 || for all x =
(71,...,74) € R

(b) For every k € N there exist {;, € N and ¢ > 0 such that ¥y ((d+ 1)cx) < cxptdy, ()
for all x € R, where the constant c is given by (a).

(C) M1y Hd € Mgwk)

Then M defined by ({3) is uniformly (@k)—z’ntegmting, and thus it is a w-set in Miw’“).

4 Examples for (¢, )-weakly continuous functionals T’

In this section, we will discuss continuity of some relevant statistical functionals w.r.t.
the (1 )-weak topology for suitable sequences of gauge functions (¢x). In Section [4.1] we
will consider statistical functionals which underly the maximum likelihood estimation
principle. In Section we will consider statistical functionals associated with so-called
risk measures. The latter play an important role in quantitative risk management; see,
for instance, |15, [19].

4.1 Maximum likelihood functionals

Let © C R? and pp be a Borel probability measure on E for every 6 € O. Let
(Q,F) = (EN,B(E)*M) and P’ := g™ for every 6 € ©.

Then (Q, F,{P’ : 0 € ©}) is a parametric statistical product model. We will assume that
our parametric statistical model is dominated. That is, we assume that there is some

12



o-finite measure A on (E,B(FE)) (called the dominating measure) such that for every
0 € O the law py is absolutely continuous w.r.t. A with Radon—Nikodym derivative

_ dug
Joi=x

In particular, when X; denotes the i-th coordinate projection on Q = EN, the law
Plo(Xy,...,X,) " = uy" of a sample of size n is absolutely continuous w.r.t. A" with
Radon-Nikodym derivative duj"/d\®™ satisfying

dpg"
dA\®"

(X1, ..., 2y) = Hf,g(.l’l) =: Lp(z1,...,2,;0) forall zy,...,2, € E
i=1

for every 6 € © and n € N.
By definition, a maximum likelihood estimator 7,, for the parameter 6 based on a
sample of size n satisfies

To(x) = Tp(x1,. .., 2,) € argmax Ly (z1, ..., 2,:0) forall @ = (21, 2s,...) €Q (6)
0ce
for every 6 € ©. Let us assume that fy > 0 on E for every 6§ € ©. Then condition (@) is
equivalent to

~ ~ 1 <
T.(x) =T,(z1,...,2,) € argmax — Zlog fo(z;) for all x = (x1,29,...) € Q.
gco M

In particular, if M C M contains the set € of all empirical probability measures and
T : M — O is a functional satisfying

T(u) € arg max/log fodu  for all pe M, (7)
=)

then we can define a maximum likelihood estimator by

A~ ~

T.(x) =T, (z1,...,2,) = T(Mp(x1,...,2,)) forall x=(x1,29,...) €Q.  (8)

Inspired by the representation () of the maximum likelihood estimator we introduce
the following terminology. For any subset M C M, containing &, amap 7' : M — O is
called maximum likelihood functional associated with the statistical model (Q, F, {P? :

6 € ©}) if for every u € M the integrals [ |log fy| du, 6 € ©, are finite and () holds.

Remark 4.1 Although it is not crucial for our purposes, note that a maximum likeli-
hood functional T" evaluated at gy takes the parameter 6 as its value, i.e., 6 provides a
maximizer of the mapping ¥ — [ log fy dug on ©. Moreover, 6 is the unique maximizer
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as soon as fug # puy for all ¥ € © \ {0}. Indeed, since we assumed fy > 0 for every 0 € O,
the strict concavity of the logarithm and Jensen’s inequality yield

/ log fy dpg — / log fi djig = / log (%)dﬂe < log ( / %due) —log(1) = 0

for every ¥ € © for which fy # fp; in the third step we have used the fact that
fol fo = du/dpe. <

In view of (§) the minimal domain of a maximum likelihood functional T : M — © is
M = € where as before € refers to the set of all empirical probability measures on E.
In order to apply Theorem to maximum likelihood estimators, the domain M has
to be chosen so large that it contains both & and the set

Mg :={pg: 0 € ©}.

Indeed, if EU Mg C M C Mﬁw’“’ and a maximum likelihood functional 7": M — ©
is (1) )-weakly continuous for some sequence of gauge functions (1), then Theorem
shows that the corresponding sequence of maximum likelihood estimators (fn) is robust
on every w-set M in MW with M C M (in particular with M C Mg). Recall that
robustness of (T\n) on M means that for every y € M and € > 0 there exists an open
neighborhood U = U(u,e; M) of u for the relative weak topology Oy, N M such that
7P o T VP’ ol ) <cforallveUandneN.

Remark 4.2 In many specific situations the set Mg itself can be shown to be a w-set
in M{"¥). see Examples B4 through Bl In this case the sequence (7},) of maxium
likelihood estimators is robust on Mg. &

Note that robustness on Mg is of interest if one starts from the premise that both
the target distribution p and the distribution v underlying the observations lie in the
parametric class of distributions Mg. On the other hand, robustness on M 2 Mg is
of interest if one assumes that the target distribution lies in Mg (so that the maximum
likelihood principle is reasonable) but the distribution v underlying the observations
may lie in a broader class M (nested between Mg and M).

4.1.1 (¢)-weak continuity of maximum likelihood functionals

Here we are going to investigate a fixed maximum likelihood functional T : M — © for
continuity w.r.t. a suitable (¢x)-weak topology. To this end, let © be an open convex
subset of R? equipped with the Euclidean norm || - ||. We will assume throughout that
the following three conditions hold:

fo(z) >0 forevery # € © and z € E. 9)
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x +— log fp(x) is continuous for every 0 € ©. (10)
0 — log fa(x) is concave for every x € F. (11)

In general we cannot expect that the maximum likelihood functional T is weakly con-
tinuous. On the other hand, it should often be possible to find a sequence of gauge
functions (¢y) for which T" is (¢y)-weakly continuous. At this abstract level the most
obvious candidates for the sequence (¢) is built upon a sequence (log fy, (-)) with (6x)
a sequence in © representing © N Q?. For instance, we may and do choose

() == |log fo,(z)|, =z € E. (12)

For every u € M; with [|log fy|du < oo for all # € © we can now define a map
L,:0 — R by

L,(0) := /log fodpu.

