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Abstract

In this article, we introduce the functional envelope for sufficient dimension reduction and regression with functional
and longitudinal data. Functional sufficient dimension reduction methods, especially the inverse regression estimation
family of methods, usually involve solving generalized eigenvalue problems and inverting the infinite-dimensional co-
variance operator. With the notion of functional envelope, essentially a special type of sufficient dimension reduction
subspace, we develop a generic method to circumvent the difficulties in solving the generalized eigenvalue problems
and inverting the covariance directly. We derive the geometric characteristics of the functional envelope and establish
the asymptotic properties of related functional envelope estimators under mild conditions. The functional envelope
estimators have shown promising performance in extensive simulation studies and real data analysis.
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1. Introduction

The notion of envelope was first introduced by Cook et al. [12] in the context of sufficient dimension reduction in
regression of a univariate response Y ∈ R on a multivariate predictor X ∈ Rp, where the goal is to find the smallest
sufficient dimension reduction subspace S ⊆ Rp such that the conditional distribution of Y given X is the same as
that of Y given the reduced predictor PSX, with PS being the projection onto S. While most of the standard sufficient
dimension reduction methods require inversion of the sample predictor covariance matrix, the method proposed in
[12] is a dimension reduction technique which does not require such an inversion and is thus applicable to a higher
dimensional predictor X.

Following the notion of envelope in [12], more geometric and statistical properties of, and various estimation
procedures for, envelopes were developed and investigated in the context of envelope regression models. Envelope
regression was first proposed in [13], as a way of reducing the multivariate response in a multivariate linear model.
It was later extended to various models and applications such as partial reduction [45], predictor reduction [10],
simultaneous reduction [16], reduced-rank regression [9], generalized linear models [17], and tensor regression [40,
52]. Envelope methods increase efficiency in regression coefficient estimation and improve prediction by enveloping
the information in the data that is material to estimation, while excluding the information that is immaterial. The
improvement in estimation and prediction can be quite substantial, as illustrated by these aforementioned studies.

The goal of this paper is to develop a class of sufficient dimension reduction techniques for functional data that
require no inversion of the covariance matrix, using the idea of envelopes. To the best of our knowledge, this is
the first time that envelope methodology is extended beyond the usual multivariate regression setting to functional
data analysis. An important contribution of this paper is to bridge the gap between the nascent area of envelope
methodology, functional data analysis, and sufficient dimension reduction. The approach here is different from many
previous envelope methods, because we are developing model-free sufficient dimension reduction methods rather than
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focusing on a specific model. In recent years, functional sufficient dimension reduction methods, e.g., [6, 26, 27, 30,
32, 37, 46, 47, 50], especially the functional inverse regression methods, have gained interest as versatile tools for
data visualization and exploratory analysis in functional regression. We propose a very generic functional envelope
estimation based on the popular inverse regression class of functional sufficient dimension reduction methods. It
improves essentially all the aforementioned functional SDR methods by avoiding truncation and inversion of the
covariance operator of the functional predictor, and thus enriches the tactics of functional SDR estimation. The new
method can also be viewed as an alternative to functional principal components in dimension reduction and regression
[34, 35, 39, 48, 49]. Recent studies have revealed deep connections between envelope models and partial least squares
both for a vector predictor [10] and a tensor (multi-dimensional array) predictor [52]. Our study also sheds light on
the connections between functional envelopes and recent developments in functional partial least squares [21].

In functional data analysis, especially when nonparametric techniques are involved, it is well known that func-
tional estimators suffer severely from the “curse of dimensionality” both from a theoretical and a practical point of
view. See, e.g., [28] for an overview of the curse of dimensionality and related issues in functional nonparametric
regression. Dimension reduction techniques such as functional principal component analysis and functional partial
least squares are widely applied in recent functional data analysis studies. See [29] and [19] for excellent overviews
of recent advances in functional data. Our functional envelope method is aiming to circumvent the curse of dimen-
sionality and related issues, by finding the most effective functional dimension reduction. After efficiently reducing
the infinite-dimensional functional predictor space to Rd, where d typically is a small number (e.g., 1 or 2), standard
nonparameteric or semi-parametric regression techniques can be applied directly. The proposed envelope methodol-
ogy in this paper can also be combined with existing functional and high-dimensional data analysis techniques such
as sparse modeling [1, 50] and semi-parametric analysis [29]. Envelope reduction is similar in spirit to the functional
single-index and projection pursuit methods [4, 5] and provides an alternative way of pre-processing the data and
eliminating redundant information as the envelope targets and models the index function and the covariance function
simultaneously.

As a motivating example, we consider the wheat protein and moisture content data set from [31]. The data set
consists of near infrared (NIR) spectra of n = 100 wheat samples with two responses: Y1 is the protein content and
Y2 is the moisture content; the predictor X(t) is the NIR absorption spectra that are measured at 351 equally spaced
frequencies with a spacing of 4nm between 1100nm (first frequency) and 2500nm (last frequency). Summary plots
of the data can be found in Figure 1. We consider the dimension reductions in the regression of Y1 on X(t) and in the
regression of Y2 on X(t) separately. For the moisture content (Y2), we found that the unsupervised functional PCA
cannot identify the most predictive component but the supervised SDR methods such as FCS [47] and our proposed

Figure 1: Plots of the raw data from [31]: near infrared spectra (represented by the smoothed curves) of 100 wheat samples, together with their
protein and moisture contents.
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Figure 2: Plots of moisture content (y-axis) versus the six dimension reduction directions (x-axes). Left column: first two principal components
(PC1 and PC2); middle column: first two directions from the functional cumulative slicing estimator (FCS1 and FCS2); right column: first two
directions from the functional envelope cumulative slicing estimator (FECS1 and FECS2).

method FECS can efficiently find the important directions for improved data visualization. Plots of the response
(moisture content) versus the reduced predictors by various methods can be found in Figure 2. A more complete
analysis on these data is presented in Section 5, where we further demonstrate that the FECS is more robust and
effective than FCS and other alternative functional data analysis and prediction methods.

2. Functional envelope

2.1. Sufficient dimension reduction in functional data
In functional data analysis, we consider the problem of a scalar response variable Y ∈ R and a functional random

variable X(t), where t is an index defined on a closed and compact interval T . See, e.g., [43] for some background
on functional data analysis. Let X be defined on the real separable Hilbert space H ≡ L2(T ) with inner product
〈 f , g〉 =

´
T

f (t)g(t)dt and norm ‖ f ‖H = 〈 f , f 〉1/2. Statistical analysis typically focuses on the collection of all bounded
linear operators fromH toH , which is denoted as B(H) ≡ B(H ,H), where the vector operations are defined point-
wise. Sufficient dimension reduction (SDR) in regression of Y on X(t) seeks the set of linear functions η1(t), . . . , ηm(t)
such that Y is independent of X(t) given the m sufficient variables 〈η1, X〉, . . . , 〈ηm, X〉. Let span(η1, . . . , ηm) be the
subspace spanned by all possible linear combinations of the functions η1, . . . , ηm; it is called a sufficient dimension
reduction subspace. As sufficient dimension reduction subspaces are not unique, we seek the central subspace [8]. The
central subspace of Y on X, denoted bySY |X , is defined as the intersection of all possible sufficient dimension reduction
subspaces that is also a sufficient dimension reduction subspace. By definition, the central subspace — which is
assumed to exist throughout this paper — is unique and is the smallest sufficient dimension reduction subspace.

