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Abstract

Nonparametric density estimators are studied for d-dimensional, strongly spatial mixing data which is defined on a

general N -dimensional lattice structure. We consider linear and nonlinear hard thresholded wavelet estimators which

are derived from a d-dimensional multiresolution analysis. We give sufficient criteria for the consistency of these

estimators and derive rates of convergence in Lp′ for p′ ∈ [1,∞). For this reason, we study density functions which are

elements of a d-dimensional Besov space Bs
p,q(R

d). We also verify the analytic correctness of our results in numerical

simulations.

Keywords: Besov spaces; Density estimation; Hard thresholding; Rate of convergence; Spatial lattice processes; Strong

spatial mixing; Wavelets

MSC 2010: Primary: 62G07; 62H11; 65T60; Secondary: 65C40; 60G60

This article considers methods of nonparametric density estimation for spatially dependent data with wavelets. There

is an extensive literature on the density estimation problem for i.i.d. data or time series. Recently, inference techniques

for spatial data have gained importance because of their increased relevance in modern applications such as image

analysis, forestry, epidemiology or geophysics. See the monographs of Cressie (1993) and Guyon (1995) for a systematic

introduction on spatial data and random fields.

So far when working with random fields, the kernel method has been a popular tool both in regression and density

estimation, see, e.g., Carbon et al. (1996), Hallin et al. (2001), Hallin et al. (2004), Biau (2003) and Carbon et al. (2007).

In a more recent paper, Dabo-Niang and Yao (2013) extend the kernel method to functional stationary random fields,

they estimate the spatial density w.r.t. a reference measure. Dabo-Niang et al. (2014) propose a kernel method in spatial

density estimation which also allows for spatial clustering. Amiri et al. (2016) study asymptotic properties of a recursive

version of the Parzen-Rozenblatt estimator.

While the kernel method is efficient if the density has unbounded support, it often has disadvantages for densities

with compact support because of the boundary bias. Furthermore, the kernel method requires the density to satisfy

certain smoothness conditions. In situations where the density function does not meet these requirements the wavelet

method is an alternative which often performs relatively well because it adapts automatically to the regularity of the

curve to be estimated. Wavelet estimators assume that the underlying curve belongs to a function space with certain

degrees of smoothness. The wavelet estimators do not depend on the smoothness parameters, nevertheless, they behave

as if the true curve is known in advance and attain the optimal rates of convergence. This is in particular true for the hard

thresholding estimator of Donoho et al. (1996).

However, estimating the density of spatial data with wavelets has received little attention. Only the special case of

time series has been thoroughly investigated: Masry (1997), Masry (2000), Bouzebda et al. (2015) and Bouzebda and Didi
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(2017) study the wavelet method for density and regression estimators for multivariate and stationary time series. In a re-

cent article Li (2015) studies wavelet estimators for compactly supported one-dimensional Besov densities on stationary

and strongly mixing random fields.

In the present article, we continue with these considerations for d-dimensional densities and study the linear and

the hard thresholding estimator based on not necessarily isotropic wavelets. It is well-known that the hard thresholding

estimator performs better than its linear analogue for certain densities in the one-dimensional setting. We will show a

similar behavior for multivariate density functions.

The hard thresholding estimator has a linear basic component w.r.t. a coarse level j0. Additionally, nonlinear details

are added for higher levels j0 ≤ j ≤ j1 if their contribution is significant in the statistical sense. This implies that this

estimator can converge faster than the linear estimator in certain parameter settings.

The generalization to arbitrary dimensions is non-trivial, in particular because the definitions of the underlying

Besov space Bs
p,q(R

d) have to be generalized to the d-dimensional case. For isotropic wavelets there already exist such

generalizations, see for instance Meyer (1995) or Haroske and Triebel (2005). However, as we also allow for density

estimators with nonisotropic wavelets, we need a more general definition. This is one of the main differences to the

existing work. Moreover, we allow for density functions on R
d which do not necessarily have compact support.

We assume that Z = {Z(s) : s ∈ Z
N} is a random field with equal marginal laws on R

d which admit a square

integrable density f w.r.t. to the d-dimensional Lebesgue measure λd. Then for an orthonormal basis {bu : u ∈ N+} of

L2(λd) there is the representation f =
∑

u∈N+
〈f, bu〉 bu, where 〈·, ·〉 is the inner product on the function space L2(λd).

Since f is a density, we have the fundamental relationship between an observed sample {Z(s) : s ∈ I} (I ⊆ Z
N ) and a

coefficient 〈f, bu〉 from this representation: 〈f, bu〉 = E [ bu(Z(s)) ] ≈ |I|−1
∑

s∈I bu(Z(s)).

It is well-known that replacing the true coefficient with the empirical approximation yields a consistent density

estimate for an i.i.d. sample of one-dimensional data under certain conditions, see, e.g., Devroye and Györfi (1985) or

Härdle et al. (1998). In the particular case of wavelets, Kerkyacharian and Picard (1992) derive rates of convergence for

the linear wavelet estimator.

In contrast to linear wavelet estimators nonlinear wavelet estimators are particularly useful if the density curve

features high-frequency oscillations or shows an erratic behavior. Rates of convergence of the hard thresholded wavelet

estimator are studied by Hall and Patil (1995) and Donoho et al. (1996). Since then the wavelet method for the density

problem has been studied in various special settings: Hall et al. (1998), Cai (1999) and Chicken and Cai (2005) consider

rates of convergence for wavelet block thresholding. Giné and Nickl (2009) give several uniform limit theorems for

wavelet density estimators for a compactly supported density and i.i.d. sample data. Xue (2004) study wavelet based

density estimation under censorship. Giné and Madych (2014) investigate wavelet projection kernels in the density

estimation problem. In this article, we continue the analysis for multivariate sample data which is spatially dependent.

This manuscript is organized as follows: we give the fundamental definitions and summarize the main facts of Besov

spaces in d dimensions in Section 1. In Section 2 we study in detail the wavelet density estimators. We give criteria

which are sufficient for the consistency of the nonparametric estimators and establish rates of convergence. Section 3 is

devoted to numerical applications. We use an algorithm proposed by Kaiser et al. (2012) for the simulation of the random

field and estimate its marginal density with the linear and the hard thresholded wavelet estimator. Section 4 contains

the proofs of the results from Section 2. Appendix A contains useful inequalities for dependent sums. As the wavelet

estimators are a priori not necessarily a density, we consider in Appendix B the question under which circumstances a

normalized estimator is consistent.

1 Notation and Definitions

This section is divided in four parts: firstly, we introduce the concepts for multidimensional wavelets. Secondly, we

define the multidimensional Besov spaces. We explain the data generating process in the third step. Finally, we define

the wavelet density estimator.

In the following, we write L2(λd) for L2
(
R

d,B(Rd), λd
)
, where λd is the d-dimensional Lebesgue measure and

we write ‖f‖Lp(λd) = (
∫
Rd |f |p dλd)1/p for the Lp-norm of a function f on R

d.

We begin with well-known results on wavelets in d dimensions, see, e.g., the monograph of Benedetto (1993).
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Definition 1.1. Let Γ ⊆ R
d be a lattice, this is a discrete subgroup given by (Γ,+) =

({∑d
i=1 aivi : ai ∈ Z

}
,+
)

for

certain vi ∈ R
d (i = 1, . . . , d). Furthermore, let M ∈ R

d×d be a matrix which preserves the lattice Γ, i.e., MΓ ⊆ Γ and

which is strictly expanding, i.e., all eigenvalues ζ of M satisfy |ζ| > 1. Denote for such a matrix M the absolute value

of its determinant by |M |. A multiresolution analysis (MRA) of L2
(
R

d,B(Rd), λd
)
, d ∈ N+, with a scaling function

Φ : Rd → R is an increasing sequence of subspaces of L2
(
λd
)

given by . . . ⊆ U−1 ⊆ U0 ⊆ U1 ⊆ . . . such that the

following four conditions are satisfied

1. (Denseness)
⋃

j∈Z
Uj is dense in L2

(
λd
)
,

2. (Separation)
⋂

j∈Z
Uj = {0},

3. (Scaling) f ∈ Uj if and only if f(M−j · ) ∈ U0,

4. (Orthonormality) {Φ( · − γ) : γ ∈ Γ} is an orthonormal basis of U0.

The relation between an MRA and an orthonormal basis of L2(λd) is summarized by

Theorem 1.2 (Strichartz (1993)). Suppose Φ generates a multiresolution analysis and the ak(γ) satisfy for all 0 ≤
j, k ≤ |M | − 1 and γ ∈ Γ the equations

∑

γ′∈Γ

aj(γ
′) ak(Mγ + γ′) = |M | δ(j, k) δ(γ, 0) and

∑

γ∈Γ

a0(γ) = |M |,

where δ is the Kronecker delta. Furthermore, let the functions Ψk be defined by
∑

γ∈Γ ak(γ)Φ(M · −γ) for k =

1, ..., |M | − 1. Then the set of functions {|M |j/2Ψk(M
j · −γ) : j ∈ Z, k = 1, . . . , |M | − 1, γ ∈ Γ} forms an

orthonormal basis of L2(λd):

L2(λd) = U0 ⊕ (⊕j∈NWj) = ⊕j∈ZWj , where Wj := 〈 |M |j/2Ψk(M
j · −γ) : k = 1, . . . , |M | − 1, γ ∈ Γ 〉.

We also call the scaling function Ψ0 = Φ the father wavelet. Moreover, we assume throughout the rest of this

article that the MRA is given by compactly supported and bounded wavelets Ψk, k = 0, . . . , |M | − 1 if not mentioned

otherwise. Additionally, we assume that the lattice Γ is Z
d. One could also use different lattices which would have a

finer grid than Z
d, however, this would also result in more technical complexities and provide little additional insight.

Note that the last assumption also implies the eigenvalues of the matrix M to be integers.

W.l.o.g. the support of the wavelets Ψk is in [0, L]d for some L ∈ N+, we write suppΨk ⊆ [0, L]d. The mother

wavelets satisfy the balancing condition
∫
Rd Ψk dλd = 0 for k = 1, . . . , |M | − 1.

One can derive a d-dimensional, isotropic MRA from a father wavelet ϕ and a mother wavelet ψ which are defined

on the real line: assume that ϕ and ψ fulfill the scaling equations

ϕ ≡
√
2
∑

γ∈Z

hγ ϕ(2 · −γ) and ψ ≡
√
2
∑

γ∈Z

gγ ϕ(2 · −γ),

for real sequences (hγ : γ ∈ Z) and (gγ : γ ∈ Z). Let ϕ generate an MRA of L2(λ) with the corresponding spaces U ′
j ,

j ∈ Z. The d-dimensional wavelets are derived as follows: set Γ := Z
d and define the diagonal matrix M as 2I , where

I is the identity matrix. Denote the mother wavelets as pure tensors by Ψk := ξk1
⊗ . . . ⊗ ξkd

for k ∈ {0, 1}d \ {0},

where ξ0 := ϕ and ξ1 := ψ. The scaling function is Φ := Ψ0 := ⊗d
i=1ϕ. Then Φ and the linear spaces Uj := ⊗d

i=1U
′
j

form an MRA of L2(λd) and the functions Ψk, k 6= 0, generate an orthonormal basis in that

L2(λd) = U0 ⊕ (⊕j∈NWj) = ⊕j∈ZWj , where Wj =
〈
|M |j/2Ψk

(
M j · −γ

)
: γ ∈ Z

d, k ∈ {0, 1}d \ {0}
〉
.

