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Abstract: An important topic of the multivariate extreme-value theory is to develop probabilistic models and sta-
tistical methods to describe and measure the strength of dependence among extreme observations. The theory is
well established for data whose dependence structure is compatible with that of asymptotically dependent models.
On the contrary, in many applications data do not comply with asymptotically dependent models and thus new
tools are required. This article contributes to the methodological development of such a context, by considering a
componentwise maxima approach. First we propose a statistical test based on the classical Pickands dependence
function to verify whether asymptotic dependence or independence holds. Then, we present a new Pickands de-
pendence function to describe the extremal dependence under asymptotic independence. Finally, we propose an
estimator of the latter, we establish its main asymptotic properties and we illustrate its performance by a simulation
study.
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Keywords and phrases: Extremal dependence, extreme-value copula, nonparametric estimation, Pickands depen-
dence function.

1. Introduction

Multivariate extreme-value theory provides the mathematical foundation for performing real data analysis of rare
events. To characterize the joint upper tail of a multivariate distribution, two different approaches can be used: either
by considering the componentwise maxima, or all the observations above a high threshold. A description of these
methodologies can be found for instance in Coles (2001, Ch. 8), Beirlant et al. (2004, Ch. 8-9), de Haan and Ferreira
(2006, Ch. 6) and Resnick (2007, Ch. 6), among others. Unfortunately the flexibility of the dependence structures
provided by the classical theory of multivariate extreme-values may not be sufficient for statistical modelling (see
e.g. Ledford and Tawn, 1996, 1997). To solve this issue, different coefficients of tail dependence or probabilistic
models have been introduced. They allow to govern/describe the strength of the extremal dependence. In this paper,
we are particularly interested in the notion of asymptotic independence which is common in real data analysis. This
concept can be defined as follows.

Let Y be a multivariate random vector of dimension d, with distribution function F and marginals F j, 1 ≤ j ≤ d.
We say that F is in the max-domain of attraction of a multivariate extreme-value distribution G, if there exist
sequences of constants an > 0 and bn ∈ R

d such that

lim
n→∞

Fn(any + bn) = G(y),

for all y ∈ Rd. Under this condition, a particular case arises when G is equal to the product of its marginal
distributions. In this setting, we say that Y satisfies the property of asymptotic independence (or tail independence)
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which is equivalent to say that the elements of Y are asymptotically independent in the upper tail, i.e.

lim
u→1

Pr(F j(Y j) > u|Fi(Yi) > u) = 0

for all 1 ≤ i , j ≤ d. On the contrary, if the above limit is positive, then the elements of Y are called asymptotically
dependent. The classical theory expects asymptotic dependence and independence as the only two possible scenar-
ios, conceiving extremes as independent in the second case. Many efforts have been made to characterize a residual
tail dependence in the data (if there is any) by offering new dependence coefficients or probabilistic and statisti-
cal models under asymptotic independence, see Ledford and Tawn (1996), Coles (2001, Ch 8.4), Resnick (2002),
Maulik and Resnick (2004), Ramos and Ledford (2009, 2011), Wadsworth and Tawn (2013) and Wadsworth et
al. (2017), to name a few. If we restrict our framework to the dimension d = 2, several statistical tests for check-
ing asymptotic independence or tail independence have been proposed, among them, Ledford and Tawn (1996),
Draisma et al. (2004), Hüsler and Li (2009) and Falk et al. (2010, Ch. 6.5) and the references therein. However, the
extension to dimensions higher than 2 are still in its infancy. Recent proposals are based on the kth largest order
statistics of the sample. Although these approaches are simple to implement, the performance of the resulting tests
depends strongly on the choice of k, see e.g. Kiriliouk et al. (2016).

In this paper, we propose in Section 2 an alternative approach to test asymptotic independence for an arbitrary
dimension d ≥ 2, based on the componentwise maxima. We illustrate the performance of our proposal up to di-
mension d = 4. Then, using again the componentwise maxima approach and in particular the framework proposed
by Ramos and Ledford (2011), we introduce, in Section 3, a new dependence function similar to the well-known
Pickands dependence function which allows us to measure the residual dependence under asymptotic indepen-
dence. Finally, we estimate this new dependence function and we establish the main asymptotic properties of the
estimator. By means of a simulation study, its good performance is highlighted. A discussion on the methodological
assumptions and possible extensions of our work ends the paper. All the proofs are postponed to the appendix.

Throughout the paper, the following notations are used. For any arbitrary dimension d and f : X ⊂ Rd → R, we
set ‖ f ‖∞ = supx∈X f (x). We denote by `∞(X) the space of all bounded real-valued functions onX. The symbol “ ”
stands for convergence in distribution of random vectors, but also for weak convergence of bounded real-valued
functions in `∞(X), the difference will be clear from the context.

2. A test for asymptotic independence

A d-dimensional random vector X = (X1, . . . , Xd) follows the law of a multivariate extreme-value distribution
if the one-dimensional marginal distributions, G j(x) = Pr(X j ≤ x) for all x ∈ R, j = 1, . . . , d, are Generalized
Extreme-Value (GEV) distributions, and the joint distribution takes the form

G(x) = C
(
G1(x1), . . . ,Gd(xd)

)
, x ∈ Rd,

where C is an extreme-value copula, i.e.,

C(u) = exp
(
−V

(
(− log u1)−1, . . . , (− log ud)−1

))
, u ∈ (0, 1]d,

with V : (0,∞]d → [0,∞) (see de Haan and Ferreira, 2006, Ch. 1, 6, for details). Consider the map L : [0,∞)d 7→

[0,∞), defined by L(z) := V(1/z) with z = 1/y for y ∈ (0,∞]d. The function L is known as the stable tail
dependence function. As it is a homogeneous function of order one, i.e. L(az) = aL(z) for all a > 0, we have

L(z) = (z1 + · · · + zd) A(t), z ∈ [0,∞)d,

with t j = z j/(z1 + · · ·+ zd) for j = 2, . . . , d, t1 = 1− t2 − · · · − td, and A is the restriction of L into the d-dimensional
unit simplex,

Sd :=
{
(v1, . . . , vd) ∈ [0, 1]d : v1 + · · · + vd = 1

}
.

The function A is well-known as the Pickands dependence function (see Pickands, 1981), and is often used to
quantify the dependence among the elements of X. Indeed, A satisfies the constraint 1/d ≤ max(t1, . . . , td) ≤
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A(t) ≤ 1 for all t ∈ Sd, with lower and upper bounds corresponding to the complete dependence and independence
cases, respectively (see Falk et al., 2010, Ch. 4, for details). Thus, estimating this Pickands dependence function
is crucial for analysing multivariate extremes, and it has been an extensively discussed topic in the literature, see
Klüppelberg and May (2006), Zhang et al. (2008), Gudendorf and Segers (2011), Capéraà et al. (1997), Berghaus
et al. (2013) or Vettori et al. (2017), among others.

2.1. A slightly modified version of the Pickands dependence estimator proposed by Marcon et al. (2017)

This estimator is based on the madogram concept, a notion borrowed from geostatistics in order to capture the
spatial structure. Starting from independent and identically distributed (i.i.d.) copies X1, ..., Xn, of X, our estimator
is defined as

Ân(t) :=
ν̂n(t) + c(t)

1 − ν̂n(t) − c(t)
(2.1)

where

ν̂n(t) :=
1
n

n∑
i=1

 d∨
j=1

{
G(1)

n, j(Xi, j)
}1/t j
−

1
d

d∑
j=1

{
G(1)

n, j(Xi, j)
}1/t j

 (2.2)

c(t) :=
1
d

d∑
j=1

t j

1 + t j

with

G(a)
n, j(Xi, j) := Gn, j(Xi, j)

1 + a
a

1
n

n∑
k=1

G1/a
n, j (Xk, j)

−a

, j = 1, . . . , d, for a > 0,

and the empirical distribution functions denoted by

Gn, j(x) :=
1
n

n∑
i=1

1l{Xi, j≤x}, j = 1, . . . , d.

By convention, here u1/0 = 0 for 0 < u < 1. The estimator (2.2) is a slightly modified version of that proposed
in Marcon et al. (2017), with G(1)

n, j in place of Gn, j which ensures that the new Pickands estimator Ân now satisfies

Ân(e j) = 1 for all j = 1, . . . , d, where e j = (0, . . . , 0, 1, 0, . . . , 0) is the jth canonical unit vector (see Appendix A.1).
This is a necessary condition that a function needs to satisfy in order to be a valid Pickands dependence function
(see e.g. Marcon et al., 2017). Although, as established in Appendix A.1, our modified estimator shares the same
asymptotic properties as the estimator discussed in Marcon et al. (2017), our modification greatly improves the
latter for finite samples.

2.2. Construction of our statistical test

Using our estimator for A, we want now to construct a statistical test to check asymptotic independence in dimen-
sions higher than or equal to two. To this aim, we consider the following system of hypotheses{

H0 : A(t) = 1, ∀ t ∈ Sd

H1 : A(t) < 1, for some t ∈ Sd.

Note that H0 means that all the components of X are asymptotically independent, whereas under H1 some elements
of X are asymptotically dependent.
Assuming that the extreme-value copula C has continuous partial derivatives over the sets {u ∈ [0, 1]d : 0 < ui < 1},
by Theorem 2.4 in Marcon et al. (2017) and according to Appendix A.1, under H0 we have that

√
n
(
Ân(t) − 1

)
t∈Sd
 −4

(∫ 1

0
A(vt1 , . . . , vtd )dv

)
t∈Sd

, as n→ ∞, (2.3)
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where A is a centered Gaussian process on [0, 1]d with continuous sample paths and covariance function equal to

Cov(A(u),A(v)) =

d∏
j=1

u j ∧ v j −

d∑
j=1

u j ∧ v j

∏
i, j

uivi

 + (d − 1)
d∏

j=1

u jv j.

