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a b s t r a c t

Multivariate generalized Pareto distributions arise as the limit distributions of exceedances
over multivariate thresholds of random vectors in the domain of attraction of a max-
stable distribution. These distributions can be parametrized and represented in a number
of different ways. Moreover, generalized Pareto distributions enjoy a number of inter-
esting stability properties. An overview of the main features of such distributions is
given, expressed compactly in several parametrizations, giving the potential user of these
distributions a convenient catalogue of ways to handle and work with generalized Pareto
distributions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A core theme in univariate extreme-value analysis is to fit a generalized Pareto (GP) distribution to a sample of excesses
over a high threshold. Since univariate GP distributions can be described in terms of a scale parameter and a shape parameter,
statistical inference using frequentist or Bayesian likelihood techniques is straightforward, at least for values of the shape
parameter at which the Fisher information matrix is finite.

For multivariate extremes, matters are more complicated. First, there is no universal definition of an exceedance of a
multivariate threshold. Second, whatever the definition that is selected, the family of distributions proposed by asymptotic
theory is no longer parametric.

Following Rootzén and Tajvidi [17], we say that a sample point y ∈ Rd exceeds a multivariate threshold u ∈ Rd as soon
as one of its coordinates exceeds the corresponding threshold coordinate, i.e., yj > uj for at least one j ∈ {1, . . . , d}. In
dimension d = 2, the shape of the excess region {y ∈ Rd

: y ̸≤ u} is that of the letter L upside-down; here and in what
follows, inequalities between vectors are meant component-wise. The excess region covers a larger part of the sample space
than the one for most other threshold exceedance definitions, for instance, that y exceeds u when y > u, i.e., yj > uj for all
j ∈ {1, . . . , d}.

The class of GP distributions that arises from the first definition of a multivariate exceedance is derived directly from the
family of multivariate generalized extreme-valued (GEV) or max-stable distributions; see, e.g., Beirlant et al. [2, Section 8.3]
or Rootzén and Tajvidi [17]. Still, suchmultivariate GP distributions have enjoyedmuch less popularity than their univariate
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counterparts. One reasonmay be that themultivariate versions aremathematicallymore involved. Their support is (a subset
of) {x : x ̸≤ 0}, the complement of the negative orthant, where x = y−u represents the excess vector, at least one coordinate
of which is positive by definition. The unusual shape of the support introduces a nontrivial dependence structure uncommon
to other families of multivariate distributions.

Our aim is to facilitate manipulation of multivariate GP distributions for the analysis of multivariate extremes. Rootzén
et al. [16] revisited multivariate GP distributions with an eye towards modelling. To facilitate the incorporation of physical
constraints in the construction of GP models, these distributions were connected to a number of point process represen-
tations. In Kiriliouk et al. [11], the representations were used for the construction and calibration of parametric models
admitting explicit density formulas.

To complete the picture, we focus here on a number of analytic properties of multivariate GP distributions. Our view
is that a GP distribution is derived from a max-stable distribution from which it inherits the marginal parameters and
the dependence structure after a suitable transformation. This construction directly motivates a number of stochastic
representations of GP random vectors. Moreover, it leads to compact expressions and direct proofs of some interesting
properties of multivariate GP distributions.

After recalling some basic definitions and properties in Section 2, we introduce a number of parametrizations and
stochastic representations in Sections 3 and 4, respectively. These results then provide the background against which
we present compact formulas for probability densities (Section 5), marginal distributions (Section 6), and copula-related
objects (Section 8). Finally, the family of multivariate GP distributions is stable with respect to conditional marginalization
and thresholding (Section 7) and, provided the margins have equal shape parameters, to certain linear transformations
(Section 9). All proofs are deferred to the Appendix.

Notation. Throughout, the expressions (1 + γ x)1/γ , ln(1 + γ x)/γ , and (xγ
− 1)/γ are to be read as their limits exp(x),

x, and ln(x), respectively, if γ = 0. When applied to vectors, mathematical operations such as addition, multiplication and
exponentiation are to be interpreted component-wise, where scalars are recycled if necessary; for instance, for γ, x ∈ Rd, we
write (1+γx)1/γ for the vector ((1+γ1x1)1/γ1 , . . . , (1+γdxd)1/γd ), with the earlier mentioned convention for γj = 0 applied
to each component. We let a ∧ b and a ∨ b denote min(a, b) and max(a, b), respectively, whereas for vectors, the minimum
and the maximum are taken component-wise. Order relations between vectors are to be interpreted component-wise, too.
We write L(ξ ) for the law of the random variable or vector ξ and we let ⇝ denote convergence in distribution. Bold face
symbols denote vectors, usually of length d. Likewise, 0 = (0, . . . , 0) and 1 = (1, . . . , 1), and∞ = (∞, . . . ,∞). For a vector
x, we write max(x) = max(x1, . . ., xd). The indicator variable of the set A is denoted by 1(A).

2. Basics

Let X be a d-variate random vector with cumulative distribution function (cdf) F . Suppose that there exist sequences of
vectors an ∈ (0, ∞)d and bn ∈ Rd and a d-variate cdf G with non-degenerate margins such that, as n → ∞,

F n(anx + bn) ⇝ G(x). (1)

The weak limit G in (1) is a d-variate max-stable or generalized extreme-value (GEV) distribution. The margins, G1, . . . ,Gd,
of G are continuous, see (7), so that the convergence in (1) takes place for every x ∈ Rd. In particular, (1) implies that, for all
x ∈ Rd such that G(x) > 0, we have

lim
n→∞

n{1 − F (anx + bn)} = − lnG(x). (2)

We refer to Beirlant et al. [2, Chap. 8] or de Haan and Ferreira [3, Chap. 6] for background on multivariate GEV distributions
and their domains of attraction.

By an appropriate choice of the sequences an and bn, we can always ensure that

∀j∈{1,...,d} 0 < Gj(0) < 1. (3)

Multivariate GEV distributions being positive quadrant dependent [12], we then have 0 < G(0) < 1. By (2) and some
elementary calculations, we find that, for all x ∈ Rd such that Gj(xj) > 0 for all j ∈ {1, . . . , d},

lim
n→∞

Pr{a−1
n (X − bn) ⩽ x | X ̸≤ bn} =

lnG(x ∧ 0) − lnG(x)
lnG(0)

. (4)

Let η ∈ [−∞, 0)d denote the vector of lower endpoints of the marginal distributions G1, . . . ,Gd. From (4), it follows that,
as n → ∞,

L{a−1
n (X − bn) ∨ η | X ̸≤ bn} ⇝ H, (5)

where H is the multivariate generalized Pareto (GP) distribution associated to G; this is denoted H = GP(G). The support of
H is included in, but not necessarily equal to, the set [η, ∞) \ [η, 0], the set of all x such that xj ⩾ ηj for all j ∈ {1, . . . , d} and
xj > 0 for at least one j. The function H is determined by

∀x∈(η,∞) H(x) =
lnG(x ∧ 0) − lnG(x)

lnG(0)
. (6)
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If xj = ηj for some j ∈ {1, . . . , d}, then the value of H(x) is determined by continuity from the right. Note that H may assign
positive mass to the lower boundaries {x : xj = ηj}, even if ηj = −∞; see Proposition 17. Since (4) only covers those x such
that Gj(xj) > 0 (i.e., xj > ηj) for all j ∈ {1, . . . , d}, it does not provide information on what happens below η. Without the
truncation at η, statement (5) is no longer true in general, as the following example shows.