We assume that the central subspace SY |X has finite dimension d ≥ 1, and thus that it can be expressed as SY |X =

span(β1, . . . , βd) for some linearly independent index functions β1(t), . . . , βd(t). Then we can write

Y ⊥⊥ X | 〈β1, X〉, . . . , 〈βd, X〉, (1)

which implies that Y is independent of the (infinite-dimensional) functional random variable X, given the d-dimensional
projected random variables 〈β1, X〉, . . . , 〈βd, X〉 ∈ R. Especially, the above statement (1) includes a broad class of

3



semi-parametric index models as follows,

Y = g (〈β1, X〉, . . . , 〈βd, X〉; ε) , (2)

where g : Rd+1 7→ R is an unknown link function and the error process ε has zero mean, finite variance σ2 > 0, and
is independent of X. Although the basis functions β1, . . . , βd are not unique, their span is the unique central subspace,
which is the target of most sufficient dimension reduction methods, as we briefly review in the following.

We assume X(t) is centered and has finite fourth moment, viz. E{X(t)} = 0 for all t ∈ T and
´
T

E{X4(t)}dt < ∞.
Let Σ ≡ Σ(s, t) = E{X(s)X(t)} be the covariance operator. Most of the existing sufficient dimension reduction methods
estimate directions in the central subspace sequentially as a generalized eigenvalue problem, viz.

Σvi = λiΛvi, (3)

where Λ is called the kernel of a sufficient dimension reduction method and, in functional data analysis, Λ = Λ(s, t)
and (Λvi)(t) =

´
T

Λ(s, t)vi(s)ds. Perhaps the most popular functional sufficient dimension reduction methods are the
inverse regression type estimators; see, e.g., [26, 27, 30, 47]. These methods all fall into the aforementioned general-
ized eigenvalue problem framework, where they aim at the same kernel and propose various different nonparametric
or semi-parametric estimations. The kernel is defined as

Λ(s, t) = E [E {X(s) | Y}E {X(t) | Y}] ≡ var {E(X | Y)} . (4)

Such sufficient dimension reduction methods typically assume linearity, i.e., for any function b ∈ H , the condi-
tional expectation E(〈b, X〉 | 〈β1, X〉, . . . , 〈βd, X〉) is a linear function of 〈β1, X〉, . . . , 〈βd, X〉. Then under the linear-
ity condition, span(Λ) ⊆ ΣSY |X . We further assume the so-called coverage condition, i.e., span(Λ) = ΣSY |X . See
[14, 15, 38] for more discussion on the linearity and coverage conditions. Under these commonly used linearity and
coverage conditions, the generalized eigenvalue problem (3) has only d nonzero λis and the corresponding d eigen-
vectors or eigen-functions v1, . . . , vd will span the central subspace as SY |X = span(β1, . . . , βd) = span(v1, . . . , vd).
This also implies that the rank of Λ is also d, and that SY |X = span(Σ−1Λ) provided that Σ−1 is well defined. The
central subspace can thus be recovered as SY |X = span(Σ−1Λ) under appropriate assumptions on Σ to make Σ−1Λ well
defined; see, e.g., Assumption 3 in [47]. If the dimension of the central subspace d is known, the central subspace
is estimated as the span of the first d (right) eigenvectors of Σ̂−1Λ̂, with truncated covariance estimator Σ̂ and various
sample estimators for Λ̂ that vary from method to method. Our proposed functional envelope approach extends all
these methods in the same fashion, regardless of the estimation procedure for Λ̂, which we review briefly in Sec-
tion 3.1. Additionally, by avoiding truncating and inverting Σ̂, our method does not require any assumptions to ensure
that Σ−1Λ is well defined.

2.2. Definition of functional envelopes
The key concept in this paper is the functional envelope for sufficient dimension reduction. The envelope and its

basic properties were first proposed and studied in the classical multivariate set-up of sufficient dimension reduction
[12] and multivariate linear regression [13]. We define the functional envelope in this section as a generalization of
the classical envelopes to functional data analysis.

We begin by reviewing the definition of reducing subspace in the following. This notion is crucial for the devel-
opments of envelopes and arises commonly in functional analysis; see, e.g., [7].

Definition 1. Let R ⊆ H be a subspace ofH , and let M ∈ B(H) be a bounded linear operator. If MR ⊆ R, then we
call R a invariant subspace of M. If in addition MR⊥ ⊆ R⊥, where R⊥ is the orthogonal complement of R, then R is
a reducing subspace of M.

The next proposition illustrates a basic property of reducing subspaces, which is the key to our development of
functional envelopes.

Proposition 1. The subspace R is a reducing subspace of M if and only if M can be written in the form

M = PRMPR + QRMQR, (5)

where PR = PR(s, t) ∈ B(H) and QR(s, t) ∈ B(H) are projections onto R and R⊥.
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For a bounded linear operator M ∈ B(H), we define the M-envelope of a subspace S ⊆ H as follows. This
definition of functional envelope is a direct generalization of Definition 2.1 in [13] from Euclidean spaces to Hilbert
spaces; it is the key concept for the developments in this paper.

Definition 2. The M-envelope of S, denoted as EM(S), is the intersection of all reducing subspace of M that con-
tains S.

The functional envelope EM(S) always exists, since H is a reducing subspace of M that contains S. Because of
Proposition 1, the intersection of any two reducing subspace of M is still a reducing subspace of M. Therefore, the
functional envelope EM(S), by construction, is guaranteed to be unique and is indeed the smallest reducing subspace
of M that contains S.

Remark 1. (Existence of the functional envelope) First, recall that we assume the existence of the central subspace
SY |X throughout our exposition. Note that it is possible that the central subspace does not exist, since the intersection
of some sufficient dimension reduction subspaces might no longer be a sufficient dimension reduction subspace. In
such cases, since the generalized eigenvalue problem (3) is still valid and meaningful, the envelope EΣ(Λ) is also valid
and preserves relevant information in the generalized eigenvalue problem. Second, the inversion Σ−1 may not exist
and be well defined even when the central subspace exists. This makes the envelope method even more appealing,
comparing to the traditional functional inverse regression methods that involve Σ−1. Henceforth, we will assume the
existence of the central subspace and the covariance inversion, although the envelope methodology is still applicable
without such assumptions.