Note that £, is concave by (Il and thus continuous. Moreover, T'(¢) is a maximum
point of £, by the characteristic property (7)) of the functional 7'

Theorem 4.3 Let M C My and T : M — O be a mazximum likelithood functional.
Assume that [3)—(11) hold, and let the function iy be defined by (I3) for every k € N.

Let i € M be such that the map L,, has a unique mazimum point. Then T (p1,,) — T (1)
for any sequence (p,,) C M which satisfies L,,,(0x) — L,(0x) for every k € N. In
particular, T is continuous at p w.r.t. the (1y)-weak topology.

Remark 4.4 Let the gauge functions v, be defined as in (I2). Furthermore, let ky € N
such that for every k € N there exist constants By > 0 and C} > 0 with ¢, < By +
Crry- S0 1), = By, + Cyty, defines a new sequence (v,) of gauge functions such that
./\/libk0 = Mgw’“) = Mgw’“). Then on the one hand by the genuine definition of (1 )-weak
topology, the (1,)-weak topology is finer than the (v )-weak topology. On the other
hand by Lemma 2.1 the (v, )-weak topology is coarser than the v,-weak topology. In
particular the (¢ )-topology coincides with the 1y, -weak topology so that we may replace
in Theorem the (i )-weak topology with the i -weak topology. O

We round out Section [£] with two specific examples illustrating Theorem (.3

4.1.2 Example exponential distribution

Let specifically E = (0,00), © = (0,00) and Mg := {Exp, : 0 € (0,00)} be the class of
all exponential distributions Exp, with parameter €. In this case we have

log fo(z) = —logh —x/6  for all § € (0,00) and = € (0, c0). (13)
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If we choose the sequence of gauge functions (i) by (I2]), then we obtain
U(z) = |log fo, (x)| = | —log Oy — x/0;| forallx € (0,00) and ke N (14)

for some sequence (6;) in © = (0, 00) representing (0, 00) NQ. It can easily be seen from
(I3) that conditions (@)—(II]) hold. Since |log fy| < By + Cythy, for By := |logb|, Cy :=
1/6 and those ko for which 6, = 1, we may observe Mllpko = ﬂ9>0/\/l|110gf9‘ = M,
Moreover, by Remark 4] the (1y)-weak topology coincides with the i-weak topology
on MY = MY where 1 := 1)y, ie.

Y(x) =z, x€(0,00). (15)
For y1 € MY the map £, : (0,00) — R defined by

£,(6) = [ 10z fydu= [ (1050~ 2/6) n(da

has a unique maximum point, namely h= [z pu(dx). In particular, there exists exactly
one maximum likelihood functional on /\/llf That is, there exists exactly one functional
T : MYV = (0,00) satisfying (7). In the present setting, (@) and Remark E1] imply that
T(p) = arg maxye g o) [ (—log 0 —/0) p(dx) for all u € M. Now, combining Theorem
with Remark [£.4] we obtain immediately the following result.

Proposition 4.5 The unique mazimum likelihood functional T : Mllp — (0,00) is -
weakly continuous.

In view of part (i) of Theorem 2.6 Proposition 4.5l and the second part of Example
together imply the following corollary, where robustness is understood as in Definition

L1

~

Corollary 4.6 The sequence of maximum likelihood estimators (T,,) is robust on Meg.

The preceding corollary shows that the maximum likelihood estimator for the pa-
rameter of the exponential distribution is robust on its natural parametric domain, i.e.,
on the class Mg of all exponential distributions. To see that it is even robust on, for
instance, the broader class of all Gamma distributions (with location parameter 0), let
the sequence of gauge function (;) no longer be given by (I4)) but rather by

Yr(z) = |z|F forallz € R and k € N.

Then we clearly have Mg C Mgw’“) C M;p for the single gauge function 1 defined in
(I3). In particular, by Proposition the restriction of the unique maximum likelihood
functional 7" to MW is clearly (1y)-weakly continuous. Together with part (i) of
Theorem and the first part of Example this implies the following corollary.

Corollary 4.7 The sequence of mazimum likelihood estimators (fn) is robust on the
class T' of all Gamma distributions (with location parameter 0) introduced in Example
1. 0l
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4.1.3 Example Gumbel distribution

Let specifically £ = R, © = (0,00) and Mg = {G, : a € (0,00)} be the class of all
Gumbel distributions G, = Gy, with location parameter 0 and scale parameter 1/a for
a > 0; cf. Example 3.7l In this case we have

log fo(x) =loga —ax — e * for all a € (0,00) and = € R.

It is easily seen that conditions (@)—(I]) are satisfied. Let the sequence of gauge function
(¢r) be given by (12, i.e.

Ur(x) = |log fo, (v)] = |logar —arx — ™|, z€R, k€N

for some sequence (ay) in © = (0, 00) representing (0, 00) N Q. For this choice of gauge
functions we can observe the following.

Lemma 4.8 (., M%7 = pm{0%).

a>0
Proof Let 0 < a <@ Then by the de 'Hospital rule we may observe

axr

. log fu(z) . —a+ae” a
lim ——~*% = lim E———
z—o0 log fa(x) 2o —a+ae ™ a
and
lim axe™ =0= lim aze™.
T——00 T——00
In addition
lim log fu(z) — lim loga e - are —{ o,
v——c0 log fa(x)  2—-ccloga e — arew® — ela—a)r—
where in the last step the assumption a < @ has been invoked. Then
lim Hog fu(@)| _ 0 and lim Hog fa(@)] _ ¢
a=—oc | log fa()| a0 |log fa(x)| @
so that for some § > 0
a .
[log ful@)] <2 2 [log fo(a)| it la] > 6 (16)

Now let p € M85 Firstly by (I0),
[ 15 sl 1og folo)] i) < oo,
Secondly in view of ([0

/11[—5,51(x)|10gfa(x)| pldr) < :ﬁgﬂ\logfa(w)l p([=9,0]) < oo.
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Hence p € M\llogfa|_ Since for any a > 0 there is some k € N such that a < a;, we may
conclude M‘ll"gfﬂ — Mglﬂk). il

a>0

Using &y to denote the Dirac measure at 0, Proposition L.10 below shows that there
is exactly one maximum likelihood functional on

M= MU {6}

and that this functional is (¢ )-weakly continuous. The proof of Proposition [£.10 relies
on Theorem 3] and the following lemma.