Example 1. Consider X = (X, −X), where the law of X is symmetric around the origin and has tail function Pr(X < −x) =

Pr(X > x) ∼ 1/x as x → ∞. Then (2) holds with an = bn = (n, n) and G(x1, x2) = exp{−(1 + x1)−1
− (1 + x2)−1

} for
x1 > −1 and x2 > −1, so η = (−1, −1). The corresponding GP distribution H in (5) and (6) is concentrated on the union of
the two half-lines (0, ∞)×{−1} and {−1}× (0, ∞); see Example 1 in Rootzén et al. [16]. Instead, the limit distribution H̃ of
a−1
n (X − bn) = (n−1X − 1, −n−1X − 1) given the event {X ̸≤ bn} = {|X | > n} is concentrated on {(y− 1, −y− 1) : |y| > 1}.

However, Eq. (2) does not provide any information about limits for points x = (x1, x2) such that x1 < −1 or x2 < −1, since
G(x) = 0 for such x. Also, H̃ cannot be a GP distribution, since its margins would have to have heavy upper and lower tails,
which is in contradiction with representation (18).

The margins of G are three-parameter generalized extreme-value distributions:

Gj(xj) =

{
exp[−{1 + γj(xj − µj)/αj}

−1/γj ] if γj ̸= 0,
exp[− exp{−(xj − µj)/αj}] if γj = 0, (7)

for j ∈ {1, . . . , d} and xj ∈ R such that αj + γj(xj − µj) > 0; the parameter range is γj ∈ R, µj ∈ R, and αj ∈ (0, ∞).
The dependence structure (i.e., the copula) of G can be described in many ways. In this paper we opt for the description in
terms of the stable tail dependence function (stdf) ℓ : [0, ∞)d → [0, ∞); see [5]. For x ∈ Rd such that Gj(xj) > 0 for all
j ∈ {1, . . . , d}, we have

G(x) = exp[−ℓ{− lnG1(x1), . . ., − lnGd(xd)}]. (8)

The distribution G is thus determined by the parameter vectors γ , µ, and α together with the stdf ℓ; notation G =

GEV(µ, γ, α, ℓ).
For later use we mention the fact that ℓ necessarily satisfies the following properties [5,15]:

• ℓ is convex;
• max(y1, . . ., yd) ⩽ ℓ(y) ⩽ y1 + · · · + yd for all y ∈ [0, ∞)d;
• ℓ(cy) = c ℓ(y) for all (c, y) ∈ [0, ∞) × [0, ∞)d.

⎫⎬⎭ (9)

A useful fact is also that a function ℓ : [0, ∞)d → [0, ∞) is a stdf if and only if there exists a random vector V with values in
[0, ∞)d and with E(Vj) = 1 such that

∀y∈[0,∞)d ℓ(y) = E{max(yV )}. (10)

Formula (10) represents ℓ as (the restriction to [0, ∞)d of) a D-norm [8]. For a given V , the function ℓ in (10) is a stdf
[21, Lemma 3.1]. Given a stdf ℓ, a possible choice for V in (10) is V = dW , whereW is a random vector on the unit simplex
∆d−1 = {w ∈ [0, 1]d : w1 + · · · + wd = 1} whose law is proportional to the angular measure on ∆d−1 of the associated GEV
distribution: indeed, we have ℓ(y) = d

∫
∆d−1

max(yw) Pr(W ∈ dw); see [3, Theorem 6.1.14] or [14]. The random vector V
generating ℓ is not unique in distribution. Specific constructions will be considered in Section 4.

3. Parametrizations

If H is determined by G and if G is determined by (µ, γ, α, ℓ), then so is H . However, this is not a convenient way
to parametrize H , because the parameter vectors µ and α are not identifiable from H . If G = GEV(µ, γ, α, ℓ), then
Gt

∼ GEV[µ(t), γ, α(t), ℓ] for all t ∈ (0, ∞), where

µ(t) = µ + α(tγ − 1)/γ, α(t) = tγα. (11)

Still, if H = GP(G), then also H = GP(Gt ) for all t ∈ (0, ∞). All GEV distributions Gt thus generate the same GP distribution
H . The GP distribution describes the distribution of sample points given that they exceed a high threshold, but not the
exceedance probability itself. This explains the loss of one parameter with respect to a full point process model, which has
the same number of parameters as the GEV model. The phenomenon already occurs in the univariate case, where GP and
GEV distributions have two and three parameters, respectively. Another way to understand the difference in the number
of parameters is through the fact that the vector of component-wise maxima of a Poisson number of independent random
vectors with common GP distribution H has a distribution function which in its upper tail is equal to the GEV distribution
Gt , where t is the expectation of the Poisson random variable.

The lack of identifiability of some of the GEV parameters from the associatedGP distribution is one reasonwhywe look for
other parametrizations for H . Another reason for doing so is that GP distributions enjoy a number of interesting properties
and representations, and some of these are more clearly understood and expressed in other parametrizations.
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Let G = GEV(µ, γ, α, ℓ) and write σ = α − γµ. The requirement that 0 < Gj(0) < 1 is equivalent to the requirement
that σj > 0. To ensure (3), we will therefore assume that σ ∈ (0, ∞) = (0, ∞)d. Recall µ(t) and α(t) in (11) and note that
α(t) − γµ(t) = σ for all t ∈ (0, ∞), i.e., σ is a common parameter for all GEV distributions Gt .

Proposition 2. Let G be GEV(µ, γ, α, ℓ) with σ = α − γµ ∈ (0, ∞). Let H be GP(G). For x ∈ R such that σj + γjxj > 0 for all
j ∈ {1, . . . , d}, we have

H(x) = ℓ{π (1 + γ(x ∧ 0)/σ)−1/γ
} − ℓ{π (1 + γx/σ)−1/γ

} (12)

where πj = τj/ℓ(τ) ∈ (0, 1] and τj = − lnGj(0) = (1 − γjµj/αj)−1/γj ∈ (0, ∞) for all j ∈ {1, . . . , d}, while ℓ(τ) = − lnG(0).

Proposition 3. In Proposition 2, each of γ , σ, π, and ℓ are identifiable from H, and ℓ(π) = 1. More precisely, writing H = 1−H
and H j = 1 − Hj for j ∈ {1, . . . , d}, we have, for x ∈ [0, ∞),

H j(0) = πj, (13)

H j(xj)/H j(0) = (1 + γjxj/σj)−1/γj , provided σj + γjxj > 0, (14)

H(x) = ℓ{H1(x1), . . . ,Hd(xd)}. (15)

Furthermore, we have τ = ℓ(τ)π, so that the vector τ is identifiable up to a constant multiple.

In view of Propositions 2 and 3, we express (12) as

H = GP(σ, γ, π, ℓ). (16)

This yields a parametrization of H in terms of γ ∈ Rd, σ ∈ (0, ∞)d, π ∈ (0, 1]d, and a stdf ℓ such that ℓ(π) = 1. All four
components of (σ, γ, π, ℓ) are identifiable from H . However, the nonlinear constraint ℓ(π) = 1 may perhaps be impractical
when doing inference. Therefore, we also propose the alternative parametrization

H = GP(σ, γ, τ, ℓ), (17)

where π in (16) has been replaced by a vector τ ∈ (0, ∞)d which is identifiable only up to a positive multiplicative constant.
This lack of identifiability can easily be remedied by adding a constraint such as τ1 + · · · + τd = c , where c is a positive
constant, for instance c = 1 or c = d. The vectorπ can be reconstructed from τ and ℓ viaπ = τ/ℓ(τ). Since ℓ is homogeneous,
multiplying τ by a positive constant does not affect π. A valid choice for τ would be π itself, which justifies the use of the
same notation in (16) and (17).