Moreover, we need the characterization of the multivariate Besov space, see Meyer (1995) or Triebel (1992). For

that reason we generalize the well-known multivariate notion of the Besov space for isotropic wavelets to nonisotropic

wavelets.
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Definition 1.3. Let s > 0, p, q ∈ [1,∞] and let {Ψ0, . . . ,Ψ|M|−1} be a wavelet basis. Set Φj,γ := Ψ0,j,γ :=

|M |j/2 Φ(M j · −γ) for the father wavelets and write Ψk,j,γ := |M |j/2 Ψk(M
j · −γ) for the mother wavelets for

k = 1, . . . , |M | − 1, j ∈ Z and γ ∈ Z
d. The Besov space Bs

p,q(R
d) is defined as

Bs
p,q(R

d) :=
{
f : Rd → R, there is a wavelet representation

f =
∑

γ∈Zd

θ0,γ Φ0,γ +

|M|−1∑

k=1

∑

j≥0

∑

γ∈Zd

υk,j,γ Ψk,j,γ such that ‖f‖Bs
p,q

<∞



 ,

where the Besov norm of f (with the usual modification if p = ∞ or q = ∞) is

‖f‖Bs
p,q

:=

∥∥∥∥∥∥
∑

γ∈Zd

θ0,γ Φ0,γ

∥∥∥∥∥∥
Lp(λd)

+




|M|−1∑

k=1

∑

j≥0

|M |jsq
∥∥∥∥∥∥
∑

γ∈Zd

υk,j,γ Ψk,j,γ

∥∥∥∥∥∥

q

Lp(λd)




1/q

. (1.1)

Furthermore, denote the ℓp-sequence norm by ‖ · ‖ℓp and define the equivalent norms (see Lemma 4.1)

‖f‖s,p,q := ‖θ0,·‖ℓp +




|M|−1∑

k=1

∑

j≥0

|M |j(s+1/2−1/p)q ‖υk,j,·‖qℓp




1/q

. (1.2)

In the following, M is a diagonalizable matrix, M = S−1DS, where D is a diagonal matrix containing the eigen-

values of M . Denote the maximum of the absolute values of the eigenvalues by ζmax := max{|ζi| : i = 1, . . . , d} and

the corresponding minimum by ζmin := min{|ζi| : i = 1, . . . , d}.

Similar to the case in one dimension, we have the following relations between different Besov spaces for multivariate

functions, cf. Donoho et al. (1996).

1. If either s′ > s and q = q′ or if s′ = s and q′ ≤ q, then Bs′

p,q′ ⊆ Bs
p,q. Moreover, if p′ ≤ p and s′ =

s− p−1 + (p′)−1, then Bs′

p′,q ⊆ Bs
p,q .

2. If s′ = s− p−1 > 0, then Bs
p,q ⊆ Bs

p,∞ ⊆ Bs′

∞,∞.

3. Furthermore, if a function is Hölder continuous with exponent 0 < r ≤ 1, we see in the following that this

function belongs to the Besov space Bs
∞,∞, where the regularity parameter s is given by r ln ζmin/(dζmax). In

particular, in the one-dimensional case s equals r, otherwise it is strictly smaller.

Moreover, a wavelet is r-regular if every derivative up to order r ∈ N+ is rapidly decreasing. In the one-dimensional

case, this regularity ensures that the characterization of the Besov norms via the wavelet coefficients as in (1.1) and

(1.2) is equivalent to the characterization via the modulus of smoothness, compare Lemarié and Meyer (1986) and

Donoho et al. (1997). In the one-dimensional case and for r-regular wavelets, the Besov spaces also include the Sobolev

spaces Hs = Bs
2,2. Similar considerations remain true (at least) in the special case of isotropic wavelets. For more

details, we refer the reader to Meyer (1995) and Haroske and Triebel (2005). We do not consider such equivalent char-

acterizations for a general matrix M in the following but leave this issue up to further research.

For the density estimation problem, we define for K ∈ R+, A ∈ B(Rd) and d ∈ N+ subsets of Bs
p,q as follows

Fs,p,q(K,A) :=

{
f : Rd → R≥0, f ∈ Bs

p,q(R
d),

∫

Rd

f dλd = 1, ‖f‖s,p,q ≤ K, supp f ⊆ A

}
.

If the wavelets Ψk have compact support and if s − 1/p > 0, then it is straightforward to show that finiteness of f

w.r.t. the Besov norm implies that the function is essentially bounded by ‖f‖s,p,q times a constant. In particular, if f is

a density such that ‖f‖s,p,q <∞ and s > 1/p, then f is square integrable.

In the statements below, the notation |M |j ≃ g(n) means that the integer j is chosen as a function of n such that

|M |j ≤ g(n) < |M |j+1.
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We denote the p-norm on R
N (resp. R

d) by ‖ · ‖p and the corresponding metric by dp for p ∈ [1,∞] with the

extension dp(I, J) := inf{dp(s, t), s ∈ I, t ∈ J} to subsets I, J of RN (resp. Rd). Write s ≤ t for s, t ∈ R
N if and

only if for each 1 ≤ i ≤ N the single coordinates satisfy si ≤ ti. We denote the indicator function of a set A by 1{A}.

For a ∈ R we write a+ := max(a, 0) for the positive and a− := max(−a, 0) for the negative part. Furthermore, we

write eN := (1, . . . , 1) ∈ Z
N for the vector whose elements are all equal to one. If a, b ∈ R

d are such that a ≤ b, then

we denote the cube {x ∈ R
d : a ≤ x ≤ b} by [a, b].

We call a function h : Rd → R radial if h(x) = h(y) whenever ‖x‖2 = ‖y‖2. A radial function h is non-increasing

if h(x) ≤ h(y) whenever ‖x‖2 ≥ ‖y‖2.

In the next step, we describe the data generating process which is given by a d-dimensional random field Z . This

random field is defined on an N -dimensional lattice structure, i.e., Z = {Z(s) : s ∈ Z
N} (N ≥ 1). The random

variables Z(s) are identically distributed on R
d and their distribution admits a density f .

Denote for a subset I the σ-algebra generated by the Z(s) in I by F(I) = σ(Z(s) : s ∈ I). The α-mixing coefficient

is introduced in Rosenblatt (1956); in the present context it is defined for k ∈ N as

α(k) := sup
I,J⊆Z

N ,
d∞(I,J)≥k

sup
A∈F(I),
B∈F(J)

|P(A ∩B)−P(A)P(B)| .

We say that the random field is strongly spatial mixing if α(k) → 0 for k → ∞. Bradley (2005) gives an introduction to

dependence measures for random variables. In the following, we require

Condition 1.4. Assume that N ∈ N+. Z := {Z(s) : s ∈ Z
N} is an R

d-valued random field. The random variables

Z(s) are identically distributed and admit a bounded density f w.r.t. the Lebesgue measure. Furthermore,

(1) Z is strongly spatial mixing with exponentially decreasing mixing coefficients, i.e., α(k) ≤ c0 exp(−c1 k) for all

k ∈ N+ for certain c0, c1 ∈ R+.

(2) Define the index sets by In := {s ∈ Z
N : eN ≤ s ≤ n} ⊆ N

N
+ for n ∈ N

N . All index sets considered in the

following satisfy min{ni : 1 ≤ i ≤ N} ≥ C′ max{ni : 1 ≤ i ≤ N} for a fixed constant C′ ∈ R+.

(3) Let a ∈ N+ and denote the joint density ofZ(s) andZ(t) by fZ(s),Z(t). There are two bounded and non-increasing

radial functions h, h̃ : Rd → R≥0 such that f ≤ h and |fZ(s),Z(t)(z1, z2) − f(z1)f(z2)| ≤ h̃(z1)h̃(z2) for all

Z(s), Z(t), s, t ∈ Z
N . Moreover,

∥∥∥h1/(2a)
∥∥∥
L1(λd)

<∞ and

∥∥∥h̃1/a
∥∥∥
L2(λd)

<∞.

The assumption of exponentially decreasing α-mixing coefficients is common, cf. Li (2015). One can show that

such a rate is guaranteed for time series under mild conditions, cf. Withers (1981) or Davydov (1973).

The requirement on the constant C′ is technical. If we consider a sequence (n(k) : k ∈ N) ⊆ N
N , where one

coordinate ni(k) tends to infinity, then all other coordinates tend to infinity as well. This will also prove helpful in the

following results, where we express the rates of convergence of the estimators in terms of the cardinality of the index

set In, which is |In| =
∏N

i=1 ni. For instance, if we obtain a rate of convergence in O(|In|−ρ) for a certain ρ > 0, then

this also means in terms of a single coordinate i that the rate is in O(n−Nρ
i ). This reminds more of the case of i.i.d. or

time series data, where we usually have observationsZ1, . . . , Zn. We do not require for our results an asymptotic on the

index sets of the kind In(k) ⊆ In(k+1) for a sequence (n(k)) in N
N , we only require that all ratios ni/nj are at least C′.

The condition on the function and the joint densities of the variables Z(s) and Z(t) is technical. The fact that the

density f is dominated by a radial function h, which satisfies certain integrability conditions, ensures that the tail of the

density is well behaved. This is necessary for density functions with an unbounded support. If the density function is

bounded and has bounded support, this condition is trivially satisfied.

The second requirement on the joint distribution of the random variables Z(s) and Z(t) restricts the mutual depen-

dence, i.e., fZ(s),Z(t)(z1, z2) ≤ f(z1)f(z2)+ h̃(z1)h̃(z2) for another radial function h̃ which satisfies certain integrabil-

ity conditions. If Z is strictly stationary this condition reduces to the joint densities of the pairs (Z(0), Z(s)). Moreover,

5



as the mixing coefficients vanish with increasing distance, we expect the dominating function h̃ to be determined by the

pairs (Z(s), Z(t)) where ‖s− t‖∞ is small.

We can now define the density estimators. The density f has the representation

f =
∑

γ∈Zd

θ0,γ Φ0,γ +

|M|−1∑

k=1

∞∑

j=0

∑

γ∈Zd

υk,j,γ Ψk,j,γ , where θj,γ := 〈f,Φj,γ〉 and υk,j,γ := 〈f,Ψk,j,γ〉 .

Define the j-th approximation of f by Pjf :=
∑

γ∈Zd θj,γ Φj,γ for j ≥ 0. Denote the linear estimator of f given the

sample {Z(s) : s ∈ In} by

P̃jf :=
∑

γ∈Zd

θ̂j,γ Φj,γ , where θ̂j,γ := |In|−1
∑

s∈In

Φj,γ(Z(s)). (1.3)

The hard thresholding estimator is defined for two levels 0 ≤ j0 ≤ j1 and a thresholding sequence (λ̄j : j ∈ N) ⊆ R+

as follows

Q̃j0,j1f :=
∑

γ∈Zd

θ̂j0,γ Φj0,γ +

|M|−1∑

k=1

j1−1∑

j=j0

∑

γ∈Zd

υ̂k,j,γ 1

{
|υ̂k,j,γ | > λ̄j

}
Ψk,j,γ , (1.4)

where υ̂k,j,γ := |In|−1
∑

s∈In
Ψk,j,γ(Z(s)). Hence, Q̃j0,j1f consists of a linear estimator w.r.t. the coarse level j0 and

nonlinear terms of higher frequencies which are added to allow for more details if these are significantly different from

zero. This also allows the approximation error and the estimation error of the estimator to vanish at higher rates than the

linear estimator for certain parameter constellations, we encounter this below when presenting the results.

As P̃jf and Q̃j0,j1f are not necessarily a probability density, one can additionally consider the normalized estimator.

We refer to Appendix B for this question.

2 Linear and hard thresholded wavelet density estimation

In this section we study wavelet density estimators for d-dimensional data. Kelly et al. (1994) show that for isotropic

wavelets and f ∈ Lp′

(λd) (1 ≤ p′ < ∞) the approximation bias vanishes, ‖f − Pjf‖Lp′(λd) → 0 as j → ∞. In the

case p′ = ∞ it is not guaranteed that the approximation error vanishes for general elements from Lp′

: for instance,

consider the one-dimensional Haar mother wavelet ψ := 1{[0, 1/2)} − 1{[1/2, 1)} and construct with it the density

f := 1{[0, 1)}+
∑∞

j=0 ψ
(
2j+1x− (2j+1 − 2)

)
on the unit interval [0, 1]. f jumps between 0 and 1 and these jumps

become quite erratic as x tends to 1. In particular, the projection Pjf onto Uj cannot capture all jumps. Hence, we have

lim infj→∞ ‖f − Pjf‖∞ ≥ 1
2 > 0 and the approximation property fails in this case. However, if f is a Besov density

in Bs
p,q(R

d), we can derive for general admissible matrices M a rate of convergence.