Lemma 4.9 For every p € M, the map L, : (0,00) = R defined by

L,(a) = /log fadp = /(loga —azr — e ) u(dr)
has a unique maximum point.

Proof The function a — log f,(z) is strictly concave for every z € R, and so a — L, (a)
is also strictly concave for every u € M. We will show below that for pu # dy,
limsup £,(a) = —oo and limsup £,(a) = —o0, (17)
al0 aToo
and so £, has indeed a unique maximum point. To show (I7), we first note that
log fo(z) < loga holds for all # € R and a € (0,00). It follows that limsup,, £,(a) <
lim sup, o loga = —oo. To prove the second identity in (I7), note that

l/ (az + e ") p(dz) > / x p(dz) + / (z+ e % /a) p(dx).
“ [0,00) (=00,0)

Since e /a 1T oo as a T oo for every x < 0, the rightmost integral tends to +o0o as
soon as fi((—o0,0)) > 0. Altogether, we obtain liminfs4ee = [ (az + e7%) p(dz) > 0 for
p # 8o, which clearly implies lim sup ., £, (a) < 0 and in turn (7). O

Lemma says that there exists exactly one maximum likelihood functional on M,
i.e., exactly one functional 7" : M — (0, c0) satisfying (). In the present setting, () and
Remark BTl imply that T'(u) = arg max,¢ g o) [ (loga — ax — e™**) p(dx) for all u € M.

Proposition 4.10 The unique mazimum likelihood functional T : M — (0, 00) is (¢x)-
weakly continuous.

Proof As already mentioned above, conditions (@Q)—(I1)) hold. Moreover, by Lemma [£.9]
the map £, possesses a unique maximum point for every u € M. Thus the claim follows
by an application of Theorem E.3] O

From the second part of Example 3.7 we know that Mg is a w-set in M ¥#). Together
with part (i) of Theorem and Proposition [£.10, this yields the following corollary,
where robustness is understood as in Definition [L.1l
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Corollary 4.11 The sequence of mazimum likelithood estimators (fn) is robust on Mg.

4.2 Risk functionals
4.2.1 Risk measures

In this section we let specifically £ = R. Let ¥ : R, — R, be a continuous nonde-
creasing convex function such that 0 = ¥(0) and limg4o, ¥(z) = co. Such a function is
sometimes referred to as a finite Young function; see, e.g., [2]. Fix any atomless proba-
bility space (€, F,P) and denote by L° = L°(Q2, F,P) the set of all P-a.s. finite random
variables on (2, F,P). The Orlicz heart on (2, F,P) associated with ¥ is defined by

HY =HY(Q,F,P):={X € L°: E[¥(c|X|)] < oo for all ¢ > 0}.

It is the largest vector subspace contained in the Orlicz class YY = YY(Q, F,P) =
{X € LY : E[¥(]X|)] < co}. The Orlicz class in turn is a convex subset of the Orlicz
space LY = LY(Q, F,P) := {X € L° : E[¥(c|X|)] < oo for some ¢ > 0}. In general we
have L>* C HY CYY C LY C L', and these inclusions may all be strict. In fact, it is
known form Theorem 2.1.17 (b) in [5] that the identity H¥ = LY holds if and only if ¥
satisfies the so-called Ay-condition:

There are C', zy > 0 such that ¥(2z) < CVU(x) for all 2 > x. (18)

This condition is clearly satisfied when specifically ¥(x) = 2 /p for some p € [1,00). In
this case, LY coincides with the usual LP-space LP = LP(Q), F,P).

Definition 4.12 Let ¥ be a finite Young function. A law-invariant convex risk measure
on HY will be a map p: HY — R satisfying the following three conditions:

e Monotonicity: p(X) > p(Y) for X, Y € HY with X <Y P-a.s.
o Convezity: p(AX +(1=N)Y) < Mp(X)+(1=Np(Y) for X,Y € HY and X € [0,1].
o Law-invariance: p(X) = p(Y) for X, Y € HY withPo X' =PoY !,
In a financial context, one typically requires that a law-invariant convex risk measure
p is also monetary in the sense that it also satisfies the following additional property:
e Cash additivity: p(X +m) = p(X) +m for X € HY and m € R;

see, e.g., [§]. Here, however, cash additivity will not be needed and so we will work
with our more general class of not necessarily monetary law-invariant convex risk mea-
sures. As argued in [2], Orlicz hearts are natural domains for law-invariant convex risk
measures.
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Example 4.13 Let ¢g : [0,1] — [0, 1] be concave, nonincreasing, and continuous with
g(0) = 0 and ¢g(1) = 1. Let ¥ be a (finite) Young function with the conjugate W*
defined by ¥*(y) := sup,>q(zy — ¥(x)). It was shown in Proposition 2.22 in [T4] that if
the right-sided derivative ¢’ of ¢ fulfills the condition fol U*(g'(t)) dt < oo, then

0 00
)= [ atPx)do— [ (1= g(Fxle) da
—o0 0
defines a monetary law-invariant convex risk measure p, : H¥ — R, where Fx stands
for the distribution function of X. It is called distortion risk measure associated with
g. For the specific distortion function g(t) = (t/a) A 1 the associated distortion risk

measure pq reads as

p(X) = 1 /O " FE(8) 46,

«

where Fy denotes the left-continuous quantile function of the distribution Fy. This
distortion risk measure is also called Average Value at Risk at level o € (0,1), and it is

denoted by AVQR,,. <&
Example 4.14 Let for finite Young function ¥ the map py : HY — R be defined by

pu(X):=inf {m e R: E[¥((—-X —m)*)] < 0}

for some xy > 0. This is a monetary law-invariant convex risk measure known as the
utility-based shortfall risk measure with loss function fy : R — R defined by ly(z) :=
U(xt); cf. e.g. [§] and, for the extension to Orlicz hearts, [14]. &

Example 4.15 Let specifically W(z) = 2?/p for some p € [1,00). Then HY = L? and
(M) Oyp)) = (MY, 0y)) for ¢(z) = |x[?/p. The map p, : L? — R defined by

pp(X) = E[(X7)"]

obviously defines a law-invariant convex risk measure in the sense of Definition [£.12]
Here, X~ := —min{0, X} denotes the negative part of X. &

4.2.2 (1;)-weak continuity of the associated risk functionals

Denote by M(HY) the set of the distributions of all random variables from HY¥ and note
that
M(HY) = MW for oy == U(k| - |), k € N. (19)
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The inclusion C is obvious and the inclusion 2O holds because (2, F,P) is assumed to
be atomless. Note that if U satisfies the A,-condition (I8), then M(HY) = MY and
Oy, = Oy for

= V(|- ).
The law-invariance of p is equivalent to the existence of a map R, : MW — R such

that
p(X)=R,(PoX ") forall X € H". (20)

This map R, will be called the risk functional associated with p.