As a consequence, by the continuous mapping theorem (see e.g. van der Vaart, 2000, Ch. 2.1) it follows that

Ŝ n := sup
t∈Sd

√
n
∣∣∣∣Ân(t) − 1

∣∣∣∣ S := sup
t∈Sd

4

∣∣∣∣∣∣
∫ 1

0
A(vt1 , . . . , vtd ) dv

∣∣∣∣∣∣ , as n→ ∞.

This convergence result can be used as the cornerstone of our test. Denoting by QS (α), α ∈ (0, 1), the (1 −
α)-quantile function for the distribution of the random variable S , H0 can be rejected with approximately α%
significance level whenever ŝn, the observed value of Ŝ n, exceeds QS (α). Unfortunately, there is no closed form for
the function QS (α), however an approximation can still be computed with a Monte Carlo simulation as follows.
Note that for any u, v ∈ [0, 1] and t,w ∈ Sd, the covariance function of the Gaussian process A in (2.3), evaluated
at the indexes ut , vw ∈ [0, 1]d, is equal to

Cov(A(vt1 , . . . , vtd ),A(uw1 , . . . , uwd )) =

d∏
j=1

(vt j ∧ uw j ) −
d∑

j=1

(vt j ∧ uw j )v1−t j u1−w j + (d − 1)uv. (2.4)

Thus, for any fixed α ∈ (0, 1), an approximation of the quantile QS (α) can be obtained by adhering to the following
four steps:

1. Divide the unit interval (0, 1) and the simplexSd in p and m equally spaced points, where p and m are positive
integers. Let v1, . . . , vm and t1, . . . , t p be the two sequences of points partitioning (0, 1) and Sd, respectively.
The sequences v1, . . . , vm and t1, . . . , t p form a finite sequence of positions vtk,1

r , . . . , vtk,d
r ∈ [0, 1]d, with

r = 1, . . . ,m and k = 1, . . . , p, on which the process A is simulated.
2. Sample n∗ realizations

xi(v
t1,1
1 , . . . , vt1,d

1 ), . . . , xi(v
tp,1
m , . . . , vtp,d

m ), i = 1, . . . , n∗,

of a zero-mean Gaussian process at vtk,1
r , . . . , vtk,d

r , for r = 1, . . . ,m and k = 1, . . . , p, with a (mp × mp)
variance-covariance matrix defined through the covariance function in (2.4).

3. Simulate samples that approximately follow the distribution of the random variable S , the integral and the
sup in S being approximated by a sum and the max for sufficiently large values of m and p. This leads to the
realizations

s̃i = max
1≤k≤p

4

∣∣∣∣∣∣∣ 1
m

m∑
r=1

xi(vtk ,1
r , . . . , vtk ,d

r )

∣∣∣∣∣∣∣ , i = 1, . . . , n∗.

4. An approximation of the quantile QS (α), denoted by Q̃S (α), can then be obtained by computing the sample
quantile of the realizations s̃1, . . . , s̃n∗ for sufficiently large n∗.

2.3. Numerical results

We illustrate the performance of our statistical test through a simulation study. Precisely, we estimate some values
of the significance level α and the power 1 − β of the test by computing the empirical proportion of simulated
samples under the null hypothesis and the alternative hypothesis that rejected the null hypothesis, respectively. For
simplicity we focus on the significance levels α = 0.05 and 0.01. The study consists of five experiments.

First experiment: In order to perform the first experiment, in a first step we compute the approximated quantile
Q̃S (α), for a given α, following our algorithm. The quality of approximation relies on the values of the indexes
m, p and n∗. Clearly, the larger their values are, the more accurate the approximation is. We set n∗ = 500 000.
We consider increasing values of m and p and for each combination we compute Q̃S . We stop the search of a
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Table 1
Estimated significance levels α. From left to right: the dimension of X, the true significance level, the approximate asymptotic (1− α)-quantile,

the empirical proportion of simulated samples under H0 that rejected the null hypothesis and the empirical (1 − α)-quantile. Here ψ = 1.

α̂ QŜ n
(α)

n n
d α Q̃S (α) 25 50 100 200 25 50 100 200
2 0.05 0.960 0.0380 0.0460 0.0512 0.0524 0.9190 0.9393 0.9512 0.9541

0.01 1.204 0.0060 0.0082 0.0102 0.0102 1.1359 1.1739 1.1926 1.1992
3 0.05 1.300 0.0364 0.0452 0.0508 0.0574 1.2540 1.2755 1.3036 1.3210

0.01 1.540 0.0056 0.0068 0.0084 0.0092 1.4126 1.4904 1.5295 1.5601
4 0.05 1.480 0.0398 0.0454 0.0548 0.0576 1.5312 1.5508 1.5883 1.5745

0.01 1.740 0.0064 0.0082 0.0096 0.0126 1.7715 1.7135 1.7849 1.7867

better value for these indexes when the value of Q̃S (α) does not increase anymore, up to the second decimal. The
calculation of Q̃S requires a considerable computational effort, therefore we derive its values only for a dimension
d = 2, 3, 4 of the vector X.
In a second step, we compute the rejection rates. We focus on the multivariate logistic extreme-value model intro-
duced by Tawn (1990), with dependence parameter ψ ∈ (0, 1], ψ = 1 corresponding to independent components
of X, whereas complete dependence can be reached when ψ → 0. We consider 20 equally spaced values of ψ in
(0, 1]. For each of them, we simulate n independent observations from a logistic extreme-value distribution with
unit Fréchet margins. Then we estimate the Pickands dependence function by (2.1) and we compute ŝn. We repeat
this task 5000 times and we compute the proportion of times that ŝn > Q̃S (α). This experiment is repeated for dif-
ferent values of the samples size n and different dimension d of X. The middle part of Table 1 reports the estimated
values of the significance levels α in the case where ψ = 1.
We see that accurate estimates of α are already obtained with the sample size n = 50, indicating a good performance
of our statistical test. Figure 1 displays the estimated powers of the test. In the first and second rows the results
obtained with α = 0.05 and α = 0.01 are reported, respectively. The panels from left to right illustrate the results
for the dimensions 2, 3 and 4. Once again, the test shows a good performance already with the sample size n = 50.
Indeed in the case d = 2 we see that the power of the test reaches 1 with mild dependence levels, i.e. ψ = 0.5. This
figure also outlines that the power of the test improves as the dimension of X increases and that, as expected, for
any fixed dimension d = 2, 3, 4, it also improves as the sample size increases.

Second experiment: We repeat the second step of the first experiment approximating the test statistic’s distribu-
tion, under the null hypothesis, via a Monte Carlo approach. Precisely, we simulate n values from d independent
univariate Fréchet distributions, then we estimate the Pickands dependence function by (2.1) and we compute ŝn.
We repeat this task 5000 times and we compute the empirical quantile, for a given α, denoted by QŜ n

(α). The
right-hand side of Table 1 reports the values of them for different values of n and d. We see that the empirical
quantiles rapidly approach the asymptotic quantiles, as the sample size increases. Already with the sample size
n = 50 the two types of quantiles are very close. The third and fourth lines of Figure 1 display the comparison
between the estimates of 1 − β obtained with the two types of quantiles, but also the estimates of α since ψ = 1
corresponds to independent components and thus the proportion of rejection reported by the figures represents an
approximation of α in that case. Since the conclusions are the same for both values α = 0.01 and α = 0.05, only
the latter are reported. It follows that the inferential results obtained with the empirical quantiles are very close to
those obtained with the asymptotic quantiles, already with the sample size n = 50.

Third experiment: We repeat the second experiment using the Genest-Rémillard (GR) rank-based statistical test
(Genest and Rémillard, 2004) and our proposed test with the Capéraà-Fougères-Genest (CFG) estimator (Capéraà
et al., 1997; Zhang et al., 2008) of the Pickands dependence function in place of (2.1). Figure 2 shows the estimated
powers obtained with the GR test and our test (with both the CFG and the Madogram-based (2.1) estimators). For
brevity, we show the results for α = 0.05 and the sample sizes n = 25 and n = 50. We see that our test always
outperforms the GR test, with the best results provided with the CFG estimator in the case of a dimension equal to
2, whereas, in higher dimensions, similar results can be reached with either the Madogram-based estimator or the
CFG.

Fourth experiment: We repeat the third experiment by sampling from three alternative distributions. In the first
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case, we draw samples from a three-dimensional random vector with a pair that follows the logistic extreme-value
distribution and where the last variable is independent from the other two. In the second case, we consider a
four-dimensional random vector with two pairs that follow the logistic extreme-value distribution and where the
components of one pair are independent from each component of the second pair. In the last case, we consider a
four-dimensional random vector, where one pair with independent components and each of these independent from
the components of the other pair that follows the logistic extreme-value distribution. The results are collected in
the third (n = 25) and fourth row (n = 50) of Figure 2. In these cases we see that our test loses power and provides
inferential results very similar to those provided by the GR test, however the latter outperforms our test in the case
of the largest number of independent variables.