We begin with the linear estimator, the technique of the proof is based on the ideas of Kerkyacharian and Picard

(1992) who consider the case for one-dimensional i.i.d. data.

Theorem 2.1 (Rate of convergence of the linear estimator). Let p′ ∈ [1,∞), p, q ∈ [1,∞] and s > 1/p. Define

s′ := s+ (1/p′ − 1/p) ∧ 0. Let A ∈ B(Rd) and if p′ < p, assume moreover that A is bounded.

Let f ∈ Fs,p,q(K,A) for some K ∈ R+. If p′ ∈ [1, 2], assume moreover that Condition 1.4 (3) is satisfied with

a = 1. If p′ ∈ (2,∞), assume furthermore that Condition 1.4 (3) is satisfied with a = 2. Let the level j grow at a rate

of |M |j ≃ |In|1/(2s
′+1). Then E

[ ∫
Rd |f − P̃jf |p

′

]1/p′

≤ C1 |In|−s′/(2s′+1) for suitable constant C1 ∈ R+.

Moreover, if the domain A is bounded and K > 0 is a fixed constant, then

sup
f∈Fs,p,q(K,A)

E

[ ∫

Rd

|f − P̃jf |p
′

]1/p′

≤ C2 |In|−s′/(2s′+1) (2.1)

6



for all dependence structures of the random fieldZ , which satisfy |fZ(s),Z(t)(z1, z2)−f(z1)f(z2)| ≤ h0 for all s, t ∈ Z
N

for some fixed h0 ∈ R+.

The constants C1, C2 depend on the wavelets Ψk (k = 0, . . . , |M |), the matrix M , the bound on the mixing rates,

the domain A, the index p′. C1 depends additionally on the functions h and h̃. C2 depends additionally on K .

Kerkyacharian and Picard (1992) obtain with similar requirements for a real-valued sample i.i.d. sample Z1, . . . , Zn

a rate of convergence which is in O(n−s′/(2s′+1)).

Bouzebda et al. (2015) study the linear wavelet estimator for multivariate time series Z1, . . . , Zn in the supremum

norm and in the case where M = 2I . They obtain a bound of O(2jd/2(lnn)1/2/n1/2 + 2−jdρ) for a level j which

depends on n. The first term is the estimation error, the second term is the approximation error (bias); this error depends

on a certain smoothness parameter ρ. Thus, their rates are quite similar to our result in particular if we compare it to the

intermediate result from Theorem 4.2 in Section 4 which considers the estimation error of the linear estimator.

Hence, when compared to the one-dimensional i.i.d. situation, we see that the estimate with a strongly mixing d-

dimensional sample achieves the analogue rate which is |In|−s′/(2s′+1).

The data dimension d is relevant for the rate of convergence, however, this is not shown in the previous theorem. We

highlight this fact in the next two results which show that the dimension d has a negative impact on the Besov parameter

s which controls the decay of the coefficients υk,j,γ as j tends to infinity. We demonstrate that the classical inclusions

shift slightly when moving from the one-dimensional to the d-dimensional Besov space: consider an (A, r)-Hölder

continuous function w.r.t. the 2-norm, i.e., |f(x) − f(y)| ≤ A ‖x− y‖r2 for all x, y ∈ R
d for some 0 < A < ∞. In the

one-dimensional case we have that f belongs to the space Br
∞,∞, i.e., that ‖f‖r,∞,∞ is finite, see, e.g., Donoho et al.

(1996).

However, in the multivariate case, we find that such a function can be embedded only in a Besov space Bs
∞,∞ for an

s < r which yields a slower rate of convergence. Consider a wavelet coefficient of f :

|υk,j,γ | ≤
∣∣∣∣
∫

Rd

(f(x)− f(x0))Ψk,j,γ(x) dx

∣∣∣∣+ |f(x0)|
∣∣∣∣
∫

Rd

Ψk,j,γ(x) dx

∣∣∣∣

≤ sup {|f(x)− f(x0)| : x ∈ suppΨk,j,γ} |M |−j/2 ‖Ψk‖1
≤ A

(
L
√
d
∥∥M−j

∥∥
2

)r
|M |−j/2 ‖Ψk‖1 ≤ C (ζmin)

−jr |M |−j/2,

where suppΨk ⊆ [0, L]d and the point x0 ∈ suppΨk,j,γ is in the support of Ψk,j,γ and C ∈ R+ is a suitable constant.

Hence, we have for the ‖ · ‖s,∞,∞-norm of f if p = q = ∞:

sup
k,j,γ

|M |j(s+1/2) |υk,j,γ | ≤ C sup
j

(ζmax)
jsd (ζmin)

−jr <∞ if s ≤ r

d

ln ζmin

ln ζmax
.

Hence, if f is an (A, r)-Hölder density and s = r ln ζmin/(d ln ζmax) ≤ r, then ‖f‖s,∞,∞ < ∞. We see that the

difference in the eigenvalues ζmin and ζmax has little impact as it only enters with the logarithm. However, far more

relevant is the data dimension d which scales the regularity parameter with its inverse d−1.

One finds in simple examples that the bound of the first inequality is sharp: indeed, consider the Lipschitz function

which is non-constant in only one coordinate, f(x) := x1 and use an MRA given by isotropic Haar wavelets. In this

case, one computes

sup
k,j,γ

|M |j(s+1/2)|υk,j,γ | = sup
j

2j(ds−1)/4 <∞ if and only if s ≤ 1/d.

Using this insight, we can formulate two statements which also reveal that with increasing data dimension d the rate

of convergence deteriorates.

Corollary 2.2 (Hölderian densities). Let f be a compactly supported d-dimensional (A, r)-Hölderian density. The

linear estimator attains the rate given in Equation (2.1) for the parameter choice s′ = s = r ln ζmin/(d ln ζmax).

The next result also applies to density functions with unbounded support
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Theorem 2.3 (Differentiable densities). Let p′ ∈ [1,∞). If p′ ≤ 2 (resp. p′ > 2), assume moreover that Condi-

tion 1.4 (3) is satisfied with a = 1 (resp. a = 2). Additionally, the gradient of f is bounded by a non-increasing radial

function h̄ ∈ Lp′

(λd), i.e., ‖Df‖2 ≤ h̄. Choose j := j0 +
⌊
(2 ln ζmin + d ln ζmax)

−1 ln |In|
⌋
, for a j0 ∈ N. Then the

linear estimator attains the rate O
(
|In|− ln ζmin/(2 ln ζmin+d ln ζmax)

)
.

Next, we study the nonlinear hard thresholding estimator of Donoho et al. (1996) who consider this estimator for

one-dimensional i.i.d. data. It is well-known that hard thresholding preserves the visual appearance of jumps and peaks

of the density. A short and heuristic motivation for this estimator is as follows: the proof of Theorem 2.1 (in particular,

Theorem 4.2 and Equation (4.3)) reveals that the bias (approximation error) of the linear estimator is of orderO(|M |−js′)

while the stochastic term (estimation error) is of order |M |j/2|In|1/2. This cannot be optimal for a density f ∈ Bs
p,q if

p′ > p because in this case the bias is of the wrong order as s′ < s, see Donoho et al. (1996) for a deeper discussion

and more details. However, if the density f belongs to a Besov space Bs
p,q , then this restriction entails that many

coefficients υk,j,γ are forced to decay at a high rate: in particular, the decay in the ℓp-sequence norms ‖υk,j,·‖ℓp has

to overcompensate the exponential growth of |M |j(s+1/2−1/p). Consequently, it makes sense to add finer levels of the

density (more details) such that the bias is again of the right order and to set insignificant estimates of these details,

υ̂k,j,γ , to zero.

Theorem 2.4 (Rate of convergence of the hard thresholding estimator). Let p′ ∈ [1,∞), p, q ∈ [1,∞] and s > 1/p. Let

A ∈ B(Rd) and if p′ < p, assume moreover that A is bounded. Let Condition 1.4 (3) be satisfied with a = 4.

Let f ∈ Fs,p,q(K,A) for some K ∈ R+. Set λ̄j := K0

√
j/|In| for a constant K0 specified in (4.11). Define

ε = sp− (p′ − p)/2 and s′ = s+ (1/p′ − 1/p) ∧ 0. Moreover, define the levels j0 and j1 as

|M |j0 ≃ |In|1−2α and |M |j1 ≃ |In|α/s
′

, where α :=

{
s

2s+1 if ε ≥ 0
s′

2s+1−2/p if ε < 0.

Then E

[ ∫
Rd |f − Q̃j0,j1f |p

′

dλd
]1/p′

≤ C1|In|−α (ln |In|)(3p
′−p)/2p′·1{p′>p} .

Moreover, if the domain A is bounded and K > 0 is a fixed constant, then

sup
f∈Fs,p,q(K,A)

E

[ ∫

Rd

|f − Q̃j0,j1f |p
′

]1/p′

≤ C2 |In|−α (ln |In|)(3p
′−p)/2p′· 1{p′>p} .

for all dependence structures of the random fieldZ , which satisfy |fZ(s),Z(t)(z1, z2)−f(z1)f(z2)| ≤ h0 for all s, t ∈ Z
N

for some fixed h0 ∈ R+.

The constants C1, C2 depend on the wavelets Ψk (k = 0, . . . , |M |), the matrix M , the bound on the mixing rates,

the domain A, the index p′. C1 depends additionally on the functions h and h̃. C2 depends additionally on K .

Note that the exponent α is smooth in the parameters s, p, p′, i.e., for the case ε = 0, we could also use the definition

of the case where ε < 0. This also means that the rate of convergence is smooth in the parameter p′.

We see that the rates have the identical structure than the rates of Donoho et al. (1996) who consider the classical case

for a one-dimensional density and i.i.d. data. If p′ ≤ p, then ε > 0 and we obtain that j1 and j0 grow at the same rate. So

the linear estimator is the preferred choice. If p′ > p, however, one computes that in each case the exponent α is strictly

greater than s′/(2s′ + 1), the latter is the exponent which determines the rate of the linear estimator. Consequently, the

nonlinear estimator performs better in this case.

Li (2015) studies the hard thresholding estimator in the special case p′ = 2 for random fields similar as we do,

however, the data are one-dimensional. He obtains for a one-dimensional density f ∈ Fs,p,q(K, [−A,A]) a rate in L2

of O((ln |In|/|In|)s/(2s+1)). So our results are a generalization as we do not only consider general p′ but also allow for

multivariate data and nonisotropic wavelets. Moreover, if p′ ≥ p, the density function can have an unbounded support .

An alternative to hard thresholding is soft thresholding of the coefficients. Here the absolute value of the estimated

coefficients νk,j,γ undergoes the nonlinear shrinkage process x 7→ sgnx · (x− δ)+ for a certain δ > 0.

This procedure can be interpreted as suppressing the noise in the estimated coefficients. Hence, one could also

investigate the soft thresholding density estimator in the present setting. Fundamental properties of the soft thresholding
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method have been investigated by Donoho et al. (1997). Delouille et al. (2001) study the soft and hard thresholding

estimator for design-adapted wavelets in nonparametric regression for one-dimensional i.i.d. data. They obtain a rate

of convergence in L2 which is in O((lnn/n)r/(2r+1)) if the regression function is Hölder continuous with exponent

1/2 < r < 1. This corresponds to our findings for Hölder continuous densities.