Theorem 4.16 Let R, : MW’ — R be the risk functional associated with a law-
invariant convez risk measure p: HY — R. Then R, is continuous w.r.t. the (y,)-weak

topology.

Remark 4.17 As a consequence of Theorem [4.16], the risk functional R, : Miw’“’ — R
is weakly continuous on every w-set in Mgw’“) = M(HY). At the beginning of Section
()
1

we discussed how to check when a subset of M is a w-set. 0]

If U satisfies the Ay-condition (I§]), then the (i)-weak topology can be replaced by
the i-weak topology in Theorem .16l On the other hand, if ¥ does not satisfy the
A,-condition (I8)), then we can always find a law-invariant convex risk measure on HY
which fails to be continuous w.r.t. the 1-weak topology:

Example 4.18 Let ¥ be a finite Young function which does not satisfy As-condition
(IR), and let py denote the shortfall risk measure as in Example 14l In [14] proof
of Theorem 2.8], there was constructed as sequence (X,) in L> which converges to dy
w.r.t. the ¥-weak topology such that sup,, inf{m € R : E[¥(8(—X,, —m)")] <z} = 0.
Hence Y, := 8X,, defines a sequence (Y,,) in L> whose laws converge weakly to &y, while
pw(Y,) — oo. In particular py is not continuous w.r.t. the ¥)-weak topology. &

As an immediate consequence of Theorem .16 and Example [1.18 we get the following
corollary. The corollary extends Theorem 2.8 of [14], where considerations have been
restricted to monetary law-invariant convex risk measures.

Corollary 4.19 Let R, : Mﬁw’“’ — R be the risk functional associated with a law-
invariant convex risk measure p - HY — R. Then the following conditions are equivalent:

(a) For every law-invariant convez risk measure p on HY, the map R, : M(HY) = R
s continuous for the v-weak topology.

(b) W satisfies the Ag-condition (18).
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Let us emphasize as a further implication of Corollary .19 that, if ¥ does not satisfy
the Ag-condition ([I8]), then we cannot apply Theorem for the ¢-weak topology but
only for the (¢ )-weak topology.

4.2.3 Robustness on parametric classes of distributions

Consider the statistical model (I)-(3) with specifically
E=R, M:=MHY), T:=R, (21)

where p : HY — R is any law-invariant convex risk measure. By Theorem E.16] we know
that R, : M(H"Y) — R is (¢y)-weakly continuous for the sequence (i;) introduced
in ([9), and it is clear that the set € of all empirical probability measures on R is
contained in M(H"Y). Thus Theorem 28l yiclds that the sequence of estimators (7},) is
robust on every w-set M in M(HY). In particular, the sequence (f ») is robust on many
parametric families Mg = {ug : 6 € O} of univariate distributions. This is illustrated
by the following examples, which rely on Examples B.4H3.7l

Example 4.20 The Average Value at Risk AV@QR,, introduced in Example is de-
fined on L', i.e., on HY with ¥(z) = x. Since this ¥ satisfies the Ay-condition (I8, we

have O(y,) = Oy for ¢(z) = |z|. Thus the sequence (75,) is robust on each of the sets
N, Pz (With @ > 1), ', and G introduced in Examples B.AH3.T7 &

Example 4.21 Let py be the utility-based shortfall risk measure on HY as introduced
in Example @.I4] and let N, P, ., .. (with @ > ¢ > 1), I', and G denote the parametric
families of distributions from Examples B.4H3.7 Then the sequence (73,) is robust on

(a) N if there exists A > 0 such that U(z) = O(e*”) as z 1 oo;
(b) Paa,,, if there exists ¢ € [1, ) such that ¥(z) = O(z?) as x 1 oo;
(¢) T and G if there is some 3 € (0,1) such that ¥(z) = O(e*”) as & 1 co. &

Example 4.22 The risk measure p, introduced in Example is defined on LP?, i.e., on
HY with W(z) = 2?/p. Since this ¥ satisfies the Ay-condition (I8), we have O,y = Oy
for 1(z) = |z|P/p. Thus the sequence (T},) is robust on each of the sets A, Pz, (With
a > p), I', and G introduced in Examples B.4H3.7 <&
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4.2.4 Aggregation robustness

For py, ..., pq € My and Ay(zq,...,24) == Zle x; we let

Sty i) = {po A7 s pe M(dipu,... 1)},

where M(d; 11, . . ., p1q) denotes the Fréchet class w.r.t. uy, . .., pg; cf. Subsection3.2l As
before we consider a law-invariant convex risk measure p on HY as well as the associated
risk functional R, : M(HY) = R. If 1, ..., pta € M(HY) are regarded as distributions
of single positions Yi, ..., Yy of a financial portfolio, then the set S(uy, ..., uqg) may be
seen as the set of all possible distributions of the portfolio sum Sy := Z?Zl Y;. It is argued
by Embrechts et al. [6] that it is often relatively easy to model the marginal distributions
W1, - - -, g, While it can be difficult to obtain accurate information on the dependence
structure of Yi,...,Y,; This situation roughly corresponds to the setting where the
marginal distributions py, . . ., pg are known but the law of A4(Y3,...,Yy) = E?Zl Y; can
vary within &(uy, . . ., ug). Motivated by this issue, Embrechts et al. [6] raise the question
of robustness of the empirical estimator for p(S;) = R,(p o A;') for known marginal
distributions g1, . .., g. More precisely, the statistical model ([II)—(B]) is specialized to

E =R, M =6, -, pa), T =Rl .pa) (22)

where the observations (i.e. the coordinates on Q = RY) should be seen as i.i.d. copies
of S4. Theorem and Proposition imply that the sequence (T\n) is robust on
S(p, - - -, fa), because the risk functional R, is always (1, )-weakly continuous on its do-
main M(HY), according to Theorem .16l The crucial point is that the set &(uy, . . ., f1q)
is a w-set in M(H"Y) = M) by Proposition 33, and so the risk functional R, is weakly
continuous on &(puy1, ..., 1g). Embrechts et al. [6] referred to the weak continuity of the
functional R, on &(j1, ..., ita) as aggregation robustness of R,. Maybe it is even more
appropriate to use the terminology aggregation robustness for the sequence of estimators
(f ») in the statistical model given by (I)—(3) and (22]).