Fifth experiment: We consider the multivariate inverted symmetric logistic model (see e.g. Ledford and Tawn,
1997; Wadsworth et al., 2017), with dependence parameter ψ ∈ (0, 1], ψ = 1 corresponding to exact independence
of the components of X, whereas asymptotic dependence is reached as ψ → 0. This time, we consider 10 equally
spaced values of ψ in (0, 1]. For each of them, we simulate 366 values (for similarity with annual maxima) from an
inverted logistic distribution with exponential margins. Then, we compute the normalized componentwise maxima
and we repeat this procedure in order to obtain n normalized maxima from which we estimate the Pickands de-
pendence function using (2.1) and we calculate ŝn. We repeat this task 5000 times and we compute the proportion
of times that ŝn > QS n (0.05). This procedure has been done for different values of d and n and the results are
summarized in Table 2.

Table 2
Estimated significance levels α. From left to right: the dimension of X, the sample size and the empirical proportion of simulated samples

under H0 that rejected the null hypothesis for different values of ψ.

ψ
d n 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
2 25 0.0522 0.0468 0.0578 0.0580 0.0584 0.0842 0.1294 0.2730 0.6372 0.9920

50 0.0554 0.0524 0.0542 0.0562 0.0590 0.0980 0.1772 0.4538 0.8932 1.0000
100 0.0476 0.0470 0.0506 0.0561 0.0594 0.1208 0.2938 0.7128 0.9962 1.0000
200 0.0486 0.0570 0.0568 0.0560 0.0601 0.1856 0.4934 0.9482 1.0000 1.0000

3 25 0.0470 0.0508 0.0522 0.0582 0.0808 0.1076 0.2190 0.4234 0.8604 0.9990
50 0.0542 0.0538 0.0528 0.0589 0.8320 0.1604 0.3606 0.7424 0.9950 1.0000
100 0.0536 0.0468 0.0550 0.0594 0.0922 0.2084 0.5274 0.9486 1.0000 1.0000
200 0.0540 0.0500 0.0506 0.0652 0.1242 0.3050 0.8096 0.9996 1.0000 1.0000

4 25 0.0488 0.0418 0.0448 0.0504 0.0692 0.1336 0.2676 0.6332 0.9582 1.0000
50 0.0452 0.0438 0.0536 0.0574 0.1018 0.1854 0.4736 0.8852 0.9996 1.0000
100 0.0496 0.0484 0.0468 0.0598 0.1130 0.2746 0.7052 0.9920 1.0000 1.0000
200 0.0486 0.0448 0.0560 0.0770 0.1596 0.4768 0.9440 1.0000 1.0000 1.0000

With d = 2, the rejection rates are close to 0.05 whenever ψ is larger than 0.5. Otherwise, the rejection rate is
greater than 0.05 and it reaches 1 when ψ approaches 0. In these cases, it can be observed that the normalized
maxima show quite a strong dependence, which indeed seems that of an asymptotically dependent model rather
than an asymptotically independent one. The strength of the dependence is reduced whenever the normalized
maxima are computed on sequences larger than 366, resulting in improvements in the performances of our test.
The test performance deteriorates as the dimension of X increases.

In conclusion this study highlights the good performance of our statistical test in detecting the exact indepen-
dence of sample maxima. However, our test is also useful to detect if multivariate data are asymptotically indepen-
dent as long as there is a weak dependence within the case of asymptotic independence. On the contrary, in the
cases of strong dependence within asymptotic independence our test fails in detecting the data as asymptotically
independent. Clearly, these are the most naturally difficult cases to detect and more specific tools are required.
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Fig 1. Estimated power functions. Points report the empirical proportion of simulated samples under H1 that rejected H0 as a function of ψ.
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Fig 2. Estimated power functions. Points are the empirical proportion of simulated samples under H1 that rejected H0 as a function of ψ.
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3. Asymptotic independence for componentwise maxima

Being able to test asymptotic independence versus asymptotic dependence is obviously important. However, since
asymptotic independence often arises in applications, it is also crucial to develop some general models that accom-
modate both situations. In this section, we consider the framework of Ramos and Ledford (2009) (see also Ledford
and Tawn, 1997). More precisely, if Y is a d-dimensional random vector with common unit Fréchet margins, i.e.
Pr(Y j ≤ y) = e−1/y for every y > 0 and 1 ≤ j ≤ d, this theory relies on the joint survival function of Y which is as-
sumed to be multivariate regularly varying with index −1/η, where η ∈ (0, 1], i.e. Pr(Y > y) = τ(y)(y1 · · · · · yd)−1/dη

with τ a slowly varying function satisfying

lim
r→∞

τ(r y1, . . . , r yd)
τ(r, . . . , r)

= g(y)

for all y ∈ (0,∞]d. The function g here is homogeneous of order 0, i.e. such that g(a y1, . . . , a yd) = g(y1, . . . , yd)
for any a > 0. This framework implies that the conditional joint survival function admits the following limit
representation for every y ≥ 1, the vector of ones,

lim
u→∞

Pr(Y > uy|Y > u1) = lim
u→∞

Pr(Y > uy)
Pr(Y > u1)

= η

∫
Sd

d∧
j=1

(
w j

y j

)1/η

dHη(w), (3.1)

where Hη is a non-negative measure satisfying the condition

η

∫
Sd

d∧
j=1

w1/η
j dHη(w) = 1. (3.2)

This measure Hη is a particular case of the hidden angular measure introduced by Resnick (2002) (see also
Maulik and Resnick, 2004) when η < 1 and it is a rescaled version of the classical angular measure when η = 1,
see Ramos and Ledford (2009) for details. According to Ramos and Ledford (2011) we assume that Hη is a finite
measure. We recall that η is the so-called coefficient of tail dependence, which measures the level of dependence
within the asymptotic independence framework. Specifically, η = 1 corresponds to the case of asymptotic depen-
dence, whereas η < 1 corresponds to the case of asymptotic independence. More precisely, when the coefficient
η falls in the following sets: (1/d, 1), {1/d} or (0, 1/d), then we say that among the variables there is a positive
association, independence or negative association, respectively, within asymptotic independence (see e.g. Ledford
and Tawn, 1996).

3.1. A η−Pickands dependence function

Consider now, n i.i.d. copies Y1, . . . ,Yn of Y and for a small ε > 0, define Mn,ε = (Mn,1,ε, . . . ,Mn,d,ε) as the vector
of componentwise maxima, precisely

Mn, j,ε =
∨

i∈In(ε)

Yi, j, j = 1, . . . , d,

with In(ε) := {1 ≤ i ≤ n : Yi > 1ε}. Let bn be a sequence of normalizing constants defined by the equation
nPr(Y > bn) = 1. Then, differently from the classical theory (e.g. de Haan and Ferreira, 2006, Ch. 6), here the
limiting distribution for the normalized vector of componentwise maxima Mn,ε is obtained as

Gη(y) := lim
ε→0

lim
n→∞

Pr(Mn,bnε ≤ bny), y ∈ (0,∞]d, (3.3)

see Ramos and Ledford (2011) for details. When a limiting distribution exists with nondegenerate margins, then
Gη is called a multivariate η-extreme-value distribution. Specifically, a d-dimensional random vector Z follows
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the law of a multivariate η-extreme-value distribution, if the one-dimensional marginal distributions are Gη, j(y) =

exp(−ση, jy−1/η), for all y > 0, j = 1, . . . , d, and the joint distribution takes the form

Gη(y) = Cη
(
Gη,1(y1), . . . ,Gη,d(yd)

)
, y ∈ (0,∞]d, (3.4)

where Cη is an η-extreme-value copula, i.e.

Cη(u) = exp
{
−Vη

((
ση,1

− log u1

)η
, . . . ,

(
ση,d

− log ud

)η)}
u ∈ (0, 1]d

with Vη : (0,∞]d → [0,∞) a homogeneous function of order −1/η and

ση, j := Vη(∞, . . . ,∞, 1,∞, . . . ,∞) = η

∫
Sd

w1/η
j dHη(w). (3.5)

Introduce now Lη(z) := Vη((σσση/z)η), for all z = σσση/y1/η. This function is called the η-stable tail dependence
function and using the homogeneity property, it can be rewritten as

Lη(z) = (z1 + · · · + zd)Aη(t), z ∈ [0,∞)d,

where t j = z j/(z1 + · · · + zd) for j = 2, . . . , d, t1 = 1 − t2 − · · · − td. Here, the function Aη is called the η-Pickands
dependence function and it satisfies the following properties.

Proposition 3.1. The η-Pickands dependence function Aη satisfies:

1. For all η ∈ (0, 1], Aη(e j) = 1, j = 1, ..., d;
2. A1(t) = A(t), for all t ∈ Sd;
3. For every η ∈ (0, 1] and t ∈ Sd,

1/d ≤ max(t1, . . . , td) ≤ Aη(t) ≤ 1.

4. Aη(t) is convex, i.e. Aη(at1 + (1 − a)t2) ≤ aAη(t1) + (1 − a)Aη(t2), for all a ∈ [0, 1] and t1, t2 ∈ Sd.

Similarly to the classical literature, a η−madogram function can be defined as the expected distance between the
maximum and the mean of the variables G1/ηt1

η,1 (Z1), . . . ,G1/ηtd
η,d (Zd), that is,

νη(t) = E

 d∨
j=1

{
G1/ηt j

η, j (Z j)
}
−

1
d

d∑
j=1

G1/ηt j

η, j (Z j)

 .
This function can also be linked to the η−Pickands dependence function as follows.

Proposition 3.2. Any random vector Z with a η-extreme-value distribution admits a η-Pickands dependence func-
tion Aη which satisfies

Aη(t) =
1
η

νη(t) + cη(t)
1 − νη(t) − cη(t)

(3.6)

for all t ∈ Sd, where

cη(t) =
1
d

d∑
j=1

t j

t j + 1/η
. (3.7)

This η−Pickands dependence function can be used to represent the level of dependence among the elements of Z,
and thus in the next section, we estimate this function and derive the main asymptotic properties of the estimator.
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3.2. An estimator of the η−Pickands dependence function

Let Z1, . . . , Zn be i.i.d. copies of Z with distribution Gη and define

Hn(y) =
1
n

n∑
i=1

1l{Zi≤y}, y ∈ (0,∞]d

and its associated empirical process

Hn(y) =
√

n(Hn(y) −Gη(y)), y ∈ (0,∞]d.