3 Numerical results

We give an example for the estimation of a two-dimensional density with strongly spatial mixing sample data on a

regular two-dimensional lattice. Hence, concerning the parameter choice from the previous sections, we have a lattice

dimension N equal to 2 and two-dimensional data, i.e., d = 2. The section is divided in three parts. Firstly, we describe

our decision rule how to choose the tuning parameters λ, j0 and j1. Secondly, we sketch the process which generates

the sample data on the lattice. And finally, we present some numerical results for the estimation of a selected density

function.

We follow a simple validation approach in order to choose the tuning parameters. We do not use leave-one out cross-

validation because we face a dependent sample and cross-validation could corrupt the inner stochastic structure. In what

follows In is a finite and rectangular subset of N2
+. We can construct a graph G from this set if we use the four-nearest-

neighborhood structure on Z
2 to construct the edge set. This neighborhood structure will define the dependence between

the random variables {Z(s) : s ∈ In} which all have the same marginal density f . The index set In is partitioned

into two sets In,1 and In,2. Here we assume that each index set is a connected set w.r.t. the four-nearest neighborhood

structure.

The density is estimated from the sample data which belongs to the index set In,1, we denote the estimate by f̂n. As

in the present example In = I(n1,n2) = {s : 1 ≤ si ≤ ni, i = 1, 2}, we choose In,1 as {s : 1 ≤ si ≤ ⌊0.9ni⌋, i = 1, 2}.

So In,1 is also a rectangular set and the estimator is computed with approximately 80 % of the data.

In general, the integrated squared error can be decomposed as

ISE(f, f̂n) =

∫

Rd

(f̂n − f)2 dλd =

{∫

Rd

f̂2
n dλ

d − 2

∫

Rd

f̂n f dλd
}
+

∫

Rd

f2 dλd

= Ver(f̂n, f) + ‖f‖2L2(λd) . (3.1)

Since in practice the true density function is unknown, it is sufficient for a comparison of density estimates to compute

the full validation criterion with the subsample In,2, which is L-shaped in the present example. We define

V̂er(f̂n, f, In,2) :=

∫

Rd

f̂2
n dλd − 2

1

|In,2|
∑

s∈In,2

f̂n(Z(s)), (3.2)

which is the empirical analogue of Ver(f̂n, f) as on average we expect only a small dependence between f̂n and the

random variables Z(s) for s ∈ In,2.

For hard thresholding, we use an approach similar to an algorithm which has been proposed by Hall and Penev

(2001) for the choice of the primary level j0 in the context of cross-validation. The idea is to define a suitable partition

R1 ∪ ... ∪ RS of the domain of definition of f̂n (resp. of f ), where each Rk collects regions of relatively homogenous

roughness. These regions can be determined with a pilot estimator. We compute the validation criterion for each Rk for

the levels j = j0, . . . , j1 (j0 ≤ j1) with the purely linear wavelet estimator P̃jf from Equation (1.3) restricted to Rk.

Abbreviate the level which minimizes (3.2) for region Rk by jk. Then choose j∗ := min{jk : k = 1, . . . , S} as the

primary level.

Moreover, we follow an approach used in Härdle et al. (1998) for the hard thresholding estimator from (1.4) and set

each threshold as a multiple of max{|υ̂k,j,γ | : k = 1, . . . , |M | − 1, γ ∈ Z
d} for j = j∗, . . . , j1. This multiple is the

same for all j = j∗, . . . , j1. In the following, we refer to these multiples as the threshold, e.g., a threshold 0.1 means

that λ̄j is equal to 0.1 times max{|υ̂k,j,γ | : k = 1, . . . , |M | − 1, γ ∈ Z
d}.

Next, we sketch the data generating process. We use the algorithm of Kaiser et al. (2012) to simulate five random

vectors Z1, . . . , Z5. The marginals of each vector are standard normally distributed. The underlying graph is the same
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for each random vector and is the regular two-dimensional lattice with the four-nearest-neighborhood structure and edge

lengths n1 = n2. We perform the simulation for four different values of n1, namely 20, 35, 50 and 65. So that |In| is

400, 1225, 2500 and 4225.

The dependence within a random vector Zi is generated as follows. Write Z for this vector for simplicity. If

Z = {Z(s) : s ∈ In} is multivariate normal with expectation α ∈ R
|In| and covariance Σ ∈ R

|In|×|In|, then Z has the

density

fZ(z) = (2π)−d/2det(Σ)−1/2 exp

(
−1

2
(z − α)TΣ−1(z − α)

)
.

Using the notation P for the precision matrix Σ−1 and −s := In \ {s}, we have

Z(s) |Z(−s) ∼ N


α(s)− (P (s, s))−1

∑

t6=s

P (s, t)
(
z(t)− α(t)

)
, (P (s, s))−1


 .

Write Ne(s) for the neighbors of s in In w.r.t. the four-nearest-neighborhood structure. Since P = Σ−1 is symmetric

and since we can assume that (P (s, s))
−1

> 0, Z is a Markov random field if and only if for all nodes s ∈ In

P (s, t) 6= 0 for all t ∈ Ne(s) and P (s, t) = 0 for all t ∈ In \Ne(s).

Cressie (1993) investigates the conditional specification

Z(s) |Z(−s) ∼ N


α(s) +

∑

t∈Ne(s)

c(s, t)
(
Z(t)− α(t)

)
, ς2(s)


 (3.3)

where C =
(
c(s, t)

)
s,t

is a |In| × |In| matrix and D = diag(ς2(s) : s ∈ In) is a diagonal matrix such that the

coefficients satisfy the necessary condition ς2(s) c(t, s) = ς2(t) c(s, t) for s 6= t and c(s, s) = 0 as well as c(s, t) =

0 = c(t, s) if s, t are no neighbors. This means P (s, t) = −c(s, t)P (s, s), i.e., Σ−1 = P = D−1(I − C). If I − C is

invertible and (I − C)−1D is symmetric and positive definite, then the entire random field is multivariate normal with

Z ∼ N
(
α, (I − C)−1D

)
.

In particular, it is plausible in many applications to use equal weights c(s, t): we can write the matrixC as ηH , where

H is the adjacency matrix of G, i.e., H(s, t) is 1 if s, t are neighbors, otherwise it is 0. Denote the minimal eigenvalue

of H by h0 and the corresponding maximal eigenvalue by hm. We know from the properties of the Neumann series that

I − C is invertible if (h0)
−1 < η < (hm)−1 in the case where h0 < 0 < hm; this last condition is often satisfied in

applications. We choose the conditional variance ς2(s) such that the diagonal matrix D consists of the inverse elements

of the diagonal of the matrix (I − C)−1. Hence, the marginals of the Z(s) are standard normally distributed.

The graph structure of the index set In allows us two partition In into two setsC1 andC2, which are disjoint w.r.t. the

edges from the four-nearest neighborhood structure such that within each setCi any two points s, t are no neighbors. The

sets Ci are termed concliques, see Kaiser et al. (2012). An important property is now the following: if Z(s), s ∈ In is a

Markov random field, then the conditional distribution of the Z(s) with s ∈ C1 given the Z(s) with s ∈ C2 factorizes

as a product due to the conditional independence. The same is true if we change the roles of C1 and C2.

This insight yields the following MCMC algorithm: All Z(s), s ∈ In are initialized according to a certain distribu-

tion. Then with the help of Equation (3.3) conditional on the conclique C2 the random variables Z(s) with s ∈ C1 are

updated. Afterwards, the random variables which belong to C2 are updated with (3.3) based on the (new) realizations of

C1. The last two steps are repeated many times until the random field approximately reaches its stationary distribution.

Hence, if we compare this method to the Gibbs sampler, we see that a complete update of the random field can be

performed in two steps. More details on this procedure, in particular its asymptotic properties, can be found for instance

in Krebs (2018).

As we do not simulate one random vector but instead five, we use a Gaussian copula in the update steps such that

also four of the random vectors are dependent, namely Z1, Z2, Z3 and Z4. Z5 is independent of the first four. So we

have a dependence within each componentZi and the first four components are also dependent among each other.
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We run 1000 iterations of the MCMC-algorithm for the simulation of (Z1, . . . , Z5). The parametrization of the

multivariate normal distribution is chosen as follows αi(s) ≡ 0 and σi = 1 for all s ∈ In and i = 1, . . . , 5. The

dependence parameters ηi that determine the interaction within a distribution Zi are chosen as follows 0.2, -0.1, -0.22,

0.2 and 0.22, note that |ηi| = 0.22 constitutes a strong dependence, whereas ηi = 0 indicates independence. In this case

the admissible range of η is very close to (−0.25, 0.25) which is the parameter space of η for a lattice wrapped on a

torus. The approximate correlations of the first four Zi are given by ρ1,2 ≈ 0.1, ρ1,3 ≈ 0, ρ1,4 ≈ 0, ρ2,3 ≈ 0, ρ2,4 ≈
0 and ρ3,4 ≈ 0.1.

With these distributions we define a random variable Y with a non-continuous density as follows: firstly, we retrans-

form Z5 to a discrete random variable S which takes the states 0 and 1 with probability 1/2. Secondly, transformZ1 and

Z2 to a random variable U1 and U2 which are both uniformly distributed on [0, 1]. And thirdly, we define X1 and X2 as

rescaled and shifted Z3 and Z4 such that they are normally distributed with parameters µ = 0.5 and σ2 = 0.2. Set now

Y = 1{S = 0} [U1, U2] + 1{S = 1} [X1, X2], then Y admits the density

f(Y1,Y2) =
1

2
1[0,1]2 +

1

2
N

((
0.5

0.5

)
, 0.22

(
1 ρ

ρ 1

))
,

where ρ ≈ 0.1. A density plot is given in Figure 1(a). We estimate the density f(Y1,Y2) with the linear and the nonlinear

wavelet estimators based on isotropic Haar wavelets and Daubechies 4-wavelets and the sample Z(s) s ∈ In,1. We

abbreviate the Daubechies wavelet by D4 (resp. db2), see Daubechies (1992).

Then we compute for several levels the verification criterion from Equation (3.2) with the random variables Z(s)

s ∈ In,2. We perform this whole procedure 1000 times in total for each sample size. This means that we compute for

each of the 1000 simulations the verification criterion for each estimator at each level j. Afterwards we can compute

the average and the empirical standard deviation of this statistic for each scenario. The numerical results are given in

Table 1. Here the verification criterion is computed for different levels j reaching from 0 to 4. This means for the linear

estimator that the coefficients θj,γ are computed for each of these levels. For the nonlinear estimator the coefficients θj,γ
are computed only for the level j = 0. Then the nonlinear details υk,j,γ are added successively for j = 1, . . . , 4. We

also show in the table which estimator, which levels j and which threshold are the most suitable for each sample size.

For a better comparison, we also give in Table 2 the results, which are derived with an independent reference sample

Z̃ = (Z̃1, . . . , Z̃5). This means that the random variables within a component Z̃i are i.i.d., i.e., Z̃i(s) are i.i.d. for s ∈ In
and for fix i = 1, . . . , 5. The correlations between the vectors Z̃i correspond to those of the Zi. Note that we use for

hard thresholding several multiples of max{|υ̂k,ℓ,γ | : k = 1, . . . , |M | − 1, γ ∈ Z
2}, however, the multiple is the same

for all levels j∗, . . . , j1 and only varies for the entire estimator. Examples of density estimates are given in Figures 1(b)

and 1(c). The estimators have been corrected for possible negative regions, we refer to Appendix B.

Firstly, we see that the estimator from the dependent sample performs as well as the estimator from the independent

sample, as suggested by the theoretical results. This is true for each sample size and for each wavelet type. Moreover,

we find that the optimal multiple of the threshold λ̄ is the same for all sample sizes. In particular it is different from zero

in each case.