The above considerations are not restricted to the particular aggregation function
Ag(zq, ... xq) == Z?Zl x;. The latter can be replaced by any other function A, : R —
R satisfying condition (a) of Proposition B9 Recall that the set M (uq, ..., 1a; Ag)
was defined in ([B) and that M(u1, ..., pa; Ag) = S, ..., pa) when Ag(xq,...,2q4) =

d
> ie1 Ti-

Theorem 4.23 Let Ay : R — R be any Borel-measurable map satisfying condition (a)
of Proposition[3.4, and let R, : M(H"Y) — R be the risk functional associated with any
law-invariant convex risk measure p on HY. Moreover fix pi1,...,uq € M(HY). Then

RP\M(%___M;A@ is weakly continuous. In particular, the sequence of estimators (fn) m
the statistical model given by ()-(3) and (23) is robust.
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Proof Recall that i, = ¥(k|-|) for £ € N, and let ¢ be any fixed integer exceeding the
real number c. By monotonicity of ¥ we have that 1, ((d + 1)c|z|) < Yp@t1).(x) for all
x € R. Then the first statement of Theorem [£.23 follows immediately from Proposition
3.9 along with Theorem The second statement can then be derived with the help
of Theorem O

5 Proofs of results from Section

5.1 Proof of Lemma 2.1

By construction, a base for the (iy)-weak topology is given by sets of the form Uy, N
N U, N MY*"“, where n € N, ky,...,k, € N, and each Uy, belongs to a base for
the y,-weak topology on Mllpk Since the -weak topology on ./\/llf’“ is metrizable
by a separable metric by [8, Corollary A.45] and hence admits a countable base, it
follows that the (1 )-weak topology also has a countable base. Then it is known that a
subset of MW is closed w.r.t. the (i;)-weak topology if and only if together with any
sequence it contains all its accumulation points; cf. Theorem 1.6.14 in [7]. Hence under
the equivalence of (a) and (b) the (i)-weak topology is obviously metrizable by d(y,)
as defined in the display of Lemma 2.1

As a metrizable topology with countable base the (1;)-weak topology is separable.
Moreover, by [8, Corollary A.45] the iy-weak topology is completely and separably
metrizable by say dj for every k € N. Then the equivalence of (a) and (b) implies that
the metric d on M%) defined by d(p,v) ==Y 52 (di(p, v) A1) 27 metrizes Oyy,). This
metric is separable by separability of O(,). Now, every d-Cauchy sequence (i) is a
d-Cauchy sequence for any k£ € N. Then by completeness of the metrics dj, (k € N),
we may find for any £ € N some v, € le’“ such that dg(p,,vr) — 0 as n — oo. Since
each 1g-weak topology is finer than the weak topology, we obtain u, — v as n — oo
for each £ € N. Hence by Hausdorff property of the weak topology, all the v coincide,
and thus by definition of the metric d we have d(p,, 1) — 0 for some p € Miw’“’. Thus

we have shown that d is a complete metric. In particular, Mﬁw’c)

equipped with Oy, is
a Polish space. So it is left to show the equivalence of (a) and (b).

The implication (a)=(b) is obvious. Conversely, let statement (b) be satisfied. We
have to show that for every f € Cy,, k € N, and € > 0 there exists some ny € N such

that
’/fdun—/fdu(]’ge for all n > ny. (23)

The left hand side of ([23) is bounded above by

‘/f]l{fm} dﬂn_/f]l{lfﬁa} duo‘ +‘/f]l{|f>a} d:“n_/f]l{flm} djto (24)

24



for every a > 0. For notational simplicity we set zzk := 141,. Then the second summand
in (24]) is bounded above by

Cf,k/@/)k]l{gpa} dﬂn+cf,k/wk]l{1[k>a} d g (25)

for some suitable constant C'yj > 0 satisfying |f(z)| < C’ka{bvk(c) for all x € E. Now we
can choose a > 0 so large that the second summand in (25]) is at most /5. The first
summand in is bounded above by

Cf,k’/wkl{$k>a} d,Un _/¢k1{Jk>a} dlio’ +Cf,k/wk]l{7jk>a} dﬂO (26)

As see above, the second summand in (26]) is at most €/5. The first summand in (26)) is
bounded above by

Cf,k‘/{pvkdﬂn_/{/;k dﬂo‘ +Cf,k)/{/;k]1{1;k§a} dun—/ikﬂ{gkga} dpo|- (27)

The first summand in (27) converges to 0 as n — oo by assumption. Thus we can find
ng € N such that it is bounded above by /5 for every n > ng. Since pg o %;1 as a
probability measure on the real line has at most countably many atom, we may and do
assume that a > 0 is chosen such that /,LO[{Jk = a}| = 0. Since u,, — po weakly by
assumption, it follows by the portmanteau theorem that the second summand in (27)
converges to 0 as n — oo. By possibly increasing ng we obtain that the second summand
in (27)) is at most /5 for all n > ng. So far we have shown that the second summand in
(24)) is bounded above by 4¢/5 for all n > ny. Using the same arguments as for second
summand in (27) and possibly increasing ng further, we moreover obtain that the first
summand in (24) is bounded above by ¢/5 for all n > ng. That is, we indeed arrive at

@3). ]

5.2 Proof of Theorem 2.3

First we shall provide the following characterization of relative compact subsets for the
(¢ )-weak topology, which will be needed in the proof of Lemma [5.2l For the t-weak
topology this characterization is already known from Corollary A.47 in [§].

Lemma 5.1 Let (¢y) be any sequence of gauge functions and M C M?"k) be given.
Then the following conditions are equivalent:

(a) M is relatively compact for the (¢y)-weak topology.