In order to estimate the η−Pickands dependence function we first assume that we have at our disposal an estimator
η̂n for η satisfying the condition:

Condition 1. Let η̂n be an estimator of η satisfying:

(i) η̂n → η a.s. as n→ ∞;
(ii) One of the following holds true

(a)
√

n(̂ηn − η) = n−1/2 ∑n
i=1 ρ(Zi) + op(1), where ρ : (0,∞]d 7→ R is a measurable function such that

Eρ(Z) = 0 and Eρ2(Z) < ∞;

(b)
√

n(̂ηn − η) = χ(Hn) + op(1), where χ : `∞((0,∞]d) 7→ R is a bounded linear functional.

In the spirit of (2.1) in Section 2, we propose the following estimator for Aη:

Âη̂n,n(t) :=
1
η̂n

ν̂η̂n,n(t) + ĉη̂n,n(t)
1 − ν̂η̂n,n(t) − ĉη̂n,n(t)

where

ν̂η̂n,n(t) :=
1
n

n∑
i=1

 d∨
j=1

{
H (̂ηn)

n, j (Zi, j)
}1/̂ηnt j

−
1
d

d∑
j=1

{
H (̂ηn)

n, j

(
Zi, j

)}1/̂ηnt j


ĉη̂n,n(t) :=

1
n d

n∑
i=1

d∑
j=1

{
H (̂ηn)

n, j

(
Zi, j

)}1/̂ηnt j
(3.8)

with

H(a)
n, j(Zi, j) = Hn, j(Zi, j)

1 + a
a

1
n

n∑
k=1

H1/a
n, j (Zk, j)

−a

, j = 1, . . . , d, for a > 0,

and the empirical distribution functions denoted by

Hn, j(x) :=
1
n

n∑
i=1

1l{Zi, j≤x}, j = 1, . . . , d.

Note that (3.8) comes from the fact that cη defined in Proposition 3.2 can be viewed as

cη(t) = E

1
d

d∑
j=1

{
Gη, j(Z j)

}1/ηt j


and thus in (3.8) we use the empirical counterpart. Another option would have been to replace η by an estimator in
(3.7).
We are now able to state our main result on the convergence of a rescaled version of Âη̂n,n.
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Theorem 3.1. Let Z1, . . . , Zn be i.i.d. copies of Z with distribution Gη, and Âη̂n,n be our proposed estimator for
Aη.

Under Condition 1(i), we have
‖Âη̂n,n − Aη‖∞ → 0 a.s. as n→ ∞. (3.9)

Under Conditions 1(ii), we have in `∞(Sd), as n→ ∞,

√
n(Âη̂n,n(t) − Aη(t))t∈Sd {

(
−

(1 + ηAη(t))2

η

∫ 1

0
Aη(vηt1 , . . . , vηtd ) dv

)
t∈Sd

, (3.10)

where Aη is a stochastic process defined as

Aη(u) := Bη(u) −
d∑

j=1

Ċη, j(u)Bη(1, . . . , 1, u j, 1, . . . , 1), u ∈ [0, 1]d,

with Cη an η-extreme-value copula such that its partial derivative Ċη, j(u) := ∂Cη/∂u j(u) exists and is continuous
on {u ∈ [0, 1]d : 0 < u j < 1}, for all j = 1, . . . , d, and Bη a Cη-Brownian bridge, i.e. a zero-mean Gaussian process
on [0, 1]d with continuous sample paths and covariance function equal to

Cov
(
Bη(u),Bη(v)

)
= Cη(u ∧ v) −Cη(u)Cη(v), u , v ∈ [0, 1]d.

3.3. Examples of estimators satisfying Condition 1

Our η−Pickands dependence function requires an estimator of η which satisfies Condition 1. Below, two examples
of such estimators are proposed.

Example 1. Let Z∗ = max(Z1, . . . ,Zd), where Z follows the distribution (3.4). Then, for any y > 0, the distribution
of Z∗ is Gη(y) := Gη(y, . . . , y). This distribution can be seen as a two-parameter Fréchet family of distributions.
Let η̂n be the Maximum Likelihood (ML) estimator. By Propositions 3.1 and 3.3 in Bücher and Segers (2017), it
follows that the ML estimator satisfies Conditions 1(i) and 1(ii)(a).

Example 2. Let η̂n be the Generalized Probability Weighted Moment (GPWM) estimator of η introduced by Guil-
lou et al. (2014). The next theorem shows that the GPWM estimator admits a stochastic representation implying
that Condition 1(ii)(b) is satisfied. The almost sure consistency of η̂n is a direct consequence.

Theorem 3.2. Let η̂n be the GPWM estimator. For a, b two integers and Qη(u) := G←η (u), introduce the parameter

µa,b :=
∫ 1

0
Qη(u)ua(− log u)bdu

and on u ∈ (0, 1) the two functions

γ(u) := µ1,2u(− log u) − µ1,1u(− log u)2

ϕ(u) :=
1

ηVη
η (1, . . . , 1)

u (− log u)1+η.

Then,
√

n(̂ηn − η) = −
2
µ2

1,1

∫ 1

0
Hn(Qη(u), . . . ,Qη(u))

γ(u)
ϕ(u)

du + o(1) a.s.. (3.11)

Consequently, as n→ ∞

η̂n → η a.s.
√

n(̂ηn − η) { −
2
µ2

1,1

∫ 1

0
H(Qη(u), . . . ,Qη(u))

γ(u)
ϕ(u)

du

where H is a tight centered Gaussian process on (0,∞]d, with covariance function

Cov(H(z),H(y)) = Gη(z ∧ y) −Gη(z)Gη(y), z, y ∈ (0,∞]d.
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3.4. Simulation

The performance of our estimator Âη̂n,n is illustrated in a simulation study with two different experiments.
First experiment: We consider the bivariate η-asymmetric logistic dependence model introduced by Ramos

and Ledford (2011). Such a dependence structure is characterised by the following features. The hidden spectral
measure Hη has density

hη(w) =
η − ψ

ψη2N%

(ρw)−1/ψ +

(
1 − w
%

)−1/ψ

ψ/η−2

{w(1 − w)}−(1+1/ψ), w ∈ (0, 1), (3.12)

where N% := %−1/η + %1/η − (%−1/η + %1/η)ψ/η and ψ ∈ (0, 1], % > 0, η ∈ (0, 1] are dependence parameters. This
satisfies the condition (3.2), i.e. in case d = 2,

η−1 =

∫ 1/2

0
ω1/ηdHη(w) +

∫ 1

1/2
(1 − w)1/ηdHη(w).

The associated limiting distribution in (3.3) takes the form

Gη(y1, y2) =

 exp
[
−N−1

%

{
(%y1)−1/ψ +

(
y2
%

)−1/ψ
}ψ/η]

for ψ < η

0 for ψ ≥ η,
(3.13)

where the degenerate case arises when Hη is infinite. In the sequel we focus on the case ψ < η and for simplicity
we consider % = 1. Distribution (3.13) is the attractor for the distribution of normalized componentwise maxima
obtained from a random vector whose survival function is

Pr(Y1 > y1,Y2 > y2) =
λu1/η

N%

(%y1)−1/η +

(
y2

%

)−1/η

−

(%y1)−1/ψ +

(
y2

%

)−1/ψ

ψ/η

 (3.14)

where (y1, y2) ∈ [u,∞) × [u,∞), with u being a high threshold and λ the joint threshold exceedance probability
(see Ramos and Ledford, 2009 for details). The survival function (3.14) satisfies (3.1) and it is an asymptotically
independent joint probability model for any η ∈ (0, 1), where the strength of the dependence, within asymptotic
independence, increases for decreasing values of the parameter ψ. We call (3.13) and (3.14) the η-asymmetric
logistic distribution and survival function, respectively.

We simulate n values from the η-asymmetric logistic distribution and we estimate the η-Pickands dependence
function with Âη̂n,n. We repeat these steps 1000 times and we compute a Monte Carlo approximation of the Mean
Integrated Squared Error (MISE), i.e.,

MISE(Âη̂n,n, Aη) = E
{∫
Sd

(
Âη̂n,n(t) − Aη(t)

)2
dt

}
.

This study is done for different values of the sample size n and different values of the dependence parameter ψ.
The results are summarized in Table 3. For each value of ψ, between the second and the fifth column the mean of
the estimates for η obtained with the GPWM (first row) and ML (second row) estimator are reported for increasing
sample size. In parentheses is the standard deviation. Between the sixth and ninth columns the approximated MISE
is reported. Accurate estimates are obtained with all the dependence levels. GPWM and ML estimators provide
similar results, although those of the former seem slightly better. According to the MISE, the better performances
are obtained with stronger dependence strengths. For every dependence level the accuracy of estimates increases
with increasing sample size.

Second experiment: We show the performance of the estimator Âη̂n,n under a more realistic scenario. We simulate
n × 366 independent observations from a distribution whose survival function is given in (3.14). To do this we use
the algorithm described in Theorem 1.1 and Appendix B of Ramos and Ledford (2009). The simulation procedure
in Ramos and Ledford (2009) relies on the condition

Pr(Y > y) = ληu1/η
∫

(0,1)
min (w/y1, (1 − w)/y2)1/η dHη(w), y > u1,
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Table 3
Estimates (standard deviation) of η and MISE for the η-Pickands dependence function, based on a bivariate η-asymmetric logistic dependence

model with η = 0.7. The first line corresponds to the GPWM method, whereas the second line is the ML method.