We note that the values of the verification criterion can be compared across the different wavelets, this follows from

Equations (3.1) and (3.2). Hence in terms of the validation criterion, we find that the Daubecchies wavelet performs

better than the Haar wavelet for each sample size in this example. However, they have in common that the optimal level

j is the same for each sample size: the level j = 2 minimizes the criterion for the sample sizes 400 and 1225. It is level

j = 3 for the larger sample sizes 2500 and 4225.

4 Proofs of the theorems in Section 2

Throughout this section, we use the common convention to abbreviate constants in R by Ai or A or likewise by Ci or

C. Furthermore, we use the convention to write ‖ · ‖p for the norm of Lp(λd), p ∈ [1,∞]. The idea of the first lemma

dates back at least to Meyer (1995). It applies in particular to wavelets Ψk which have compact support.

Lemma 4.1 (Norm equivalence on Besov spaces). The norms in (1.1) and in (1.2) are equivalent provided that the

wavelets Ψk are integrable and supx∈Rd

∑
γ∈Zd |Ψk(x− γ)| <∞ for each k = 0, . . . , |M | − 1.
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(a) True density function
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(b) Haar estimate (for j = 3, λ = 0.1)
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(c) D4 estimate (for j = 3, λ = 0.1)

Figure 1: Estimation of a mixture density with a sample from the two-dimensional lattice of size 4225.

Proof. We show that there are 0 < C1, C2 < ∞ depending on s, p, q such that C1 ‖f‖s,p,q ≤ ‖f‖Bs
p,q

≤ C2 ‖f‖s,p,q .

First we consider the left inequality: define for j ≥ j0 the functions g
(k)
j :=

∑
γ∈Zd υk,j,γ Ψk,j,γ for k = 1, . . . , |M |− 1

and g
(0)
j :=

∑
γ∈Zd θj0,γ Φj0,γ . Denote the Hölder conjugate of p by u, then by the property of an orthonormal basis

and Hölder’s inequality applied to the measure |Ψk,j,γ | dλd

|υk,j,γ | ≤
(∫

Rd

|g(k)j |p |Ψk,j,γ | dλd
)1/p(∫

Rd

|Ψk,j,γ | dλd
)1/u

,

thus, ‖υk,j,·‖ℓp ≤ |M |j(1/p−1/2) ‖Ψk‖1/u1

∥∥∥g(k)j

∥∥∥
p

∥∥∥∥∥∥
∑

γ∈Zd

|Ψk(· − γ)|

∥∥∥∥∥∥

1/p

∞

with the usual modification if p = 1 or p = ∞; the same reasoning is true for the vector θj0,·. Then,

‖f‖Bs
p,q

≥ C1 ‖f‖s,p,q , where C1 := min
0≤k≤|M|−1




‖Ψk‖−1/u

1

∥∥∥∥∥∥
∑

γ∈Zd

|Ψk(· − γ)|

∥∥∥∥∥∥

−1/p

∞




<∞.

For the right inequality, consider the following pointwise inequality

|g(k)j | ≤
∑

γ∈Zd

|υk,j,γ | |Ψk,j,γ |1/p |Ψk,j,γ |1/u ≤


∑

γ∈Zd

|υk,j,γ |p |Ψk,j,γ |




1/p
∑

γ∈Zd

|Ψk,ℓ,γ |




1/u

for k = 1, . . . , |M | − 1; it is also true if k = 0. Thus,

∥∥∥g(k)j

∥∥∥
p
≤

∥∥∥∥∥∥
∑

γ∈Zd

|Ψk( · − γ)|

∥∥∥∥∥∥

1/u

∞

‖Ψk‖1/p1 |M |j(1/2−1/p) ‖υk,j,·‖ℓp .

Hence, ‖f‖Bs
p,q

≤ C2 ‖f‖s,p,q with C2 := max0≤k≤|M|−1

∥∥∥
∑

γ∈Zd |Ψk( · − γ)|
∥∥∥
1/u

∞
‖Ψk‖1/p1 <∞.

We are now prepared to give bounds on the estimation error of the linear estimator.
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Theorem 4.2. Let p′ ∈ [1,∞) and assume the density f to be in Lp′

(λd) ∩ L∞(λd).

1. If p′ ∈ [1, 2] and if Condition 1.4 (3) is satisfied with a = 1, then

E

[∫

Rd

∣∣∣P̃jf − Pjf
∣∣∣
p′

dλd
]1/p′

≤ Cp′ (2L+ 1)d ‖Φ‖L∞(λd) ‖Φ‖L2(λd)

·
{∥∥∥h1/2

∥∥∥
1/2

L1(λd)
+
∥∥∥h̃
∥∥∥
L2(λd)

} |M |j/2
|In|1/2

2. If p′ ∈ (2,∞) and Condition 1.4 (3) is satisfied with a = 2, then

E

[ ∫

Rd

|P̃jf − Pjf |p
′

dλd
]1/p′

≤ Cp′ (2L+ 1)d ‖Φ‖1/p
′

L∞(λd)
‖Φ‖Lp′(λd)

{∥∥∥h1/4
∥∥∥
1/p′

L1(λd)
+
∥∥∥h̃
∥∥∥
1/p′

L1(λd)

}

·
{
|M |j(1−1/(2p′))q

N(1−1/p′)
n

|In|1−1/(2p′)
+

|M |j/2
|In|1/2

}
,

where qn = B ln |In| for B > 0 arbitrary but fixed.

The constant Cp′ depends on p′, the bound of the mixing coefficients which is given by the numbers c0, c1 ∈ R+. If

p′ > 2, Cp′ depends additionally on B.

Proof of Theorem 4.2. We write f̃j (resp. fj) instead of P̃jf (resp. Pjf ) to keep the notation simple. W.l.o.g. the support

of Φ is contained in [0, L]d, L ∈ N+. Hence, a fixed x ∈ R
d is at most contained in the support of (2L+1)d translations

of Φ. Consequently, if we apply the Hölder inequality to the counting measure over the index γ, the estimation error is

at most

E

[ ∫

Rd

|fj − f̃j |p
′

dλd
]
≤ (2L+ 1)d(p

′−1) ‖Φ‖p
′

p′ |M |j(p′/2−1)
∑

γ∈Zd

E

[
|θ̂j,γ − θj,γ |p

′

]
. (4.1)

We investigate the sum in (4.1). Firstly, let p′ ∈ [1, 2], then we obtain with Proposition A.1 that


∑

γ∈Zd

E

[
|θ̂j,γ − θj,γ |2

]



1/2

≤ C2L
d/22d/2 ‖Φ‖∞

{∥∥∥h1/2
∥∥∥
1/2

1
+
∥∥∥h̃
∥∥∥
2

} |M |j/2
|In|1/2

.

This yields the claim for p′ ≤ 2, if we use that (2L + 1)d/2Ld/22d/2 ≤ (2L + 1)d and the Hölder inequality to bound

E

[ ∫
Rd |fj − f̃j |p

′

dλd
]1/p′

by E

[ ∫
Rd |fj − f̃j|2 dλd

]1/2
.

Secondly, if p′ > 2, we use the decomposition

∑

γ∈ZN

E

[
|θ̂j,γ − θj,γ |p

′

]
≤
∑

γ∈ZN

E

[
|θ̂j,γ − θj,γ |2

]1/2
E

[
|θ̂j,γ − θj,γ |2(p

′−1)
]1/2

. (4.2)

We bound the last factor inside the sum with Lemma A.3, note that 2(p′ − 1) > 2:

E

[
|θ̂j,γ − θj,γ |2(p

′−1)
]1/2

= C2(p′−1)

{
|In|−(p′−1) +

( |M |j/2qNn
|In|

)2(p′−1)

+
|M |j(p′−1)

|In|c1B

}1/2

,

where the constant C2(p′−1) depends on B. If we choose B > 0 sufficiently large, then the last term inside the paren-

theses is negligible. Moreover, it follows with Proposition A.1 that

∑

γ∈ZN

E

[
|θ̂j,γ − θj,γ |2

]1/2
≤ C2L

d/22d ‖Φ‖∞
{∥∥∥h1/2

∥∥∥
1
+
∥∥∥h1/4

∥∥∥
1
+
∥∥∥h̃
∥∥∥
1

}
|M |j |In|−1/2.
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We combine (4.1) and (4.2) to obtain the result. Note that we have (2L+ 1)d(p
′−1)/p′

Ld/22d/p
′ ≤ (2L+ 1)d

It follows the proof of Theorem 2.1 which quantifies the rate of convergence of the linear estimator

Proof of Theorem 2.1. Denote the Hölder conjugate of p′ by u, i.e., (p′)−1 + u−1 = 1. We show that the approximation

error ‖f − Pjf‖p′
can be bounded by

‖f − Pjf‖p′
≤ CA max

1≤k≤|M|−1
‖Ψk‖1 max

1≤k≤|M|−1

∥∥∥∥∥∥
∑

γ∈Zd

|Ψk(· − γ)|

∥∥∥∥∥∥

1/u

∞

· ‖f‖s,p,∞ |M |1−js′/(1− |M |−s′),

(4.3)

where the constant CA only differs from 1 if p > p′, in this case it depends on the domainA.

We have to distinguish the cases p ≤ p′ and p > p′ but can treat this in one formula. We proceed as in the proof of

Lemma 4.1:

∥∥∥∥∥∥
∑

γ∈Zd

υk,j,γ Ψk,j,γ

∥∥∥∥∥∥
p′

≤ max
1≤k≤|M|−1

∥∥∥∥∥∥
∑

γ∈Zd

|Ψk(· − γ)|

∥∥∥∥∥∥

1/u

∞

‖Ψk‖1/p
′

1 |M |j(1/2−1/p′) ‖υk,j,·‖ℓp′ ,

with the notation that u is the Hölder conjugate to p′. In the case p > p′, the number of nonzero coefficients on the j-th

level (for the k-th mother wavelet) is bounded byCA|M |j , whereCA depends on the domain of f . This follows from the

dilatation rules of volumes under linear transformations and from the fact that the domain A is bounded. Consequently,

we have in both cases p ≥ p′ and p < p′ the inequalities for the ℓp-sequence norms,

‖υk,j,·‖ℓp′ ≤ CA |M |j(1/p′−1/p)+ ‖υk,j,·‖ℓp

where CA = 1 if p′ ≥ p. Then with Hölder’s inequality and the Besov property of f ,

‖f − Pjf‖p′ ≤ CA max
1≤k≤|M|−1

‖Ψk‖1/p
′

1 max
1≤k≤|M|−1

∥∥∥∥∥∥
∑

γ∈Zd

|Ψk(· − γ)|

∥∥∥∥∥∥

1/u

∞

· ‖f‖s,p,∞ |M |1−js′/(1− |M |−s′) ≤ C|M |−js′

(4.4)

with the definition s′ = s+ (1/p′ − 1/p) ∧ 0. Note that s′ > 0 as s > 1/p. The constant C depends on the matrix M ,

the wavelets, f and if p < p′ additionally on the domain A. The estimation error is given in Theorem 4.2. The growth

rate of j equalizes the rates of the terms |M |−js′ and |M |j/2|In|1/2; both behave as |In|−s′/(2s′+1). This implies in

particular that the term |M |j(1−1/(2p′))q
N(1−1/p′)
n

/
|In|1−1/(2p′), which appears in the case p′ > 2, is negligible. This

proves the first statement of this theorem.

The amendment concerning the rate of convergence of the supremum supf∈Fs,p,q(K,A) E

[ ∫
Rd |f − P̃jf |p

′

]1/p′

can be easily verified now. Since the support of f is contained in a bounded set, the integrability requirement for the

dominating function h is satisfied because the requirement ‖f‖s,p,q ≤ K implies a uniform bound on the maximum norm

of f . We only need that the mutual dependence between the variables Z(s) and Z(t) is as required in Condition 1.4 (3).

This however follows by the assumptions of the amendment.