(b) For every k € N, M is relatively compact for the Vy-weak topology.
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(c) For every k € N and € > 0 there exists a compact set Ky C E such that

sup Ypdyp < e.
weM JK§

(d) For every k € N there exists a measurable function ¢r : E — Ry such that each
set {or, < nip}, n € N, is compact in E and such that

sup /gbk dp < oo.

peM

Proof (b)&(c)<(d): These implications follow immediately from Corollary A.47 in
[8].

(a)<(b): Since the (¢y)-weak and the ig-weak topologies are metrizable, for any of
these topologies the relatively compact subsets are exactly the relatively sequentially
compact ones. Then the implication (a)=(b) is obvious. To prove the implication
(b)=-(a), let M be relatively compact for the v,-weak topology for each k& € N. In
particular, every ¢,-weak closure My of M in le’“ is 1-weakly compact. Then by
Tychonoff’s theorem the set x5 Mj, is a compact subset of x?, MY* for the product
topology generated by the 1,-weak topologies. Notice that the product topology is
metrizable by the metric

prod #’7 22 k d¢yk (k’)) A ].)

k=1

Let (u4,,) be any sequence in M. We will construct a (1 )-weakly converging subsequence.
For every n € N we obtain an element p,, € X2, My, by setting u,, (k) := p,, k € N. By
compactness of xp°; M}, we may extract a subsequence (p,,;)) from (u,,) that converges
to some p € X3 MY ie., dprod (Kn(j), ) — 0. In particular, dy, (o, ;(k), (k) — 0
for every k € N, i.e., (1,7 (k)) converges -weakly to u(k) for every k € N. Now, if we
can show that p(k) = p(1) =: p holds for every k € N, then it follows that g,y — i
Yp-weakly for every k € N and thus ju,jy — p (¢)-weakly. In the rest of the proof we
show that p(k) = p(1) holds for every k € N.

For fixed k € N, the set M is a subset of Mibﬁw’“. Since M 1is also a relatively ;-
compact subset of M;p’ we may find by (c) for every € > 0 some compact subset K; C E
such that

sup [ i dp < g/2
peM J K¢

for i € {1,k}. Then K := K; U K}, is a compact subset of E such that

sup / (Y1 + ) du < sup | Yrdu+sup | Updp <e.

peM reEM J K$ weM JKf
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Hence in view of Corollary A.47 in [§] the set M is also a relatively compact subset
of ./\/llfl"c for the 4 y-weak topology with 9y 5 := ;1 + 5. Therefore we may select
a subsequence (fin(j())) of (fin(;)) Which converges vy y-weakly to some p € M;pl’k. In
particular, for every f € Cy, UCy, we clearly have f € Cy, , and thus [ fdpniey —
[ f dp. This means that (u,;(,))) converges to pu w.r.t. both the ¢1-weak topology and
the ¢g-weak topology. This implies p(1) = p = p(k), and the proof is complete. O

In the case where each set {1 < n}, n € N, is relatively compact in E, a set M C MY
is relatively compact for the i)-weak topology if and only if it is uniformly ¢-integrating;
cf. Lemma 3.4 in [22]. The following Lemma shows that the same is true for general
gauge functions (and for sequences (1) of general gauge functions) when M is assumed
to be relatively compact for the weak topology.

Lemma 5.2 Let (V) be any sequence of gauge functions and M C M, be given. Then
the following conditions are equivalent:

(a) M is uniformly (¢y)-integrating and relatively compact for the weak topology.
(b) M is relatively compact for the (y)-weak topology.

Proof (a)=-(b): Let k € N and € > 0 be given. Since M is assumed to be uniformly
(¢1,)-integrating, there exists ay > 0 such that sup,,c,, J belgpsany du < €/2. Since M
is assumed to be weakly relatively compact, we moreover obtain by Prohorov’s theorem
a compact set C}, C F such that sup ., u[Cy] < e/(2ax). The set Ky := CpN{yy < ar}
is a compact subset of E and satisfies K§ = {¢x > a} U (Cs N {¢x < ai}). Hence,

sup | trpdp < sup [ Yplpysay dpt+sup | el <o dp < e

pneM K¢ pneM pneM ce
It follows by the implication (c¢)=-(a) of Lemma 5.1l that M is relatively compact for the
(¢ )-weak topology.

(b)=(a): By the implication (a)=(b) of Lemma [.1lthe set M is ¢-weakly relatively
compact for each £k € N. Hence M is uniformly t¢;-integrating for each k£ € N due to
Lemma A.2 in [14]. Moreover, relative compactness of M for the weak topology follows
from the fact that the weak topology is coarser than the (i)-weak topology. O

Proof of Theorem 2.3t (b)=-(c): Let My C M be weakly compact, and fix ¢ > 0
and k € N. By assumption there exists for every pu € M, some weakly open neighborhood
U, of p and some a, > 0 such that f¢k1{wk2au} dv < e for all v € U, N M. By weak
compactness of My we can extract a finite cover of M consisting of such neighborhoods
Uiy Uy, (with gy, ..., g € M), and it follows that sup,cpy, [ rliy,>a dv < € if
we take a 1= max;—i __m ay,,.
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(c)=>(b): Let us suppose by way of contradiction that there exist p € M, k € N,
e > 0, and a sequence (v,) in M such that v, — p weakly but f@bk]l{wkm} dv,, > ¢ for
all n. Then {v1,vs,...} U {u} is weakly compact and not uniformly (¢ )-integrating.
This gives a contradiction.

(c)=(a): Since both topologies are metrizable, it suffices to show that they coincide
on any given weakly compact set My C M. By (c¢) and Lemma 52 M, is compact for
the (i )-weak topology, and so the two topologies coincide on My by Lemma 311

(a)=-(c): Every weakly compact subset of M is also (1 )-weakly compact due to (a),
and hence uniformly (1 )-integrating by Lemma

(¢)<(d): The implication (c¢)=-(d) is obvious. Conversely suppose by way of contra-
diction that (d) holds but that there is a weakly compact My C M that is not uniformly
(¢r)-integrating. Then there exist k € N, ¢ > 0, and a sequence (u,,) in M such that
i ULy, >ny dpn > € for all n. By selecting a weakly convergent subsequence we arrive
at a contradiction to (d).