η̂n MISE(Âη̂n ,n, Aη)
n n

ψ 25 50 100 200 25 50 100 200
0.1 0.661(0.115) 0.678(0.084) 0.690(0.062) 0.695(0.043) 0.0111 0.0037 0.0013 0.0005

0.800(0.201) 0.763(0.128) 0.741(0.085) 0.728(0.055) 0.0110 0.0036 0.0013 0.0005
0.2 0.667(0.116) 0.679(0.084) 0.688(0.062) 0.692(0.044) 0.0480 0.0195 0.0088 0.0041

0.807(0.204) 0.761(0.128) 0.740(0.088) 0.724(0.057) 0.0457 0.0187 0.0086 0.0040
0.3 0.665(0.116) 0.680(0.087) 0.692(0.064) 0.696(0.046) 0.1176 0.0542 0.0262 0.0133

0.811(0.211) 0.768(0.130) 0.745(0.087) 0.730(0.059) 0.1133 0.0527 0.0256 0.0131
0.4 0.673(0.114) 0.687(0.088) 0.694(0.062) 0.697(0.045) 0.2177 0.1021 0.0523 0.0260

0.810(0.204) 0.770(0.129) 0.744(0.084) 0.729(0.057) 0.2118 0.1000 0.0514 0.0257
0.5 0.670(0.113) 0.684(0.085) 0.692(0.062) 0.695(0.044) 0.3602 0.1795 0.0952 0.0481

0.805(0.201) 0.766(0.129) 0.742(0.085) 0.728(0.057) 0.3531 0.1765 0.0940 0.0476
0.6 0.670(0.115) 0.685(0.085) 0.691(0.062) 0.696(0.046) 0.4566 0.2252 0.1192 0.0556

0.822(0.206) 0.778(0.127) 0.751(0.089) 0.734(0.063) 0.4758 0.2275 0.1156 0.0585

Table 4
Estimates (standard deviation) of η and MISE for the η-Pickands dependence function, based on componentwise maxima with approximate

bivariate η-asymmetric logistic model with η = 0.7. The first line corresponds to the GPWM method, whereas the second line is the ML
method.

η̂n MISE(Âη̂n ,n, Aη)
n n

ψ 25 50 100 200 25 50 100 200
0.1 0.668(0.115) 0.684(0.089) 0.692(0.061) 0.695(0.044) 0.0108 0.0034 0.0013 0.0005

0.800(0.204) 0.764(0.128) 0.742(0.086) 0.730(0.060) 0.0106 0.0033 0.0013 0.0005
0.2 0.664(0.116) 0.681(0.086) 0.687(0.061) 0.693(0.045) 0.0456 0.0187 0.0088 0.0040

0.810(0.213) 0.765(0.133) 0.743(0.091) 0.728(0.064) 0.0442 0.0183 0.0079 0.0039
0.3 0.670(0.120) 0.686(0.089) 0.696(0.063) 0.698(0.045) 0.1088 0.0563 0.0257 0.0119

0.804(0.194) 0.766(0.119) 0.744(0.078) 0.732(0.055) 0.1080 0.0546 0.0255 0.0117
0.4 0.684(0.119) 0.699(0.091) 0.707(0.063) 0.711(0.045) 0.2265 0.1146 0.0593 0.0279

0.829(0.209) 0.783(0.125) 0.759(0.082) 0.745(0.054) 0.2207 0.1129 0.0584 0.0276
0.5 0.711(0.119) 0.727(0.088) 0.734(0.063) 0.738(0.044) 0.3820 0.1970 0.1113 0.0657

0.846(0.197) 0.806(0.122) 0.786(0.080) 0.773(0.049) 0.3819 0.1973 0.1112 0.0661
0.6 0.751(0.125) 0.766(0.094) 0.775(0.070) 0.781(0.050) 0.7105 0.4298 0.3018 0.2333

0.898(0.201) 0.849(0.121) 0.831(0.082) 0.820(0.053) 0.7293 0.4387 0.3096 0.2381

where u and λ are as in the first experiment. This condition implies that for every y > u,

1 − Pr(Y1 > y,Y2 ≤ u) = exp(−1/y) + λη

∫
(0,1)

min
(

w
y/u

, 1 − w
)1/η

dHη(w),

1 − Pr(Y1 ≤ u,Y2 > y) = exp(−1/y) + λη

∫
(0,1)

min
(
w,

1 − w
y/u

)1/η

dHη(w).

The values of u and λ must be selected in such a way that both functions of y above are monotonically increasing.
When the density of Hη is given by (3.12) with % = 1 and η = 0.7, the monotonicity conditions are satisfied for
every ψ < η by setting u = 10 and λ = 1 − exp(−0.1) − 0.02.

With simulated data we compute b̂366, that is the empirical (1 − 1/366)-quantile of the minimum between
pairs of all observations. For each block of 366 observations we compute the componentwise maxima using ε =

Q(0.07)/̂b366, where Q(0.07) is the ninety-third percentile of a unit Fréchet distribution, i.e. by retaining only the
pairs that are both greater than ε̂b366. We standardize the maxima by dividing them by b̂366. With the n normalized
maxima we estimate the η-Pickands dependence function by Âη̂n,n. We repeat these steps 1000 times and we
compute an approximation of the MISE. Table 4 collects the results.

We see that the estimates of η and Aη are similar to those obtained in Table 3, indicating a good performance
of our estimator. We mention that in each block of 366 observations the componentwise maxima are computed,
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after the truncation, on average on approximately 17 pairs. Although maxima are obtained with a small number
of observations, the estimation results suggest that they are enough to obtain accurate estimates. Estimates are
less accurate for ψ = 0.6 for the following reason. The simulation method for maxima produces observations that
are approximately drawn from the non-degenerate distribution Gη in (3.13), provided that ψ < η, since Gη is a
degenerate distribution for ψ ≥ η. Furthermore, for this example it can be empirically verified that Gη provides a
very accurate approximation for the distribution of the simulated maxima when ψ < 0.6. Instead, whenever ψ is
close to η (a case that resembles the degenerate case), e.g. 0.6 ≤ ψ < 0.7 = η, the quality of the approximation
deteriorates. In this case the mismatch between Gη and the distribution of simulated maxima is no longer negligible,
thus affecting the estimation results.

Finally, note that the asymptotic properties of our estimator established in Theorem 3.1 are no longer valid
in this experiment, although our estimator still performs well. Indeed, they should be re-established under the
assumption that the data belong to the domain of attraction of Gη. In that case the proofs are much more technical
and thus are outside the scope of the present paper.

4. Discussion

The framework for modelling the dependence within asymptotic independence, based on componentwise maxima,
relies on the assumption that Hη is a finite measure (see Section 3). Before applying our estimation method, it
is desirable to check somehow whether such an assumption is not violated by the available data. To this end, we
propose a diagnostic tool. We motivate it on the basis of the following discussion. For simplicity we focus on the
bivariate case although our proposal is easily extendable to higher dimensions. Let Y be a two-dimensional random
vector defined as in Section 3. Define

F̃ j(y) := lim
s→∞

Pr(Y j > sy |Y > s1), j = 1, 2, s > 0, y > 1,

= η

(
y−1/η

∫ y/(1+y)

0
w1/ηdHη(w) +

∫ 1

y/(1+y)
(1 − w)1/ηdHη(w)

)
≤ 2ηMy−1/η,

where M = Hη((0, 1)) < ∞, and

F̃min(y) := lim
s→∞

Pr(min(Y1,Y2) > sy |Y > s1).

Then, it follows that

1 ≤ 2ηM min
(
y−1/η/F̃1(y), y−1/η/F̃2(y)

)
= 2ηM min

(
F̃min(y)/F̃1(y), F̃min(y)/F̃2(y)

)
.

Consequently marginal survival functions F̃ j, j = 1, 2, heavier than F̃min, i.e. F̃min(y)/F̃ j(y) → 0 as y → ∞,
j = 1, 2, provide empirical evidence against the hypothesis that Hη is finite. On the contrary, evidence in favor of

a finite Hη is provided by the conditions F̃min(y)/F̃ j(y) → c j as y → ∞, where c j, j = 1, 2, are positive constants.
On this basis, we suggest implementing the plot

r̂ j(y) :=
̂̃Fmin(y)̂̃F j(y)

, 1 ≤ y ≤ m∗/s,

where

̂̃F j(y) :=
1
ns

ns∑
i=1

1l(yi, j > sy), j = 1, 2, y > 1

̂̃Fmin(y) :=
1
ns

ns∑
i=1

1l(mi > sy),
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Fig 3. Diagnostic plots to check the finiteness of Hη. The left-hand vertical dotted line crosses the abscissas at 1, while the right-hand one at
the value m∗/s. The red line is the case j = 1 and the black line the case j = 2.

yi, j are observations larger than a positive threshold s, mi = min(yi,1, yi,2), ns is the number of mi exceeding the
threshold s and m∗ is the (ns-1)th order statistic of the sample m1, . . . ,mns . When Hη is finite, for j = 1, 2, r̂ j(y)
approaches a positive constant as y→ m∗/s, whereas in the infinite case, it decreases toward zero.