Proof of Theorem 2.3. We prove that the approximation error is in O
(
(ζmin)

−j
)
; the claim follows then with an appli-

cation of Theorem 4.2. Since the father and mother wavelets Ψk are compactly supported on [0, L]d, there are at most

(2L+ 1)d wavelets not equal to zero for fix x ∈ R
d. Hence, for all j ∈ Z and k ∈ {1, . . . , |M | − 1}

∫

Rd

∣∣∣∣
∑

γ∈Zd

υk,j,γ Ψk,j,γ

∣∣∣∣
p′

dλd ≤ (2L+ 1)dp
′ ‖Ψk‖p

′

p′ |M |j(p′/2−1)
∑

γ∈Zd

|υk,j,γ |p
′

= O

(
(ζmin)

−jp′

)
.
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Here we use the following bound on the wavelet coefficients υk,ℓ,γ

|υk,j,γ |p
′ ≤ |M |−jp/2 ‖Ψk‖p

′

1 sup {|f(x)− f(y)| : x, y ∈ suppΨk,j,γ}p
′

≤ |M |−jp′/2 ‖Ψk‖p
′

1

[
sup

{
h̄
(
M−j(u+ γ)

)
: u ∈ [0, L]d

} ∥∥M−j
∥∥
2

√
dL
]p′

.

Thus, the approximation error is bounded by ‖f − Pjf‖p′ ≤
∑|M|−1

k=1

∑∞
ℓ=j

∥∥∥
∑

γ∈Zd υk,ℓ,γ Ψk,ℓ,γ

∥∥∥
p′

= O
(
(ζmin)

−j
)
.

We prove now the statement concerning the rate of convergence of the hard thresholding density estimator.

Proof of Theorem 2.4. Write the approximation w.r.t. to the j1-th and j0-th level as

Qj0,j1f = Pj1f =
∑

γ∈Zd

θj0,γΦj0,γ +

|M|−1∑

k=1

j1−1∑

j=j0

υk,j,γΨk,j,γ .

We decompose the error as follows

E

[ ∥∥∥f − Q̃j0,j1f
∥∥∥
p′

p′

]1/p′

≤ ‖f −Qj0,j1f‖p′ + E




∥∥∥∥∥∥
∑

γ∈Zd

(θ̂j0,γ − θj0,γ)Φj0,γ

∥∥∥∥∥∥

p′

p′




1/p′

+

|M|−1∑

k=1

j1−1∑

j=j0

E




∥∥∥∥∥∥
∑

γ∈Zd

(
υ̂k,j,γ 1

{
|υ̂k,j,γ | > λ̄j

}
− υk,j,γ

)
Ψk,j,γ

∥∥∥∥∥∥

p′

p′




1/p′

=: J1 + J2 + J3 (4.5)

and consider these three terms separately. We infer from Theorem 2.1 that the approximation error J1 is at most

|M |−j1s
′ ≃ |In|−α times a constant which only depends on the domain A, the parameters of the Besov space, the

wavelets Ψk and the Besov norm ‖f‖s,p,∞ ≤ ‖f‖s,p,q; for its exact value see (4.4).

For linear estimation error J2, we use Theorem 4.2. So, J2 ≤ C|M |j0/2/|In|1/2 ≃ |In|−1/2. We consider the

nonlinear details term in the estimation error which is the third term on the RHS of (4.5) and which constitutes the main

error. It can be decomposed and bounded as follows

J3 ≤ (2L+ 1)d(p
′−1)/p′

|M|−1∑

k=1

j1−1∑

j=j0

|M |j(1/2−1/p′) ‖Ψk‖p′

·







∑

γ∈Zd

|υk,j,γ |p
′

1{|υk,j,γ | ≤ 2λ̄j}+


∑

γ∈Zd

P

(
|υ̂k,j,γ − υk,j,γ | > λ̄j

)
|υk,j,γ |p

′




1/p′



1/p′

+


∑

γ∈Zd

E

[
|υ̂k,j,γ − υk,j,γ |p

′

1{|υ̂k,j,γ − υk,j,γ | > λ̄j/2}
]



1/p′

+


∑

γ∈Zd

E

[
|υ̂k,j,γ − υk,j,γ |p

′

1{|υk,j,γ | > λ̄j/2}
]



1/p′



.

(4.6)

We derive the rates of convergence for each term in (4.6) separately, many techniques are quite similar to the classical
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proof given by Donoho et al. (1996). The first error in (4.6) is the dominating error. If p′ > p, it can be bounded as

|M|−1∑

k=1

j1−1∑

j=j0

|M |j(1/2−1/p′)


∑

γ∈Zd

|υk,j,γ |p (2λ̄j)p
′−p 1

{
|υk,j,γ | ≤ 2λ̄j

}



1/p′

≤
|M|−1∑

k=1

j1−1∑

j=j0

|M |j(1/2−1/p′) (2λ̄j)
(p′−p)/p′ |M |−j(s+1/2−1/p)p/p′ ‖f‖p/p

′

s,p,∞

≤ C ‖f‖p/p
′

s,p,∞ |In|−(p′−p)/(2p′)

|M|−1∑

k=1

j1−1∑

j=j0

j(p
′−p)/(2p′)|M |−jε/p′

. (4.7)

If ε 6= 0, (4.7) is bounded by

|In|−(p′−p)/(2p′)|M |max(−j0ε/p
′,−j1ε/p

′)j
(p′−p)/(2p′)
1 ≃ |In|−α (ln |In|)(p

′−p)/2p′

.

If ε = 0, (4.7) is bounded by |In|−(p′−p)/(2p′)(j1 − j0)j
(p′−p)/(2p′)
1 ≃ |In|−α (ln |In|)(3p

′−p)/2p′

.

We treat the first error term in (4.6) in the case p ≥ p′. We have ε > 0 and s = s′. Moreover, the density has

bounded support. We find in this case

|M|−1∑

k=1

j1−1∑

j=j0

|M |j(1/2−1/p′) ‖υk,j,·‖ℓp′ ≤ CA ‖f‖s,p,∞
|M|−1∑

k=1

j1−1∑

j=j0

|M |−js, (4.8)

where CA is the constant which depends on the support of f and which is introduced in the proof of Theoerem 2.1.

Consequently, this last inequality behaves as |M |−j0s = |In|−s/(1+2s) = |In|−α.

For the remaining three errors from (4.6), we need two bounds. Firstly, we prove that given the growth rate of j1

sup
γ∈Zd

E

[
|υ̂k,j,γ − υk,j,γ |p

′

]1/p′

≤ sup
γ∈Zd

E

[
|υ̂k,j,γ − υk,j,γ |2p

′

]1/2p′

≤ C|In|−1/2. (4.9)

We know from Lemma A.3 that the leftmost expectation of (4.9) is bounded by

C

(
|In|−1/2 +

|M |j1/2qNn
|In|

+
|M |j1/2

|In|c1B/(2p′)

)

where qn = B ln |In| for a B > 0 arbitrary but fixed and where the constant C depends on B. Hence, if we choose B

sufficiently large, namely,

B :=
2p′ + 1 + α/(2s′)

c1
,

it only remains to show that the term in the middle is negligible. It corresponds to |In|α/(2s
′)−1(ln |In|)N .

Consequently, we only need that 1 − α/s′ > 0. If ε < 0, then 1 − α/s′ = 2(sp− 1)/(p+ 2(sp− 1)) > 0 because

by assumption sp > 1. Moreover, if ε ≥ 0, we use that 1/p′ ≥ 1/(2sp+ p). The relation 1− α/s′ > 0 is equivalent to

s′(1 + 2s) > s. Now s′ ≥ s+ 1/(2sp+ p)− 1/p. Thus, s′(1 + 2s) ≥ s(2s+ 1 − 2/p) > s, where we use again that

s > 1/p. All in all, we find that (4.9) is true.

Secondly, we show that P(|υ̂k,j,γ − υk,j,γ | > λ̄j)
1/(2p′) vanishes at a rate |In|−Cp′K

2
0 which is negligible given the

choice of K0, which is defined below in (4.11). We infer from Lemma A.2 that this probability can be bounded by

2 exp

(
−

|In|λ̄2j/(2p′)
A2 +A1qNn |M |j/2λ̄j

)
+A3

( |M |j/2
λ̄j |In|c1B−1/2

)1/(2p′)

for certain constants A1, . . . , A3 independent of In and j. So it remains to compute the asymptotics of the following

16



three terms:

|In|λ̄2j
2p′A2

≥ K2
0j0

2p′A2
≃ K2

0 (1− 2α)

(2p′ ln |M |) ln |In|

|In|λ̄2j
qNn |M |j/2λ̄j

≥ CK0|In|(1−α/s′)/2 ln |In|1/2−N

|M |j/(4p′)

λ̄
1/(2p′)
j |In|(c1B−1/2)/(2p′)

≤
(
K−1

0 j
−1/2
1 |In|−(c1B−1−α/(2s′))

)1/(2p′)

(4.10)

We see that the error on the second line of (4.10) is negligible because 1−α/s′ > 0. The error on the third line vanishes

at a rate greater than |In|−1 and is negligible as well. Hence, the choice

K2
0 ≃ p′ ln |M |/(1− 2α) (4.11)

implies that the probability in question decays at a rate of at least |In|−1, i.e.,

P(|υ̂k,j,γ − υk,j,γ | > λ̄j)
1/(2p′) ≤ C|In|−1. (4.12)

We use the norm inequalities in the ℓp
′

-spaces in both cases p′ ≥ p and p′ < p to bound the second error in (4.6):

|M|−1∑

k=1

j1−1∑

j=j0

|M |j(1/2−1/p′)


∑

γ∈Zd

P

(
|υ̂k,j,γ − υk,j,γ | > λ̄j

)
|υk,j,γ |p

′




1/p′

≤ CCA

|M|−1∑

k=1

j1−1∑

j=j0

|M |j(1/2−1/p′) |M |j(1/p′−1/p)+ ‖υk,j,·‖ℓp P
(
|υ̂k,j,γ − υk,j,γ | > λ̄j

)1/p′

≤ CCA ‖f‖s,p,∞
|M|−1∑

k=1

j1−1∑

j=j0

|M |−js′
P

(
|υ̂k,j,γ − υk,j,γ | > λ̄j

)1/p′

.

Consequently, this second error is negligible if we use the result from (4.12).

For the third error in (4.6) we need the estimate from Proposition A.1

∑

γ∈Zd

E

[
|υ̂k,j,γ − υk,j,γ |2p

′

]1/2
≤
∑

γ∈Zd

E
[
|υ̂k,j,γ − υk,j,γ |2

]1/4
E

[
|υ̂k,j,γ − υk,j,γ |2(2p

′−1)
]1/4

≤ Cp′

{(∥∥∥h1/8
∥∥∥
1
+
∥∥∥h̃1/2

∥∥∥
1

)
‖Ψk‖1/2∞ |M |j |In|−1/4

}
|In|−(2p′−1)/4.

Now we obtain, using Hölders inequality in both cases p′ ≥ p and p′ < p

|M|−1∑

k=1

j1−1∑

j=j0

|M |j(1/2−1/p′)


∑

γ∈Zd

E

[
|υ̂k,j,γ − υk,j,γ |2p

′

]1/2
P

(
|υ̂k,j,γ − υk,j,γ | > λ̄j/2

)1/2



1/p′

≤ C(j1 − j0)|In|−(1−α/s′)−1/2.

Consequently, this error is negligible.