Under the assumption that X(t) is centered and has finite fourth moment, Σ has a spectral decomposition that
Σ(s, t) =

∑∞
j=1 θ jφ j(s)φ j(t), where the eigenfunctions φ js form a complete orthonormal basis inH and the eigenvalues

θ js satisfy the following conditions:

θ1 > θ2 > · · · > 0,
∞∑
j=1

θ j < ∞. (6)

Such an assumption on distinct eigenvalues is commonly used in the literature [47] to prove theoretical results and
to deal with identification issues of eigenfunctions. However, it is worth mentioning that we can easily relax such a
condition and still preserve our theoretical results in Theorems 3 and 4 because the notion of envelope is based on
reducing subspaces, which are more general than eigenvectors or eigenfunctions. The nonzero eigenvalue assumption
in (6) simplifies some technical proofs but is not required for envelope construction. Proposition 3 in [18] offers
some insight into, and a detailed discussion on, how the zero eigenvalue affects the dimension and construction of
envelopes. Specifically, let A and A0 be the basis matrices of the nonzero eigenspace and zero eigenspace. Then the
envelope in the following Proposition 2 can be written as EΣ{span(Λ)} = AEA>ΣA{span(A>ΛA)}. Then we can focus
on the envelope of EA>ΣA{span(A>ΛA)}, where A>ΣA automatically satisfies the nonzero eigenvalue condition. We
assume this condition (6) for ease of interpretation and technical proofs. To gain more intuition about the functional
envelope, we have the following property.

Proposition 2. EΣ(SY |X) = EΣ{span(Σ−1Λ)} = EΣ

{
span(Λ)

}
= ⊕∞j=1span{(φ j ⊗ φ j)Λ}, where ⊕ is the direct sum of

subspaces and φ j ⊗ φ j is the rank-one projection operator onto the jth eigenspace span(φ j), j ∈ N = N.

The above result suggests that the envelope is the sum of all eigenspaces of Σ that are not orthogonal to span(Λ).
In other words, this means EΣ(SY |X) = ⊕ j∈Jspan(φ j), where J = { j : 〈φ j,Λφ j〉 , 0, j ∈ N} is the index set of
the eigenvectors that are not orthogonal to span(Λ). This will connect our methodology closely with the functional
principal components of Σ. Simply put, we are not selecting principal components from Σ, but instead, we are
selecting eigenfunctions of Σ that intersect with span(Λ), which is equivalent to intersecting with the central subspace
SY |X . When assumption (6) fails, i.e., eigenvalues are not strictly decreasing so that some eigenvalues may have
multiplicity greater than 1, we can simply replace the rank-one projections φ j ⊗ φ j in Proposition 2 with projections
onto eigensubspace that have dimension possibly greater than 1 due to the existence of common eigenvalues.
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2.3. Functional envelope for sufficient dimension reduction

In functional sufficient dimension reduction literature, there is a key assumption that Σ−1Λ is well defined in H
because inversion of the operator Σ may not exist. Here we adopt the idea of dimension reduction without inverting Σ

in [12], and propose a class of dimension reduction methods for functional data without inversion of Σ.
Our goal is to estimate the central subspace SY |X . However, instead of targeting at SY |X = span(Σ−1Λ), we consider

aiming at the envelope EΣ(SY |X), which is the smallest reducing subspace of Σ that contains the central subspace SY |X .
By targeting at this larger dimension reduction subspace, as SY |X ⊆ EΣ(SY |X), we may avoid the inversion of Σ and
provide a more robust estimation procedure inspired by the following property.

Suppose the dimension of the envelope is u ≡ dim{EΣ(SY |X)}. Then u ≥ d = dim(SY |X) because the envelope
contains the central subspace. Let γ1(t), . . . , γu(t) be an arbitrary set of linearly independent functions that spans the
envelope, i.e., EΣ(SY |X) = span(γ1, . . . , γu). Then the following two statements hold:

Y ⊥⊥ X | 〈γ1, X〉, . . . , 〈γu, X〉; (7)

〈α0,Σα〉 = 0, for any α ∈ EΣ(SY |X) and α0 ∈ E
⊥
Σ (SY |X). (8)

Statement (7) implies that the envelope is a functional sufficient dimension reduction subspace; Statement (8)
further implies that any functional component of X in the envelope is uncorrelated with any functional component of
X in the orthogonal complement of the envelope: in other words, 〈α, X〉 is uncorrelated with 〈α0, X〉. Statement (7)
stems from the fact that SY |X ⊆ EΣ(SY |X) and Statement (8) holds because EΣ(SY |X) is a reducing subspace of Σ

(cf. Proposition 1). The two statements together guarantee that the envelope EΣ(SY |X) contains all the sufficient
information in the regression, and moreover there is no leakage of information from the envelope via correlation in X.

An important advantage of targeting on the envelope EΣ(SY |X) rather than on the central subspace SY |X is due to
(8). Although the central subspace has the smallest possible dimension, the estimation of the central subspace often
becomes unstable in presence of high correlation or co-linearity among predictors. For example, it is likely to happen,
especially in functional data, that there exists a component β ∈ SY |X and another component β0 ∈ S

⊥
Y |X such that

〈β, X〉 and 〈β0, X〉 are highly correlated. Then the estimation of SY |X will be extremely difficult because it is hard to
distinguish β from β0 in practice. In contrast, the estimation of the envelope EΣ(SY |X) can be more stable because it
targets at a subspace that possesses the property of (8) and in addition it requires no inversion of Σ as we will see in
Section 3.

The following proposition is a constructive property of the functional envelope that motivates our estimation
procedure in the next section.

Theorem 1. For the sequence of subspaces defined as Sk = span(Λ,ΣΛ, . . . ,Σk−1Λ) for each k ∈ N, there exists an
integer K such that

S1 ⊂ S2 ⊂ · · · ⊂ SK = EΣ(SY |X) = SK+1 = SK+2 = . . . . (9)

If d = u, then K = 1; if d < u and there are q distinct eigenspaces of Σ not orthogonal to SY |X , then K ≤ q.

This proposition is a multivariate analogue to Theorem 1 of [12]. It indicates that the envelope EΣ(SY |X) is a
dimension reduction subspace that can be recovered by subspace Sk with any k such that k ≥ K. This also suggests
that the selection of K is not a crucial task: overestimating K will not harm the estimation procedure of the envelope.
In some applications such as functional partial least squares, Λ(s, t) is replaced by a one-dimensional curve β(t) and
the series of subspaces S1,S2, . . . becomes a Krylov sequence.

Since the dimension of the central subspace is assumed to be a fixed number d = dim(SY |X) = dim{span(Σ−1Λ)},
the rank of the kernel matrix Λ equals d. Recall that Λ has rank d. We let Vd = (ν1(t), . . . , νd(t)) denote the d nonzero
eigenvectors of Λ. We then have the following result to facilitate the estimation of Sk in Theorem 1.

Theorem 2. For any k ∈ N, let Rk = (Vd,ΣVd, . . . ,Σ
k−1Vd). Then span (Rk) = Sk for all k ∈ N.