We illustrate the diagnostic tool with some examples. We draw samples of 500 × 366 values from six different
models that satisfy equations (3.1) and (3.2). We consider three models with an η-asymmetric logistic (η-AL)
survival function and parameters ψ = 0.1, ψ = 0.4 and ψ = 0.6, respectively, while u = 10, λ = 1 − e−0.1 − 0.02,

% = 1, η = 0.7 are the same for all the three cases. In these examples Hη is finite and both F̃min and F̃ j, j = 1, 2,
behave approximately as y−1/η for large values of y. Figure 3 displays in the first line the plots of r̂ j, obtained
using s = Q(0.07), where Q(0.07) is the ninety-third percentile of unit-Fréchet distribution. As expected, for
large values of y, r̂ j(y) stays away from zero and it approaches 1 when ψ = 0.1, 0.4 and a smaller constant when
ψ = 0.6 (value close to ψ = 0.7 with which Hη is infinite). We also consider a η-asymmetric logistic model
with u = 8, λ = 1 − e−1/8 − 0.04, % = 1, η = 0.7 and ψ = 0.8, a bivariate standard Gaussian distribution with
ρ = 0.5 and a bivariate inverted symmetric logistic (SL) model with ψ = 0.8 (see Section 2.3). In the latter
two models the marginal distributions of the data are transformed into uni-Fréchet. In these three cases Hη is

infinite. Furthermore, for large y, F̃min behaves approximately as y−1/η with η = 0.7, η = (1 + ρ)/2 = 0.75 and

η = 2−ψ ' 0.57, respectively. While, F̃ j, j = 1, 2 behaves approximately as y−1/k with k = ψ = 0.8, k = 1 + ρ = 1.5
and k = 21−ψ ' 1.15, respectively. For these three examples the diagnostic plots are displayed in the second line of
Figure 3. As expected, r̂ j(y) goes to zero for large values of y.

The procedure for inferring Aη discussed in Section 3.2, when possible, provides useful means to extrapolate
the probability of joint high thresholds exceedances as we describe next. For simplicity we focus on the bivariate
case. By (3.1), (3.5) and the definition of the η-Pickands dependence function we have that the approximation
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Fig 4. Estimated probabilities of joint high thresholds exceedances.

Pr(Y1 > sy1,Y2 > sy2 |Y > s1)

≈ η

∫ 1

0
min

(
w
y1
,

1 − w
y2

)1/η

dHη(w)

= −
{
log Gη,1(y1) + log Gη,2(y2)

} {
1 − Aη

(
log Gη,1(y1)

log Gη,1(y1) + log Gη,2(y2)
,

log Gη,2(y2)
log Gη,1(y1) + log Gη,2(y2)

)}
holds for a large threshold s and y1, y2 > 1. Set s = b̂n, where b̂n is the empirical (1− 1/n)-quantile of the sequence
min(yi,1, yi,1), i = 1, . . . , n, with yi,1, yi,2 that are independent realizations of Y, see (3.3). Then, the above probability
can be approximated by

−
{
log Hn,1(y1) + log Hn,2(y2)

} {
1 − Âη̂n,n

(
log Hn,1(y1)

log Hn,1(y1) + log Hn,2(y2)
,

log Hn,2(y2)
log Hn,1(y1) + log Hn,2(y2)

)}
, (4.1)

where Hn, j, j = 1, 2, are the empirical distribution functions, see Section 3.2. We illustrate the extrapolation of
the probability of high thresholds exceedances with two examples. We simulate 500 × 366 independent realiza-
tions from two distributions with an η-asymmetric logistic survival function and parameters ψ = 0.1, ψ = 0.4,
respectively, while u = 10, λ = 1 − e−0.1 − 0.02, % = 1, η = 0.7 are the same for both the cases. Then, we obtain
the sample of maxima, using b̂366, ε = Q(0.07)/̂b366 (see Section 3.1 and the second experiment of Section 3.4
for details) and we estimate the Pickands dependence function with Âη̂500,500, where η̂500 is the GPWM estimator
of η. For y1, y2 ∈ [1, 10], we extrapolate the probability of joint high thresholds exceedances by applying (4.1).
Figure 4 displays the estimated probabilities for the two models. The left and right panels report the results for the
cases ψ = 0.1 and ψ = 0.4, respectively. To go further with this idea, a topic of interest would be to establish the
asymptotic properties of the estimator defined in (4.1). This is outside the scope of the present paper but it will lead
to further investigations.
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Appendix A: Proofs

A.1. Some properties of Ân

Note that,

ν̂n(e j) =
1
n

n∑
i=1

(
Gn, j(Xi, j)

2 n−1 ∑n
k=1 Gn, j(Xk, j)

−
1
d

Gn, j(Xi, j)
2 n−1 ∑n

k=1 Gn, j(Xk, j)

)
=

1
2
−

1
2d
, j = 1, . . . , d.

Therefore, Ân(e j) = 1 for all j = 1, . . . , d.
The distribution function of the i.i.d. random variables X1, j, . . . , Xn, j, j = 1, . . . , d, being continuous, almost surely
there are no ties and thus

G(1)
n, j(Xi, j) = Gn, j(Xi, j)

2
n

n∑
k=1

Gn, j(Xk, j)

−1

=
n

n + 1
Gn, j(Xi, j).

Then, with simple adjustments of the proof of Theorem 2.4 in Marcon et al. (2017), the weak convergence of Ân

and its almost sure consistency follow. �

A.2. Proof of Proposition 3.1

Our definition of Lη combining with (6.3) in Ramos and Ledford (2011) entails

Aη(t) = η

∫
Sd

max

 t1w1/η
1

ση,1
, . . . ,

tdw1/η
d

ση,d

 dHη(w), t ∈ Sd.

Then, Property 1 follows by the definition of ση, j given in (3.5).
When η = 1, according to Section 3, we have

lim
n→∞

Pr(Y > nx)
Pr(Y > n1)

=

∫
Sd

d∧
j=1

(
w j

x j

)
dH1(w).

Now, this limit can also be rephrased with the classical theory (see e.g. de Haan and Ferreira, 2006, Ch. 6), where

lim
n→∞

Pr(Y > nx)
Pr(Y > n1)

=

d
∫
Sd

∧d
j=1

(
w j

x j

)
dH(w)

R(1, . . . , 1)
,

with H and R defined in pages 218 and 225 in de Haan and Ferreira (2006). Therefore, Property 2 follows from the
relations

d−1R(1, . . . , 1)dH1(w) = dH(w), w ∈ Sd

and σ1, j = 1/R(1, . . . , 1), j = 1, . . . , d.
For every t ∈ Sd we have

η

∫
Sd

max

 t1w1/η
1

ση,1
, . . . ,

tdw1/η
d

ση,d

 dHη(w) ≤ η
∫
Sd

d∑
j=1

 t jw
1/η
j

ση, j

 dHη(w) = 1,
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from which the upper bound in Property 3 follows. To derive the lower bound, it is sufficient to remark that for
every t ∈ Sd, we have

η

∫
Sd

max

 t1w1/η
1

ση,1
, . . . ,

tdw1/η
d

ση,d

 dHη(w) ≥
∨

1≤i< j≤d

η∫
Sd

max

 tiw
1/η
i

ση,i
,

t jw
1/η
j

ση, j

 dHη(w)


=

∨
1≤i< j≤d

ti + t j − η

∫
Sd

min

 tiw
1/η
i

ση,i
,

t jw
1/η
j

ση, j

 dHη(w)


≥

∨
1≤i< j≤d

(
ti + t j −min

(
ti, t j

))
=

∨
1≤ j≤d

t j.

Finally, the convexity in Property 4 can been shown similarly to the convexity of A. �

A.3. Proof of Proposition 3.2

For all η ∈ (0, 1] and t ∈ Sd, set

νη(u; t) :=
d∨

j=1

u1/ηt j

j −
1
d

d∑
j=1

u1/ηt j

j , u ∈ [0, 1]d.

By convention u1/ηt = 0 when t = 0 and u ∈ [0, 1]. By Lemma A.1 in Marcon et al. (2017) we have

νη(t) =

∫
[0,1]d

νη(u; t)dCη(u) (A.1)

=
1
d

d∑
j=1

∫ 1

0
Cη(1, . . . , 1, vηt j , 1, . . . , 1)dv −

∫ 1

0
Cη(vηt1 , . . . , vηtd )dv

=
1
d

d∑
j=1

∫ 1

0
vηt j dv −

∫ 1

0
vηAη(t)dv

=
1
d

d∑
j=1

1
1 + η t j

−
1

1 + η Aη(t)
.

The result (3.6) follows by solving the above equality for Aη. �

A.4. Proof of Theorem 3.1

We start with some notation. Let Ĉn :=
√

n(Ĉn −Cη), where Ĉn is the empirical copula defined as

Ĉn(u) :=
1
n

n∑
i=1

1l
{Ûi≤u}, u ∈ [0, 1]d,

with Ûi =
(
Hn,1(Zi,1), . . . ,Hn,d(Zi,d)

)
. Define now, for all t ∈ Sd,

M(·, t) := 1 −
∫ 1

0
Cη(v· t1 , . . . , v· td )dv, (A.2)

M̂n(·, t) := 1 −
∫ 1

0
Ĉn(v· t1 , . . . , v· td )dv. (A.3)
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We will prove Theorem 3.1 with H (̂ηn)
n, j in ν̂η̂n,n and ĉη̂n,n replaced by Hn, j. Indeed, this slight modification has no

impact on the convergences (3.9) and (3.10) since

H (̂ηn)
n, j (Zi, j) = Hn, j(Zi, j)

(
1 +

1 + η̂n

η̂n
O

(
1
n

))−η̂n

=: Hn, j(Zi, j) e−1
n ,

and the terms in (A.2) and (A.3) can be slightly changed by replacing in the integrals v· t j by v· t j en, j = 1, . . . , d,
without any impact. In view of this remark, we pursue the proof of Theorem 3.1 with M(·, t) and M̂n(·, t) defined
in (A.2) and (A.3) without taking care of the adjustment with en.
We start to prove (3.10). To this aim, note that from (A.1) we have

M(η, t) =
ηAη(t)

1 + ηAη(t)

and thus the following decomposition holds

√
n(Âη̂n,n(t) − Aη(t)) =

√
n
 1
η̂n

M̂n (̂ηn, t)
1 − M̂n (̂ηn, t)

−
1
η

M(η, t)
1 − M(η, t)


=

√
n

η̂n

 M̂n (̂ηn, t)
1 − M̂n (̂ηn, t)

−
M(η, t)

1 − M(η, t)

 +
M(η, t)

1 − M(η, t)
√

n
(

1
η̂n
−

1
η

)
=: Ln(t) + Rn(t),

for all t ∈ Sd. We derive a tractable expression for Ln by means of the following three results.