4. Stochastic representations

In the parametrization X ∼ GP(σ, γ, π, ℓ), the parameter vectors σ ∈ (0, ∞) and γ ∈ Rd represent marginal scale and
shape vectors, respectively.

Proposition 4. We have X ∼ GP(σ, γ, π, ℓ) if and only if

X = σ (eγZ
− 1)/γ, with Z ∼ GP(1, 0, π, ℓ). (18)

The support of Z is contained in [−∞, ∞) \ [−∞, 0] and its cdf is given, for all z ∈ Rd, by

Pr(Z ⩽ z) = ℓ(πe−(z∧0)) − ℓ(πe−z ). (19)

In view of Proposition 4, we can reduce the study of many aspects of general GP distributions to the special case of GP
distributions with σ = 1 and γ = 0.

Rootzén [16, Sections 4 and 5] introduced a number of stochastic representations of (standardized) GP random vectors.
The representations were derived from that of a multivariate GEV distribution as the law of the vector of component-wise
maxima of the points of certain point processes. Here, we derive these representations from scratch via that of the stdf ℓ in
(10). We also connect the representations to the parametrization in terms of π and ℓ.

Definition 5. A random vector S taking values in [−∞, 0]d is called a spectral random vector if the following two conditions
hold:

(S1) Pr{max(S1, . . ., Sd) = 0} = 1;
(S2) Pr(Sj > −∞) > 0 for all j ∈ {1, . . . , d}.
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Theorem 6. Let S be a spectral random vector and let E be a unit exponential random variable independent of S . Then
S + E ∼ GP(1, 0, π, ℓ), where π and ℓ are given by

∀j∈{1,...,d} πj = E(eSj ), (20)

∀y∈[0,∞)d ℓ(y) = E{max(yeS/π)}. (21)

The associated cdf is given by H(z) = 1 − E{1 ∧ emax(S−z)
}.

Theorem 7. For every pair (π, ℓ)where π ∈ (0, 1]d and where ℓ is a stdf with ℓ(π) = 1, there exists a spectral random vector S ,
unique in distribution, such that Z ∼ GP(1, 0, π, ℓ) can be represented in distribution as

Z d
= S + E, (22)

with E a unit exponential random variable, independent of S .

Remark 1 (Pareto Processes). Setting γ = σ = 1 in (18), we obtain the random vector W = X + 1 = eZ , and the
representation (22) states that max(W ) = eE is a unit Pareto variable which is independent ofW/max(W ) = eS . According
to Dombry and Ribatet [4, Theorem 2 and Definition 4], these properties ensure that W is a simple Pareto process with
respect to the homogeneous cost functional max( · ). In their Proposition 1, these authors showed that such processes
arise as weak limits of rescaled processes given that the cost functional exceeds a large threshold. Ferreira and de Haan
[9, Theorem 2.1] already studied simple Pareto processes when the cost functional is the supremum norm of a continuous,
nonnegative function. For stationary regularly varying time series, Basrak and Segers [1, Theorem3.1] had already established
the independence property for the case that the cost functional is an arbitrary norm applied to the initial state of the time
series.

In view of Theorems 6 and 7, there is a one-to-one relation between pairs (π, ℓ) satisfying ℓ(π) = 1 on the one hand and
distributions, ν, of spectral random vectors S on the other hand. We therefore write H = GPS(σ, γ, ν) for the GP distribution
H = GP(σ, γ, π, ℓ) with (π, ℓ) determined by ν = L(S).

Combining (18) and (22), we find that a general GP random vector X ∼ GP(σ, γ, π, ℓ) can be represented as

X d
= σ {eγ(S+E)

− 1}/γ, (23)

where S is the spectral random vector associated to (π, ℓ) and where E is a unit exponential random variable independent
of S . Representation (23) is convenient for model construction and Monte Carlo simulation provided we have a handle on
the spectral random vector S .

The requirement that max(S) = 0 almost surely in Definition 5 may perhaps look difficult to ensure, but actually, it is
not. We describe two constructions for doing so.

Proposition 8. Let T be a random vector taking values in [−∞, ∞)d such that the following two conditions hold:

(T1) Pr(Tj > −∞) > 0 for all j ∈ {1, . . . , d};
(T2) Pr{max(T ) > −∞} = 1.

Then S = T − max(T ) is a spectral random vector (Definition 5) and the associated GP distribution, GP(1, 0, π, ℓ) =

GPS[0, 1,L(S)], is determined by

∀j∈{1,...,d} πj = E{eTj−max(T )
}, (24)

∀y∈[0,∞)d ℓ(y) = E
[

max
j∈{1,...,d}

[
yj

eTj−max(T )

E{eTj−max(T )
}

]]
. (25)

The associated cdf is given by

H(z) = 1 − E{1 ∧ emax(T−z)−max(T )
}. (26)

Proposition 9. Let U be a random vector taking values in [−∞, ∞)d such that the following condition holds:

(U) 0 < E(eUj ) < ∞ for all j ∈ {1, . . . , d}.

Let S be defined in distribution by

Pr(S ∈ · ) =
E[1{U − max(U ) ∈ · } emax(U )

]

E{emax(U )}
. (27)
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Then S is a spectral random vector as in Definition 5 and the associated GP distribution, GP(1, 0, π, ℓ) = GPS[0, 1, L(S)], is
determined by

∀j∈{1,...,d} πj =
E(eUj )

E{emax(U )}
, (28)

∀y∈[0,∞)d ℓ(y) = E
[

max
j∈{1,...,d}

{
yj

eUj

E(eUj )

}]
. (29)

The associated cdf is given by

H(z) = 1 −
E{emax(U )

∨ emax(U−z)
}

E{emax(U )}
. (30)

If ν is the law of the random vector T in Proposition 8, we write

GPT (σ, γ, ν) = GP(σ, γ, π, ℓ) (31)

with (π, ℓ) determined by T as in (24)–(25). Similarly, if ν is the law of the random vector U in Proposition 9, we write

GPU (σ, γ, ν) = GP(σ, γ, π, ℓ) (32)

with (π, ℓ) determined by U as in (28)–(29).
Practical modelling considerations led us in Rootzén et al. [16] to consider multivariate GP distribution functions of the

form

HR(x) =

∫
∞

0 [FR{tγ (x + σ/γ)} − FR[tγ {(x ∧ 0) + σ/γ}]] dt∫
∞

0 FR(tγσ/γ) dt
, (33)

a distribution denoted as GPR[σ, γ,L(R)]. The marginal parameter vectors are σ, γ ∈ (0, ∞), while R is a random vector

on [0, ∞) such that 0 < E(R
1/γj
j ) < ∞ for all j ∈ {1, . . . , d}. (The cases where γj = 0 or γj < 0 for some or all j were

considered in Rootzén et al. [16] as well.) Further, FR is the cdf of R and FR = 1 − FR , while the argument, x, in (33) is such
that σj + γjxj > 0 for all j ∈ {1, . . . , d}.

Proposition 10. For σ, γ ∈ (0, ∞), the function HR in (33) is the cdf of the GPU [σ, γ,L(U )] distribution, where U =

γ−1 ln(γR/σ).