The fourth error in (4.6) can be treated similar. We use that E
[
|υ̂k,j,γ − υk,j,γ |p

′

]1/p′

≤ C|In|−1/2 from Equa-
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tion (4.9). If p′ > p,

|M|−1∑

k=1

j1−1∑

j=j0

|M |j(1/2−1/p′)


∑

γ∈Zd

E

[
|υ̂k,j,γ − υk,j,γ |p

′

]
1

{
|υk,j,γ | > λ̄j/2

}



1/p′

≤ C

|M|−1∑

k=1

j1−1∑

j=j0

|M |j(1/2−1/p′) |In|−1/2 ‖υk,j,·‖p/p
′

ℓp (λ̄j/2)
−p/p′

≤ C ‖f‖p/p
′

s,p,∞ |In|−(p′−p)/(2p′)

|M|−1∑

k=1

j1−1∑

j=j0

|M |−jε/p′

j−p/(2p′). (4.13)

Note that (4.13) is asymptotically less than the first nonlinear details term given in (4.7) and can be neglected. In the

case p′ ≤ p, this error term can be bounded by

‖f‖s,p,∞
|M|−1∑

k=1

j1−1∑

j=j0

|M |−jsj−1/2

times a constant. This follows similarly as the derivation of (4.13). In particular, this error is negligible too, when

compared to the first details term in the case p′ ≤ p, see (4.8).

The amendment concerning the uniform convergence follows along the same lines as in the case for the linear

estimator, see the proof of Theorem 2.1. This finishes the proof.

A Exponential and moment inequalities for dependent sums

Proposition A.1. Assume the real valued random field Z to satisfy Condition 1.4.

1. If Condition 1.4 (3) is satisfied with a = 1, then for all j ∈ Z and γ ∈ Z
N


∑

γ∈ZN

E

[
|θ̂j,γ − θj,γ |2

]



1/2

≤ C1L
d/22d/2 ‖Φ‖∞

{∥∥∥h1/2
∥∥∥
1/2

1
+
∥∥∥h̃
∥∥∥
2

} |M |j/2
|In|1/2

.

2. If Condition 1.4 (3) is satisfied with a = 2, then for all j ∈ Z and γ ∈ Z
N

∑

γ∈ZN

E

[
|θ̂j,γ − θj,γ |2

]1/2
≤ C2L

d/22d ‖Φ‖∞
{∥∥∥h1/4

∥∥∥
1
+
∥∥∥h̃
∥∥∥
1

} |M |j
|In|1/2

.

3. If Condition 1.4 (3) is satisfied with a = 4, then for all j ∈ Z and γ ∈ Z
N

∑

γ∈ZN

E

[
|θ̂j,γ − θj,γ |2

]1/4
≤ C4L

d/42d ‖Φ‖1/2∞

{∥∥∥h1/8
∥∥∥
1
+
∥∥∥h̃1/2

∥∥∥
1

} |M |j
|In|1/4

.

In all cases the constants C1, C2, C4 ∈ R+ do not depend on n ∈ N
N
+ . They depend on the bound of the mixing

coefficients determined by the numbers c0 and c1 and on the data dimension d.

Moreover, the same result is true for E
[
|υ̂k,j,γ − υk,j,γ |2

]
for all k = 1, . . . , |M |, j ∈ Z and γ ∈ Z

N

Proof of Proposition A.1. We only prove the statement concerning the coefficients θj,γ and assume w.l.o.g. that j > 0.
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We begin with the decomposition of the variance

E

[
|θ̂j,γ − θj,γ |2

]
≤ |In|−2

∑

s∈In

Φ2
j,γ(Z(s)) + |In|−2

∑

s,t∈In,

‖s−t‖>|M|j/N

Cov(Φj,γ(Z(s)),Φj,γ(Z(t)))

+ |In|−2
∑

s,t∈In,

‖s−t‖≤|M|j/N

Cov(Φj,γ(Z(s)),Φj,γ(Z(t)))
(A.1)

We easily find that the first summand in (A.1) is at most

‖Φ‖2∞
|In|

∫

Rd

1{suppΦ(· − γ)} f(M−jy) dy ≤ ‖Φ‖2∞
|In|

∫

Rd

1{suppΦ(· − γ)}h(M−jy) dy. (A.2)

Consider the second summand, here we apply the inequality of Davydov (1968) to bound the covariance by the fourth

moments times the mixing coefficient. We obtain the upper bound

|In|−2
∑

s,t∈In,

‖s−t‖>|M|j/N

E
[
Φ4

j,γ(Z(s))
]1/2

α(‖s− t‖)1/2

≤ |M |j/2 ‖Φ‖2∞
|In|2

∑

s,t∈In,

‖s−t‖>|M|j/N

(∫

Rd

1{suppΦ(· − γ)} f(M−jy) dy

)1/2

α(‖s− t‖)1/2

≤ C
‖Φ‖2∞
|In|

(∫

Rd

1{suppΦ(· − γ)}h(M−jy) dy

)1/2 ∑

k>|M|j/N

k2N−1α(k)1/2, (A.3)

where we use in the last inequality that
∑

s,t∈In,‖s−t‖>|M|j/N α(‖s− t‖)1/2 ≤ C|In|
∑

k>|M|j/N kN−1α(k)1/2 for a

constant C. The third summand can be bounded with the help of the requirement on the joint densities, by assumption

we have for all locations s, t ∈ Z
N that

|fZ(s),Z(t)(z1, z2)− f(z1)f(z2)| ≤ h̃(z1)h̃(z2)

for a non-increasing radial function h̃. Consequently, we obtain

|In|−2
∑

s,t∈In,

‖s−t‖≤|M|j/N

∫

Rd×Rd

|M |j|Φ(M jz1 − γ)||Φ(M jz2 − γ)| |fZ(s),Z(t)(z1, z2)− f(z1)f(z2)| dz1 dz2

≤ |In|−1 ‖Φ‖2∞
∫

Rd×Rd

1{suppΦ(· − γ)× suppΦ(· − γ)} (z1, z2) h̃(M−jz1)h̃(M
−jz2) dz1 dz2. (A.4)

Note that we have used the relation
∑

s,t∈In,‖s−t‖≤|M|j/N |M |−j ≤ |In| in the derivation of the last inequality.

It remains to bound the sum of the variances E
[
|θ̂j,γ − θj,γ |2

]
, respectively the sum of the corresponding standard

deviations, respectively the sum of the square root of the standard deviations.. We use the following concept on the

integrals from (A.2), (A.3) and (A.4): the support of Φ(· − γ) is the cube [γ, γ +LeN ]. Let y∗γ be among the points y in

this cube such thatM−jy is nearest to the origin, i.e., y∗γ satisfies
∥∥M−jy∗γ

∥∥
∞

= inf
{∥∥M−jy

∥∥
∞

: y ∈ [γ, γ + LeN ]
}

.

Then we have with the properties of the non-increasing radial functions h and h̃ and for a = 1, 2, 4, 8

∑

γ∈Zd

(∫

Rd

1{suppΦ( · − γ)} h(M−jz) dz

)1/a

≤ Ld/a
∑

γ∈Zd

h(M−jy∗γ)
1/a ≤ C Ld/a2d

∥∥∥h1/a
∥∥∥
1
|M |j,

where the constant C depends on the data dimension d. The factor |M |j in the last inequality is due to a change of
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variables. Similarly, we obtain for the integral from (A.4)

∑

γ∈Zd

(∫

Rd

1{suppΦ(· − γ)} (z) h̃(M−jz)

)2/a

≤ CL2d/a2d
∥∥∥h̃2/a

∥∥∥
1
|M |j .

This finishes the proof.

Lemma A.2. Assume the real valued random field Z to satisfy Condition 1.4. Set qn := B ln |In| for someB > 0. Then

there are positive constants A1, A2, A3 such that for all j ∈ Z and γ ∈ Z
N

P(|θ̂j,γ − θj,γ | ≥ x) ≤




2 exp

(
− |In|x

2

A2+2NA1qNn |M|j/2x/3

)
+A3

2N |M|j/2

x|In|c1B , for x ≤ A1|M |j/2

2 exp
(
− |In|x

2

A2+2NA1qNn |M|j/2x/3

)
, for x > A1|M |j/2.

Here the constant c1 > 0 is due to the bound on the mixing coefficients and guaranteed by Condition 1.4.

The same result is also true for P(|ν̂k,j,γ − νk,j,γ | ≥ x) for all k = 1, . . . , |M |, j ∈ Z and γ ∈ Z
N .

Proof. We use Lemma 4.6 from Li (2015), we only have to replace the factor 2j/2 by |M |j/2. We use that for an

rectangular set Ĩ ⊆ Z
N and in case that Condition 1.4 is satisfied, it is true that for all k, j, γ

E





∑

s∈Ĩ

Ψk,j,γ(Zs)− E [ Ψk,j,γ(Zs) ]




2

 ≤ C ‖Ψk,j,γ‖2∞ L2d

(
‖h‖∞ + ‖h‖1/2∞ +

∥∥∥h̃
∥∥∥
2

∞

)
|Ĩ|,

where the constant C only depends on the lattice dimension N and the mixing coefficients.

Moreover, we bound the probability P2(x) from Equations (A.4) and (A.7) in this article with the maximum norm

of the functions, which is |M |j/2 times a constant. This yields the result.

Lemma A.3. Let q ≥ 2 and B > 0, set qn := B ln |In|. Then it is true that

E

[
|θ̂j,γ − θj,γ |q

]
≤ Cq

{
|In|−q/2 +

( |M |j/2qNn
|In|

)q

+
|M |jq/2
|In|c1B

}
,

where the constant Cq depends on B. The same relation is true for E [ |υ̂k,j,γ − υk,j,γ |q ].

Proof. We use Lemma A.2. Define x∗ = 3b2
2Nb1

(qNn |M |j/2)−1. Then

E

[
|θ̂j,γ − θj,γ |q

]
= q

∫ ∞

0

xq−1
P(|θ̂j,γ − θj,γ | ≥ x) dx

≤ 2q

∫ ∞

0

xq−1

{
exp

(
− |In|x2
A2 + 2NA1qNn |M |j/2x/3

)
+ 1

{
x ≤ A1|M |j/2

}
A3

|M |j/2
x|In|c1B

}
dx

≤ 2q

∫ x∗

0

xq−1 exp

(
−|In|x2

2A2

)
dx+ 2q

∫ ∞

x∗

xq−1 exp

(
− |In|x2
2NA1qNn |M |j/2x

)
dx

+ 2qA3

∫ A1|M|j/2

0

xq−1 2
N |M |j/2
x|In|c1B

dx.

(A.5)

The first integral in (A.5) is bounded by

q

(
2A2

|In|

)q/2

γ

(
q

2
, C

|In|
qNn |M |j/2

)
≤ C|In|−q/2,

here we (temporarily) denote the lower incomplete gamma function by γ(·, ·). Likewise, the second integral is bounded
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by (modulo a constant) (
qNn |M |j/2

|In|

)q

Γ

(
q, C

|In|
q2Nn |M |j

)
≤ C

(
qNn |M |j/2

|In|

)q

.

Here Γ(·, ·) is the upper incomplete gamma function. The last integral in (A.5) is at most |M |jq/2|In|−c1B (times a

constant). This finishes the proof.

B The question of normalization

This appendix contains a result on the convergence of the normalized density estimator: let p ≥ 1 and (fk : k ∈ N+) be

a sequence of density projections onto (increasing) subspaces of Lp(λd) ∩ L2(λd). Furthermore, let (f̃k : k ∈ N+) ⊆
Lp(λd ⊗ P) ∩ L2(λd ⊗ P) be a corresponding sequence of density estimators. Define the normalized nonparametric

density estimator by

f̂k :=
1

Sk
f̃+
k , where Sk :=

∫

Rd

f̃+
k dλd (B.1)

is the normalizing constant. We have in this case the general result

Proposition B.1 (Lp-convergence of f̂k). Let p ∈ [1,∞) and f ∈ Lp(λd) be a density. If the estimator f̃k converges

to f in Lp(λd) a.s. and in L1(λd) a.s., then f̂k converges to f in Lp(λd) a.s. Furthermore, let f̃k converge to f in

Lp(λd ⊗ P) and in L1(λd ⊗ P); additionally, if p > 1, let lim infk→∞ ‖Sk‖L∞(P) ≥ δ > 0. Then the estimator f̂k

converges to f in Lp(λd ⊗P).