Since Sk = span(Rk), for the estimation procedure described in the next section, we will focus on estimating
EΣ(SY |X) from the spectral decomposition of Rk for some integer k ≥ K from (9). Recalling that dim{EΣ(SY |X)} =

u ≥ d = dim(SY |X), we want to clarify that the number K is similar in spirit to the number of slices in sliced inverse
regression (SIR); see, e.g., [33]. While the dimension d is a critical hyper-parameter in the SIR method, the number
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of slices is not that crucial but has to be no less than d + 1. From Theorem 1, we know that the size of the sequence
of subspaces Sk will stop increasing after at most q steps, where q is the number of distinct eigenspaces of Σ not
orthogonal to SY |X as remarked in Theorem 1.

Remark 2. (Connections to the functional partial least squares method). Analogous to the findings in [10] that the
popular partial least squares algorithm (SIMPLS) of [20] is essentially targeting at the multivariate predictor envelope,
our results in Theorem 1 establish a connection between the functional partial least squares algorithm (APLS) in [21]
and the functional envelope. One straightforward implication of Theorem 1 is that the APLS algorithm is exactly
targeting at the functional envelope EΣ(ΛPLS), where the matrix ΛPLS = cov(XY){cov(XY)}> for the partial least
squares regression model.

3. Estimation procedure and consistency

3.1. Estimation of FCS
The first step of the estimation procedure is to obtain a sample estimate of Σ̂ and Λ̂ for the generalized eigenvalue

problem (3). The covariance operator can be the standard sample covariance for functional data. While there are many
different ways of estimating Λ̂, our envelope estimation framework provides a generic method as an alternative to the
generalized eigenvalue problem and thus can fit with any consistent estimator Λ̂. For illustration, we use Λ̂ from [47],
because the functional cumulative slicing method in [47] and [55] avoids the selection of the number of slices in sliced
inverse regression type methods [27, 33]. Details on obtaining the functional operator Λ̂ can be found in the original
articles.

For completely observed (or fully observed at regular time points for all iid observations) functional data, Σ̂(s, t) =∑n
i=1 Xi(s)Xi(t)/n and Λ̂(s, t) =

∑n
i=1 m̂(s,Yi)m̂(t,Yi)w(Yi)/n where m̂(t, ỹ) =

∑n
i=1 Xi(t)1(Yi ≤ ỹ)/n is the sample es-

timator for function m(t, ỹ) = E{X(t)1(Y ≤ ỹ)} and w is a given nonnegative weight function. We will use constant
weights w ≡ 1 for all our numerical studies for simplicity, as is also suggested in [47] and [55].

For sparsely and irregularly observed functional data, Yao et al. [47] proposed the following estimation for m̂(t, ỹ)
and Σ̂ from local linear estimators; see [22, 47, 48] for more details. Suppose that for each i ∈ {1, . . . , n}, Xi is observed
in the form of (Ti j,Ui j) with j ∈ {1, . . . ,Ni} and Ui j = Xi(Ti j) + εi j is the possibly contaminated observations with iid
mean zero (unobservable) measurement error εi j. For m̂(t, ỹ), Yao et al. [47] suggested to use the minimizer â0 from

min
(a0,a1)

n∑
i=1

Ni∑
j=1

{Ui j1 (Yi ≤ ỹ) − a0 − a1(Ti j − t)}2K1

(
Ti j − t

hn

)
,

where K1 is a nonnegative and symmetric univariate kernel density and hn is a bandwidth. Then

Λ̂(s, t) =
1
n

n∑
i=1

m̂(s,Yi)m̂(t,Yi)w(Yi)

is estimated in the same way as in the completely observed functional data scenario. For Σ̂(s, t), Yao et al. [47, 48]
suggested to use the minimizer b̂0 from

min
(b0,b1,b2)

n∑
i=1

Ni∑
j,`

{Ui jUi` − b0 − b1(Ti j − s) − b2(Ti` − t)}2K2

(
Ti j − s

hn
,

Ti` − t
hn

)
,

where K2 is a nonnegative bivariate kernel density and hn is a bandwidth. The bandwidth can be chosen by cross-
validation, and can be different in estimating m̂ and Σ̂. But for simplicity, we abuse the notation a bit and use the same
hn to denote the bandwidth. The asymptotic convergence of Σ̂ and Λ̂ has already been studied in [47]; the result is
summarized in the following lemma.

The following conditions are commonly used regularity conditions for sparse functional data. Let T = [a, b] be
an interval and set T δ = [a − δ, b + δ] for some δ > 0. Denote the density functions of the time variable T and of the
bivariate time variables (T1,T2)T by f1(t) and f2(t, s), respectively.
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C1. The number of time points Ni’s are independent and identically distributed as a positive discrete random variable
Nn, where E(Nn) < ∞, Pr(Nn ≥ 2) > 0 and Pr(Nn ≤ Mn) = 1 for some constant sequence Mn that is allowed to
diverge as n→ ∞. Moreover, the variables (Ti j,Ui j) with j ∈ Ji are independent of Ni for Ji ⊆ {1, . . . ,Ni}.

C2. For nonnegative integers `1 and `2 such that `1 + `2 = 2, ∂2Σ(s, t)/(∂s`1∂t`2 ) is continuous on T δ × T δ and
∂2m(t, ỹ)/∂t2 is bounded and continuous for all t ∈ T and ỹ ∈ R.

C3. For nonnegative integers `1 and `2 such that `1 + `2 = 1, ∂ f2(s, t)/(∂s`1∂t`2 ) is continuous on T δ × T δ and
∂ f1(t)/∂t is continuous on T δ.

C4. One has hn → 0 and nh3
n/ log n→ ∞ (univariate kernel) and nh2

n → ∞ (bivariate kernel).

C5. The kernel functions are nonnegative with compact supports, bounded, and of order (0, 2) (univariate kernel)
and {(0, 0)>, 2} (bivariate kernel), respectively.

Lemma 1. Under the regularity conditions C1–C5, we have ‖Σ̂ − Σ‖H = Op(n−1/2h−1/2
n + h2

n) and ‖Λ̂ − Λ‖H =

Op(n−1/2h−1/2
n + h2

n).

3.2. Estimating the Σ-envelope of the central subspace

After obtaining Σ̂ and Λ̂, Yao et al. [47] (and most of the other functional SDR methods) truncate Σ̂ by keeping
only its first sn eigenvalues θ̂1, . . . , θ̂sn and eigenfunctions φ̂1, . . . , φ̂sn , where sn diverges with sample size n and is the
adaptive number of components. One can then use

Σ̂sn =

sn∑
j=1

θ̂ jφ̂ j ⊗ φ̂ j and Σ̂−1
sn

=

sn∑
j=1

θ̂−1
j φ̂ j ⊗ φ̂ j

to estimate the central subspace from Σ̂−1
sn

Λ̂. Instead of calculating the right d eigenfunctions of Σ̂−1
sn

Λ̂ with a truncated
Σ̂sn , we first calculate the leading d eigenvectors of Λ̂, denoted as V̂d = (̂v1, . . . , v̂d). Then, in order to estimate the
envelope, we compute the eigenvectors of

R̂K =
(
V̂d, Σ̂V̂d, . . . , Σ̂

K−1V̂d
)
, (10)

where no truncation of the covariance operator Σ̂ is required and the number K is defined in Theorem 1. The last step
of the estimation procedure is to obtain a linearly independent functional basis for the envelope EΣ(SY |X). This can be
easily done by eigen-decomposing R̂K . The first u eigenfunction of R̂K will span a subspace that is consistent for the
envelope EΣ(SY |X).