Remark 2 (Identifying ν). By the uniqueness statement in Theorem 7, the law, ν, of S in the GPS representation can be
identified from the GP distribution. This is not the case for the GPT or GPU , representations, however: adding a common,
independent randomvariable ξ with E(eξ ) < ∞ to all components Tj orUj in Propositions 8 or 9 does not change the resulting
spectral random vector S nor the GP parameter (π, ℓ). Still, if the laws of T or U are known up to some finite-dimensional
parameter, then this parameter may well be identifiable from the associated GP distribution. This is to be investigated on a
case-by-case basis, for instance by inspection of the density functions (Section 5).

Remark 3 (The Role of ν). If ν is already the law of a spectral random vector S , then the transformations in Propositions 8
and 9 leave ν invariant, so that GPS(σ, γ, ν), GPT (σ, γ, ν) and GPU (σ, γ, ν) are all the same. In that sense, the GPS notation is
redundant. Still, we keep using it because of the uniqueness of L(S) and because of its role as common starting point for the
GPT and GPU constructions. If ν is not the distribution of a spectral random vector, however, then GPS(σ, γ, ν) is not defined,
whereas GPT (σ, γ, ν) and GPU (σ, γ, ν) are different in general.

Remark 4 (Model Construction). The probability measure ν in (31) and (32) need only satisfy conditions (T1)–(T2) or
(U) in Propositions 8 or 9, respectively. This makes the GPT and GPU representations attractive for model construction.
Some examples include the multivariate normal distribution or distributions with independent components. More involved
models arise when ν is the joint distribution of a vector of partial sums. Specific constructions and case studies are worked
out in Kiriliouk et al. [11]. The possibilities are endless and constitute a potentially fruitful research avenue.

Remark 5 (D-Norms). Formulas (21), (25) and (29) represent the stdf ℓ as a D-norm as in (10). In Falk et al. [8], D-norms are
linked to multivariate GP distributions as well.

5. Densities

For statistical inference, it is highly useful to know the probability density functions of the GP distributions constructed
via the methods in Section 4. Most of the results of this section can also be found in Rootzén et al. [16], but for completeness,
we give self-contained proofs in the Appendix. Theorem 15 is new.
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By Proposition 4, it is sufficient to consider the standardized case σ = 1 and γ = 0. The density in case of general (σ, γ)
can then be found by the component-wise increasing transformation z ↦→ x = σ(eγz

− 1)/γ .

Lemma11. If Z ∼ GP(1, 0, π, ℓ) is absolutely continuouswith Lebesgue density hZ , thenX ∼ GP(σ, γ, π, ℓ) in (18) is absolutely
continuous with Lebesgue density hX given by

hX (x) = hZ {γ
−1 ln(1 + γx/σ)}

d∏
j=1

1
σj + γjxj

, (34)

for x ∈ Rd such that x ̸⩽ 0 and σj + γ jxj > 0 for all j ∈ {1, . . . , d}.

Next we give expressions for the density of Z = S + E in Theorem 6 for the stochastic representations of S via T and U
in Propositions 8 and 9, respectively.

Theorem 12. If ν = L(T ), with T as in Proposition 8, has support included in Rd and is absolutely continuous with Lebesgue
density fT , then the GPT (1, 0, ν) distribution has Lebesgue density h given by

h(z) = 1(z ̸⩽ 0)
1

emax(z)

∫
∞

−∞

fT (z + t) dt. (35)

Theorem 13. If ν = L(U ), with U as in Proposition 9, has support included in Rd and is absolutely continuous with Lebesgue
density fU , then the GPU (1, 0, ν) distribution has Lebesgue density h given by

h(z) = 1(z ̸⩽ 0)
1

E{emax(U )}

∫
∞

−∞

fU (z + t) et dt. (36)

Combining Propositions 9 and 10, we also find the density of HR in (33) in terms of the one of R.

Corollary 14. Let σ, γ ∈ (0, ∞) and let R be a random vector with values in (0, ∞) such that E(R
1/γj
j ) < ∞ for all j ∈ {1, . . . , d}.

If R is absolutely continuous with Lebesgue density fR , then the GP cdf HR in (33) is absolutely continuous with Lebesgue density

h(x) = 1(x ̸⩽ 0)
1

E[max{(γR/σ)1/γ }]

∫
∞

0
fR{tγ (x + σ/γ)} t

∑d
j=1 γj dt

for x such that σj + γjxj > 0 for all j ∈ {1, . . . , d}.

By definition, a spectral random vector S is supported on the Lebesgue null set {s : max(s) = 0}. Still, it may be absolutely
continuous with respect to the (d − 1)-dimensional Lebesgue measure on that set with some density function fS , and then
the associated GPS distribution is absolutely continuous with respect to the d-dimensional Lebesgue measure.

Theorem 15. Let S be a spectral random vector with Lebesgue density fS defined on {s ∈ Rd
: max(s) = 0}. Let Z = S + E be

the associated GP random vector. Then the density of Z is given by

h(z) = 1(z ̸⩽ 0) fS{z − max(z)} e−max(z).

6. Margins and lower boundaries

The margins of a multivariate GP distribution are in general not univariate GP distributions; indeed, their supports are
not necessarily included in [0, ∞). Still, by (14), their conditional versions are univariate GP.

Proposition 16. For j ∈ {1, . . . , d}, the jth marginal distribution function, Hj, of a GP distribution H = GP(σ, γ, π, ℓ) =

GPS[σ, γ,L(S)] with (σj, γj) = (1, 0) is given as follows: for zj ∈ R,

Hj(zj) = ℓ
(
π1, . . . , πj−1, πje−(zj∧0), πj+1, . . . , πd

)
− πje−zj (37)

= E{max(eS1 , . . ., eSj−1 , eSj−(zj∧0), eSj+1 , . . ., eSd )} − e−zj E(eSj ). (38)

• If zj ⩾ 0, the right-hand sides simplify to 1 − πje−zj = 1 − e−zj E(eSj ).
• For H = GPT [σ, γ,L(T )], replace Sk by Tk − max(T ) for all k ∈ {1, . . . , d}.
• For H = GPU [σ, γ,L(U )], replace Sk by Uk for all k ∈ {1, . . . , d} and divide everything by E{emax(U )

}.
• For general (σj, γj) ∈ (0, ∞) × R, replace zj by (1 + γjxj/σj)−1/γj for real xj such that σj + γjxj > 0.

Recall that ηj is the lower endpoint of Gj, the jth margin of the GEV G generating H:

ηj =

{
−σj/γj if γj > 0,
−∞ if γj ⩽ 0. (39)



124 H. Rootzén et al. / Journal of Multivariate Analysis 165 (2018) 117–131

Note that this lower endpoint is common for all GEV distributions Gt with t ∈ (0, ∞). Letting zj decrease to −∞ in (37)
yields the probability mass Hj({ηj}) assigned by H = GP(σ, γ, π, ℓ) to the hyperplane {x : xj = ηj}.

Proposition 17. Let H = GP(σ, γ, π, ℓ), let j ∈ {1, . . . , d}, and let ηj be as in (39). We have

Hj({ηj}) = lim
yj→∞

{ℓ
(
π1, . . ., πj−1, πjyj, πj+1, . . ., πd

)
− πjyj} (40)

= lim
ε↓0

ε−1
{ℓ
(
επ1, . . ., επj−1, πj, επj+1, . . ., επd

)
− πj}. (41)

If the first-order partial derivatives of ℓ exist and are continuous on a neighbourhood of πjej = (0, . . . , 0, πj, 0, . . . , 0), then also

Hj({ηj}) =

∑
k∈{1,...,d}\{j}

πk ℓ̇k(πjej). (42)

Finally, in the GPS , GPT and GPU representations, we have, respectively,

Hj({ηj}) =

⎧⎨⎩
Pr(Sj = −∞),
Pr(Tj = −∞),
E{emax(U ) 1(Uj = −∞)} / E{emax(U )

}.