(a)<(e): This equivalence is obvious since both topologies are metrizable. O

5.3 Proof of Theorem
5.3.1 Proof of part (i)

The proof of this part is organized as follows. Below we will show that conditions (a)—(b)
of Lemma 5.3l and conditions (c¢)—(d) of Lemma [5.4] are satisfied for every w-set M C M
(C M), Then, if for any w-set M C M the functional T is continuous at every y € M

A~

for the relative (v)-weak topology O(y,) N M, the (1/))-robustness of the sequence (7},)
on M is a consequence of the two lemmas and the fact that Oy, N M = Oy, N M for
every w-set M.

Lemma 5.3 Let M C M and assume that the following two conditions hold:
(a) T : M — 3 is (dy,), ds;)-continuous at every p € M.
(b) For every u€ M, e >0, andn > 0 there are some § > 0 and ng € N such that

veM, dy,lp,v)<s = P"[dy,(M,,v) >n] <e foralln > n,.

Then for every p € M and € > 0 there exist ng € N and an open neighborhood Uy, ) =
U (1,6 M) of pu for the relative (1y)-weak topology Oy, N M such that

veEUy,) = (P Ofn_l,P" Ofn_l) <e foralln > ny.

Proof Note that the proof of Theorem 2.1 in [22] still works when in assumption (a)
of this theorem one only requires that the sequence (V) is asymptotically (dv,ds)-
continuous at every point of O (and not on all of ©); take into account that in the
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proof the asymptotic continuity of (V},) is used only subsequent to (41). Further note
that in [22] the assumption that the metric space (Y,dy) be complete and separable
is superfluous (and nowhere used). Then the claim follows by (the generalization of)
Theorem 2.1 in [22] with (Y, dy) := (M, dy,)), U(p) == p, V, =T for all n € N, and

Un(x1, T2, ...) == mp(T1,. .., Zp). O

For every n € N we equip the n-fold product space E™ with the product topology.
Note that the corresponding Borel o-field coincides with the n-fold product B(E)®"
of the Borel o-algebra B(E) on E, and let m, be any metric that metrizes the weak
topology on the set of all probability measures on (E™, B(E)®™). Let X; be the i-th
coordinate projection on Q = EN and let ¢, : E® — X be the estimator T n regarded as
a map on E™; recall ([B)) and note that m,,(z) depends only on the first n coordinates of
= (21,9,...) € BN

Lemma 5.4 Let M C M and assume that the following two conditions hold:
(¢) E" 3 (x1,...,20) = oy, ..., x,) is continuous for every n € N.
(d) M3 pu—Pro(Xy,...,X,) "t is (dy, T,)-continuous for every n € N.

Then for every € M, n € N, and € > 0 there exist and an open neighborhood Uy, ) =
Ut (11,6 M) of pu for the relative (1y,)-weak topology O,y N M such that

veUy,y =— nP"o fn_l,IP’” o fn_l) <e.
Proof The lemma is a direct consequence of Theorem 2.5 and Example 2.6 in [22]. O

As already discussed at the beginning of the proof, it remains to show that conditions
(a)—(d) are satisfied, where for (b) we have to assume that M C M is a w-set in MW.

(a): Condition (a) holds by assumption.

(b): To verify condition (b) for any fixed w-set M € M (€ M'"¥)), we assume without
loss of generality that the metric dy, in ({) is given by the Prohorov metric dp, i.e.,

AL).

Let € M, e >0, and ) > 0 be fixed. Choose &, € N so large such that > 7 ., 27k <
n/3. Then, for every v € M,

gy (1, v) = dp(p, v) +§:2k<’ /@/)k dpn — /@/)kd,uz
K1

P [y (7, v) 2 ]

< P [dgy (Fim, v) > 17/3] +kZ_EPV [rk‘ /% dif,, — /wk dy) > n/(:%)].
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Lemma 4 in [I7] shows that lim,_,. sup,caq, PY[dp(My,,v) > 1] = 0. So we can find
some np € N such that

sup PH[dp(my,,v) >n] < e/2 forall n > np. (28)
veEMy
So it remains to show that for every k = 1,..., k. there exist J, > 0 and n; € N such

that

2k
veM, dyy(p,v) <o, = ]P’”[ /wkdﬁin—/wkdy‘ 3];7} < Z for all n > ny.

(29)

By choosing § := min{dy, ..., 0 } and ng := max{np,ny,...,nk } we then obtain (b).
To prove (29)), we take into account that M is a w-set in Mgw’“). By Theorem [2.3] this
means that M is locally uniformly (vx)-integrating. Thus for every k € N we can find
some 0, > 0 and a, > 0 such that fwk]l{wkzak}dV < min{Qk—"‘ 216—’7§} for all v € M with

3ke ' Ok= 2
dp(p, p2) < 9. For every v € M with dp(u,v) < & we then obtain

dm,, — /@/}kdu > 3k

2k

an]
= Ok

+P”H/¢’¢]l{wk<ak} dmn_/¢l{¢<ak} dv

2 f etz 2]

= Si(k,n,ar) + So(k,n,ar) + Ss(k, ax),

where S3(k,a;) = 0 and Si(k,n,a;) < (9k./(2%n) [Y1ip5a0dv < €/2 for all n € N
(by Markov’s inequality). Further, by Chebychev’s inequality we can find some nj, € N
such that Sy(k,n,a) < ¢e/2 for all n > ny, (and all v € M;). This proves (29) with dy,)
replaced by dp. Since dp < d(y,), We arrive at 29).

(c): The mapping (z1,...,2,) — tn(T1, ..., 20) = T(£5" ,d,,) is continuous, be-
cause the statistical functional 7" is (dy,), dg) contlnuous by assumption and the map-
ping (21,...,3,) = L 3% | 8,, is easily seen to be (dgn, d(y,))-continuous, where dp, is
any metric which metrizes the product topology on E™.