Our asymptotic results thus concern the consistency of PE, the projection onto the envelope EΣ(SY |X), and its
estimate P̂γ.

Theorem 3. Under the regularity conditions C1–C5, we have ‖P̂γ − PE‖H = Op(n−1/2h−1/2
n + h2

n).

3.3. Estimating the central subspace

If EΣ(SY |X) = SY |X , then the estimation of the envelope will also give an estimate of the central subspace. However,
in many situations it is more likely that SY |X ⊂ EΣ(SY |X). Then the estimated u-dimensional envelope may be used
as a stand-alone method for dimension reduction because the envelope is, after all, a sufficient dimension reduction
subspace. Alternatively, if the central subspace is the ultimate goal, one could also use the envelope as an upper bound
of the central subspace and apply the following refining procedure to get an estimate of the central subspace.

Let γ̂1, . . . , γ̂u be the first u eigenfunctions of R̂K , and let P̂γ and Q̂γ be the projection onto span(̂γ1, . . . , γ̂u)
and its orthogonal subspace, respectively. Then the envelope estimator for Σ and Λ is Σ̂env = P̂γΣ̂P̂γ + Q̂γΣ̂Q̂γ

and Λ̂env = P̂γΛ̂P̂γ, respectively. Then the central subspace can be estimated from the d left eigen-functions of
(P̂γΣ̂P̂γ)†P̂γΛ̂P̂γ, where (P̂γΣ̂P̂γ)† is the generalized inverse of the rank-u operator P̂γΣ̂P̂γ. Equivalently, the central
subspace can be estimated as span{(̂γ1, . . . , γ̂u)Ψ̂d}, where Ψ̂d = (ψ̂1, . . . , ψ̂d) ∈ Ru×d is the coordinate matrix of the
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central subspace for Y on Z ∈ Ru with Z j = 〈̂γ j, X〉 for all j ∈ {1, . . . , u}. The estimation of Ψ̂d can be achieved by any
standard dimension reduction method; see, e.g., [14, 33, 55].

Our asymptotic results concerns the consistency of PS, the projection onto the central subspace SY |X , and its
estimate P̂β.

Theorem 4. Under the regularity conditions C1–C5, we then have ‖P̂β − PS‖H = Op(n−1/2h−1/2
n + h2

n).

3.4. Dimension selection

There are many ways to select the dimension d of the central subspace, including but not limited to sequential
asymptotic or permutation tests [11, 12, 44, 51], information criteria [42, 53, 54], plots [41], and cross-validations.
Some of the methods in the literature for determining the structural dimension d are very generic and can be directly
applied to our context of functional SDR [41, 54]. Instead of developing a new method to select dimension in func-
tional SDR [36], we use cross-validation prediction error, which is arguably the most straightforward and intuitive
criterion, to select the dimension (d, u) simultaneously. We illustrate the empirical performances of cross-validation
in our numerical studies in Section 4.3.

4. Simulations

4.1. Estimation comparison

In this section, we compare the functional envelope cumulative slicing (FECS) and the functional cumulative
slicing (FCS) estimation of the central subspace. Recall from the beginning of Section 3.2 that the FCS truncates Σ̂

by keeping only its first sn eigenvalues θ̂ j and eigenfunctions φ̂1, . . . , φ̂sn , where sn diverges with sample size n and is
the adaptive number of components. Then use

Σ̂sn =

sn∑
j=1

θ̂ jφ̂ j ⊗ φ̂ j and Σ̂−1
sn

=

sn∑
j=1

θ̂−1
j φ̂ j ⊗ φ̂ j

to estimate the central subspace from Σ̂−1
sn

Λ̂. In our simulations, we investigate the effect of sn on the performance of
FCS and use a fixed number sn = 5, 10, 20 and 30 instead of a data dependent tuning parameter sn that diverges with
the sample size.

We use ‖P̂β − PS‖H as the criterion for estimation performance of the two methods. We consider the following
four models:

Model I: Y = 〈β1, X〉 + ε,

Model II: Y = arctan(π〈β1, X〉) + ε,

Model III: Y = 〈β1, X〉 + exp(〈β2, X〉/10) + ε,

Model IV: Y =
1.5〈β1,X〉

0.5+(1.5+〈β2,X〉)2 + 0.2ε,

where the dimension of the central subspace is d = 1 for Models (I)–(II) and d = 2 for Models (III)–(IV). The four
models are archetypal: (I) simple linear; (II) single-index non-linear; (III) additive model of linear and non-linear
components; (IV) non-linear and non-additive model, which is a classical and widely used simulation model in the
literature on sufficient dimension reduction [33].

These models cover a wide range of sufficient dimension reduction models, from single-index models to multi-
ple index models, from linear effects of predictors to partial linear and completely non-linear. They were chosen to
illustrate the efficiency and wide applicability of the proposed methods under various scenarios. To mimic our spectro-
scopic data examples in the next section, we generated the functional predictor X(t) from the regular, evenly-spaced,
100 grid points on the interval t ∈ [0, 10],

X(t) =

100∑
j=1

ξ jφ j(t)

9



Figure 3: Three scenarios about the 100 eigenvalues of Σ.

with φ j(t) = sin(π jt/5)/
√

5 or cos(π jt/5)/
√

5 and ξ j
iid
∼ N(0, θ j) for eigenvalue θ j > 0 for each j ∈ {1, . . . , 100}. We

consider the following three scenarios (also graphically illustrated in Figure 3) for the eigenvalues of the covariance
operator Σ(s, t).

Scenario (a): We constructed eigenvalues that decay slowly, so that we could compare the robustness of the
functional dimension reduction methods. The 100 eigenvalues are evenly spaced from 0.01 to 1, that means
eigenvalues are 0.01k for k ∈ {1, . . . , 100}.

Scenario (b): We constructed eigenvalues that decay quickly after few large and close eigenvalues, so that we
could compare the efficiency of the functional dimension reduction methods. The first six eigenvalues linearly
decrease from 2.15 to 2.1k with k ∈ {1, . . . , 6} and the remaining eigenvalues are k−1.25 for k ∈ {7, . . . , 100};

Scenario (c): We constructed the first ten eigenvalues as 2.0, 1.95, . . . , 1.55, and the remaining eigenvalues as
10/k for k ∈ {11, . . . , 100}. This scenario is extremely favorable to the FCS estimator with truncated Σ̂sn using
the first ten functional principal components. We let the first ten eigenvalues be well separated and we also let
the central subspace lie within the first ten eigenspace.