(43)

Eq. (37) implies that themargins of H are continuous, except for a possible atom at the lower endpoints η1, . . . , ηd. Weak
convergence of multivariate threshold exceedances in (5) implies that, for all j ∈ {1, . . . , d} and all xj > ηj, we have

lim
n→∞

Pr{a−1
n,j (Xn,j − bn,j) ⩽ xj | X ̸≤ bn} = Hj(xj).

Taking the limit as xj ↓ ηj, we obtain a statistical interpretation of the probability mass (if any) assigned byH to {x : xj = ηj}:

Hj({ηj}) = lim
xj↓ηj

lim
n→∞

Pr{a−1
n,j (Xn,j − bn,j) ⩽ xj | X ̸≤ bn}.

In words, Hj({ηj}) represents the probability that the rescaled (negative) excess in the jth component, conditionally on a
(positive) excess in some of the other components, drops below a certain level to a region which is not covered by the
max-stable model, G, for the upper tail of F in (1).

7. Stability

Lower-dimensional margins of GP distributions, conditionally on having at least one positive component, are GP
distributed as well. In addition, conditional distributions of multivariate threshold excesses by GP random vectors are GP
distributed, too [17]. These two properties are expressed together in the following result. For a vector x ∈ (0, ∞)d and a non-
empty subset J of {1, . . . , d}, let xJ denote (xj)j∈J . Further, for a d-variate stdf ℓ, let ℓJ denote the function [0, ∞)J → [0, ∞)
given by

ℓJ (y) = ℓ
(∑

j∈J

yjej
)
,

where e1, . . . , ed are the d canonical unit vectors in Rd. The function ℓJ is a |J|-variate stdf, too; in fact, if ℓ is the stdf of the
GEV G, then ℓJ is the stdf of the J-margin, GJ , of G.

Proposition 18. Let X ∼ GP(σ, γ, π, ℓ), let ∅ ̸= J ⊂ {1, . . . , d}, and let u ∈ [0, ∞)J be such that Pr(Xj > uj) > 0 for all j ∈ J .
Then

L(XJ − u | XJ ̸⩽ u) = GP[σ J + γ Ju, γ J , (Pr[Xj > uj | XJ ̸⩽ u])j∈J , ℓJ ]. (44)

Here are some interesting special cases:

• The special case J = {j} reproduces the result that the conditional distribution of Xj given that Xj > 0 is univariate GP
with parameters (γj, σj), a fact we already knew from Proposition 3.

• If uj = 0 for all j ∈ J , then we find that

L{XJ | max(XJ ) > 0} = GP[σ J , γ J , πJ/ℓJ (πJ ), ℓJ ]. (45)

• The most compact formula arises in the GPU representation: if X ∼ GPU [σ, γ,L(U )], then, by the previous equation
and Eqs. (28)–(29), we have

L{XJ | max(XJ ) > 0} = GPU [σ J , γ J , L(UJ )].

To see this, calculate (28)–(29) with U replaced by UJ and check that the results are equal to πJ/ℓJ (πJ ) and ℓJ ,
respectively, which is sufficient by (45).
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8. Copula and tail dependence coefficients

Like anymultivariate distribution function, a GP distributionH withmarginsH1, . . . ,Hd has a copula C : [0, 1]d → [0, 1],
i.e., a distribution function with standard uniform margins such that, for all x ∈ Rd,

H(x) = C{H1(x1), . . . ,Hd(xd)}.

Since Hj is continuous on (ηj, ∞), with j ∈ {1, . . . , d} and ηj as in (39), the copula C is unique on
∏d

j=1[Hj(ηj), 1] [13,22].
In addition, copulas remain invariant under increasing, component-wise transformations, so that by Proposition 4, the set
of copulas associated to GP(σ, γ, π, ℓ) does not depend on (σ, γ) but only on (π, ℓ). Explicit computation of the marginal
quantile functions from Proposition 16 seems unfeasible, however. Still, we have the following, partial result. The tail
copula [6,20], R : [0, ∞)d → [0, ∞), associated to a stdf ℓ is defined by

R(y) = Λ([0, y1] × · · · × [0, yd])

where Λ is the unique measure on [0, ∞]
d
\ {∞} determined by ℓ via Λ([0, ∞] \ [y, ∞]) = ℓ(y).

The function R can be expressed directly in terms of the function ℓ by the inclusion–exclusion formula. For instance, for
d = 2 we have R(y1, y2) = y1 + y2 − ℓ(y1, y2), whereas for general dimension d, we have

R(y) =

∑
J:∅̸=J⊂{1,...,d}

(−1)|J|−1 ℓ{(yj1{j∈J})dj=1}. (46)

A more insightful formula is that if there exists a random vector V on [0, ∞)d with E(Vj) = 1 for all j ∈ {1, . . . , d} such that
(10) holds, then the tail copula, R, associated to ℓ is given, for all y ∈ [0, ∞)d, by

R(y) = E{min(yV )}. (47)

Eq. (47) follows from (10) and (46) and theminimum–maximum identity. Identity (47) can be applied to eitherVj = eSj/E(eSj )
in (21) or to Vj = eUj/E(eUj ) in (29).

Proposition 19. If X ∼ GP(σ, γ, π, ℓ), then, for any x ∈ [0, ∞)d, we have

Pr(∃j∈{1,...,d} Xj > xj) = ℓ{Pr(X1 > x1), . . ., Pr(Xd > xd)}, (48)
Pr(∀j∈{1,...,d} Xj > xj) = R{Pr(X1 > x1), . . ., Pr(Xd > xd)}, (49)

where R is the tail copula associated to ℓ.

Eq. (49) says that, on the set
∏d

j=1[0,H j(0)], the survival copula ofH = GP(σ, γ, π, ℓ) is given by the tail copula associated
to ℓ.

The functions ℓ and R are homogeneous. As a consequence, for p ⩾ 0 such that p ⩽ H j(0) for all j ∈ {1, . . . , d}, we have

Pr{∃j∈{1,...,d} H j(Xj) < p} = p ℓ(1, . . ., 1), Pr{∀j∈{1,...,d} ;H j(Xj) < p} = p R(1, . . ., 1).

The quantity ℓ(1, . . . , 1) is an example of an extremal coefficient [18], whereas the quantity R(1, . . . , 1) is an example
of a multivariate tail dependence coefficient [19]. One way to exploit the above relations in model checking is to check
whether the ratio of marginal and joint exceedance probabilities is indeed constant starting from a certain point on, either
via diagnostic plots or via formal hypothesis tests; see for instance Kiriliouk et al. [11].

Remark 6 (Other Tail Dependence Functions). The above formulas involving ℓ and R could be generalized to more general
exceedance events involving exceedances in some components and non-exceedances in some other components, perhaps
using additional conditioning [10].

Remark 7 (Nonparametric Inference). By homogeneity, the stdf ℓ is determined by its values on [0, ε]d for arbitrarily small,
positive ε > 0. Relation (48) could then serve as a basis for nonparametric inference on ℓ, for instance via the empirical
copula or the empirical stable tail dependence function [7].