Lemma A.1. We have the following decomposition
√

n(M̂n (̂ηn, t) − M(η, t)) =
√

n(M̂n(η, t) − M(η, t)) +
√

n(M(̂ηn, t) − M(η, t)) + op(1).

Proof. The proof uses arguments from van der Vaart and Wellner (2007). Since

√
n(M̂n (̂ηn, t) − M(η, t)) =

{√
n(M̂n (̂ηn, t) − M(̂ηn, t)) −

√
n(M̂n(η, t) − M(η, t))

}
+
√

n(M̂n(η, t) − M(η, t)) +
√

n(M(̂ηn, t) − M(η, t)),

it remains to show that

‖
√

n(M̂n (̂ηn, t) − M(̂ηn, t)) −
√

n(M̂n(η, t) − M(η, t))‖∞ = op(1). (A.4)

By Condition 1(ii) we have that
√

n(̂ηn − η) is asymptotically tight. Thus, for every ε > 0, there exists a compact
set K ≡ Kε ⊆ R such that

lim inf
n→∞

Pr(
√

n(̂ηn − η) ∈ K) > 1 − ε.

Furthermore, by the compactness of K, there exist δ > 0, p := p(δ) ∈ N and {h1, . . . , hp} ⊆ K such that K ⊆
∪1≤s≤p(hs − δ, hs + δ). Therefore,

{
√

n(̂ηn − η) ∈ K} ⊆

√n(̂ηn − η) ⊆
p⋃

s=1

(hs − δ, hs + δ)


=

p⋃
s=1

{̂
ηn ∈

(
η + n−1/2(hs − δ), η + n−1/2(hs + δ)

)}
.
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Consequently, it follows that, with probability at least 1 − ε,

‖
√

n(M̂n (̂ηn, t) − M(̂ηn, t)) −
√

n(M̂n(η, t) − M(η, t))‖∞
≤ sup

t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

|
√

n(M̂n(ηn,h, t) − M(ηn,h, t)) −
√

n(M̂n(η, t) − M(η, t))|

≤ sup
t∈Sd

max
1≤s≤p

|
√

n(M̂n(ηn,hs , t) − M(ηn,hs , t)) −
√

n(M̂n(η, t) − M(η, t))|

+ sup
t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

|
√

n(M̂n(ηn,hs , t) − M(ηn,hs , t)) −
√

n(M̂n(ηn,h, t) − M(ηn,h, t))|

=: In,1 + In,2

where ηn,• := η + n−1/2•. Thus to show (A.4) it is sufficient to prove that both In,1 and In,2 tends to 0 in probability,
as n→ ∞. Using (A.2) and (A.3) we obtain

In,1 = sup
t∈Sd

max
1≤s≤p

∣∣∣∣∣∣
∫ 1

0

(
Ĉn(vηn,hs t1 , . . . , vηn,hs td ) − Ĉn(vηt1 , . . . , vηtd )

)
dv

∣∣∣∣∣∣
≤ sup

t∈Sd

max
1≤s≤p

sup
v∈(0,1)

∣∣∣∣Ĉn(vηn,hs t1 , . . . , vηn,hs td ) − Ĉn(vηt1 , . . . , vηtd )
∣∣∣∣

and

In,2 = sup
t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

∣∣∣∣∣∣
∫ 1

0

(
Ĉn(vηn,hs t1 , . . . , vηn,hs td ) − Ĉn(vηn,ht1 , . . . , vηn,htd )

)
dv

∣∣∣∣∣∣
≤ sup

t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

sup
v∈(0,1)

∣∣∣∣Ĉn(vηn,hs t1 , . . . , vηn,hs td ) − Ĉn(vηn,ht1 , . . . , vηn,htd )
∣∣∣∣ .

Now, for every v ∈ (0, 1) and small ε > 0, the map ϕ : (0, 1) → `∞([η − ε, η + ε]) : v 7→ ϕ(v), defined by
(ϕ(v))(x) = vx, induces continuously differentiable functions on [η−ε, η+ε] for every v ∈ (0, 1). The first derivative
of such functions is (ϕ̇(v))(x) = vx log v, which is bounded above by ξv = vη−ε | log v|. Therefore, (ϕ(v))(x) is a
Lipschitz function and it satisfies the condition

|(ϕ(v))(x) − (ϕ(v))(y)| ≤ ξv|x − y|, ∀ x, y ∈ [η − ε, η + ε].

Furthermore, there exists a positive constant ξ such that supv∈(0,1) ξv < ξ, and thus for n sufficiently large ensuring
that ηn,h, ηn,hs ∈ [η − ε, η + ε], we have:

|vηn,hs t j − vηt j | ≤ ξ |η − ηn,hs | = ξ n−1/2|hs| → 0
|vηn,hs t j − vηn,ht j | ≤ ξ |ηn,hs − ηn,h| = ξ n−1/2|hs − h| ≤ ξ δn−1/2 → 0,

as n → ∞, for every t ∈ Sd, indexes s ∈ {1, . . . , p}, j ∈ {1, . . . , d} and for every |h − hs| < δ. These results imply
that

sup
t∈Sd

max
1≤s≤p

sup
v∈(0,1)

max
1≤ j≤d

|vηn,hs t j − vηt j | → 0, n→ ∞ (A.5)

and
sup
t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

max
1≤ j≤d

sup
v∈(0,1)

|vηn,hs t j − vηn,ht j | → 0, n→ ∞. (A.6)

Since the first partial derivative of Cη exists and is continuous on {u ∈ [0, 1]d : 0 < u j < 1} for all j = 1, . . . , d,
Ĉn { Aη in `∞([0, 1]d) as n → ∞ (see e.g. Fermanian et al., 2004; Segers, 2012). Therefore the sequence Ĉn is
asymptotically uniformly equicontinuous in probability (see Theorem 1.5.7 in van der Vaart and Wellner, 1996).
Combining this result with (A.5) and (A.6) we can conclude that In,1 and In,2 tends to 0 in probability, as n → ∞.
Therefore (A.4) is established and thus Lemma A.1 follows. �

Lemma A.2. We have

√
n(M(̂ηn, t) − M(η, t)) =

Aη(t)
(ηAη(t) + 1)2

√
n(̂ηn − η) + op(1).
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Proof. Let
ϕ : ((0,∞), | · |)→ (`∞(Sd), ‖ · ‖∞) : a 7→ M(a, ·)

be the map defined by

M(a, ·) =
a Aη(·)

1 + a Aη(·)
.

Its Hadamard derivative at η ∈ (0, 1] is

h 7→ (ϕ̇η(h)) =
h Aη

(ηAη + 1)2 .

Indeed, for every εn ↓ 0 and hn → h ∈ (0,∞), as n→ ∞, such that η + εnhn ∈ (0,∞), we have

lim
n→∞

sup
t∈Sd

∣∣∣∣∣ (ϕ(η + εnhn))(t) − (ϕ(η))(t)
εn

− (ϕ̇η(h))(t)
∣∣∣∣∣

= lim
n→∞

sup
t∈Sd

∣∣∣∣∣∣ 1
εn

(
(η + εnhn)Aη(t)

(η + εnhn)Aη(t) + 1
−

ηAη(t)
ηAη(t) + 1

)
−

hAη(t)
(ηAη(t) + 1)2

∣∣∣∣∣∣
= lim

n→∞
sup
t∈Sd

∣∣∣∣∣∣ Aη(t)
ηAη(t) + 1

∣∣∣∣∣∣
∣∣∣∣∣∣ hn

(η + εnhn)Aη(t) + 1
−

h
ηAη(t) + 1

∣∣∣∣∣∣
≤ lim

n→∞
d2 |hn − h| + |hhn|εn

(d + η)(d + η + εnhn)
= 0.

Lemma A.2 now follows from Theorem 20.8 in van der Vaart (2000) and under our Condition 1(ii). �

Lemma A.3. We have

√
n
 M̂n (̂ηn, t)

1 − M̂n (̂ηn, t)
−

M(η, t)
1 − M(η, t)

 = (1 + ηAη(t))2 √n(M̂n (̂ηn, t) − M(η, t)) + op(1).

Proof. The proof of this lemma is based on an application of the functional delta method after proving the
Hadamard differentiability of the map ϕ : `∞(Sd) 7→ `∞(Sd) : f 7→ f /(1 − f ), with f in `∞(Sd), and the ex-
istence of the weak limit of

√
n(M(̂ηn, ·) − M(η, ·)) in `∞(Sd).