We use β1 = C1φ5 and β2 = C2φ6 such that the envelope is the central subspace EΣ(SY |X) = SY |X and thus u = d.
Different normalizing constants C1 and C2 were used for each model so that the variances of 〈βi, X〉, arctan(π〈β1, X〉)
and exp(〈β2, X〉) are close to 2 in Models I–III. For Model IV, the variances of both 〈β1, X〉 and (1.5 + 〈β2, X〉)2 were
controlled to be approximately 1. Therefore, we can directly compare FECS for estimating the envelope with the FCS
that estimates the central subspace. For the envelope estimator, we simply use K = u for the number of terms in RK ,
this will guarantee the coverage of the envelope and the central subspace.

We simulated 100 data sets for each simulation settings, with n ∈ {100, 400} and summarized the results in Table 1.
It is observed that the proposed FECS very competitively. It delivers the best performance for both Scenarios (a) and
(b). Even for Scenario (c) which is especially designed to be in favor of FCS, the FECS’s performance is very close
to the best performer FCS with sn = 10.

4.2. Prediction comparison
In this section, we compare the prediction performances of the FECS and the FCS estimators. For every simulated

data set, we evaluate the prediction performance on an independent and identically generated testing data set, where
we evaluate the relative prediction error as the criterion for prediction performance of the two methods. The relative
prediction error is evaluated at the non-extrapolated values, and is defined as n−1

e
∑ne

i=1(Ŷi − Yi)2/σ̂2, where ne denotes
the number of non-extrapolated Yis and σ̂2 is the estimated variance of Y from testing data. To get a predicted value
Ŷi, we use the Gaussian kernel smoothing with optimal bandwidth selection from [3].

We used the same four models and three covariance operators as in Section 4.2. However, we changed the central
subspace functional by letting β1 = C1

∑100
j=1 b jφ j with b j = 1 for j ∈ {1, 2, 3}, and b j = 4( j − 2)−3 for j ∈ {4, . . . , 100},
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Model n FECS FCS S.E. ≤
sn = 5 sn = 10 sn = 20 sn = 30

(I-a) 100 0.67 0.93 0.87 0.78 0.73 0.01
400 0.40 0.90 0.79 0.63 0.53 0.01

(II-a) 100 0.72 0.93 0.88 0.80 0.77 0.01
400 0.45 0.90 0.80 0.64 0.56 0.01

(III-a) 100 0.83 0.95 0.92 0.87 0.85 0.01
400 0.67 0.92 0.85 0.77 0.73 0.01

(IV-a) 100 0.78 0.94 0.89 0.83 0.81 0.01
400 0.53 0.90 0.80 0.67 0.60 0.01

(I-b) 100 0.23 0.39 0.74 0.99 1.05 0.02
400 0.11 0.41 0.71 1.01 1.09 0.02

(II-b) 100 0.27 0.41 0.78 1.00 1.05 0.02
400 0.14 0.41 0.72 1.01 1.08 0.02

(III-b) 100 0.51 0.58 0.82 0.99 1.02 0.01
400 0.36 0.47 0.77 0.99 1.04 0.01

(IV-b) 100 0.36 0.42 0.77 0.98 1.02 0.01
400 0.18 0.36 0.66 0.96 1.02 0.01

(I-c) 100 0.50 0.73 0.52 0.54 0.65 0.01
400 0.28 0.68 0.28 0.34 0.43 0.02

(II-c) 100 0.54 0.74 0.55 0.61 0.72 0.01
400 0.30 0.69 0.30 0.38 0.48 0.02

(III-c) 100 0.71 0.81 0.71 0.74 0.80 0.01
400 0.52 0.75 0.49 0.60 0.67 0.01

(IV-c) 100 0.62 0.76 0.59 0.68 0.78 0.01
400 0.37 0.71 0.32 0.42 0.55 0.01

Table 1: Estimation comparison. Averaged ‖P̂β − PS‖H over 100 simulated data sets. We highlighted the best performance in bold. The last
column, labelled “S.E. ≤”, gives the largest standard error (S.E.) among all the five estimators (FECS, FCS with four different sn values).
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and keeping β2 = C2φ6 same as in Section 4.1. Normalizing constants C1 and C2 were chosen in the same way as in
Section 4.1. That means now SY |X ⊂ EΣ(SY |X) and u > d. In fact, this is an extreme case where the true population
envelope dimension u = 100 equals the number of grid points t ∈ T . Thus the envelope estimator is essentially a finite
sample approximation of the true envelope. However, as long as u > d, we can still estimate the central subspace at
the right dimension and make a prediction. We use 10-fold cross-validation to choose u and d for the FECS estimator,
under the constraint that u ≥ d. We use the true central subspace dimension d for the FCS estimator. Therefore, the
simulation set-up is in favor of the FCS method. The results are summarized in Table 2 with the FECS delivering the
best performance for all three eigenvalue scenarios.

During the review process, one referee pointed out that the performance of FCS in Table 2 seems to keep getting
better as sn increases for some cases in eigen scenario (a); one might wonder, therefore, whether it will beat the per-
formance of FECS. While revising our paper, we tried FCS with high sn. The results confirmed that the performance
of FCS will eventually deteriorate as sn increases and FECS is indeed performing better than FCS. To save space, we
choose not to include the extended results here.

When prediction is the primary goal, kernel nonparametric regression techniques combined with functional PCA
are widely applied [2, 23–25]. We used a nonparametric functional PCA method that is implemented in the Matlab
package PACE (Principal Analysis by Conditional Expectation; http://www.stat.ucdavis.edu/PACE/)
to estimate eigenfunctions, where the number of eigenfunctions is chosen by one-curve-leave-out cross-validation
procedures [48]. Then a multivariate kernel regression with Gaussian kernel on the eigenfunctions was fitted. The
results are summarized in Table 2, where FPCA method was dominated by our FECS estimator but outperformed FCS
in some model settings.

4.3. Dimension selection

As an illustration, we select (d, u) simultaneously based on the same 10-fold cross-validation selection procedure
described in Section 4.2: we consider pairs of (d, u) satisfying d ≤ u and choose the pair with the smallest cross-
validation prediction error. As an illustration, we took the classical sufficient dimension reduction model, Model (IV)
in the previous sections, and we considered all three eigenvalue scenarios (i.e., Figure 3). We focus on the selection
of the dimension d, which is more crucial than the envelope dimension u. We use the more challenging setting in
Section 4.2, where the envelope structure dimension is u = p = 100 so that the envelope dimension is only a finite
sample approximation, but the central subspace has true dimension d = 2. For 100 replicate data sets with sample size
n = 400, we have the dimension selection results summarized in Table 4, where it is clear that the dimension d can
be correctly selected as we introduce the envelope dimension u ≥ d. The envelope dimension in such a case is acting
like a tuning parameter that helps to reduce the variability in the sample estimation procedure.