9. Linear combinations

We investigate the joint conditional distribution of linear combinations of the components of a GP random vector with
nonnegative coefficients in case all the shape parameters γj are identical. To express the formulas compactly, we use matrix
notation. The random vector X and the scale parameter vector σ are seen as d × 1 column vectors. The ith row of them × d
matrix A is denoted by Ai. Expressions such as AX and AiX are to be interpreted via matrix products.

If γj ⩽ 0, we need to take into account the possibility of masses as −∞. Therefore, we apply the convention that in
expressions like

∑d
j=1ajXj, if aj = 0 and Xj = −∞, then 0 × (−∞) is to be interpreted as 0, i.e., the jth component of X was

not ‘selected’ in the first place:
∑d

j=1ajXj =
∑

{ajXj : aj ̸= 0}.
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Proposition 20. Let X ∼ GPS[σ, γ,L(S)] be such that γ1 = · · · = γd ≡ γ . Further, let A = (ai,j)i,j ∈ [0, ∞)m×d be such that
Pr(AiX > 0) > 0 for all i ∈ {1, . . . ,m}. For x ∈ Rm such that Aiσ + γ xi > 0 for all i ∈ {1, . . . ,m}, we have

Pr[AX ̸⩽ x] = E
[
1 ∧ max

i∈{1,...,m}

{(1 + γ xi/Aiσ)−1/γ eUi}

]
(50)

where U = (U1, . . . ,Um) is given by

Ui =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
γ −1 ln

( d∑
j=1

pi,j eγ Sj
)

if γ ̸= 0,

d∑
j=1

pi,j Sj if γ = 0,

(51)

where pi,j = ai,jσj/Aiσ. As a consequence, L(AX | AX ̸≤ 0) = GPU [Aσ, γ, L(U )].

If m = 1 and A = a ∈ [0, ∞)1×d, then Proposition 20 says that the law of aX conditionally on aX > 0 is univariate GP
with parameters (γ , aσ). Note that the gist of Proposition 20 does not depend on the way in which the GP is parametrized:
the only condition is that all marginal shape parameters be the same.
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Appendix. Proofs

Proof of Proposition 2. For each j ∈ {1, . . . , d}, the lower endpoint, ηj, of Gj is given by ηj = −σj/γj if γj > 0 and ηj = −∞

if γj ⩽ 0. It follows that xj > ηj if and only if σj + γjxj > 0. Furthermore, by (7), we have − lnGj(0) = τj ∈ (0, ∞), so that
indeed 0 < Gj(0) < 1, as required in the definition of H = GP(G).

By (6) and (8), we find, for such x,

H(x) =
ℓ{− lnG1(x1 ∧ 0), . . ., − lnGd(xd ∧ 0)} − ℓ{− lnG1(x1), . . ., − lnGd(xd)}

ℓ{− lnG1(0), . . ., − lnGd(0)}
.

Furthermore, by (7), we have

− lnGj(xj) = {1 + γj(xj − µj)/αj}
−1/γj = (1 − γjµj/αj)−1/γj (1 + γjxj/σj)−1/γj .

Combine these two equations to arrive at

H(x) =
ℓ{τ(1 + γ(x ∧ 0)/σ)−1/γ

} − ℓ{τ(1 + γx/σ)−1/γ
}

ℓ(τ)
.

Finally, use homogeneity of ℓ in (9) to arrive at (12). □

Proof of Proposition 3. Since π = τ/ℓ(τ), we have ℓ(π) = 1 by homogeneity of ℓ in (9). Let ωj ∈ (0, ∞] denote the upper
endpoint of Gj in Proposition 2; we have ωj = ∞ if γj ⩾ 0 and ωj = σj/|γj| if γj < 0. In (12), fix j ∈ {1, . . . , d} and xj ∈ [0, ωj)
and let xk → ωk for k ∈ {1, . . . , d} \ {j}. Then (1 + γkxk/σk)−1/γk → 0, so that, by ℓ(π) = 1 and (9), we find

Hj(xj) = 1 − πj(1 + γjxj/σj)−1/γj , xj ∈ [0, ωj). (A.1)

This yields both (13) and (14). Combine (12), (A.1) and ℓ(π) = 1 to arrive at (15). □

Proof of Proposition 4. Writing Z = γ−1 ln(1 + γX/σ), we have Pr(Z ⩽ z) = Pr{X ⩽ σ(eγz
− 1)/γ}, which, by (12), yields

(19). By (12) applied to (γ, σ) = (0, 1), we find that the right-hand side of (19) is indeed the expression for the cdf of the
GP(1, 0, π, ℓ) distribution. □

Proof of Theorem 6. By (10), the function ℓ in (21) is indeed a stdf. Since max(S) = 0 almost surely, we also have
ℓ(π) = E{emax(S)

} = 1. Clearly, max(S + E) = E > 0 almost surely. For z ∈ Rd such that max(z) > 0, we have, since
emax(S)

= 1 almost surely,

Pr(S + E ⩽ z) = Pr{E ⩽ min(z − S)} = 1 − E[min{1, emax(S−z)
}] = E[max{0, 1 − emax(S−z)

}]

= E[max{0, emax(S)
− emax(S−z)

}] = E[emax{S−(z∧0)}
− emax(S−z)

].
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The last step can be seen through a case-by-case analysis. Now insert the expressions for π and ℓ in (20)–(21) into the
right-hand side of (19) to see that Pr(S + E ⩽ z) = H(z) with H = GP(1, 0, π, ℓ). □

Proof of Theorem 7. The uniqueness of the distribution of S follows from the fact that S can be recovered from S + E via
S = S + E − max(S + E), since max(S) = 0 by assumption. We show the existence of S with the required properties.

Let V be a random vector with values in [0, ∞)d such that E(Vj) = 1 for all j ∈ {1, . . . , d} and such that (10) holds. Let
W = πV and define S (or rather its distribution) through

Pr(S ∈ · ) =
E[1{ln(W/max(W )) ∈ · } max(W )]

E{max(W )}
. (A.2)

Here we put ln(0) = −∞. Although the probability of the event {max(W ) = 0} could be positive under the original
distribution ofW , the probability is zero under the transformed probability measure max(w) [E{max(W )}]−1 Pr(W ∈ dw).
Eq. (A.2) can be written in terms of expectations of measurable functions g as

E{g(S)} =
E[g(ln{W/max(W )}) max(W )]

E{max(W )}
. (A.3)

The random vector S is a spectral random vector: set g(s) = 1{max(s) = 0} and g(s) = esj , respectively, in (A.3) to obtain

Pr{max(S) = 0} =
E[1[max[ln{W/max(W )}] = 0] max(W )]

E{max(W )}
= 1,

E(eSj ) =
E(Wj)

E{max(W )}
=

πj

ℓ(π)
= πj,

so that both Pr(Sj > −∞) > 0 and (20) hold. Eq. (21) follows from setting g(s) = max{(y/π)es} in (A.3). □

Proof of Proposition 8. The statement that S = T − max(T ) is a spectral random vector is trivial; note that the property
that max(T ) > −∞ almost surely guarantees that Sj = Tj−max(T ) is well-defined, even if Tj = −∞ can occur with positive
probability. To arrive at (24)–(25), just substitute Sj = Tj − max(T ) into (20)–(21).

To obtain (26), just substitute S = T − max(T ) into the expression for H in Theorem 6. □

Proof of Proposition 9. Eq. (27) implies that, for measurable functions g , we have

E{g(S)} =
E[g{U − max(U )} emax(U )

]

E{emax(U )}
, (A.4)

in the sense that the expectation on the left-hand side is defined if and only if the one on the right-hand side is defined, in
which case both sides of (A.4) are equal. The random vector S is indeed a spectral random vector:

Pr{max(S) = 0} = E[1{max(U ) − max(U ) = 0} emax(U )
]/E{emax(U )

} = 1,

E(eSj ) = E{eUj−max(U ) emax(U )
}/E{emax(U )

} = E(eUj )/E{emax(U )
} > 0.