First, we start showing that the Hadamard derivative of ϕ at M := M(η, ·) is

h 7→ (ϕ̇M(h)) =
h

(1 − M)2 ,

with h in `∞(Sd). Indeed, for every sequence εn ↓ 0 and hn → h as n→ ∞, such that M + εnhn in `∞(Sd), we have

lim
n→∞

sup
t∈Sd

∣∣∣∣∣ (ϕ(M + εnhn))(t) − (ϕ(M))(t)
εn

− (ϕ̇M(h))(t)
∣∣∣∣∣

= lim
n→∞

sup
t∈Sd

∣∣∣∣∣∣ 1
εn

(
M(η, t) + εnhn(t)

1 − M(η, t) − εnhn(t)
−

M(η, t)
1 − M(η, t)

)
−

h(t)
(1 − M(η, t))2

∣∣∣∣∣∣
= lim

n→∞
sup
t∈Sd

(1 + ηAη(t))2

∣∣∣∣∣∣hn(t) − h(t) + h(t)εnhn(t)(1 + ηAη(t))
1 − εnhn(t)(1 + ηAη(t))

∣∣∣∣∣∣
≤ lim

n→∞
(1 + η)2 ‖hn − h‖∞ + εn‖hn h‖∞(1 + η)

1 − εn‖hn‖∞(1 + η)
= 0.

Then, combining Lemmas A.1, A.2 with Proposition 3.1 in Segers (2012), under Condition 1(ii)(b) we have that
√

n(M̂n (̂ηn, ·) − M(η, ·)) = Tn,1(·) + Tn,2(·) + op(1),
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where for all t ∈ Sd

Tn,1(t) := −
∫ 1

0

Cn(vt1η, . . . , vtdη) −
d∑

j=1

Ċη, j(vt1η, . . . , vtdη)Cn(1, . . . , 1, vt jη, 1, . . . , 1)

 dv

and

Tn,2 :=
Aη

(1 + η Aη)2 χ(Hn).

For any u ∈ [0, 1]d, Cn(u) = Hn(G←η,1(u1), . . . ,G←η,d(ud)), so both terms can be expressed as continuous transfor-
mations of the empirical process Hn. Therefore, the weak convergence of Tn,1 + Tn,2 follows from the continuous
mapping theorem. A similar reasoning can be obtained if Condition 1(ii)(b) is replaced by Condition 1(ii)(a). In
that case, we have the following decomposition

√
n(M̂n (̂ηn, ·) − M(η, ·)) =: Tn,1 + T̃n,2 + op(1),

where

Tn,1(t) =
1
√

n

n∑
i=1

(Wi,t − E(Wi,t)), T̃n,2(t) :=
1
√

n

n∑
i=1

W̃i,t , t ∈ Sd

and

Wi,t =

d∨
j=1

G1/ηt j
η (Zi, j) +

d∑
j=1

∫ 1

0
Ċη, j(vt1η, . . . , vtdη)1l

{v>G
1/ηt j
η (Zi, j)}

dv,

W̃i,t =
Aη(t)

(1 + ηAη(t))2 ρ(Zi).

Note that the new expression for Tn,1 is obtained by applying Fubini’s theorem. The pair (Tn,1, T̃n,2) is asymptoti-
cally tight and so to show that its weak limit exists, it remains to prove that all its finite dimensional distributions
converge. This can be done by applying the central limit theorem since, for all k = 1, 2, . . ., the i.i.d. random vectors(

Wi,t1 , . . . ,Wi,tk , W̃i,t1 , . . . , W̃i,tk

)
, i = 1, . . . , n,

have finite second order moments under the assumptions of our Theorem 3.1 (see Nelsen, 2006, Theorem 2.2.7).
This achieves the proof of Lemma A.3. �

We come back now to the proof of Theorem 3.1. Combining the three previous lemmas with the definition of
M(η, t), we have

Ln + Rn =
(1 + ηAη(t))2

η̂n

√
n(M̂n(η, t) − M(η, t)) +

Aη(t)
η̂n

√
n(̂ηn − η) + ηAη(t)

√
n
(

1
η̂n
−

1
η

)
+ op(1)

=
(1 + ηAη(t))2

η̂n

√
n(M̂n(η, t) − M(η, t)) + op(1)

= −
(1 + ηAη(t))2

η

∫ 1

0
Ĉn(vηt1 , . . . , vηtd )dv + op(1).

As in the proof of Lemma A.1, using again the convergence Ĉn { Aη in `∞([0, 1]d) as n→ ∞, (3.10) follows from
the continuous mapping theorem and Slutsky’s lemma.
It remains now to prove (3.9). Note that

‖Âη̂n,n − Aη‖∞ = sup
t∈Sd

∣∣∣∣∣∣ 1
η̂n

M̂n (̂ηn, t)
1 − M̂n (̂ηn, t)

−
1
η

M(η, t)
1 − M(η, t)

∣∣∣∣∣∣
= sup

t∈Sd

∣∣∣∣∣∣ 1

η̂nη{1 − M̂n (̂ηn, t)}{1 − M(η, t)}

∣∣∣∣∣∣ × sup
t∈Sd

∣∣∣∣η{1 − M(η, t)}M̂n (̂ηn, t) − η̂n{1 − M̂n (̂ηn, t)}M(η, t)
∣∣∣∣

=: Tn,1 × Tn,2.
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Since η̂n → η a.s., for a small ε > 0 and large n, we have almost surely that

Tn,1 ≤
1 + 1/η

η̂n
∫ 1

0 Ĉn(v1+ε, . . . , v1+ε)dv
−→

1 + 1/η

η
∫ 1

0 Cη(v1+ε, . . . , v1+ε)dv
< ∞.

Now, using the Lipschitz property of order k > 0 of Cη, we have

Tn,2 ≤ ‖η{1 − M(η, t)} − η̂n{1 − M̂(̂ηn, t)}‖∞ + ‖{1 − M̂n (̂ηn, t)}{1 − M(η, t)}‖∞ |̂ηn − η|

≤ |̂ηn − η|‖1 − M(η, t)‖∞ + η̂n‖M(η, t) − M̂n (̂ηn, t)‖∞ + |̂ηn − η|

≤ 2|̂ηn − η| + η̂n‖M(̂ηn, t) − M̂n (̂ηn, t)‖∞ + η̂n‖M(η, t) − M(̂ηn, t)‖∞

≤ 2|̂ηn − η| + η̂n‖Ĉn −Cη‖∞ + η̂nk
∫ 1

0
‖vη̂nt1 − vηt1 , . . . , vη̂ntd − vηtd‖∞dv.

Each term on the right-hand side of this inequality tend to 0 a.s. under our assumptions and according to similar
arguments to those used in Lemma A.1 for the last term. Thus (3.9) is established and the proof of Theorem 3.1 is
now complete. �

A.5. Proof of Theorem 3.2

According to Guillou et al. (2014), η can be rewritten as

η = 2
(
1 −

µ1,2

µ1,1

)
.

A natural estimator can thus be obtained by replacing Qη(u) by the empirical version G←n (u) where Gn(u) :=
Gn(u, . . . , u). This entails

η̂n = 2
(
1 −

µ̂1,2

µ̂1,1

)
,

where

µ̂a,b :=
∫ 1

0
Qn(u)ua(− log u)bdu.

Consequently, we can decompose the left-hand side of (3.11) as

√
n(̂ηn − η) = 2

√
n
(
µ1,2

µ1,1
−
µ̂1,2

µ̂1,1

)
= 2

∫ 1
0 Qn(u)γ(u)du

n−1/2µ1,1
∫ 1

0 Qn(u)u(− log u)du + µ2
1,1

=: 2
Nn

Dn

with

Qn(u) :=
√

n(Qn(u) − Qη(u)).

We start to study the numerator Nn. To this aim, we define the empirical and quantile processes:

H̃n(u) :=
√

n(G̃n(u) − u), u ∈ (0, 1),
Q̃n(u) :=

√
n(Q̃n(u) − u), u ∈ (0, 1),

where for i.i.d. copies U1, . . . ,Un of U = Gη(max(Z1, . . . ,Zd)), we denote

G̃n(u) :=
1
n

n∑
i=1

1l(Ui ≤ u), u ∈ (0, 1),

and as before Q̃n := G̃←n . Let Ġη(y) and G̈η(y) be the first and second derivatives of Gη(y) with respect to y > 0.
The function defined in Theorem 3.2 is then equal to

ϕ(u) = Ġη(Qη(u)), u ∈ (0, 1).
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We can easily check that Gη satisfies the conditions of Theorem 3 in Csörgő and Révész (1978), whence

sup
u∈(0,1)

|ϕ(u)Qn(u) − Q̃n(u)| = o(1) a.s. (A.7)

and by Bahadur-Kiefer theorem (see e.g. Einmahl, 1996) we have

sup
u∈(0,1)

|Q̃n(u) + H̃n(u)| = o(1) a.s.. (A.8)

As by direct computations
∫ 1

0

∣∣∣∣ γ(u)
ϕ(u)

∣∣∣∣ du < ∞, (A.7) and (A.8) entail

Nn = −

∫ 1

0
H̃n(u)

γ(u)
ϕ(u)

du + o(1) a.s..

A similar reasoning implies that almost surely

Dn = −n−1/2µ1,1

∫ 1

0
H̃n(u)

u(− log u)
ϕ(u)

du + µ2
1,1 + o(1) = µ2

1,1 + o(1).

Assembling Nn and Dn, we deduce that

√
n(̂ηn − η) = −

2
µ2

1,1

∫ 1

0
Hn(Qη(u), . . . ,Qη(u))

γ(u)
ϕ(u)

du + o(1) a.s.,

where we used the fact that H̃n(u) = Hn(Qη(u), . . . ,Qη(u)). Thus (3.11) is established. The other statements of the
theorem are direct consequences. �
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