Furthermore, Figure 4 summarizes the averaged prediction performance for various dimensions. Again, we can see
that the central subspace dimension d is crucial: underestimated dimension, d̂ = 1, will always lead to poor prediction
performance and overestimated dimension, d̂ = 3 or 4, sometimes causes a drastic increase in prediction error (top
panel) and sometimes causes only a small increase (middle and bottom panels); meanwhile, for each dimension d
from 1 to 4, the relative prediction performance is not sensitive to the choice of envelope dimensions.

5. Real data

We consider the data example introduced at the end of Section 1, where Y1 is the protein content and Y2 is the
moisture content; predictor X(t) is the NIR absorption spectra that are measured at 351 equally spaced frequencies
with a spacing of 4nm between 1100nm (first frequency) and 2500nm (last frequency). We first look at the prediction
performance of the FECS estimator with various (d, u) combinations where d ∈ {1, . . . , u}. We constructed 100
data splits, each with 90 training samples and 10 testing samples, and the frequency of the selected dimensions are
summarized in Table 4.

The first functional principal component will cover more than 95% of the total variation, the first two PCs will
cover more than 99%. Therefore, we also include the comparison with functional PCA in this data set with only the
first two components. For the FCS method, we find d = 2 has the best predictive dimension for moisture and d = 3
is the best predictive dimension for protein. Overall prediction performances of each methods are summarized in
Table 5. FECS is clearly the most robust and reliable dimension reduction method. In addition, we also compared
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Model n FECS FPCA (sn) FCS S.E. ≤
sn = 5 sn = 10 sn = 20 sn = 30

(I-a) 100 0.44 0.54 (12.7) 0.86 0.75 0.62 0.54 0.01
400 0.20 0.45 (21.1) 0.74 0.59 0.41 0.32 0.01

(II-a) 100 0.63 0.65 (11.1) 0.91 0.82 0.73 0.68 0.01
400 0.38 0.57 (18.8) 0.81 0.70 0.55 0.47 0.01

(III-a) 100 0.50 0.61 (13.6) 0.89 0.79 0.67 0.60 0.01
400 0.29 0.53 (21.6) 0.79 0.67 0.49 0.40 0.01

(IV-a) 100 0.66 0.74 (11.0) 0.92 0.85 0.78 0.74 0.01
400 0.40 0.64 (18.6) 0.84 0.75 0.65 0.60 0.01

(I-b) 100 0.17 0.32 (7.0) 0.30 0.29 0.49 0.59 0.02
400 0.09 0.19 (7.0) 0.21 0.18 0.38 0.50 0.02

(II-b) 100 0.37 0.43 (6.8) 0.49 0.51 0.70 0.78 0.01
400 0.24 0.30 (6.7) 0.36 0.35 0.56 0.66 0.01

(III-b) 100 0.26 0.33 (6.8) 0.36 0.35 0.53 0.63 0.01
400 0.19 0.21 (6.8) 0.30 0.25 0.44 0.57 0.01

(IV-b) 100 0.29 0.54 (6.9) 0.55 0.52 0.61 0.67 0.01
400 0.15 0.36 (6.6) 0.53 0.50 0.58 0.64 0.01

(I-c) 100 0.26 0.49 (11.4) 0.52 0.31 0.29 0.31 0.02
400 0.11 0.34 (11.8) 0.35 0.13 0.13 0.14 0.02

(II-c) 100 0.45 0.59 (9.9) 0.65 0.47 0.48 0.52 0.01
400 0.27 0.43 (10.2) 0.49 0.28 0.29 0.31 0.01

(III-c) 100 0.33 0.50 (12.1) 0.61 0.39 0.37 0.37 0.02
400 0.21 0.36 (12.3) 0.50 0.23 0.22 0.23 0.01

(IV-c) 100 0.46 0.73 (10.0) 0.70 0.57 0.57 0.59 0.01
400 0.23 0.57 (10.2) 0.60 0.49 0.49 0.50 0.01

Table 2: Prediction performance. Averaged
∑n

i=1 ‖Ŷi − Yi‖/n for 100 training-testing data sets pairs. For every simulated data set, we evaluate
the prediction performance on an independent and identically generated testing data set of size 10n, where we evaluate the relative prediction
error as the criterion for prediction performance of the two methods. FECS using 10-fold CV. FPCA is the functional PCA combined with kernel
nonparametric regression prediction, where the average number of selected principal components is also included in the parenthesis. The last
column, labelled “S.E.≤”, gives the largest standard error (S.E.) among all the five estimators (FECS, FCS with four different sn values).

n = 400 d = 1 d = 2 d = 3 d = 4
d = d̂u = 1 u = 2 u = 3 u = 4 u = 2 u = 3 u = 4 u = 3 u = 4 u = 4

(IV-a) 0 1 2 1 20 9 63 0 2 2 92
(IV-b) 0 0 0 0 13 15 58 1 11 2 86
(IV-c) 0 0 0 0 22 22 52 1 1 2 96

Table 3: Illustration of dimension selection.
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Figure 4: Averaged 10-fold cross-validation prediction errors for various dimensions, (d, u), in Model (IV) with n = 400. From top to bottom, the
three figures correspond to eigenvalue settings (a)–(c), respectively, in Figure 3.
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d = 1 d = 2 d = 3 d = 4

Frequency Moisture 0 69 31 0
Protein 7 29 64 0

Most frequent u
Moisture NA 3 4 NA
Protein 2 3 4 NA

Table 4: Selecting d and u . First two rows are the frequency of selected dimensions d based on prediction performance of FECS on 100 data
splits, bottom two row indicates the most frequently selected u for each d, where “NA” indicates that the corresponding dimension d is not likely
to be selected.

FECS PCA FKR FCS S.E. ≤
sn = 5 sn = 10 sn = 20

Moisture 0.18 0.78 0.61 0.16 0.39 0.45 0.02
Protein 0.68 0.70 0.62 0.81 0.82 0.82 0.02

Combined 0.86 1.48 1.23 0.97 1.21 1.27 0.04

Table 5: Prediction performance, evaluated by the prediction mean squared errors of each response variable (moisture, protein) and the sum of the
two errors (combined), of each methods from 100 random data splits at testing/training ratio one to nine. The FECS use ten-fold cross-validation
selected dimension (d, u) from the training set. The PCA use the first two components. The FCS use d = 2 for the moisture data and d = 3 for the
protein data, and all sn =5, 10 or 20 are reported in the table.

with the functional kernel nonparametric regression (FKR) estimators [23–25] in terms of prediction but not dimension
reduction. From the results in Table 5, comparing to our FECS prediction, FKR had slightly better prediction for the
protein content but much worse prediction for the moisture content.

We next plotted the first two dimension reduction directions of each methods in Figure 5 for protein content and in
Figure 2 for moisture content, where we used sn = 5 for the FCS and the optimal u = 3 for FECS. For both the protein
content and the moisture content, FCS and FECS have similar findings. The correlation between the first directions
of the two methods is 0.99 for protein and 0.97 for moisture. For the second directions, FECS essentially finds the
direction that lies within the first two principal components. For predicting the moisture content, the functional PCA
is clearly not effective. Therefore FECS agreed more with the FCS and worked really well. Then in the protein data,
functional PCA is very effective. Correspondingly, FECS was similar to functional PCA in terms of prediction and is
better than FCS.