Eqs. (28)–(29) follow from combining (20)–(21) and (A.4) with g(S) = eSj and g(S) = max{(y/π) eS}, respectively.
To obtain (30), combine (19) with (28)–(29) and simplify, using the identities max{U − (z ∧ 0)} = max(U − z)∨max(U )

and a ∨ b − a = b − b ∧ a. □

Proof of Proposition 10. For t ∈ (0, ∞) and for x such that xj + σj/γj > 0, we have

FR{tγ (x + σ/γ)} = Pr{R ̸⩽ tγ (x + σ/γ)} = Pr

{
max

j∈{1,...,d}

(
Rj

xj + σj/γj

)1/γj
> t

}

= Pr
[

max
j∈{1,...,d}

{(1 + γjxj/σj)−1/γjeUj} > t
]

,

with Uj = γ −1
j ln(γjRj/σj) for all j ∈ {1, . . . , d}. It follows that∫

∞

t=0
FR{tγ (x + σ/γ)} dt = E

[
max

j∈{1,...,d}
{(1 + γjxj/σj)−1/γjeUj}

]
.

Apply this identity three times to the right-hand side of (33) and compare the resulting expression with the right-hand side
in (30) to see that HR is indeed the cdf of the stated GP distribution. □

Proof of Lemma 11. Let x ∈ Rd be such that x ̸⩽ 0 and σj + γjxj > 0 for all j ∈ {1, . . . , d}. Let z = γ−1 ln(1 + γx/σ). Then

hX (x) = hZ (z)
d∏

j=1

dzj
dxj

= hZ {γ
−1 ln(1 + γx/σ)}

d∏
j=1

1
σj + γjxj

. □
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Proof of Theorem 12. Let S = T −max(T ) and let E be a unit exponential random variable, independent of T . By definition,
H is the cdf of Z = S + E = T − max(T ) + E, so that

H(z) = Pr{T − max(T ) + E ⩽ z} =

∫
∞

0
Pr{T − max(T ) + y ⩽ z} e−y dy

=

∫
Rd

∫
∞

0
1{t − max(t) + y ⩽ z} fT (t) e−y dy dt .

In the inner integral, perform the substitution max(t) − y = r to see that

H(z) =

∫
Rd

∫ max(t)

−∞

1{t − r ⩽ z} fT (t) er−max(t) dr dt .

Next, apply Fubini’s theorem and the substitutions tj − r = uj for j ∈ {1, . . . , d} to see that

H(z) =

∫
R

∫
Rd

1{r ⩽ max(t), t − r ⩽ z} fT (t) er−max(t) dt dr

=

∫
R

∫
Rd

1{max(u) ⩾ 0, u ⩽ z} fT (u + r) e−max(u) du dr

=

∫
u∈(−∞,z]

1{max(u) ⩾ 0} e−max(u)
∫
r∈R

fT (u + r) dr du.

We obtain that H(z) =
∫
(−∞,z] h(u) du with h given by (35). □

Proof of Theorem 13. By definition, the function H is the cdf of the random vector S + E, with E a unit exponential random
variable, independent of the random vector S , the distribution of which is determined by the one of U through Eq. (27). By
repeated applications of Fubini’s theorem and by appropriate changes of variables, we find

H(z) = Pr{S + E ⩽ z} =

∫
∞

0
Pr{S + y ⩽ z} e−y dy =

1
E{emax(U )}

∫
∞

0
E[1{U − max(U ) + y ⩽ z} emax(U )

] e−y dy

=
1

E{emax(U )}

∫
∞

0

∫
Rd

1{u − max(u) + y ⩽ z} emax(u)−y fU (u) du dy

=
1

E{emax(U )}

∫
Rd

∫
R
1{u − s ⩽ z, s < max(u)} es fU (u) ds du

=
1

E{emax(U )}

∫
Rd

∫
R
1{v ⩽ z, max(v) > 0} es fU (v + s) ds dv

=
1

E{emax(U )}

∫
v∈(−∞,z]

1{v ̸⩽ 0}
∫
R
es fU (v + s) ds dv.

We find that H(z) =
∫
(−∞,z] h(v) dv with h given by (36). □

Proof of Corollary 14. Let U = γ−1 ln(γR/σ). Let u ∈ Rd and let r = (σ/γ)eγu. The density function, fU , of U is given by

fU (u) = fR(r)
d∏

j=1

drj
duj

= fR{(σ/γ)eγu
}

d∏
j=1

σjeγjuj .

By Theorem 13, the density function, hZ , of Z ∼ GPU [0, 1,L(U )] is then given by

hZ (z) = 1(z ̸⩽ 0)
1

E[max{(γR/σ)1/γ }]

∫
∞

0
fR{(σ/γ) eγ(z+ln t)

}

d∏
j=1

σj eγj(zj+ln t) dt

= 1(z ̸⩽ 0)
∏d

j=1 σj eγjzj

E[max{(γR/σ)1/γ }]

∫
∞

0
fR{(σ/γ) (t ez )γ } t

∑d
j=1 γj dt.

Let x be such that x ̸⩽ 0 and σj + γjxj > 0 for all j ∈ {1, . . . , d}. Let z = γ−1 ln(1 + γx/σ). Then σj eγjzj = σj + γjxj and
(σj/γj)(t ezj )γj = (σj + γjx) tγj/γj. By Eq. (34), we obtain

h(x) = hZ {γ
−1 ln(1 + γx/σ)}

d∏
j=1

1
σj + γjxj

=
1

E[max{(γR/σ)1/γ }]

∫
∞

0
fR{tγ (x + σ/γ)} t

∑d
j=1 γj dt. □
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Proof of Theorem 15. The cdf, H , of Z is given by

H(z) =

∫
∞

0
Pr(S + y ⩽ z) e−y dy =

∫
∞

0

⎧⎨⎩
d∑

j=1

∫
Sj

1(s + y ⩽ z) fS (s) ds−j

⎫⎬⎭ e−y dy,

where Sj = {s ∈ Rd
: sj = max(s) = 0}, s−j ∈ Sj, and ds−j is the (d − 1)-dimensional Lebesgue measure on Sj. Now let

Uj = Sj + (0, ∞) = {u ∈ Rd
: uj = max(u) > 0} and on Uj make the substitution uj ≡ s−j + y, consisting of (uj)j = y

and (uj)i = si + y for i ̸= j, so that y = max(uj) = (uj)j. It is easily verified that the determinant of the Jacobian of this
transformation is equal to 1. Write duj = dy ds−j, the d-dimensional Lebesgue measure on Uj. By Fubini’s theorem,

H(z) =

d∑
j=1

∫
Sj

∫
∞

0
1(s + y ⩽ z) fS (s) e−y dy ds−j =

d∑
j=1

∫
Uj

1(uj ⩽ z) fS{uj − max(uj)} e−max(uj) duj

=

d∑
j=1

∫
Uj∩(−∞,z]

fS{uj − max(uj)} e−max(uj) duj =

∫
(−∞,z]

1{max(u) > 0} fS{u − max(u)} e−max(u) du,

with du the d-dimensional Lebesgue measure on
⋃d

j=1Uj = {u ∈ Rd
: max(u) > 0}. □

Proof of Proposition 16. This is straightforward from (19) and the representations of (π, ℓ) in terms of L(S), L(T ) and
L(U ). □