(d): The (dy, m,)-continuity of the mapping M > p— Pt o (Xy,..., X))t = u®" for
every n € N is obvious. too. O

5.3.2 Proof of part (ii)

Now assume that (T ) is (¢x)-robust and weakly consistent. The (1 )-robustness means
that (7},) is robust on every w-set M C M (C M) ). By the classical Hampel theorem
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(Theorem 1 in [4]) we can conclude that T'|,; is weakly continuous for every w-set M C
M (C Mﬁwk’). In the remainder we will show that this implies (1) )-weak continuity of T'.
Let w, pi, pta, ... € M such that p, — p (¢g)-weakly. Since T'|ys is (dy, ds)-continuous
for every w-set M C M (C Mﬁ”’), it suffice to show that the set M := {p, 1, pio, ...} is
a w-set in M C M (C MW)). By assumption, the set M is compact for the (i )-weak
topology since this topology is metrizable. Thus by Lemma [3.1l the set M is also a w-set
in M C M. This completes the proof. O

6 Remaining proofs

6.1 Proof of Proposition

For every i = 1,...,d we define pu} := p; o f(;cl for fyc(x) := (d + 1)cx. By assumption
(b) {uf, ..., 1} is a finite subset of MW, and thus uniformly (¢ )-integrating. In view
of de la Vallée-Poussin theorem for sets of measures (analogue Theorem I11.T22 in [16])
one can thus find for every k € N a convex and increasing function h; : R, — R, such
that lim, .. hy(x)/x = 0o and

max, [ b di; < o (30)

i=1,...,

Since v, is convex and nonnegative, it is also nondecreasing on [0, 00). In addition v, is
assumed to be even, so that the composition hy o ¢ = hy o (] - |) is convex. Together
with assumption (a) and (B0) this yields

/hk(Jk)dqugl = /hkozzk(Ad(m))u(dm)
- / i o ([ Aa(@)]) ()

d

/hkowk(b+cZ|xi|) pu(de)

i=1

< [ > o ta(d-+ Ves) u(da)

IA

IA

hi o Ui ((d+ 1)b) V 'I_naxd/hk o Yy ((d + 1)cx) pj(dx)

.7_1 7777

= hroy((d+1)b) Vv rr%axd/hkod)k(:p) pi(dr) < oo

.....

for all £ € N and p € M(d; N), where we used the convention z( := b/c. This implies

sup/hk({/;k)dl/ < 0

veM
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for all £ € N, and by another application of the de la Vallée-Poussin theorem for sets of
measures we can conclude that M is uniformly (¢)-integrable. O

6.2 Proof of Theorem (4.3

Let (5 )nen be any sequence in M such that £, (0;) — L£,(0x) holds for every k£ € N.
In particular the sequence (L, )nen converges pointwise on a dense subset of © to £,,.
Together with the concavity of £, and £,,,, n € N, this implies that (£, )nen converges
even pointwise to £,,; cf. Corollary 7.18 in [I§].

Further, by assumption arg maxgcg £,(0) = {T(1)} and T'(11,,) € arg maxyeg Ly, (0)
for every n € N. Since (£, )nen is a sequence of concave maps which converges pointwise
to the concave map L, we may draw on well-known results concerning stability of convex
minimization (e.g. Theorem 5.3.25(f) in [12]) to conclude T'(u,) — T'(p). So the first
part of Theorem [4.3] is shown. The remaining part follows immediately from the first
part, because convergence f,, — p w.r.t. the (¢)-weak topology implies L, (6x) —
L,,(0y) for every k € N. Now, the proof is complete. O

6.3 Proof of Theorem [4.106!

It is known from Theorem 2.1.11 in [5] that the Orlicz heart HY is a Banach space when
endowed with the Luxemburg norm

| X ||y == inf {\ > 0: E[T(|X|/N)] <1}

Moreover, we may observe that || X ||y < || X||¢ whenever | X| < |Y]| P-a.s. This means
that HY equipped with || - ||¢ and the P-a.s. order is a Banach lattice. It follows by
Proposition 3.1 in [20] that

p is continuous w.r.t. || - ||w. (31)

The missing link between (BI) and Theorem FI6 is provided by the following repre-
sentation result which is interesting in its own right. Recall that (§2, F,P) is atomless
so that it supports a random variable which is uniformly distributed on the open unit
interval.

Theorem 6.1 A sequence (i) in MY“) converges w.r.t. the (V)-weak topology to some
Ho € MYW if and only if || (U) — F; (U)|ly — 0, where U is an arbitrary random
variable on (S, F,P) that is uniformly distributed on (0,1).

Proof We let X, := F; (U) and prove first that [|X, — Xo|lg — 0 implies that
tn — po in the (¢ )-weak topology. By Proposition 2.1.10 in [5], [| X, — Xollg — 0
yields E[we(X,, — Xo)] — 0 for all & € N and X,, — Xj in probability. Convexity
and monotonicity of ¥ imply that 0 < ,(X,)) < 20 (X, — Xo) + 3¢2(Xp). Hence,
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¥(X,,) is uniformly integrable, and we obtain by Vitali’s theorem in the form of [11],
Proposition 3.12 (iii)=-(ii)] that

/@Z)k(fff) pn(dz) = B[ (Xn)] — Ele(Xo)] = /¢k(x) puo(di).

Moreover, since X,, — X P-a.s., the corresponding laws (u, ) converge weakly. It follows
that (u,) converges to p w.r.t. the (¢ )-weak topology.

Conversely, assume that u, — o in the (iy)-weak topology. Then p, — po weakly,
and the continuity of ¥ and the fact that W(0) = 0 yield that

k(X)) — Ur(Xo) P-a.s. for all & > 0, (32)
(X, — Xo) — 0 P-as. forall £ > 0. (33)

Moreover, the convergence p,, — o w.r.t. the (¢)-weak topology implies that

Efde(X,)] = / () () — / u() ro(d) = Efiby(Xo)]. (34)

In particular each expectation E[¢y(X,,)] is finite so that we have X,, € HY. Now, (32,
(34), and Vitali’s theorem in the form of [I1], Proposition 3.12 (ii)=>(iii)] imply that the
sequence (V(X,))nen, is uniformly integrable for every k. Since W is nondecreasing and
convex we obtain ¢y, (X,, —Xo) < 3901,(Xo)+3124(Xo). Since the sequence (Yo (X)) nen,
is uniformly integrable, we may thus conclude that the sequence (Vx(X,, — Xo))nen iS
uniformly integrable. Therefore, (B3] and another application of Vitali’s theorem, this
time in the form of [I1l Proposition 3.12 (iii)=-(ii)], yield E[¢x (X, — Xo)] — 0 for every
k > 0, which implies || X,, — Xo|l¢ — 0 according to Proposition 2.1.10 in [5]. O

Proof of Theorem [AT16}: Since Po (F(U))™! = v for every v € My, the asserted
(¢r)-weak continuity of the risk functional R, is an immediate consequence of (B1I]) and
Theorem [6.1] O
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