Appendix

Proof of Proposition 1. The proof is omitted, as it is analogous to the proof of Proposition 2.1 in [13] for a p × p
matrix M and its reducing subspace R ⊆ Rp. 2

Proof of Proposition 2. From the definition of reducing subspace, every eigenspace of Σ is a reducing subspace
of Σ. Moreover, due to the orthogonality of eigenspace, any reducing subspace of Σ can be writen in the form of
⊕ j∈Jspan(φ j) = ⊕ j∈Jspan(φ j⊗φ j) for some index setJ . Then by the definition of functional envelope, EΣ{span(Λ)} is
the direct sum of all such subspaces that is not orthogonal to span(Λ). Hence, we proved EΣ{span(Λ)} = ⊕∞j=1span{(φ j⊗

φ j)Λ}, where span{(φ j ⊗ φ j)Λ} = span(φ j) if 〈φ j,Λφ j〉 , 0 and span{(φ j ⊗ φ j)Λ} = 0 if 〈φ j,Λφ j〉 = 0. Using the same
logic, we can get EΣ(SY |X) = EΣ{span(Σ−1Λ)} = ⊕∞j=1span{(φ j⊗φ j)Σ−1Λ}. Since Σ and Σ−1 share the same eigenvectors,
span{(φ j ⊗ φ j)Σ−1Λ} = span{(φ j ⊗ φ j)Λ} for all j ∈ N. Therefore, EΣ(SY |X) = ⊕∞j=1span{(φ j ⊗ φ j)Λ} = EΣ{span(Λ)}. 2

Proof of Theorems 1 and 2. We prove Theorem 2 first. From the definition of Vd, span(Vd) = span(Λ) and thus
span(ΣtVd) = Σtspan(Vd) = span(ΣtΛ) for all t ∈ {0, 1, . . .}. Therefore, span(Rk) = span(Λ,ΣΛ, . . . ,Σk−1Λ) = Sk for
any k ∈ N. This completes the proof of Theorem 2.

Next, to prove Theorem 1 based on the results from Theorem 2, it is sufficient to show the following two state-
ments: (I) there exists an integer K such that span(Rk) ⊆ EΣ(SY |X) for k < K and span(Rk) = EΣ(SY |X) for k ≥ K; (II)
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Figure 5: Protein content (y-axis) versus the six dimension reduction directions (x-axes): the first two principal components (PC1 and PC2 on the
left column of plots); the first two directions from the functional cumulative slicing estimator (FCS1 and FCS2 on the middle column of plots); the
first two directions from the functional envelope cumulative slicing estimator (FECS1 and FECS2 on the middle column of plots).

if span(Rk) = span(Rk+1) for some k, then span(Rk) = span(R j) for all j > k. The statement (II) is needed to guarantee
that the sequence of subspaces Sk ⊂ Sk+1 is strictly increasing until we reach k = K. The proof follows the same logic
as the proof of Theorem 1 in [12] in the multivariate case, and is a generalization of [12].

Proof of Statement (I). From Proposition 2, we know that EΣ(SY |X) = ⊕ j∈Jspan(φ j), whereJ = { j : 〈φ j,Λφ j〉 , 0}
is the index set of the eigenvectors that are not orthogonal to span(Λ). The dimension of the envelope, u, is hence
equal to the size of the set J . We rearrange those u eigenvectors as φ̃1, . . . , φ̃u and rearrange the distinct eigenvalues
λ̃1 > · · · > λ̃q, where q ≤ u, and the corresponding projection matrices P̃1, . . . , P̃q. Then

EΣ(SY |X) = ⊕u
j=1span(φ̃ j) = ⊕

q
`=1span(P̃`),

the projection onto EΣ(SY |X) is
∑q
`=1 P̃`.

Let M` = P̃`Vd. Then because span(Vd) ⊆ EΣ(SY |X), we have

Vd =

q∑
`=1

P̃`Vd =

q∑
`=1

M`.

For any number m ∈ {0, 1, . . .}, we have

ΣmVd = Σm

 q∑
`=1

P̃`Vd

 =

q∑
`=1

(ΣmP̃`Vd) =

q∑
`=1

λ̃m
` P̃`Vd =

q∑
`=1

λ̃m
` M`,

where the second to last equality is because P̃` is a projection onto eigenfunctions of Σ. Thus we have P̃`Σ = ΣP̃` =

λ̃`P̃` for any ` ∈ {1, . . . , q}, and thus, P̃`Σ
m = ΣmP̃` = λ̃m

` P̃`. The operator Rk can therefore be expressed as

Rk =
(
Vd,ΣVd, . . . ,Σ

k−1Vd

)
=

 q∑
`=1

M`,

q∑
`=1

λ̃`M`, . . . ,

q∑
`=1

λ̃k−1
` M`

 ,
which can be further re-expressed as a matrix product Rk = (M1, . . . ,Mq) ·Hk, where Hk is a q× k matrix with element
[Hk]i j = λ̃

j−1
i for all i ∈ {1, . . . , q}, and j ∈ {1, . . . , k}. It then follows that

span(Rk) ⊆ span(M1, . . . ,Mu) = span(P̃1, . . . , P̃u) = EΣ(SY |X)
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for any k. Recall that the q eigenvalues are distint eigenvalues, thus by applying the well known properties of the
Vandermonde matrix on Hk, we have det(Hk) , 0 for k < q and det(Hk) = 0 for k ≥ q. Therefore, there exists an
integer K with K ≤ q such that span(Rk) ⊆ EΣ(SY |X) for k < K and span(Rk) = EΣ(SY |X) for k ≥ K.

Proof of Statement (II). It is sufficient to show the following: if, for some k, span(ΣkVd) ⊆ span(Rk) then
span(ΣmVd) ⊆ span(Rk) for all m > k. The rest of proof follows from the proof of Theorem 1 in [12] in the mul-
tivariate case; the argument is thus omitted.

Finally, we have already shown the generic case of K ≤ q in the proof of Statement (I). Now in the special case
d = u, it is clear that SY |X = EΣ(SY |X). Therefore span(Λ) = ΣSY |X = ΣEΣ(SY |X) = EΣ(SY |X), where the last equality is
because EΣ(SY |X) is a reducing subspace of Σ. So we have K = 1 in (9). 2

Proof of Theorems 3 and 4. The consistency of ‖Σ̂ − Σ‖H = Op(n−1/2h−1/2
n + h2

n) and ‖Λ̂ − Λ‖H = Op(n−1/2h−1/2
n + h2

n)
can be found in [47]. Then the estimation procedure directly implies the same rate of convergence for P̂γ and P̂β since
they are obtained from eigen-decompositions of matrix R̂k, which consists of matrices Σ̂ and eigenfunctions of Λ̂. 2
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