Proof of Proposition B.1. It remains to prove the desired convergence for the term |f̂k − f̃k|p:

∫

Rd

|f̂k − f̃k|p dλd ≤ 2p
∫

Rd

(f̃−
k )p dλd + 2p

∣∣∣∣1−
1

Sk

∣∣∣∣
p ∫

Rd

(f̃+
k )p dλd. (B.2)

Consider the first term in (B.2),

∫

Rd

|f̃−
k |p dλd ≤ 2p

∫

Rd

|f − f̃k|p dλd + 2p
∫

Rd

fp
1{f < f − f̃k} dλd. (B.3)

An application of Lebesgue’s dominated convergence theorem shows that the second error in (B.3) converges to zero

both in the mean and a.s.: indeed, we define for 1 > ε1, ε2 > 0

L(ε1) := inf

{
a ∈ R+ :

∫

[−a,a]d
fp dλd ≥ 1− ε1

}
<∞, K(ε1) := [−L(ε1), L(ε1)]d and A(ε2) := {f > ε2}.

We get

∫

{f<f−f̃k}

fp dλd ≤ ε1 +

∫

K(ε1)

fp
1

{
f < f − f̃k

}
dλd

≤ ε1 +

∫

K(ε1)∩A(ε2)

fp
1

{
ε2 < |f − f̃k|

}
dλd + εp2λ

d(K(ε1)).

If |f − f̃k| → 0 in L1(λd ⊗P) and f ∈ Lp(λd), then

lim sup
k→∞

E

[∫

K(ε1)∩A(ε2)

fp
1

{
ε2 < |f − f̃k|

}
dλd

]
= 0

with Lebesgue’s dominated convergence theorem applied to the measure λd ⊗P. In the same way, if |f − f̃k| → 0 in

L1(λd) on a set Ω0 ∈ A withP(Ω0) = 1 and f ∈ Lp(λd), then lim supk→∞

∫
K(ε1)∩A(ε2)

fp
1

{
ε2 < |f − f̃k|

}
dλd =
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0 with Lebesgue’s dominated convergence theorem applied to λd for each ω ∈ Ω0. In addition, this implies Sk → 1 in

the mean and a.s. This finishes the computations on the first term in (B.2). We can bound the second term in (B.2) as

∣∣∣∣1−
1

Sk

∣∣∣∣
p ∫

Rd

(f̃+
k )p dλd ≤ 2p

∣∣∣∣1−
1

Sk

∣∣∣∣
p ∫

Rd

fp dλd + 2p
∣∣∣∣1−

1

Sk

∣∣∣∣
p ∫

Rd

|f̃k − f |p dλd. (B.4)

The error |1 − 1/Sk| on the RHS of (B.4) converges to zero a.s. by the continuous mapping theorem. In particular, the

RHS of (B.4) converges to zero a.s. We come to the convergence in mean. Again by the continuous mapping theorem,

the first term on the RHS of (B.4) converges to zero in probability. Furthermore, there is a k∗ ∈ N+ such that for k ≥ k∗

this term is bounded by 2p(1 + 1/δ)p ‖f‖pp. Hence, the family {|1− 1/Sk|p : k ≥ k∗} is uniformly integrable and this

factor converges to zero in the mean. In addition, the first factor in the second term on the RHS of (B.4) is bounded for

all k ≥ k∗ and, thus, the whole term converges to zero in the mean.
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Haar D4

sample size j linear nonlinear: hard threshold linear nonlinear: hard threshold

0.1 0.2 0.3 0.1 0.2 0.3

400 0
-0.922 - - - -0.583 - - -

(0.040) - - - (0.054) - - -

400 1
-0.871 -0.922 -0.922 -0.922 -1.090 -1.094 -1.083 -1.058

(0.054) (0.050) (0.050) (0.050) (0.138) (0.141) (0.139) (0.133)

400 2
-1.026 -1.067 -1.064 -1.055 -1.161 -1.166 -1.154 -1.128

(0.139) (0.137) (0.136) (0.134) (0.167) (0.170) (0.169) (0.161)

400 3
-0.928 -0.980 -0.981 -0.982 -1.045 -1.052 -1.046 -1.029

(0.187) (0.180) (0.178) (0.174) (0.202) (0.205) (0.202) (0.192)

400 4
-0.384 -0.494 -0.538 -0.606 -0.506 -0.520 -0.565 -0.622

(0.266) (0.253) (0.246) (0.239) (0.276) (0.278) (0.275) (0.261)

1225 0
-0.922 - - - -0.584 - - -

(0.021) - - - (0.032) - - -

1225 1
-0.878 -0.928 -0.928 -0.928 -1.089 -1.093 -1.083 -1.058

(0.025) (0.025) (0.025) (0.025) (0.078) (0.080) (0.079) (0.075)

1225 2
-1.052 -1.090 -1.089 -1.086 -1.189 -1.194 -1.180 -1.153

(0.074) (0.074) (0.074) (0.074) (0.094) (0.096) (0.094) (0.089)

1225 3
-1.043 -1.087 -1.087 -1.084 -1.163 -1.168 -1.157 -1.131

(0.092) (0.091) (0.091) (0.090) (0.102) (0.104) (0.102) (0.097)

1225 4
-0.867 -0.932 -0.942 -0.961 -0.977 -0.985 -0.988 -0.987

(0.114) (0.112) (0.110) (0.107) (0.120) (0.122) (0.119) (0.113)

2500 0
-0.923 - - - -0.583 - - -

(0.016) - - - (0.024) - - -

2500 1
-0.881 -0.931 -0.931 -0.930 -1.091 -1.095 -1.084 -1.059

(0.019) (0.018) (0.018) (0.018) (0.059) (0.060) (0.059) (0.056)

2500 2
-1.063 -1.101 -1.101 -1.099 -1.196 -1.201 -1.186 -1.158

(0.056) (0.055) (0.055) (0.055) (0.069) (0.071) (0.070) (0.066)

2500 3
-1.079 -1.119 -1.119 -1.116 -1.197 -1.202 -1.188 -1.161

(0.065) (0.064) (0.064) (0.064) (0.071) (0.072) (0.071) (0.067)

2500 4
-1.000 -1.051 -1.056 -1.063 -1.111 -1.117 -1.108 -1.092

(0.073) (0.072) (0.072) (0.071) (0.078) (0.080) (0.078) (0.074)

4225 0
-0.922 - - - -0.584 - - -

(0.012) - - - (0.018) - - -

4225 1
-0.881 -0.930 -0.930 -0.930 -1.089 -1.092 -1.081 -1.057

(0.014) (0.013) (0.013) (0.013) (0.045) (0.046) (0.045) (0.043)

4225 2
-1.063 -1.101 -1.101 -1.100 -1.197 -1.201 -1.186 -1.158

(0.041) (0.040) (0.040) (0.040) (0.053) (0.054) (0.053) (0.050)

4225 3
-1.087 -1.128 -1.127 -1.125 -1.207 -1.212 -1.196 -1.169

(0.047) (0.047) (0.047) (0.046) (0.054) (0.055) (0.054) (0.051)

4225 4
-1.044 -1.091 -1.094 -1.097 -1.158 -1.163 -1.152 -1.130

(0.051) (0.050) (0.050) (0.050) (0.056) (0.057) (0.056) (0.054)

Table 1: Approximate validation criterion from (3.2) computed for the density estimation problem with the Haar wavelet

and the D4-wavelet. The hard thresholding estimator is computed w.r.t. the levels j0 = 0 and j1 = 1, . . . , 4. The

thresholds 0.1, 0.2, 0.3 are relative thresholds as explained in the text.
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Haar D4

sample size j linear nonlinear: hard threshold linear nonlinear: hard threshold

0.1 0.2 0.3 0.1 0.2 0.3

400 0
-0.923 - - - -0.587 - - -

(0.036) - - - (0.051) - - -

400 1
-0.875 -0.927 -0.926 -0.926 -1.087 -1.091 -1.082 -1.056

(0.049) (0.046) (0.046) (0.046) (0.130) (0.133) (0.132) (0.125)

400 2
-1.035 -1.073 -1.071 -1.063 -1.167 -1.173 -1.162 -1.134

(0.132) (0.127) (0.126) (0.126) (0.151) (0.154) (0.153) (0.146)

400 3
-0.933 -0.985 -0.987 -0.988 -1.048 -1.055 -1.049 -1.031

(0.178) (0.167) (0.165) (0.162) (0.187) (0.190) (0.188) (0.180)

400 4
-0.388 -0.497 -0.541 -0.614 -0.505 -0.519 -0.560 -0.620

(0.263) (0.247) (0.242) (0.236) (0.264) (0.265) (0.259) (0.246)

1225 0
-0.922 - - - -0.584 - - -

(0.019) - - - (0.027) - - -

1225 1
-0.879 -0.929 -0.929 -0.929 -1.093 -1.097 -1.087 -1.060

(0.027) (0.024) (0.024) (0.024) (0.068) (0.069) (0.069) (0.065)

1225 2
-1.053 -1.092 -1.091 -1.088 -1.190 -1.195 -1.183 -1.153

(0.066) (0.062) (0.062) (0.062) (0.077) (0.079) (0.078) (0.074)

1225 3
-1.047 -1.090 -1.090 -1.088 -1.165 -1.170 -1.160 -1.132

(0.081) (0.078) (0.077) (0.076) (0.086) (0.088) (0.087) (0.083)

1225 4
-0.870 -0.933 -0.945 -0.965 -0.978 -0.986 -0.990 -0.987

(0.102) (0.097) (0.096) (0.093) (0.107) (0.108) (0.105) (0.100)

2500 0
-0.923 - - - -0.585 - - -

(0.015) - - - (0.021) - - -

2500 1
-0.881 -0.932 -0.932 -0.931 -1.094 -1.097 -1.088 -1.061

(0.018) (0.018) (0.018) (0.017) (0.051) (0.052) (0.051) (0.048)

2500 2
-1.062 -1.101 -1.101 -1.099 -1.199 -1.203 -1.190 -1.159

(0.050) (0.047) (0.047) (0.047) (0.057) (0.058) (0.057) (0.054)

2500 3
-1.079 -1.121 -1.120 -1.117 -1.199 -1.204 -1.192 -1.162

(0.056) (0.055) (0.055) (0.055) (0.061) (0.062) (0.061) (0.058)

2500 4
-1.002 -1.052 -1.057 -1.063 -1.114 -1.120 -1.113 -1.094

(0.064) (0.064) (0.064) (0.063) (0.069) (0.070) (0.068) (0.065)

4225 0
-0.922 - - - -0.586 - - -

(0.011) - - - (0.015) - - -

4225 1
-0.882 -0.932 -0.932 -0.932 -1.095 -1.098 -1.089 -1.062

(0.014) (0.013) (0.013) (0.013) (0.038) (0.039) (0.039) (0.036)

4225 2
-1.067 -1.104 -1.104 -1.104 -1.202 -1.207 -1.193 -1.162

(0.035) (0.033) (0.033) (0.033) (0.042) (0.043) (0.043) (0.040)

4225 3
-1.093 -1.132 -1.132 -1.130 -1.212 -1.217 -1.204 -1.174

(0.039) (0.038) (0.038) (0.038) (0.043) (0.044) (0.044) (0.041)

4225 4
-1.049 -1.095 -1.097 -1.101 -1.163 -1.169 -1.159 -1.134

(0.044) (0.043) (0.042) (0.041) (0.047) (0.048) (0.048) (0.045)

Table 2: Approximate validation criterion from Equation (3.2) with independent reference samples. The hard threshold-

ing estimator is computed w.r.t. the levels j0 = 0 and j1 = 1, . . . , 4. The thresholds 0.1, 0.2, 0.3 are relative thresholds

as explained in the text.
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