Proof of Proposition 17. Eq. (40) follows from (37) since yj = e−zj converges to ∞ if zj tends to −∞. Eq. (41) then follows
from Eq. (40) by setting ε = y−1

j and using homogeneity from ℓ. Eq. (42) follows from Eq. (41), the fact that ℓ(πjej) = πj, and
properties of directional derivatives. The first part of Eq. (43) follows by taking the limit as zj → −∞ in (38) and applying
the dominated convergence theorem together with the fact that emax(S)

= 1 almost surely. The other two identities in (43)
then follow from expressing the law of S in terms of those of T and U , respectively. □

Proof of Proposition 18. For x ∈ RJ such that maxj∈Jxj > 0, we have,

Pr(XJ − u ⩽ x | XJ ̸⩽ u) =
Pr(XJ − u ⩽ x,XJ ̸⩽ u)

Pr(XJ ̸⩽ u)
=

Pr(XJ − u ⩽ x) − Pr(XJ − u ⩽ x,XJ ⩽ u)
Pr(XJ ̸⩽ u)

=
Pr(XJ ⩽ u + x) − Pr{XJ ⩽ u + (x ∧ 0)}

Pr(XJ ̸⩽ u)
. (A.5)

Since u ⩾ 0, we have

Pr(XJ ̸⩽ u) = ℓJ{(Pr[Xj > uj])j∈J} = ℓJ{πJ (1 + γ Ju/σ J )−1/γ J }.

To see this, let uk → ∞ for k ∈ {1, . . . , d} \ J in (15). In addition, the J-margin of H is given by

Pr[XJ ⩽ v] = ℓ{π (1 + γ(w ∧ 0)/σ)−1/γ
} − ℓJ{πJ (1 + γ Jv/σ J )−1/γ J }, (A.6)

for v ∈ RJ such that σj + γjvj > 0 for all j ∈ J and where w ∈ Rd is defined by wj = vj if j ∈ J and wj = 0 otherwise; this
follows from (12). Substitute (A.6) for v = u+ x and v = u+ (x∧ 0) into (A.5). The numerator will have four instances of ℓ,
two of which will cancel out because {u+ (x∧ 0)} ∧ 0 = (u+ x)∧ 0, a consequence of the assumption that u ⩾ 0. It follows
that

Pr(XJ − u ⩽ x | XJ ̸⩽ u) =
ℓJ [πJ (1 + γ J{u + (x ∧ 0)}/σ J )−1/γ J ] − ℓJ [πJ (1 + γ J{u + x}/σ J )−1/γ J ]

ℓJ{πJ (1 + γ Ju/σ J )−1/γ J }
.

In addition, note that, for all j ∈ J ,

{1 + γj(uj + yj)/σj}
−1/γj = (1 + γjuj/σj)−1/γj{1 + γjyj/(σj + γjuj)}−1/γj ,

where yj represents either xj or xj ∧ 0. Writing τ J = πJ (1 + γ Ju/σ J )−1/γ J , we find

Pr(XJ − u ⩽ x | XJ ̸⩽ u) =
ℓJ [τ J{1 + γ J (x ∧ 0)/(σ J + γ Ju)}

−1/γ J ] − ℓJ [τ J{1 + γ Jx/(σ J + γ Ju)}
−1/γ J ]

ℓJ (τ J )
.

Since τj = Pr(Xj > uj) and ℓJ (τ J ) = Pr(XJ ̸⩽ u) and thus τj/ℓJ (τ J ) = Pr(Xj > uj | XJ ̸⩽ u), we obtain (44). □

Proof of Proposition 19. Eq. (48) is the same as Eq. (15). Eq. (49) then follows from Eq. (48) and the inclusion–exclusion
formula. □
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Proof of Proposition 20. By definition, S is a spectral random vector ( Definition 5) and by (18) we have

X d
=

{
σ(eγ (S+E)

− 1)/γ if γ ̸= 0,
σ(S + E) if γ = 0,

where E is a unit exponential random variable, independent of S . Suppose γ > 0. Then

AX ̸⩽ x ⇔ ∃i∈{1,...,m}

d∑
j=1

ai,jσj
eγ (Sj+E)

− 1
γ

> xi ⇔ ∃i∈{1,...,m} eγ E
d∑

j=1

ai,jσjeγ Sj −

d∑
j=1

ai,jσj > γ xi

⇔ ∃i∈{1,...,m}

( ∑d
j=1 ai,jσjeγ Sj∑d

j=1 ai,jσj + γ xi

)1/γ

> e−E .

The random variable e−E is independent of S and is uniformly distributed on the interval [0, 1]. We find

Pr(AX ̸⩽ x) = E

⎧⎨⎩1 ∧ max
i∈{1,...,m}

( ∑d
j=1 ai,jσjeγ Sj∑d

j=1 ai,jσj + γ xi

)1/γ
⎫⎬⎭ . (A.7)

If γ < 0, then a similar argument yields the same expression, while if γ = 0, we can apply a similar reasoning to find that

Pr(AX ̸⩽ x) = E

{
1 ∧ max

i∈{1,...,m}

exp

(∑d
j=1 ai,jσjSj∑d
j=1 ai,jσj

−
xi∑d

j=1 ai,jσj

)}
. (A.8)

Since
∑d

j=1ai,jσj = Aiσ, the two expressions for Pr(AX ̸⩽ x) in (A.7)–(A.8) are equal to the one claimed in (50) with Ui given
by (51).

Next we compute the conditional distribution of AX given that AX ̸⩽ 0. For x ∈ Rd, we have, by a computation similar as
the one leading to (A.5),

Pr(AX ⩽ x | AX ̸⩽ 0) =
Pr(AX ⩽ x, AX ̸⩽ 0)

Pr(AX ̸⩽ 0)
=

Pr(AX ⩽ x) − Pr(AX ⩽ x ∧ 0)
Pr(AX ̸⩽ 0)

=
Pr(AX ̸⩽ x ∧ 0) − Pr(AX ̸⩽ x)

Pr(AX ̸⩽ 0)
.

For x such that Aiσ + γ xi > 0 for all i ∈ {1, . . . ,m}, the three probabilities can be worked out using (50). Regarding the
denominator: since Ui ⩽ 0 almost surely, we find Pr(AX ̸⩽ 0) = E{emax(U )

}. Regarding the numerator: apply (50) twice, to
x ∧ 0 and to x itself. We find

Pr(AX ̸⩽ x ∧ 0) − Pr(AX ̸⩽ x)

= E
[
1 ∧ max

i∈{1,...,m}

{(1 + γ (xi ∧ 0)/Aiσ)−1/γ eUi}

]
− E

[
1 ∧ max

i∈{1,...,m}

{(1 + γ xi/Aiσ)−1/γ eUi}

]
= E

[
max

i∈{1,...,m}

{(1 + γ (xi ∧ 0)/Aiσ)−1/γ eUi}

]
− E

[
max

i∈{1,...,m}

{(1 + γ xi/Aiσ)−1/γ eUi}

]
.

The reason we may omit the two instances of ‘‘1∧ . . .’’ is again because Ui ⩽ 0 almost surely. The identity can be confirmed
by a case-by-case analysis.

Comparing the resulting expression for Pr(AX ⩽ x | AX ̸⩽ 0) with (30) confirms that the law of AX given that AX ̸⩽ 0 is
given by the GPU [γ,Aσ,L(U )] distribution. □
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